
GNU Compiler Collection Internals
For gcc version 4.4.1

(Sourcery G++ Lite 2009q3-67)

Richard M. Stallman and the GCC Developer Community

Copyright c© 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.
(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

i

Short Contents

Introduction . 1

1 Contributing to GCC Development . 3

2 GCC and Portability . 5

3 Interfacing to GCC Output . 7

4 The GCC low-level runtime library . 9

5 Language Front Ends in GCC . 59

6 Source Tree Structure and Build System 61

7 Option specification files . 89

8 Passes and Files of the Compiler . 93

9 Trees: The intermediate representation used by the C and C++

front ends . 107

10 RTL Representation . 147

11 GENERIC . 199

12 GIMPLE . 201

13 Analysis and Optimization of GIMPLE tuples 235

14 Analysis and Representation of Loops 249

15 Control Flow Graph . 259

16 Machine Descriptions . 269

17 Target Description Macros and Functions 369

18 Host Configuration . 525

19 Makefile Fragments . 529

20 collect2 . 533

21 Standard Header File Directories . 535

22 Memory Management and Type Information 537

Funding Free Software . 543

The GNU Project and GNU/Linux . 545

GNU General Public License . 547

GNU Free Documentation License . 559

Contributors to GCC . 567

Option Index . 583

Concept Index . 585

iii

Table of Contents

Introduction . 1

1 Contributing to GCC Development 3

2 GCC and Portability . 5

3 Interfacing to GCC Output . 7

4 The GCC low-level runtime library 9
4.1 Routines for integer arithmetic . 9

4.1.1 Arithmetic functions . 9
4.1.2 Comparison functions . 10
4.1.3 Trapping arithmetic functions . 11
4.1.4 Bit operations . 11

4.2 Routines for floating point emulation . 12
4.2.1 Arithmetic functions . 12
4.2.2 Conversion functions . 13
4.2.3 Comparison functions . 15
4.2.4 Other floating-point functions . 16

4.3 Routines for decimal floating point emulation 16
4.3.1 Arithmetic functions . 17
4.3.2 Conversion functions . 17
4.3.3 Comparison functions . 20

4.4 Routines for fixed-point fractional emulation 22
4.4.1 Arithmetic functions . 22
4.4.2 Comparison functions . 30
4.4.3 Conversion functions . 30

4.5 Language-independent routines for exception handling 57
4.6 Miscellaneous runtime library routines . 57

4.6.1 Cache control functions . 57

5 Language Front Ends in GCC 59

6 Source Tree Structure and Build System 61
6.1 Configure Terms and History . 61
6.2 Top Level Source Directory . 61
6.3 The ‘gcc’ Subdirectory . 63

6.3.1 Subdirectories of ‘gcc’ . 63
6.3.2 Configuration in the ‘gcc’ Directory . 63

6.3.2.1 Scripts Used by ‘configure’ . 63

iv GNU Compiler Collection (GCC) Internals

6.3.2.2 The ‘config.build’; ‘config.host’; and ‘config.gcc’
Files . 64

6.3.2.3 Files Created by configure . 64
6.3.3 Build System in the ‘gcc’ Directory . 65
6.3.4 Makefile Targets . 65
6.3.5 Library Source Files and Headers under the ‘gcc’ Directory

. 68
6.3.6 Headers Installed by GCC . 68
6.3.7 Building Documentation . 68

6.3.7.1 Texinfo Manuals . 69
6.3.7.2 Man Page Generation . 69
6.3.7.3 Miscellaneous Documentation . 70

6.3.8 Anatomy of a Language Front End . 71
6.3.8.1 The Front End ‘language ’ Directory 72
6.3.8.2 The Front End ‘config-lang.in’ File 74

6.3.9 Anatomy of a Target Back End . 75
6.4 Testsuites . 76

6.4.1 Idioms Used in Testsuite Code . 76
6.4.2 Directives used within DejaGnu tests . 77
6.4.3 Ada Language Testsuites . 82
6.4.4 C Language Testsuites . 82
6.4.5 The Java library testsuites. 84
6.4.6 Support for testing gcov . 84
6.4.7 Support for testing profile-directed optimizations 85
6.4.8 Support for testing binary compatibility 86
6.4.9 Support for torture testing using multiple options 87

7 Option specification files . 89
7.1 Option file format . 89
7.2 Option properties . 90

8 Passes and Files of the Compiler 93
8.1 Parsing pass . 93
8.2 Gimplification pass . 94
8.3 Pass manager . 94
8.4 Tree SSA passes . 95
8.5 RTL passes . 101

v

9 Trees: The intermediate representation used by
the C and C++ front ends 107

9.1 Deficiencies . 107
9.2 Overview . 107

9.2.1 Trees . 108
9.2.2 Identifiers . 109
9.2.3 Containers . 109

9.3 Types . 109
9.4 Scopes . 115

9.4.1 Namespaces . 115
9.4.2 Classes . 116

9.5 Declarations . 118
9.5.1 Working with declarations . 118
9.5.2 Internal structure . 120

9.5.2.1 Current structure hierarchy . 121
9.5.2.2 Adding new DECL node types . 122

9.6 Functions . 123
9.6.1 Function Basics . 124
9.6.2 Function Bodies . 127

9.6.2.1 Statements . 127
9.7 Attributes in trees . 131
9.8 Expressions . 131

10 RTL Representation . 147
10.1 RTL Object Types . 147
10.2 RTL Classes and Formats . 148
10.3 Access to Operands . 150
10.4 Access to Special Operands . 151
10.5 Flags in an RTL Expression . 153
10.6 Machine Modes . 159
10.7 Constant Expression Types . 164
10.8 Registers and Memory . 166
10.9 RTL Expressions for Arithmetic . 172
10.10 Comparison Operations . 176
10.11 Bit-Fields . 177
10.12 Vector Operations . 178
10.13 Conversions . 178
10.14 Declarations . 180
10.15 Side Effect Expressions . 180
10.16 Embedded Side-Effects on Addresses . 185
10.17 Assembler Instructions as Expressions . 187
10.18 Insns . 187
10.19 RTL Representation of Function-Call Insns 195
10.20 Structure Sharing Assumptions . 196
10.21 Reading RTL . 197

vi GNU Compiler Collection (GCC) Internals

11 GENERIC . 199
11.1 Statements . 199

11.1.1 Blocks . 199
11.1.2 Statement Sequences . 200
11.1.3 Empty Statements . 200
11.1.4 Jumps . 200
11.1.5 Cleanups . 200

12 GIMPLE . 201
12.1 Tuple representation . 202

12.1.1 gimple_statement_base (gsbase) . 202
12.1.2 gimple_statement_with_ops . 203
12.1.3 gimple_statement_with_memory_ops 204

12.2 GIMPLE instruction set . 205
12.3 Exception Handling . 205
12.4 Temporaries . 206
12.5 Operands . 206

12.5.1 Compound Expressions . 207
12.5.2 Compound Lvalues . 207
12.5.3 Conditional Expressions . 207
12.5.4 Logical Operators . 207
12.5.5 Manipulating operands . 208
12.5.6 Operand vector allocation . 208
12.5.7 Operand validation . 209
12.5.8 Statement validation . 209

12.6 Manipulating GIMPLE statements . 210
12.6.1 Common accessors . 210

12.7 Tuple specific accessors . 212
12.7.1 GIMPLE_ASM . 212
12.7.2 GIMPLE_ASSIGN . 213
12.7.3 GIMPLE_BIND . 215
12.7.4 GIMPLE_CALL . 215
12.7.5 GIMPLE_CATCH . 217
12.7.6 GIMPLE_CHANGE_DYNAMIC_TYPE . 218
12.7.7 GIMPLE_COND . 218
12.7.8 GIMPLE_EH_FILTER . 219
12.7.9 GIMPLE_LABEL . 220
12.7.10 GIMPLE_NOP . 220
12.7.11 GIMPLE_OMP_ATOMIC_LOAD . 220
12.7.12 GIMPLE_OMP_ATOMIC_STORE . 221
12.7.13 GIMPLE_OMP_CONTINUE . 221
12.7.14 GIMPLE_OMP_CRITICAL . 221
12.7.15 GIMPLE_OMP_FOR . 222
12.7.16 GIMPLE_OMP_MASTER . 223
12.7.17 GIMPLE_OMP_ORDERED . 223
12.7.18 GIMPLE_OMP_PARALLEL . 223
12.7.19 GIMPLE_OMP_RETURN . 224
12.7.20 GIMPLE_OMP_SECTION . 225

vii

12.7.21 GIMPLE_OMP_SECTIONS . 225
12.7.22 GIMPLE_OMP_SINGLE . 225
12.7.23 GIMPLE_PHI . 226
12.7.24 GIMPLE_RESX . 226
12.7.25 GIMPLE_RETURN . 227
12.7.26 GIMPLE_SWITCH . 227
12.7.27 GIMPLE_TRY . 228
12.7.28 GIMPLE_WITH_CLEANUP_EXPR . 228

12.8 GIMPLE sequences . 229
12.9 Sequence iterators . 230
12.10 Adding a new GIMPLE statement code . 233
12.11 Statement and operand traversals . 233

13 Analysis and Optimization of GIMPLE tuples
. 235

13.1 Annotations . 235
13.2 SSA Operands . 235

13.2.1 Operand Iterators And Access Routines 237
13.2.2 Immediate Uses . 239

13.3 Static Single Assignment . 241
13.3.1 Preserving the SSA form . 242
13.3.2 Preserving the virtual SSA form . 243
13.3.3 Examining SSA_NAME nodes . 244
13.3.4 Walking use-def chains . 244
13.3.5 Walking the dominator tree . 244

13.4 Alias analysis . 245

14 Analysis and Representation of Loops 249
14.1 Loop representation . 249
14.2 Loop querying . 251
14.3 Loop manipulation . 252
14.4 Loop-closed SSA form . 252
14.5 Scalar evolutions . 253
14.6 IV analysis on RTL . 254
14.7 Number of iterations analysis . 254
14.8 Data Dependency Analysis . 255
14.9 Linear loop transformations framework . 257
14.10 Omega a solver for linear programming problems 257

15 Control Flow Graph . 259
15.1 Basic Blocks . 259
15.2 Edges . 260
15.3 Profile information . 263
15.4 Maintaining the CFG . 264
15.5 Liveness information . 266

viii GNU Compiler Collection (GCC) Internals

16 Machine Descriptions . 269
16.1 Overview of How the Machine Description is Used 269
16.2 Everything about Instruction Patterns . 269
16.3 Example of define_insn . 270
16.4 RTL Template . 271
16.5 Output Templates and Operand Substitution 275
16.6 C Statements for Assembler Output . 276
16.7 Predicates . 277

16.7.1 Machine-Independent Predicates . 278
16.7.2 Defining Machine-Specific Predicates 280

16.8 Operand Constraints . 282
16.8.1 Simple Constraints . 282
16.8.2 Multiple Alternative Constraints . 286
16.8.3 Register Class Preferences . 287
16.8.4 Constraint Modifier Characters . 287
16.8.5 Constraints for Particular Machines . 288
16.8.6 Disable insn alternatives using the enabled attribute . . . 305
16.8.7 Defining Machine-Specific Constraints 306
16.8.8 Testing constraints from C . 308

16.9 Standard Pattern Names For Generation . 309
16.10 When the Order of Patterns Matters . 333
16.11 Interdependence of Patterns . 333
16.12 Defining Jump Instruction Patterns . 334
16.13 Defining Looping Instruction Patterns . 336
16.14 Canonicalization of Instructions . 338
16.15 Defining RTL Sequences for Code Generation 339
16.16 Defining How to Split Instructions . 342
16.17 Including Patterns in Machine Descriptions. 345

16.17.1 RTL Generation Tool Options for Directory Search 346
16.18 Machine-Specific Peephole Optimizers . 346

16.18.1 RTL to Text Peephole Optimizers . 346
16.18.2 RTL to RTL Peephole Optimizers . 348

16.19 Instruction Attributes . 350
16.19.1 Defining Attributes and their Values 350
16.19.2 Attribute Expressions . 351
16.19.3 Assigning Attribute Values to Insns 353
16.19.4 Example of Attribute Specifications 354
16.19.5 Computing the Length of an Insn . 355
16.19.6 Constant Attributes . 356
16.19.7 Delay Slot Scheduling . 357
16.19.8 Specifying processor pipeline description 358

16.20 Conditional Execution . 363
16.21 Constant Definitions . 364
16.22 Iterators . 365

16.22.1 Mode Iterators . 365
16.22.1.1 Defining Mode Iterators . 365
16.22.1.2 Substitution in Mode Iterators 366
16.22.1.3 Mode Iterator Examples . 367

ix

16.22.2 Code Iterators . 367

17 Target Description Macros and Functions
. 369

17.1 The Global targetm Variable . 369
17.2 Controlling the Compilation Driver, ‘gcc’ 369
17.3 Run-time Target Specification . 378
17.4 Defining data structures for per-function information. 380
17.5 Storage Layout . 381
17.6 Layout of Source Language Data Types . 390
17.7 Register Usage . 394

17.7.1 Basic Characteristics of Registers . 394
17.7.2 Order of Allocation of Registers . 396
17.7.3 How Values Fit in Registers . 397
17.7.4 Handling Leaf Functions . 399
17.7.5 Registers That Form a Stack . 400

17.8 Register Classes . 400
17.9 Obsolete Macros for Defining Constraints 409
17.10 Stack Layout and Calling Conventions . 411

17.10.1 Basic Stack Layout . 411
17.10.2 Exception Handling Support . 415
17.10.3 Specifying How Stack Checking is Done 417
17.10.4 Registers That Address the Stack Frame 418
17.10.5 Eliminating Frame Pointer and Arg Pointer 420
17.10.6 Passing Function Arguments on the Stack 422
17.10.7 Passing Arguments in Registers . 424
17.10.8 How Scalar Function Values Are Returned 429
17.10.9 How Large Values Are Returned . 430
17.10.10 Caller-Saves Register Allocation . 432
17.10.11 Function Entry and Exit . 432
17.10.12 Generating Code for Profiling . 436
17.10.13 Permitting tail calls . 436
17.10.14 Stack smashing protection . 437

17.11 Implementing the Varargs Macros . 437
17.12 Trampolines for Nested Functions . 439
17.13 Implicit Calls to Library Routines . 442
17.14 Addressing Modes . 443
17.15 Anchored Addresses . 448
17.16 Condition Code Status . 449
17.17 Describing Relative Costs of Operations . 452
17.18 Adjusting the Instruction Scheduler . 456
17.19 Dividing the Output into Sections (Texts, Data, . . .) 462
17.20 Position Independent Code . 466
17.21 Defining the Output Assembler Language 467

17.21.1 The Overall Framework of an Assembler File 467
17.21.2 Output of Data . 470
17.21.3 Output of Uninitialized Variables . 472
17.21.4 Output and Generation of Labels . 474

x GNU Compiler Collection (GCC) Internals

17.21.5 How Initialization Functions Are Handled 481
17.21.6 Macros Controlling Initialization Routines 483
17.21.7 Output of Assembler Instructions . 485
17.21.8 Output of Dispatch Tables . 488
17.21.9 Assembler Commands for Exception Regions 489
17.21.10 Assembler Commands for Alignment 491

17.22 Controlling Debugging Information Format 493
17.22.1 Macros Affecting All Debugging Formats 493
17.22.2 Specific Options for DBX Output . 494
17.22.3 Open-Ended Hooks for DBX Format 496
17.22.4 File Names in DBX Format . 496
17.22.5 Macros for SDB and DWARF Output 497
17.22.6 Macros for VMS Debug Format . 499

17.23 Cross Compilation and Floating Point . 499
17.24 Mode Switching Instructions . 501
17.25 Defining target-specific uses of __attribute__ 502
17.26 Emulating TLS . 504
17.27 Defining coprocessor specifics for MIPS targets. 505
17.28 Parameters for Precompiled Header Validity Checking 506
17.29 C++ ABI parameters . 506
17.30 Miscellaneous Parameters . 508

18 Host Configuration . 525
18.1 Host Common . 525
18.2 Host Filesystem . 526
18.3 Host Misc . 527

19 Makefile Fragments . 529
19.1 Target Makefile Fragments . 529
19.2 Host Makefile Fragments . 531

20 collect2 . 533

21 Standard Header File Directories 535

22 Memory Management and Type Information
. 537

22.1 The Inside of a GTY(()) . 537
22.2 Marking Roots for the Garbage Collector . 541
22.3 Source Files Containing Type Information 542
22.4 How to invoke the garbage collector . 542

Funding Free Software . 543

The GNU Project and GNU/Linux 545

xi

GNU General Public License 547

GNU Free Documentation License 559
ADDENDUM: How to use this License for your documents 565

Contributors to GCC . 567

Option Index . 583

Concept Index . 585

Introduction 1

Introduction

This manual documents the internals of the GNU compilers, including how to port them
to new targets and some information about how to write front ends for new languages. It
corresponds to the compilers (Sourcery G++ Lite 2009q3-67) version 4.4.1. The use of the
GNU compilers is documented in a separate manual. See Section “Introduction” in Using
the GNU Compiler Collection (GCC).

This manual is mainly a reference manual rather than a tutorial. It discusses how to con-
tribute to GCC (see Chapter 1 [Contributing], page 3), the characteristics of the machines
supported by GCC as hosts and targets (see Chapter 2 [Portability], page 5), how GCC
relates to the ABIs on such systems (see Chapter 3 [Interface], page 7), and the character-
istics of the languages for which GCC front ends are written (see Chapter 5 [Languages],
page 59). It then describes the GCC source tree structure and build system, some of the
interfaces to GCC front ends, and how support for a target system is implemented in GCC.

Additional tutorial information is linked to from http://gcc.gnu.org/readings.html.

http://gcc.gnu.org/readings.html

Chapter 1: Contributing to GCC Development 3

1 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, current development
sources are available by SVN (see http://gcc.gnu.org/svn.html). Source and binary
snapshots are also available for FTP; see http://gcc.gnu.org/snapshots.html.

If you would like to work on improvements to GCC, please read the advice at these URLs:
http://gcc.gnu.org/contribute.html

http://gcc.gnu.org/contributewhy.html

for information on how to make useful contributions and avoid duplication of effort. Sug-
gested projects are listed at http://gcc.gnu.org/projects/.

http://gcc.gnu.org/svn.html
http://gcc.gnu.org/snapshots.html
http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html
http://gcc.gnu.org/projects/

Chapter 2: GCC and Portability 5

2 GCC and Portability

GCC itself aims to be portable to any machine where int is at least a 32-bit type. It aims
to target machines with a flat (non-segmented) byte addressed data address space (the code
address space can be separate). Target ABIs may have 8, 16, 32 or 64-bit int type. char
can be wider than 8 bits.

GCC gets most of the information about the target machine from a machine description
which gives an algebraic formula for each of the machine’s instructions. This is a very clean
way to describe the target. But when the compiler needs information that is difficult to
express in this fashion, ad-hoc parameters have been defined for machine descriptions. The
purpose of portability is to reduce the total work needed on the compiler; it was not of
interest for its own sake.

GCC does not contain machine dependent code, but it does contain code that depends on
machine parameters such as endianness (whether the most significant byte has the highest
or lowest address of the bytes in a word) and the availability of autoincrement addressing. In
the RTL-generation pass, it is often necessary to have multiple strategies for generating code
for a particular kind of syntax tree, strategies that are usable for different combinations of
parameters. Often, not all possible cases have been addressed, but only the common ones or
only the ones that have been encountered. As a result, a new target may require additional
strategies. You will know if this happens because the compiler will call abort. Fortunately,
the new strategies can be added in a machine-independent fashion, and will affect only the
target machines that need them.

Chapter 3: Interfacing to GCC Output 7

3 Interfacing to GCC Output

GCC is normally configured to use the same function calling convention normally in use
on the target system. This is done with the machine-description macros described (see
Chapter 17 [Target Macros], page 369).

However, returning of structure and union values is done differently on some target ma-
chines. As a result, functions compiled with PCC returning such types cannot be called
from code compiled with GCC, and vice versa. This does not cause trouble often because
few Unix library routines return structures or unions.

GCC code returns structures and unions that are 1, 2, 4 or 8 bytes long in the same
registers used for int or double return values. (GCC typically allocates variables of such
types in registers also.) Structures and unions of other sizes are returned by storing them
into an address passed by the caller (usually in a register). The target hook TARGET_STRUCT_
VALUE_RTX tells GCC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size
by copying the data into an area of static storage, and then returning the address of that
storage as if it were a pointer value. The caller must copy the data from that memory area
to the place where the value is wanted. This is slower than the method used by GCC, and
fails to be reentrant.

On some target machines, such as RISC machines and the 80386, the standard system
convention is to pass to the subroutine the address of where to return the value. On these
machines, GCC has been configured to be compatible with the standard compiler, when
this method is used. It may not be compatible for structures of 1, 2, 4 or 8 bytes.

GCC uses the system’s standard convention for passing arguments. On some machines,
the first few arguments are passed in registers; in others, all are passed on the stack. It
would be possible to use registers for argument passing on any machine, and this would
probably result in a significant speedup. But the result would be complete incompatibility
with code that follows the standard convention. So this change is practical only if you
are switching to GCC as the sole C compiler for the system. We may implement register
argument passing on certain machines once we have a complete GNU system so that we
can compile the libraries with GCC.

On some machines (particularly the SPARC), certain types of arguments are passed “by
invisible reference”. This means that the value is stored in memory, and the address of the
memory location is passed to the subroutine.

If you use longjmp, beware of automatic variables. ISO C says that automatic variables
that are not declared volatile have undefined values after a longjmp. And this is all GCC
promises to do, because it is very difficult to restore register variables correctly, and one of
GCC’s features is that it can put variables in registers without your asking it to.

Chapter 4: The GCC low-level runtime library 9

4 The GCC low-level runtime library

GCC provides a low-level runtime library, ‘libgcc.a’ or ‘libgcc_s.so.1’ on some plat-
forms. GCC generates calls to routines in this library automatically, whenever it needs to
perform some operation that is too complicated to emit inline code for.

Most of the routines in libgcc handle arithmetic operations that the target processor
cannot perform directly. This includes integer multiply and divide on some machines, and all
floating-point and fixed-point operations on other machines. libgcc also includes routines
for exception handling, and a handful of miscellaneous operations.

Some of these routines can be defined in mostly machine-independent C. Others must be
hand-written in assembly language for each processor that needs them.

GCC will also generate calls to C library routines, such as memcpy and memset, in some
cases. The set of routines that GCC may possibly use is documented in Section “Other
Builtins” in Using the GNU Compiler Collection (GCC).

These routines take arguments and return values of a specific machine mode, not a specific
C type. See Section 10.6 [Machine Modes], page 159, for an explanation of this concept. For
illustrative purposes, in this chapter the floating point type float is assumed to correspond
to SFmode; double to DFmode; and long double to both TFmode and XFmode. Similarly,
the integer types int and unsigned int correspond to SImode; long and unsigned long
to DImode; and long long and unsigned long long to TImode.

4.1 Routines for integer arithmetic

The integer arithmetic routines are used on platforms that don’t provide hardware support
for arithmetic operations on some modes.

4.1.1 Arithmetic functions

[Runtime Function]int __ashlsi3 (int a, int b)
[Runtime Function]long __ashldi3 (long a, int b)
[Runtime Function]long long __ashlti3 (long long a, int b)

These functions return the result of shifting a left by b bits.

[Runtime Function]int __ashrsi3 (int a, int b)
[Runtime Function]long __ashrdi3 (long a, int b)
[Runtime Function]long long __ashrti3 (long long a, int b)

These functions return the result of arithmetically shifting a right by b bits.

[Runtime Function]int __divsi3 (int a, int b)
[Runtime Function]long __divdi3 (long a, long b)
[Runtime Function]long long __divti3 (long long a, long long b)

These functions return the quotient of the signed division of a and b.

[Runtime Function]int __lshrsi3 (int a, int b)
[Runtime Function]long __lshrdi3 (long a, int b)
[Runtime Function]long long __lshrti3 (long long a, int b)

These functions return the result of logically shifting a right by b bits.

10 GNU Compiler Collection (GCC) Internals

[Runtime Function]int __modsi3 (int a, int b)
[Runtime Function]long __moddi3 (long a, long b)
[Runtime Function]long long __modti3 (long long a, long long b)

These functions return the remainder of the signed division of a and b.

[Runtime Function]int __mulsi3 (int a, int b)
[Runtime Function]long __muldi3 (long a, long b)
[Runtime Function]long long __multi3 (long long a, long long b)

These functions return the product of a and b.

[Runtime Function]long __negdi2 (long a)
[Runtime Function]long long __negti2 (long long a)

These functions return the negation of a.

[Runtime Function]unsigned int __udivsi3 (unsigned int a, unsigned int b)
[Runtime Function]unsigned long __udivdi3 (unsigned long a, unsigned long b)
[Runtime Function]unsigned long long __udivti3 (unsigned long long a,

unsigned long long b)
These functions return the quotient of the unsigned division of a and b.

[Runtime Function]unsigned long __udivmoddi3 (unsigned long a, unsigned long
b, unsigned long *c)

[Runtime Function]unsigned long long __udivti3 (unsigned long long a,
unsigned long long b, unsigned long long *c)

These functions calculate both the quotient and remainder of the unsigned division
of a and b. The return value is the quotient, and the remainder is placed in variable
pointed to by c.

[Runtime Function]unsigned int __umodsi3 (unsigned int a, unsigned int b)
[Runtime Function]unsigned long __umoddi3 (unsigned long a, unsigned long b)
[Runtime Function]unsigned long long __umodti3 (unsigned long long a,

unsigned long long b)
These functions return the remainder of the unsigned division of a and b.

4.1.2 Comparison functions

The following functions implement integral comparisons. These functions implement a low-
level compare, upon which the higher level comparison operators (such as less than and
greater than or equal to) can be constructed. The returned values lie in the range zero
to two, to allow the high-level operators to be implemented by testing the returned result
using either signed or unsigned comparison.

[Runtime Function]int __cmpdi2 (long a, long b)
[Runtime Function]int __cmpti2 (long long a, long long b)

These functions perform a signed comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

[Runtime Function]int __ucmpdi2 (unsigned long a, unsigned long b)
[Runtime Function]int __ucmpti2 (unsigned long long a, unsigned long long b)

These functions perform an unsigned comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

Chapter 4: The GCC low-level runtime library 11

4.1.3 Trapping arithmetic functions

The following functions implement trapping arithmetic. These functions call the libc func-
tion abort upon signed arithmetic overflow.

[Runtime Function]int __absvsi2 (int a)
[Runtime Function]long __absvdi2 (long a)

These functions return the absolute value of a.

[Runtime Function]int __addvsi3 (int a, int b)
[Runtime Function]long __addvdi3 (long a, long b)

These functions return the sum of a and b; that is a + b .

[Runtime Function]int __mulvsi3 (int a, int b)
[Runtime Function]long __mulvdi3 (long a, long b)

The functions return the product of a and b; that is a * b .

[Runtime Function]int __negvsi2 (int a)
[Runtime Function]long __negvdi2 (long a)

These functions return the negation of a; that is -a .

[Runtime Function]int __subvsi3 (int a, int b)
[Runtime Function]long __subvdi3 (long a, long b)

These functions return the difference between b and a; that is a - b .

4.1.4 Bit operations

[Runtime Function]int __clzsi2 (int a)
[Runtime Function]int __clzdi2 (long a)
[Runtime Function]int __clzti2 (long long a)

These functions return the number of leading 0-bits in a, starting at the most signif-
icant bit position. If a is zero, the result is undefined.

[Runtime Function]int __ctzsi2 (int a)
[Runtime Function]int __ctzdi2 (long a)
[Runtime Function]int __ctzti2 (long long a)

These functions return the number of trailing 0-bits in a, starting at the least signif-
icant bit position. If a is zero, the result is undefined.

[Runtime Function]int __ffsdi2 (long a)
[Runtime Function]int __ffsti2 (long long a)

These functions return the index of the least significant 1-bit in a, or the value zero
if a is zero. The least significant bit is index one.

[Runtime Function]int __paritysi2 (int a)
[Runtime Function]int __paritydi2 (long a)
[Runtime Function]int __parityti2 (long long a)

These functions return the value zero if the number of bits set in a is even, and the
value one otherwise.

12 GNU Compiler Collection (GCC) Internals

[Runtime Function]int __popcountsi2 (int a)
[Runtime Function]int __popcountdi2 (long a)
[Runtime Function]int __popcountti2 (long long a)

These functions return the number of bits set in a.

[Runtime Function]int32_t __bswapsi2 (int32 t a)
[Runtime Function]int64_t __bswapdi2 (int64 t a)

These functions return the a byteswapped.

4.2 Routines for floating point emulation

The software floating point library is used on machines which do not have hardware support
for floating point. It is also used whenever ‘-msoft-float’ is used to disable generation of
floating point instructions. (Not all targets support this switch.)

For compatibility with other compilers, the floating point emulation routines can be
renamed with the DECLARE_LIBRARY_RENAMES macro (see Section 17.13 [Library Calls],
page 442). In this section, the default names are used.

Presently the library does not support XFmode, which is used for long double on some
architectures.

4.2.1 Arithmetic functions

[Runtime Function]float __addsf3 (float a, float b)
[Runtime Function]double __adddf3 (double a, double b)
[Runtime Function]long double __addtf3 (long double a, long double b)
[Runtime Function]long double __addxf3 (long double a, long double b)

These functions return the sum of a and b.

[Runtime Function]float __subsf3 (float a, float b)
[Runtime Function]double __subdf3 (double a, double b)
[Runtime Function]long double __subtf3 (long double a, long double b)
[Runtime Function]long double __subxf3 (long double a, long double b)

These functions return the difference between b and a; that is, a− b.

[Runtime Function]float __mulsf3 (float a, float b)
[Runtime Function]double __muldf3 (double a, double b)
[Runtime Function]long double __multf3 (long double a, long double b)
[Runtime Function]long double __mulxf3 (long double a, long double b)

These functions return the product of a and b.

[Runtime Function]float __divsf3 (float a, float b)
[Runtime Function]double __divdf3 (double a, double b)
[Runtime Function]long double __divtf3 (long double a, long double b)
[Runtime Function]long double __divxf3 (long double a, long double b)

These functions return the quotient of a and b; that is, a/b.

[Runtime Function]float __negsf2 (float a)
[Runtime Function]double __negdf2 (double a)
[Runtime Function]long double __negtf2 (long double a)

Chapter 4: The GCC low-level runtime library 13

[Runtime Function]long double __negxf2 (long double a)
These functions return the negation of a. They simply flip the sign bit, so they can
produce negative zero and negative NaN.

4.2.2 Conversion functions

[Runtime Function]double __extendsfdf2 (float a)
[Runtime Function]long double __extendsftf2 (float a)
[Runtime Function]long double __extendsfxf2 (float a)
[Runtime Function]long double __extenddftf2 (double a)
[Runtime Function]long double __extenddfxf2 (double a)

These functions extend a to the wider mode of their return type.

[Runtime Function]double __truncxfdf2 (long double a)
[Runtime Function]double __trunctfdf2 (long double a)
[Runtime Function]float __truncxfsf2 (long double a)
[Runtime Function]float __trunctfsf2 (long double a)
[Runtime Function]float __truncdfsf2 (double a)

These functions truncate a to the narrower mode of their return type, rounding toward
zero.

[Runtime Function]int __fixsfsi (float a)
[Runtime Function]int __fixdfsi (double a)
[Runtime Function]int __fixtfsi (long double a)
[Runtime Function]int __fixxfsi (long double a)

These functions convert a to a signed integer, rounding toward zero.

[Runtime Function]long __fixsfdi (float a)
[Runtime Function]long __fixdfdi (double a)
[Runtime Function]long __fixtfdi (long double a)
[Runtime Function]long __fixxfdi (long double a)

These functions convert a to a signed long, rounding toward zero.

[Runtime Function]long long __fixsfti (float a)
[Runtime Function]long long __fixdfti (double a)
[Runtime Function]long long __fixtfti (long double a)
[Runtime Function]long long __fixxfti (long double a)

These functions convert a to a signed long long, rounding toward zero.

[Runtime Function]unsigned int __fixunssfsi (float a)
[Runtime Function]unsigned int __fixunsdfsi (double a)
[Runtime Function]unsigned int __fixunstfsi (long double a)
[Runtime Function]unsigned int __fixunsxfsi (long double a)

These functions convert a to an unsigned integer, rounding toward zero. Negative
values all become zero.

[Runtime Function]unsigned long __fixunssfdi (float a)
[Runtime Function]unsigned long __fixunsdfdi (double a)
[Runtime Function]unsigned long __fixunstfdi (long double a)

14 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned long __fixunsxfdi (long double a)
These functions convert a to an unsigned long, rounding toward zero. Negative values
all become zero.

[Runtime Function]unsigned long long __fixunssfti (float a)
[Runtime Function]unsigned long long __fixunsdfti (double a)
[Runtime Function]unsigned long long __fixunstfti (long double a)
[Runtime Function]unsigned long long __fixunsxfti (long double a)

These functions convert a to an unsigned long long, rounding toward zero. Negative
values all become zero.

[Runtime Function]float __floatsisf (int i)
[Runtime Function]double __floatsidf (int i)
[Runtime Function]long double __floatsitf (int i)
[Runtime Function]long double __floatsixf (int i)

These functions convert i, a signed integer, to floating point.

[Runtime Function]float __floatdisf (long i)
[Runtime Function]double __floatdidf (long i)
[Runtime Function]long double __floatditf (long i)
[Runtime Function]long double __floatdixf (long i)

These functions convert i, a signed long, to floating point.

[Runtime Function]float __floattisf (long long i)
[Runtime Function]double __floattidf (long long i)
[Runtime Function]long double __floattitf (long long i)
[Runtime Function]long double __floattixf (long long i)

These functions convert i, a signed long long, to floating point.

[Runtime Function]float __floatunsisf (unsigned int i)
[Runtime Function]double __floatunsidf (unsigned int i)
[Runtime Function]long double __floatunsitf (unsigned int i)
[Runtime Function]long double __floatunsixf (unsigned int i)

These functions convert i, an unsigned integer, to floating point.

[Runtime Function]float __floatundisf (unsigned long i)
[Runtime Function]double __floatundidf (unsigned long i)
[Runtime Function]long double __floatunditf (unsigned long i)
[Runtime Function]long double __floatundixf (unsigned long i)

These functions convert i, an unsigned long, to floating point.

[Runtime Function]float __floatuntisf (unsigned long long i)
[Runtime Function]double __floatuntidf (unsigned long long i)
[Runtime Function]long double __floatuntitf (unsigned long long i)
[Runtime Function]long double __floatuntixf (unsigned long long i)

These functions convert i, an unsigned long long, to floating point.

Chapter 4: The GCC low-level runtime library 15

4.2.3 Comparison functions

There are two sets of basic comparison functions.

[Runtime Function]int __cmpsf2 (float a, float b)
[Runtime Function]int __cmpdf2 (double a, double b)
[Runtime Function]int __cmptf2 (long double a, long double b)

These functions calculate a <=> b. That is, if a is less than b, they return −1; if
a is greater than b, they return 1; and if a and b are equal they return 0. If either
argument is NaN they return 1, but you should not rely on this; if NaN is a possibility,
use one of the higher-level comparison functions.

[Runtime Function]int __unordsf2 (float a, float b)
[Runtime Function]int __unorddf2 (double a, double b)
[Runtime Function]int __unordtf2 (long double a, long double b)

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as

if (__unordXf2 (a, b))

return E;

return __cmpXf2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

[Runtime Function]int __eqsf2 (float a, float b)
[Runtime Function]int __eqdf2 (double a, double b)
[Runtime Function]int __eqtf2 (long double a, long double b)

These functions return zero if neither argument is NaN, and a and b are equal.

[Runtime Function]int __nesf2 (float a, float b)
[Runtime Function]int __nedf2 (double a, double b)
[Runtime Function]int __netf2 (long double a, long double b)

These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

[Runtime Function]int __gesf2 (float a, float b)
[Runtime Function]int __gedf2 (double a, double b)
[Runtime Function]int __getf2 (long double a, long double b)

These functions return a value greater than or equal to zero if neither argument is
NaN, and a is greater than or equal to b.

[Runtime Function]int __ltsf2 (float a, float b)
[Runtime Function]int __ltdf2 (double a, double b)
[Runtime Function]int __lttf2 (long double a, long double b)

These functions return a value less than zero if neither argument is NaN, and a is
strictly less than b.

16 GNU Compiler Collection (GCC) Internals

[Runtime Function]int __lesf2 (float a, float b)
[Runtime Function]int __ledf2 (double a, double b)
[Runtime Function]int __letf2 (long double a, long double b)

These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

[Runtime Function]int __gtsf2 (float a, float b)
[Runtime Function]int __gtdf2 (double a, double b)
[Runtime Function]int __gttf2 (long double a, long double b)

These functions return a value greater than zero if neither argument is NaN, and a is
strictly greater than b.

4.2.4 Other floating-point functions

[Runtime Function]float __powisf2 (float a, int b)
[Runtime Function]double __powidf2 (double a, int b)
[Runtime Function]long double __powitf2 (long double a, int b)
[Runtime Function]long double __powixf2 (long double a, int b)

These functions convert raise a to the power b.

[Runtime Function]complex float __mulsc3 (float a, float b, float c, float d)
[Runtime Function]complex double __muldc3 (double a, double b, double c,

double d)
[Runtime Function]complex long double __multc3 (long double a, long double

b, long double c, long double d)
[Runtime Function]complex long double __mulxc3 (long double a, long double

b, long double c, long double d)
These functions return the product of a + ib and c + id, following the rules of C99
Annex G.

[Runtime Function]complex float __divsc3 (float a, float b, float c, float d)
[Runtime Function]complex double __divdc3 (double a, double b, double c,

double d)
[Runtime Function]complex long double __divtc3 (long double a, long double

b, long double c, long double d)
[Runtime Function]complex long double __divxc3 (long double a, long double

b, long double c, long double d)
These functions return the quotient of a + ib and c + id (i.e., (a + ib)/(c + id)),
following the rules of C99 Annex G.

4.3 Routines for decimal floating point emulation

The software decimal floating point library implements IEEE 754-2008 decimal floating
point arithmetic and is only activated on selected targets.

The software decimal floating point library supports either DPD (Densely Packed Deci-
mal) or BID (Binary Integer Decimal) encoding as selected at configure time.

Chapter 4: The GCC low-level runtime library 17

4.3.1 Arithmetic functions

[Runtime Function]_Decimal32 __dpd_addsd3 (Decimal32 a, Decimal32 b)
[Runtime Function]_Decimal32 __bid_addsd3 (Decimal32 a, Decimal32 b)
[Runtime Function]_Decimal64 __dpd_adddd3 (Decimal64 a, Decimal64 b)
[Runtime Function]_Decimal64 __bid_adddd3 (Decimal64 a, Decimal64 b)
[Runtime Function]_Decimal128 __dpd_addtd3 (Decimal128 a, Decimal128 b)
[Runtime Function]_Decimal128 __bid_addtd3 (Decimal128 a, Decimal128 b)

These functions return the sum of a and b.

[Runtime Function]_Decimal32 __dpd_subsd3 (Decimal32 a, Decimal32 b)
[Runtime Function]_Decimal32 __bid_subsd3 (Decimal32 a, Decimal32 b)
[Runtime Function]_Decimal64 __dpd_subdd3 (Decimal64 a, Decimal64 b)
[Runtime Function]_Decimal64 __bid_subdd3 (Decimal64 a, Decimal64 b)
[Runtime Function]_Decimal128 __dpd_subtd3 (Decimal128 a, Decimal128 b)
[Runtime Function]_Decimal128 __bid_subtd3 (Decimal128 a, Decimal128 b)

These functions return the difference between b and a; that is, a− b.

[Runtime Function]_Decimal32 __dpd_mulsd3 (Decimal32 a, Decimal32 b)
[Runtime Function]_Decimal32 __bid_mulsd3 (Decimal32 a, Decimal32 b)
[Runtime Function]_Decimal64 __dpd_muldd3 (Decimal64 a, Decimal64 b)
[Runtime Function]_Decimal64 __bid_muldd3 (Decimal64 a, Decimal64 b)
[Runtime Function]_Decimal128 __dpd_multd3 (Decimal128 a, Decimal128 b)
[Runtime Function]_Decimal128 __bid_multd3 (Decimal128 a, Decimal128 b)

These functions return the product of a and b.

[Runtime Function]_Decimal32 __dpd_divsd3 (Decimal32 a, Decimal32 b)
[Runtime Function]_Decimal32 __bid_divsd3 (Decimal32 a, Decimal32 b)
[Runtime Function]_Decimal64 __dpd_divdd3 (Decimal64 a, Decimal64 b)
[Runtime Function]_Decimal64 __bid_divdd3 (Decimal64 a, Decimal64 b)
[Runtime Function]_Decimal128 __dpd_divtd3 (Decimal128 a, Decimal128 b)
[Runtime Function]_Decimal128 __bid_divtd3 (Decimal128 a, Decimal128 b)

These functions return the quotient of a and b; that is, a/b.

[Runtime Function]_Decimal32 __dpd_negsd2 (Decimal32 a)
[Runtime Function]_Decimal32 __bid_negsd2 (Decimal32 a)
[Runtime Function]_Decimal64 __dpd_negdd2 (Decimal64 a)
[Runtime Function]_Decimal64 __bid_negdd2 (Decimal64 a)
[Runtime Function]_Decimal128 __dpd_negtd2 (Decimal128 a)
[Runtime Function]_Decimal128 __bid_negtd2 (Decimal128 a)

These functions return the negation of a. They simply flip the sign bit, so they can
produce negative zero and negative NaN.

4.3.2 Conversion functions

[Runtime Function]_Decimal64 __dpd_extendsddd2 (Decimal32 a)
[Runtime Function]_Decimal64 __bid_extendsddd2 (Decimal32 a)
[Runtime Function]_Decimal128 __dpd_extendsdtd2 (Decimal32 a)
[Runtime Function]_Decimal128 __bid_extendsdtd2 (Decimal32 a)

18 GNU Compiler Collection (GCC) Internals

[Runtime Function]_Decimal128 __dpd_extendddtd2 (Decimal64 a)
[Runtime Function]_Decimal128 __bid_extendddtd2 (Decimal64 a)
[Runtime Function]_Decimal32 __dpd_truncddsd2 (Decimal64 a)
[Runtime Function]_Decimal32 __bid_truncddsd2 (Decimal64 a)
[Runtime Function]_Decimal32 __dpd_trunctdsd2 (Decimal128 a)
[Runtime Function]_Decimal32 __bid_trunctdsd2 (Decimal128 a)
[Runtime Function]_Decimal64 __dpd_trunctddd2 (Decimal128 a)
[Runtime Function]_Decimal64 __bid_trunctddd2 (Decimal128 a)

These functions convert the value a from one decimal floating type to another.

[Runtime Function]_Decimal64 __dpd_extendsfdd (float a)
[Runtime Function]_Decimal64 __bid_extendsfdd (float a)
[Runtime Function]_Decimal128 __dpd_extendsftd (float a)
[Runtime Function]_Decimal128 __bid_extendsftd (float a)
[Runtime Function]_Decimal128 __dpd_extenddftd (double a)
[Runtime Function]_Decimal128 __bid_extenddftd (double a)
[Runtime Function]_Decimal128 __dpd_extendxftd (long double a)
[Runtime Function]_Decimal128 __bid_extendxftd (long double a)
[Runtime Function]_Decimal32 __dpd_truncdfsd (double a)
[Runtime Function]_Decimal32 __bid_truncdfsd (double a)
[Runtime Function]_Decimal32 __dpd_truncxfsd (long double a)
[Runtime Function]_Decimal32 __bid_truncxfsd (long double a)
[Runtime Function]_Decimal32 __dpd_trunctfsd (long double a)
[Runtime Function]_Decimal32 __bid_trunctfsd (long double a)
[Runtime Function]_Decimal64 __dpd_truncxfdd (long double a)
[Runtime Function]_Decimal64 __bid_truncxfdd (long double a)
[Runtime Function]_Decimal64 __dpd_trunctfdd (long double a)
[Runtime Function]_Decimal64 __bid_trunctfdd (long double a)

These functions convert the value of a from a binary floating type to a decimal floating
type of a different size.

[Runtime Function]float __dpd_truncddsf (Decimal64 a)
[Runtime Function]float __bid_truncddsf (Decimal64 a)
[Runtime Function]float __dpd_trunctdsf (Decimal128 a)
[Runtime Function]float __bid_trunctdsf (Decimal128 a)
[Runtime Function]double __dpd_extendsddf (Decimal32 a)
[Runtime Function]double __bid_extendsddf (Decimal32 a)
[Runtime Function]double __dpd_trunctddf (Decimal128 a)
[Runtime Function]double __bid_trunctddf (Decimal128 a)
[Runtime Function]long double __dpd_extendsdxf (Decimal32 a)
[Runtime Function]long double __bid_extendsdxf (Decimal32 a)
[Runtime Function]long double __dpd_extendddxf (Decimal64 a)
[Runtime Function]long double __bid_extendddxf (Decimal64 a)
[Runtime Function]long double __dpd_trunctdxf (Decimal128 a)
[Runtime Function]long double __bid_trunctdxf (Decimal128 a)
[Runtime Function]long double __dpd_extendsdtf (Decimal32 a)
[Runtime Function]long double __bid_extendsdtf (Decimal32 a)
[Runtime Function]long double __dpd_extendddtf (Decimal64 a)

Chapter 4: The GCC low-level runtime library 19

[Runtime Function]long double __bid_extendddtf (Decimal64 a)
These functions convert the value of a from a decimal floating type to a binary floating
type of a different size.

[Runtime Function]_Decimal32 __dpd_extendsfsd (float a)
[Runtime Function]_Decimal32 __bid_extendsfsd (float a)
[Runtime Function]_Decimal64 __dpd_extenddfdd (double a)
[Runtime Function]_Decimal64 __bid_extenddfdd (double a)
[Runtime Function]_Decimal128 __dpd_extendtftd (long double a)
[Runtime Function]_Decimal128 __bid_extendtftd (long double a)
[Runtime Function]float __dpd_truncsdsf (Decimal32 a)
[Runtime Function]float __bid_truncsdsf (Decimal32 a)
[Runtime Function]double __dpd_truncdddf (Decimal64 a)
[Runtime Function]double __bid_truncdddf (Decimal64 a)
[Runtime Function]long double __dpd_trunctdtf (Decimal128 a)
[Runtime Function]long double __bid_trunctdtf (Decimal128 a)

These functions convert the value of a between decimal and binary floating types of
the same size.

[Runtime Function]int __dpd_fixsdsi (Decimal32 a)
[Runtime Function]int __bid_fixsdsi (Decimal32 a)
[Runtime Function]int __dpd_fixddsi (Decimal64 a)
[Runtime Function]int __bid_fixddsi (Decimal64 a)
[Runtime Function]int __dpd_fixtdsi (Decimal128 a)
[Runtime Function]int __bid_fixtdsi (Decimal128 a)

These functions convert a to a signed integer.

[Runtime Function]long __dpd_fixsddi (Decimal32 a)
[Runtime Function]long __bid_fixsddi (Decimal32 a)
[Runtime Function]long __dpd_fixdddi (Decimal64 a)
[Runtime Function]long __bid_fixdddi (Decimal64 a)
[Runtime Function]long __dpd_fixtddi (Decimal128 a)
[Runtime Function]long __bid_fixtddi (Decimal128 a)

These functions convert a to a signed long.

[Runtime Function]unsigned int __dpd_fixunssdsi (Decimal32 a)
[Runtime Function]unsigned int __bid_fixunssdsi (Decimal32 a)
[Runtime Function]unsigned int __dpd_fixunsddsi (Decimal64 a)
[Runtime Function]unsigned int __bid_fixunsddsi (Decimal64 a)
[Runtime Function]unsigned int __dpd_fixunstdsi (Decimal128 a)
[Runtime Function]unsigned int __bid_fixunstdsi (Decimal128 a)

These functions convert a to an unsigned integer. Negative values all become zero.

[Runtime Function]unsigned long __dpd_fixunssddi (Decimal32 a)
[Runtime Function]unsigned long __bid_fixunssddi (Decimal32 a)
[Runtime Function]unsigned long __dpd_fixunsdddi (Decimal64 a)
[Runtime Function]unsigned long __bid_fixunsdddi (Decimal64 a)
[Runtime Function]unsigned long __dpd_fixunstddi (Decimal128 a)

20 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned long __bid_fixunstddi (Decimal128 a)
These functions convert a to an unsigned long. Negative values all become zero.

[Runtime Function]_Decimal32 __dpd_floatsisd (int i)
[Runtime Function]_Decimal32 __bid_floatsisd (int i)
[Runtime Function]_Decimal64 __dpd_floatsidd (int i)
[Runtime Function]_Decimal64 __bid_floatsidd (int i)
[Runtime Function]_Decimal128 __dpd_floatsitd (int i)
[Runtime Function]_Decimal128 __bid_floatsitd (int i)

These functions convert i, a signed integer, to decimal floating point.

[Runtime Function]_Decimal32 __dpd_floatdisd (long i)
[Runtime Function]_Decimal32 __bid_floatdisd (long i)
[Runtime Function]_Decimal64 __dpd_floatdidd (long i)
[Runtime Function]_Decimal64 __bid_floatdidd (long i)
[Runtime Function]_Decimal128 __dpd_floatditd (long i)
[Runtime Function]_Decimal128 __bid_floatditd (long i)

These functions convert i, a signed long, to decimal floating point.

[Runtime Function]_Decimal32 __dpd_floatunssisd (unsigned int i)
[Runtime Function]_Decimal32 __bid_floatunssisd (unsigned int i)
[Runtime Function]_Decimal64 __dpd_floatunssidd (unsigned int i)
[Runtime Function]_Decimal64 __bid_floatunssidd (unsigned int i)
[Runtime Function]_Decimal128 __dpd_floatunssitd (unsigned int i)
[Runtime Function]_Decimal128 __bid_floatunssitd (unsigned int i)

These functions convert i, an unsigned integer, to decimal floating point.

[Runtime Function]_Decimal32 __dpd_floatunsdisd (unsigned long i)
[Runtime Function]_Decimal32 __bid_floatunsdisd (unsigned long i)
[Runtime Function]_Decimal64 __dpd_floatunsdidd (unsigned long i)
[Runtime Function]_Decimal64 __bid_floatunsdidd (unsigned long i)
[Runtime Function]_Decimal128 __dpd_floatunsditd (unsigned long i)
[Runtime Function]_Decimal128 __bid_floatunsditd (unsigned long i)

These functions convert i, an unsigned long, to decimal floating point.

4.3.3 Comparison functions

[Runtime Function]int __dpd_unordsd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __bid_unordsd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __dpd_unorddd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __bid_unorddd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __dpd_unordtd2 (Decimal128 a, Decimal128 b)
[Runtime Function]int __bid_unordtd2 (Decimal128 a, Decimal128 b)

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as

Chapter 4: The GCC low-level runtime library 21

if (__bid_unordXd2 (a, b))

return E;

return __bid_cmpXd2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

[Runtime Function]int __dpd_eqsd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __bid_eqsd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __dpd_eqdd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __bid_eqdd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __dpd_eqtd2 (Decimal128 a, Decimal128 b)
[Runtime Function]int __bid_eqtd2 (Decimal128 a, Decimal128 b)

These functions return zero if neither argument is NaN, and a and b are equal.

[Runtime Function]int __dpd_nesd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __bid_nesd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __dpd_nedd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __bid_nedd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __dpd_netd2 (Decimal128 a, Decimal128 b)
[Runtime Function]int __bid_netd2 (Decimal128 a, Decimal128 b)

These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

[Runtime Function]int __dpd_gesd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __bid_gesd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __dpd_gedd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __bid_gedd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __dpd_getd2 (Decimal128 a, Decimal128 b)
[Runtime Function]int __bid_getd2 (Decimal128 a, Decimal128 b)

These functions return a value greater than or equal to zero if neither argument is
NaN, and a is greater than or equal to b.

[Runtime Function]int __dpd_ltsd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __bid_ltsd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __dpd_ltdd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __bid_ltdd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __dpd_lttd2 (Decimal128 a, Decimal128 b)
[Runtime Function]int __bid_lttd2 (Decimal128 a, Decimal128 b)

These functions return a value less than zero if neither argument is NaN, and a is
strictly less than b.

[Runtime Function]int __dpd_lesd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __bid_lesd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __dpd_ledd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __bid_ledd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __dpd_letd2 (Decimal128 a, Decimal128 b)

22 GNU Compiler Collection (GCC) Internals

[Runtime Function]int __bid_letd2 (Decimal128 a, Decimal128 b)
These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

[Runtime Function]int __dpd_gtsd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __bid_gtsd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __dpd_gtdd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __bid_gtdd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __dpd_gttd2 (Decimal128 a, Decimal128 b)
[Runtime Function]int __bid_gttd2 (Decimal128 a, Decimal128 b)

These functions return a value greater than zero if neither argument is NaN, and a is
strictly greater than b.

4.4 Routines for fixed-point fractional emulation

The software fixed-point library implements fixed-point fractional arithmetic, and is only
activated on selected targets.

For ease of comprehension fract is an alias for the _Fract type, accum an alias for
_Accum, and sat an alias for _Sat.

For illustrative purposes, in this section the fixed-point fractional type short fract is as-
sumed to correspond to machine mode QQmode; unsigned short fract to UQQmode; fract
to HQmode; unsigned fract to UHQmode; long fract to SQmode; unsigned long fract
to USQmode; long long fract to DQmode; and unsigned long long fract to UDQmode.
Similarly the fixed-point accumulator type short accum corresponds to HAmode;
unsigned short accum to UHAmode; accum to SAmode; unsigned accum to USAmode;
long accum to DAmode; unsigned long accum to UDAmode; long long accum to TAmode;
and unsigned long long accum to UTAmode.

4.4.1 Arithmetic functions

[Runtime Function]short fract __addqq3 (short fract a, short fract b)
[Runtime Function]fract __addhq3 (fract a, fract b)
[Runtime Function]long fract __addsq3 (long fract a, long fract b)
[Runtime Function]long long fract __adddq3 (long long fract a, long long fract

b)
[Runtime Function]unsigned short fract __adduqq3 (unsigned short fract a,

unsigned short fract b)
[Runtime Function]unsigned fract __adduhq3 (unsigned fract a, unsigned fract

b)
[Runtime Function]unsigned long fract __addusq3 (unsigned long fract a,

unsigned long fract b)
[Runtime Function]unsigned long long fract __addudq3 (unsigned long long

fract a, unsigned long long fract b)
[Runtime Function]short accum __addha3 (short accum a, short accum b)
[Runtime Function]accum __addsa3 (accum a, accum b)
[Runtime Function]long accum __addda3 (long accum a, long accum b)
[Runtime Function]long long accum __addta3 (long long accum a, long long

accum b)

Chapter 4: The GCC low-level runtime library 23

[Runtime Function]unsigned short accum __adduha3 (unsigned short accum a,
unsigned short accum b)

[Runtime Function]unsigned accum __addusa3 (unsigned accum a, unsigned
accum b)

[Runtime Function]unsigned long accum __adduda3 (unsigned long accum a,
unsigned long accum b)

[Runtime Function]unsigned long long accum __adduta3 (unsigned long long
accum a, unsigned long long accum b)

These functions return the sum of a and b.

[Runtime Function]short fract __ssaddqq3 (short fract a, short fract b)
[Runtime Function]fract __ssaddhq3 (fract a, fract b)
[Runtime Function]long fract __ssaddsq3 (long fract a, long fract b)
[Runtime Function]long long fract __ssadddq3 (long long fract a, long long

fract b)
[Runtime Function]short accum __ssaddha3 (short accum a, short accum b)
[Runtime Function]accum __ssaddsa3 (accum a, accum b)
[Runtime Function]long accum __ssaddda3 (long accum a, long accum b)
[Runtime Function]long long accum __ssaddta3 (long long accum a, long long

accum b)
These functions return the sum of a and b with signed saturation.

[Runtime Function]unsigned short fract __usadduqq3 (unsigned short fract a,
unsigned short fract b)

[Runtime Function]unsigned fract __usadduhq3 (unsigned fract a, unsigned
fract b)

[Runtime Function]unsigned long fract __usaddusq3 (unsigned long fract a,
unsigned long fract b)

[Runtime Function]unsigned long long fract __usaddudq3 (unsigned long
long fract a, unsigned long long fract b)

[Runtime Function]unsigned short accum __usadduha3 (unsigned short accum
a, unsigned short accum b)

[Runtime Function]unsigned accum __usaddusa3 (unsigned accum a, unsigned
accum b)

[Runtime Function]unsigned long accum __usadduda3 (unsigned long accum a,
unsigned long accum b)

[Runtime Function]unsigned long long accum __usadduta3 (unsigned long
long accum a, unsigned long long accum b)

These functions return the sum of a and b with unsigned saturation.

[Runtime Function]short fract __subqq3 (short fract a, short fract b)
[Runtime Function]fract __subhq3 (fract a, fract b)
[Runtime Function]long fract __subsq3 (long fract a, long fract b)
[Runtime Function]long long fract __subdq3 (long long fract a, long long fract

b)
[Runtime Function]unsigned short fract __subuqq3 (unsigned short fract a,

unsigned short fract b)

24 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned fract __subuhq3 (unsigned fract a, unsigned fract
b)

[Runtime Function]unsigned long fract __subusq3 (unsigned long fract a,
unsigned long fract b)

[Runtime Function]unsigned long long fract __subudq3 (unsigned long long
fract a, unsigned long long fract b)

[Runtime Function]short accum __subha3 (short accum a, short accum b)
[Runtime Function]accum __subsa3 (accum a, accum b)
[Runtime Function]long accum __subda3 (long accum a, long accum b)
[Runtime Function]long long accum __subta3 (long long accum a, long long

accum b)
[Runtime Function]unsigned short accum __subuha3 (unsigned short accum a,

unsigned short accum b)
[Runtime Function]unsigned accum __subusa3 (unsigned accum a, unsigned

accum b)
[Runtime Function]unsigned long accum __subuda3 (unsigned long accum a,

unsigned long accum b)
[Runtime Function]unsigned long long accum __subuta3 (unsigned long long

accum a, unsigned long long accum b)
These functions return the difference of a and b; that is, a - b .

[Runtime Function]short fract __sssubqq3 (short fract a, short fract b)
[Runtime Function]fract __sssubhq3 (fract a, fract b)
[Runtime Function]long fract __sssubsq3 (long fract a, long fract b)
[Runtime Function]long long fract __sssubdq3 (long long fract a, long long

fract b)
[Runtime Function]short accum __sssubha3 (short accum a, short accum b)
[Runtime Function]accum __sssubsa3 (accum a, accum b)
[Runtime Function]long accum __sssubda3 (long accum a, long accum b)
[Runtime Function]long long accum __sssubta3 (long long accum a, long long

accum b)
These functions return the difference of a and b with signed saturation; that is, a -
b .

[Runtime Function]unsigned short fract __ussubuqq3 (unsigned short fract a,
unsigned short fract b)

[Runtime Function]unsigned fract __ussubuhq3 (unsigned fract a, unsigned
fract b)

[Runtime Function]unsigned long fract __ussubusq3 (unsigned long fract a,
unsigned long fract b)

[Runtime Function]unsigned long long fract __ussubudq3 (unsigned long
long fract a, unsigned long long fract b)

[Runtime Function]unsigned short accum __ussubuha3 (unsigned short accum
a, unsigned short accum b)

[Runtime Function]unsigned accum __ussubusa3 (unsigned accum a, unsigned
accum b)

[Runtime Function]unsigned long accum __ussubuda3 (unsigned long accum a,
unsigned long accum b)

Chapter 4: The GCC low-level runtime library 25

[Runtime Function]unsigned long long accum __ussubuta3 (unsigned long
long accum a, unsigned long long accum b)

These functions return the difference of a and b with unsigned saturation; that is, a
- b .

[Runtime Function]short fract __mulqq3 (short fract a, short fract b)
[Runtime Function]fract __mulhq3 (fract a, fract b)
[Runtime Function]long fract __mulsq3 (long fract a, long fract b)
[Runtime Function]long long fract __muldq3 (long long fract a, long long fract

b)
[Runtime Function]unsigned short fract __muluqq3 (unsigned short fract a,

unsigned short fract b)
[Runtime Function]unsigned fract __muluhq3 (unsigned fract a, unsigned fract

b)
[Runtime Function]unsigned long fract __mulusq3 (unsigned long fract a,

unsigned long fract b)
[Runtime Function]unsigned long long fract __muludq3 (unsigned long long

fract a, unsigned long long fract b)
[Runtime Function]short accum __mulha3 (short accum a, short accum b)
[Runtime Function]accum __mulsa3 (accum a, accum b)
[Runtime Function]long accum __mulda3 (long accum a, long accum b)
[Runtime Function]long long accum __multa3 (long long accum a, long long

accum b)
[Runtime Function]unsigned short accum __muluha3 (unsigned short accum a,

unsigned short accum b)
[Runtime Function]unsigned accum __mulusa3 (unsigned accum a, unsigned

accum b)
[Runtime Function]unsigned long accum __muluda3 (unsigned long accum a,

unsigned long accum b)
[Runtime Function]unsigned long long accum __muluta3 (unsigned long long

accum a, unsigned long long accum b)
These functions return the product of a and b.

[Runtime Function]short fract __ssmulqq3 (short fract a, short fract b)
[Runtime Function]fract __ssmulhq3 (fract a, fract b)
[Runtime Function]long fract __ssmulsq3 (long fract a, long fract b)
[Runtime Function]long long fract __ssmuldq3 (long long fract a, long long

fract b)
[Runtime Function]short accum __ssmulha3 (short accum a, short accum b)
[Runtime Function]accum __ssmulsa3 (accum a, accum b)
[Runtime Function]long accum __ssmulda3 (long accum a, long accum b)
[Runtime Function]long long accum __ssmulta3 (long long accum a, long long

accum b)
These functions return the product of a and b with signed saturation.

26 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned short fract __usmuluqq3 (unsigned short fract a,
unsigned short fract b)

[Runtime Function]unsigned fract __usmuluhq3 (unsigned fract a, unsigned
fract b)

[Runtime Function]unsigned long fract __usmulusq3 (unsigned long fract a,
unsigned long fract b)

[Runtime Function]unsigned long long fract __usmuludq3 (unsigned long
long fract a, unsigned long long fract b)

[Runtime Function]unsigned short accum __usmuluha3 (unsigned short accum
a, unsigned short accum b)

[Runtime Function]unsigned accum __usmulusa3 (unsigned accum a, unsigned
accum b)

[Runtime Function]unsigned long accum __usmuluda3 (unsigned long accum a,
unsigned long accum b)

[Runtime Function]unsigned long long accum __usmuluta3 (unsigned long
long accum a, unsigned long long accum b)

These functions return the product of a and b with unsigned saturation.

[Runtime Function]short fract __divqq3 (short fract a, short fract b)
[Runtime Function]fract __divhq3 (fract a, fract b)
[Runtime Function]long fract __divsq3 (long fract a, long fract b)
[Runtime Function]long long fract __divdq3 (long long fract a, long long fract

b)
[Runtime Function]short accum __divha3 (short accum a, short accum b)
[Runtime Function]accum __divsa3 (accum a, accum b)
[Runtime Function]long accum __divda3 (long accum a, long accum b)
[Runtime Function]long long accum __divta3 (long long accum a, long long

accum b)
These functions return the quotient of the signed division of a and b.

[Runtime Function]unsigned short fract __udivuqq3 (unsigned short fract a,
unsigned short fract b)

[Runtime Function]unsigned fract __udivuhq3 (unsigned fract a, unsigned fract
b)

[Runtime Function]unsigned long fract __udivusq3 (unsigned long fract a,
unsigned long fract b)

[Runtime Function]unsigned long long fract __udivudq3 (unsigned long long
fract a, unsigned long long fract b)

[Runtime Function]unsigned short accum __udivuha3 (unsigned short accum a,
unsigned short accum b)

[Runtime Function]unsigned accum __udivusa3 (unsigned accum a, unsigned
accum b)

[Runtime Function]unsigned long accum __udivuda3 (unsigned long accum a,
unsigned long accum b)

[Runtime Function]unsigned long long accum __udivuta3 (unsigned long long
accum a, unsigned long long accum b)

These functions return the quotient of the unsigned division of a and b.

Chapter 4: The GCC low-level runtime library 27

[Runtime Function]short fract __ssdivqq3 (short fract a, short fract b)
[Runtime Function]fract __ssdivhq3 (fract a, fract b)
[Runtime Function]long fract __ssdivsq3 (long fract a, long fract b)
[Runtime Function]long long fract __ssdivdq3 (long long fract a, long long

fract b)
[Runtime Function]short accum __ssdivha3 (short accum a, short accum b)
[Runtime Function]accum __ssdivsa3 (accum a, accum b)
[Runtime Function]long accum __ssdivda3 (long accum a, long accum b)
[Runtime Function]long long accum __ssdivta3 (long long accum a, long long

accum b)
These functions return the quotient of the signed division of a and b with signed
saturation.

[Runtime Function]unsigned short fract __usdivuqq3 (unsigned short fract a,
unsigned short fract b)

[Runtime Function]unsigned fract __usdivuhq3 (unsigned fract a, unsigned
fract b)

[Runtime Function]unsigned long fract __usdivusq3 (unsigned long fract a,
unsigned long fract b)

[Runtime Function]unsigned long long fract __usdivudq3 (unsigned long
long fract a, unsigned long long fract b)

[Runtime Function]unsigned short accum __usdivuha3 (unsigned short accum
a, unsigned short accum b)

[Runtime Function]unsigned accum __usdivusa3 (unsigned accum a, unsigned
accum b)

[Runtime Function]unsigned long accum __usdivuda3 (unsigned long accum a,
unsigned long accum b)

[Runtime Function]unsigned long long accum __usdivuta3 (unsigned long
long accum a, unsigned long long accum b)

These functions return the quotient of the unsigned division of a and b with unsigned
saturation.

[Runtime Function]short fract __negqq2 (short fract a)
[Runtime Function]fract __neghq2 (fract a)
[Runtime Function]long fract __negsq2 (long fract a)
[Runtime Function]long long fract __negdq2 (long long fract a)
[Runtime Function]unsigned short fract __neguqq2 (unsigned short fract a)
[Runtime Function]unsigned fract __neguhq2 (unsigned fract a)
[Runtime Function]unsigned long fract __negusq2 (unsigned long fract a)
[Runtime Function]unsigned long long fract __negudq2 (unsigned long long

fract a)
[Runtime Function]short accum __negha2 (short accum a)
[Runtime Function]accum __negsa2 (accum a)
[Runtime Function]long accum __negda2 (long accum a)
[Runtime Function]long long accum __negta2 (long long accum a)
[Runtime Function]unsigned short accum __neguha2 (unsigned short accum a)
[Runtime Function]unsigned accum __negusa2 (unsigned accum a)
[Runtime Function]unsigned long accum __neguda2 (unsigned long accum a)

28 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned long long accum __neguta2 (unsigned long long
accum a)

These functions return the negation of a.

[Runtime Function]short fract __ssnegqq2 (short fract a)
[Runtime Function]fract __ssneghq2 (fract a)
[Runtime Function]long fract __ssnegsq2 (long fract a)
[Runtime Function]long long fract __ssnegdq2 (long long fract a)
[Runtime Function]short accum __ssnegha2 (short accum a)
[Runtime Function]accum __ssnegsa2 (accum a)
[Runtime Function]long accum __ssnegda2 (long accum a)
[Runtime Function]long long accum __ssnegta2 (long long accum a)

These functions return the negation of a with signed saturation.

[Runtime Function]unsigned short fract __usneguqq2 (unsigned short fract a)
[Runtime Function]unsigned fract __usneguhq2 (unsigned fract a)
[Runtime Function]unsigned long fract __usnegusq2 (unsigned long fract a)
[Runtime Function]unsigned long long fract __usnegudq2 (unsigned long

long fract a)
[Runtime Function]unsigned short accum __usneguha2 (unsigned short accum

a)
[Runtime Function]unsigned accum __usnegusa2 (unsigned accum a)
[Runtime Function]unsigned long accum __usneguda2 (unsigned long accum a)
[Runtime Function]unsigned long long accum __usneguta2 (unsigned long

long accum a)
These functions return the negation of a with unsigned saturation.

[Runtime Function]short fract __ashlqq3 (short fract a, int b)
[Runtime Function]fract __ashlhq3 (fract a, int b)
[Runtime Function]long fract __ashlsq3 (long fract a, int b)
[Runtime Function]long long fract __ashldq3 (long long fract a, int b)
[Runtime Function]unsigned short fract __ashluqq3 (unsigned short fract a,

int b)
[Runtime Function]unsigned fract __ashluhq3 (unsigned fract a, int b)
[Runtime Function]unsigned long fract __ashlusq3 (unsigned long fract a, int

b)
[Runtime Function]unsigned long long fract __ashludq3 (unsigned long long

fract a, int b)
[Runtime Function]short accum __ashlha3 (short accum a, int b)
[Runtime Function]accum __ashlsa3 (accum a, int b)
[Runtime Function]long accum __ashlda3 (long accum a, int b)
[Runtime Function]long long accum __ashlta3 (long long accum a, int b)
[Runtime Function]unsigned short accum __ashluha3 (unsigned short accum a,

int b)
[Runtime Function]unsigned accum __ashlusa3 (unsigned accum a, int b)
[Runtime Function]unsigned long accum __ashluda3 (unsigned long accum a,

int b)

Chapter 4: The GCC low-level runtime library 29

[Runtime Function]unsigned long long accum __ashluta3 (unsigned long long
accum a, int b)

These functions return the result of shifting a left by b bits.

[Runtime Function]short fract __ashrqq3 (short fract a, int b)
[Runtime Function]fract __ashrhq3 (fract a, int b)
[Runtime Function]long fract __ashrsq3 (long fract a, int b)
[Runtime Function]long long fract __ashrdq3 (long long fract a, int b)
[Runtime Function]short accum __ashrha3 (short accum a, int b)
[Runtime Function]accum __ashrsa3 (accum a, int b)
[Runtime Function]long accum __ashrda3 (long accum a, int b)
[Runtime Function]long long accum __ashrta3 (long long accum a, int b)

These functions return the result of arithmetically shifting a right by b bits.

[Runtime Function]unsigned short fract __lshruqq3 (unsigned short fract a,
int b)

[Runtime Function]unsigned fract __lshruhq3 (unsigned fract a, int b)
[Runtime Function]unsigned long fract __lshrusq3 (unsigned long fract a, int

b)
[Runtime Function]unsigned long long fract __lshrudq3 (unsigned long long

fract a, int b)
[Runtime Function]unsigned short accum __lshruha3 (unsigned short accum a,

int b)
[Runtime Function]unsigned accum __lshrusa3 (unsigned accum a, int b)
[Runtime Function]unsigned long accum __lshruda3 (unsigned long accum a,

int b)
[Runtime Function]unsigned long long accum __lshruta3 (unsigned long long

accum a, int b)
These functions return the result of logically shifting a right by b bits.

[Runtime Function]fract __ssashlhq3 (fract a, int b)
[Runtime Function]long fract __ssashlsq3 (long fract a, int b)
[Runtime Function]long long fract __ssashldq3 (long long fract a, int b)
[Runtime Function]short accum __ssashlha3 (short accum a, int b)
[Runtime Function]accum __ssashlsa3 (accum a, int b)
[Runtime Function]long accum __ssashlda3 (long accum a, int b)
[Runtime Function]long long accum __ssashlta3 (long long accum a, int b)

These functions return the result of shifting a left by b bits with signed saturation.

[Runtime Function]unsigned short fract __usashluqq3 (unsigned short fract
a, int b)

[Runtime Function]unsigned fract __usashluhq3 (unsigned fract a, int b)
[Runtime Function]unsigned long fract __usashlusq3 (unsigned long fract a,

int b)
[Runtime Function]unsigned long long fract __usashludq3 (unsigned long

long fract a, int b)
[Runtime Function]unsigned short accum __usashluha3 (unsigned short accum

a, int b)

30 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned accum __usashlusa3 (unsigned accum a, int b)
[Runtime Function]unsigned long accum __usashluda3 (unsigned long accum

a, int b)
[Runtime Function]unsigned long long accum __usashluta3 (unsigned long

long accum a, int b)
These functions return the result of shifting a left by b bits with unsigned saturation.

4.4.2 Comparison functions

The following functions implement fixed-point comparisons. These functions implement a
low-level compare, upon which the higher level comparison operators (such as less than and
greater than or equal to) can be constructed. The returned values lie in the range zero
to two, to allow the high-level operators to be implemented by testing the returned result
using either signed or unsigned comparison.

[Runtime Function]int __cmpqq2 (short fract a, short fract b)
[Runtime Function]int __cmphq2 (fract a, fract b)
[Runtime Function]int __cmpsq2 (long fract a, long fract b)
[Runtime Function]int __cmpdq2 (long long fract a, long long fract b)
[Runtime Function]int __cmpuqq2 (unsigned short fract a, unsigned short fract b)
[Runtime Function]int __cmpuhq2 (unsigned fract a, unsigned fract b)
[Runtime Function]int __cmpusq2 (unsigned long fract a, unsigned long fract b)
[Runtime Function]int __cmpudq2 (unsigned long long fract a, unsigned long long

fract b)
[Runtime Function]int __cmpha2 (short accum a, short accum b)
[Runtime Function]int __cmpsa2 (accum a, accum b)
[Runtime Function]int __cmpda2 (long accum a, long accum b)
[Runtime Function]int __cmpta2 (long long accum a, long long accum b)
[Runtime Function]int __cmpuha2 (unsigned short accum a, unsigned short accum

b)
[Runtime Function]int __cmpusa2 (unsigned accum a, unsigned accum b)
[Runtime Function]int __cmpuda2 (unsigned long accum a, unsigned long accum b)
[Runtime Function]int __cmputa2 (unsigned long long accum a, unsigned long long

accum b)
These functions perform a signed or unsigned comparison of a and b (depending on
the selected machine mode). If a is less than b, they return 0; if a is greater than b,
they return 2; and if a and b are equal they return 1.

4.4.3 Conversion functions

[Runtime Function]fract __fractqqhq2 (short fract a)
[Runtime Function]long fract __fractqqsq2 (short fract a)
[Runtime Function]long long fract __fractqqdq2 (short fract a)
[Runtime Function]short accum __fractqqha (short fract a)
[Runtime Function]accum __fractqqsa (short fract a)
[Runtime Function]long accum __fractqqda (short fract a)
[Runtime Function]long long accum __fractqqta (short fract a)
[Runtime Function]unsigned short fract __fractqquqq (short fract a)
[Runtime Function]unsigned fract __fractqquhq (short fract a)

Chapter 4: The GCC low-level runtime library 31

[Runtime Function]unsigned long fract __fractqqusq (short fract a)
[Runtime Function]unsigned long long fract __fractqqudq (short fract a)
[Runtime Function]unsigned short accum __fractqquha (short fract a)
[Runtime Function]unsigned accum __fractqqusa (short fract a)
[Runtime Function]unsigned long accum __fractqquda (short fract a)
[Runtime Function]unsigned long long accum __fractqquta (short fract a)
[Runtime Function]signed char __fractqqqi (short fract a)
[Runtime Function]short __fractqqhi (short fract a)
[Runtime Function]int __fractqqsi (short fract a)
[Runtime Function]long __fractqqdi (short fract a)
[Runtime Function]long long __fractqqti (short fract a)
[Runtime Function]float __fractqqsf (short fract a)
[Runtime Function]double __fractqqdf (short fract a)
[Runtime Function]short fract __fracthqqq2 (fract a)
[Runtime Function]long fract __fracthqsq2 (fract a)
[Runtime Function]long long fract __fracthqdq2 (fract a)
[Runtime Function]short accum __fracthqha (fract a)
[Runtime Function]accum __fracthqsa (fract a)
[Runtime Function]long accum __fracthqda (fract a)
[Runtime Function]long long accum __fracthqta (fract a)
[Runtime Function]unsigned short fract __fracthquqq (fract a)
[Runtime Function]unsigned fract __fracthquhq (fract a)
[Runtime Function]unsigned long fract __fracthqusq (fract a)
[Runtime Function]unsigned long long fract __fracthqudq (fract a)
[Runtime Function]unsigned short accum __fracthquha (fract a)
[Runtime Function]unsigned accum __fracthqusa (fract a)
[Runtime Function]unsigned long accum __fracthquda (fract a)
[Runtime Function]unsigned long long accum __fracthquta (fract a)
[Runtime Function]signed char __fracthqqi (fract a)
[Runtime Function]short __fracthqhi (fract a)
[Runtime Function]int __fracthqsi (fract a)
[Runtime Function]long __fracthqdi (fract a)
[Runtime Function]long long __fracthqti (fract a)
[Runtime Function]float __fracthqsf (fract a)
[Runtime Function]double __fracthqdf (fract a)
[Runtime Function]short fract __fractsqqq2 (long fract a)
[Runtime Function]fract __fractsqhq2 (long fract a)
[Runtime Function]long long fract __fractsqdq2 (long fract a)
[Runtime Function]short accum __fractsqha (long fract a)
[Runtime Function]accum __fractsqsa (long fract a)
[Runtime Function]long accum __fractsqda (long fract a)
[Runtime Function]long long accum __fractsqta (long fract a)
[Runtime Function]unsigned short fract __fractsquqq (long fract a)
[Runtime Function]unsigned fract __fractsquhq (long fract a)
[Runtime Function]unsigned long fract __fractsqusq (long fract a)
[Runtime Function]unsigned long long fract __fractsqudq (long fract a)
[Runtime Function]unsigned short accum __fractsquha (long fract a)

32 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned accum __fractsqusa (long fract a)
[Runtime Function]unsigned long accum __fractsquda (long fract a)
[Runtime Function]unsigned long long accum __fractsquta (long fract a)
[Runtime Function]signed char __fractsqqi (long fract a)
[Runtime Function]short __fractsqhi (long fract a)
[Runtime Function]int __fractsqsi (long fract a)
[Runtime Function]long __fractsqdi (long fract a)
[Runtime Function]long long __fractsqti (long fract a)
[Runtime Function]float __fractsqsf (long fract a)
[Runtime Function]double __fractsqdf (long fract a)
[Runtime Function]short fract __fractdqqq2 (long long fract a)
[Runtime Function]fract __fractdqhq2 (long long fract a)
[Runtime Function]long fract __fractdqsq2 (long long fract a)
[Runtime Function]short accum __fractdqha (long long fract a)
[Runtime Function]accum __fractdqsa (long long fract a)
[Runtime Function]long accum __fractdqda (long long fract a)
[Runtime Function]long long accum __fractdqta (long long fract a)
[Runtime Function]unsigned short fract __fractdquqq (long long fract a)
[Runtime Function]unsigned fract __fractdquhq (long long fract a)
[Runtime Function]unsigned long fract __fractdqusq (long long fract a)
[Runtime Function]unsigned long long fract __fractdqudq (long long fract

a)
[Runtime Function]unsigned short accum __fractdquha (long long fract a)
[Runtime Function]unsigned accum __fractdqusa (long long fract a)
[Runtime Function]unsigned long accum __fractdquda (long long fract a)
[Runtime Function]unsigned long long accum __fractdquta (long long fract

a)
[Runtime Function]signed char __fractdqqi (long long fract a)
[Runtime Function]short __fractdqhi (long long fract a)
[Runtime Function]int __fractdqsi (long long fract a)
[Runtime Function]long __fractdqdi (long long fract a)
[Runtime Function]long long __fractdqti (long long fract a)
[Runtime Function]float __fractdqsf (long long fract a)
[Runtime Function]double __fractdqdf (long long fract a)
[Runtime Function]short fract __fracthaqq (short accum a)
[Runtime Function]fract __fracthahq (short accum a)
[Runtime Function]long fract __fracthasq (short accum a)
[Runtime Function]long long fract __fracthadq (short accum a)
[Runtime Function]accum __fracthasa2 (short accum a)
[Runtime Function]long accum __fracthada2 (short accum a)
[Runtime Function]long long accum __fracthata2 (short accum a)
[Runtime Function]unsigned short fract __fracthauqq (short accum a)
[Runtime Function]unsigned fract __fracthauhq (short accum a)
[Runtime Function]unsigned long fract __fracthausq (short accum a)
[Runtime Function]unsigned long long fract __fracthaudq (short accum a)
[Runtime Function]unsigned short accum __fracthauha (short accum a)
[Runtime Function]unsigned accum __fracthausa (short accum a)

Chapter 4: The GCC low-level runtime library 33

[Runtime Function]unsigned long accum __fracthauda (short accum a)
[Runtime Function]unsigned long long accum __fracthauta (short accum a)
[Runtime Function]signed char __fracthaqi (short accum a)
[Runtime Function]short __fracthahi (short accum a)
[Runtime Function]int __fracthasi (short accum a)
[Runtime Function]long __fracthadi (short accum a)
[Runtime Function]long long __fracthati (short accum a)
[Runtime Function]float __fracthasf (short accum a)
[Runtime Function]double __fracthadf (short accum a)
[Runtime Function]short fract __fractsaqq (accum a)
[Runtime Function]fract __fractsahq (accum a)
[Runtime Function]long fract __fractsasq (accum a)
[Runtime Function]long long fract __fractsadq (accum a)
[Runtime Function]short accum __fractsaha2 (accum a)
[Runtime Function]long accum __fractsada2 (accum a)
[Runtime Function]long long accum __fractsata2 (accum a)
[Runtime Function]unsigned short fract __fractsauqq (accum a)
[Runtime Function]unsigned fract __fractsauhq (accum a)
[Runtime Function]unsigned long fract __fractsausq (accum a)
[Runtime Function]unsigned long long fract __fractsaudq (accum a)
[Runtime Function]unsigned short accum __fractsauha (accum a)
[Runtime Function]unsigned accum __fractsausa (accum a)
[Runtime Function]unsigned long accum __fractsauda (accum a)
[Runtime Function]unsigned long long accum __fractsauta (accum a)
[Runtime Function]signed char __fractsaqi (accum a)
[Runtime Function]short __fractsahi (accum a)
[Runtime Function]int __fractsasi (accum a)
[Runtime Function]long __fractsadi (accum a)
[Runtime Function]long long __fractsati (accum a)
[Runtime Function]float __fractsasf (accum a)
[Runtime Function]double __fractsadf (accum a)
[Runtime Function]short fract __fractdaqq (long accum a)
[Runtime Function]fract __fractdahq (long accum a)
[Runtime Function]long fract __fractdasq (long accum a)
[Runtime Function]long long fract __fractdadq (long accum a)
[Runtime Function]short accum __fractdaha2 (long accum a)
[Runtime Function]accum __fractdasa2 (long accum a)
[Runtime Function]long long accum __fractdata2 (long accum a)
[Runtime Function]unsigned short fract __fractdauqq (long accum a)
[Runtime Function]unsigned fract __fractdauhq (long accum a)
[Runtime Function]unsigned long fract __fractdausq (long accum a)
[Runtime Function]unsigned long long fract __fractdaudq (long accum a)
[Runtime Function]unsigned short accum __fractdauha (long accum a)
[Runtime Function]unsigned accum __fractdausa (long accum a)
[Runtime Function]unsigned long accum __fractdauda (long accum a)
[Runtime Function]unsigned long long accum __fractdauta (long accum a)
[Runtime Function]signed char __fractdaqi (long accum a)

34 GNU Compiler Collection (GCC) Internals

[Runtime Function]short __fractdahi (long accum a)
[Runtime Function]int __fractdasi (long accum a)
[Runtime Function]long __fractdadi (long accum a)
[Runtime Function]long long __fractdati (long accum a)
[Runtime Function]float __fractdasf (long accum a)
[Runtime Function]double __fractdadf (long accum a)
[Runtime Function]short fract __fracttaqq (long long accum a)
[Runtime Function]fract __fracttahq (long long accum a)
[Runtime Function]long fract __fracttasq (long long accum a)
[Runtime Function]long long fract __fracttadq (long long accum a)
[Runtime Function]short accum __fracttaha2 (long long accum a)
[Runtime Function]accum __fracttasa2 (long long accum a)
[Runtime Function]long accum __fracttada2 (long long accum a)
[Runtime Function]unsigned short fract __fracttauqq (long long accum a)
[Runtime Function]unsigned fract __fracttauhq (long long accum a)
[Runtime Function]unsigned long fract __fracttausq (long long accum a)
[Runtime Function]unsigned long long fract __fracttaudq (long long accum

a)
[Runtime Function]unsigned short accum __fracttauha (long long accum a)
[Runtime Function]unsigned accum __fracttausa (long long accum a)
[Runtime Function]unsigned long accum __fracttauda (long long accum a)
[Runtime Function]unsigned long long accum __fracttauta (long long accum

a)
[Runtime Function]signed char __fracttaqi (long long accum a)
[Runtime Function]short __fracttahi (long long accum a)
[Runtime Function]int __fracttasi (long long accum a)
[Runtime Function]long __fracttadi (long long accum a)
[Runtime Function]long long __fracttati (long long accum a)
[Runtime Function]float __fracttasf (long long accum a)
[Runtime Function]double __fracttadf (long long accum a)
[Runtime Function]short fract __fractuqqqq (unsigned short fract a)
[Runtime Function]fract __fractuqqhq (unsigned short fract a)
[Runtime Function]long fract __fractuqqsq (unsigned short fract a)
[Runtime Function]long long fract __fractuqqdq (unsigned short fract a)
[Runtime Function]short accum __fractuqqha (unsigned short fract a)
[Runtime Function]accum __fractuqqsa (unsigned short fract a)
[Runtime Function]long accum __fractuqqda (unsigned short fract a)
[Runtime Function]long long accum __fractuqqta (unsigned short fract a)
[Runtime Function]unsigned fract __fractuqquhq2 (unsigned short fract a)
[Runtime Function]unsigned long fract __fractuqqusq2 (unsigned short fract

a)
[Runtime Function]unsigned long long fract __fractuqqudq2 (unsigned

short fract a)
[Runtime Function]unsigned short accum __fractuqquha (unsigned short fract

a)
[Runtime Function]unsigned accum __fractuqqusa (unsigned short fract a)

Chapter 4: The GCC low-level runtime library 35

[Runtime Function]unsigned long accum __fractuqquda (unsigned short fract
a)

[Runtime Function]unsigned long long accum __fractuqquta (unsigned short
fract a)

[Runtime Function]signed char __fractuqqqi (unsigned short fract a)
[Runtime Function]short __fractuqqhi (unsigned short fract a)
[Runtime Function]int __fractuqqsi (unsigned short fract a)
[Runtime Function]long __fractuqqdi (unsigned short fract a)
[Runtime Function]long long __fractuqqti (unsigned short fract a)
[Runtime Function]float __fractuqqsf (unsigned short fract a)
[Runtime Function]double __fractuqqdf (unsigned short fract a)
[Runtime Function]short fract __fractuhqqq (unsigned fract a)
[Runtime Function]fract __fractuhqhq (unsigned fract a)
[Runtime Function]long fract __fractuhqsq (unsigned fract a)
[Runtime Function]long long fract __fractuhqdq (unsigned fract a)
[Runtime Function]short accum __fractuhqha (unsigned fract a)
[Runtime Function]accum __fractuhqsa (unsigned fract a)
[Runtime Function]long accum __fractuhqda (unsigned fract a)
[Runtime Function]long long accum __fractuhqta (unsigned fract a)
[Runtime Function]unsigned short fract __fractuhquqq2 (unsigned fract a)
[Runtime Function]unsigned long fract __fractuhqusq2 (unsigned fract a)
[Runtime Function]unsigned long long fract __fractuhqudq2 (unsigned

fract a)
[Runtime Function]unsigned short accum __fractuhquha (unsigned fract a)
[Runtime Function]unsigned accum __fractuhqusa (unsigned fract a)
[Runtime Function]unsigned long accum __fractuhquda (unsigned fract a)
[Runtime Function]unsigned long long accum __fractuhquta (unsigned fract

a)
[Runtime Function]signed char __fractuhqqi (unsigned fract a)
[Runtime Function]short __fractuhqhi (unsigned fract a)
[Runtime Function]int __fractuhqsi (unsigned fract a)
[Runtime Function]long __fractuhqdi (unsigned fract a)
[Runtime Function]long long __fractuhqti (unsigned fract a)
[Runtime Function]float __fractuhqsf (unsigned fract a)
[Runtime Function]double __fractuhqdf (unsigned fract a)
[Runtime Function]short fract __fractusqqq (unsigned long fract a)
[Runtime Function]fract __fractusqhq (unsigned long fract a)
[Runtime Function]long fract __fractusqsq (unsigned long fract a)
[Runtime Function]long long fract __fractusqdq (unsigned long fract a)
[Runtime Function]short accum __fractusqha (unsigned long fract a)
[Runtime Function]accum __fractusqsa (unsigned long fract a)
[Runtime Function]long accum __fractusqda (unsigned long fract a)
[Runtime Function]long long accum __fractusqta (unsigned long fract a)
[Runtime Function]unsigned short fract __fractusquqq2 (unsigned long fract

a)
[Runtime Function]unsigned fract __fractusquhq2 (unsigned long fract a)

36 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned long long fract __fractusqudq2 (unsigned long
fract a)

[Runtime Function]unsigned short accum __fractusquha (unsigned long fract
a)

[Runtime Function]unsigned accum __fractusqusa (unsigned long fract a)
[Runtime Function]unsigned long accum __fractusquda (unsigned long fract

a)
[Runtime Function]unsigned long long accum __fractusquta (unsigned long

fract a)
[Runtime Function]signed char __fractusqqi (unsigned long fract a)
[Runtime Function]short __fractusqhi (unsigned long fract a)
[Runtime Function]int __fractusqsi (unsigned long fract a)
[Runtime Function]long __fractusqdi (unsigned long fract a)
[Runtime Function]long long __fractusqti (unsigned long fract a)
[Runtime Function]float __fractusqsf (unsigned long fract a)
[Runtime Function]double __fractusqdf (unsigned long fract a)
[Runtime Function]short fract __fractudqqq (unsigned long long fract a)
[Runtime Function]fract __fractudqhq (unsigned long long fract a)
[Runtime Function]long fract __fractudqsq (unsigned long long fract a)
[Runtime Function]long long fract __fractudqdq (unsigned long long fract a)
[Runtime Function]short accum __fractudqha (unsigned long long fract a)
[Runtime Function]accum __fractudqsa (unsigned long long fract a)
[Runtime Function]long accum __fractudqda (unsigned long long fract a)
[Runtime Function]long long accum __fractudqta (unsigned long long fract a)
[Runtime Function]unsigned short fract __fractudquqq2 (unsigned long long

fract a)
[Runtime Function]unsigned fract __fractudquhq2 (unsigned long long fract a)
[Runtime Function]unsigned long fract __fractudqusq2 (unsigned long long

fract a)
[Runtime Function]unsigned short accum __fractudquha (unsigned long long

fract a)
[Runtime Function]unsigned accum __fractudqusa (unsigned long long fract a)
[Runtime Function]unsigned long accum __fractudquda (unsigned long long

fract a)
[Runtime Function]unsigned long long accum __fractudquta (unsigned long

long fract a)
[Runtime Function]signed char __fractudqqi (unsigned long long fract a)
[Runtime Function]short __fractudqhi (unsigned long long fract a)
[Runtime Function]int __fractudqsi (unsigned long long fract a)
[Runtime Function]long __fractudqdi (unsigned long long fract a)
[Runtime Function]long long __fractudqti (unsigned long long fract a)
[Runtime Function]float __fractudqsf (unsigned long long fract a)
[Runtime Function]double __fractudqdf (unsigned long long fract a)
[Runtime Function]short fract __fractuhaqq (unsigned short accum a)
[Runtime Function]fract __fractuhahq (unsigned short accum a)
[Runtime Function]long fract __fractuhasq (unsigned short accum a)
[Runtime Function]long long fract __fractuhadq (unsigned short accum a)

Chapter 4: The GCC low-level runtime library 37

[Runtime Function]short accum __fractuhaha (unsigned short accum a)
[Runtime Function]accum __fractuhasa (unsigned short accum a)
[Runtime Function]long accum __fractuhada (unsigned short accum a)
[Runtime Function]long long accum __fractuhata (unsigned short accum a)
[Runtime Function]unsigned short fract __fractuhauqq (unsigned short

accum a)
[Runtime Function]unsigned fract __fractuhauhq (unsigned short accum a)
[Runtime Function]unsigned long fract __fractuhausq (unsigned short accum

a)
[Runtime Function]unsigned long long fract __fractuhaudq (unsigned short

accum a)
[Runtime Function]unsigned accum __fractuhausa2 (unsigned short accum a)
[Runtime Function]unsigned long accum __fractuhauda2 (unsigned short

accum a)
[Runtime Function]unsigned long long accum __fractuhauta2 (unsigned

short accum a)
[Runtime Function]signed char __fractuhaqi (unsigned short accum a)
[Runtime Function]short __fractuhahi (unsigned short accum a)
[Runtime Function]int __fractuhasi (unsigned short accum a)
[Runtime Function]long __fractuhadi (unsigned short accum a)
[Runtime Function]long long __fractuhati (unsigned short accum a)
[Runtime Function]float __fractuhasf (unsigned short accum a)
[Runtime Function]double __fractuhadf (unsigned short accum a)
[Runtime Function]short fract __fractusaqq (unsigned accum a)
[Runtime Function]fract __fractusahq (unsigned accum a)
[Runtime Function]long fract __fractusasq (unsigned accum a)
[Runtime Function]long long fract __fractusadq (unsigned accum a)
[Runtime Function]short accum __fractusaha (unsigned accum a)
[Runtime Function]accum __fractusasa (unsigned accum a)
[Runtime Function]long accum __fractusada (unsigned accum a)
[Runtime Function]long long accum __fractusata (unsigned accum a)
[Runtime Function]unsigned short fract __fractusauqq (unsigned accum a)
[Runtime Function]unsigned fract __fractusauhq (unsigned accum a)
[Runtime Function]unsigned long fract __fractusausq (unsigned accum a)
[Runtime Function]unsigned long long fract __fractusaudq (unsigned

accum a)
[Runtime Function]unsigned short accum __fractusauha2 (unsigned accum a)
[Runtime Function]unsigned long accum __fractusauda2 (unsigned accum a)
[Runtime Function]unsigned long long accum __fractusauta2 (unsigned

accum a)
[Runtime Function]signed char __fractusaqi (unsigned accum a)
[Runtime Function]short __fractusahi (unsigned accum a)
[Runtime Function]int __fractusasi (unsigned accum a)
[Runtime Function]long __fractusadi (unsigned accum a)
[Runtime Function]long long __fractusati (unsigned accum a)
[Runtime Function]float __fractusasf (unsigned accum a)
[Runtime Function]double __fractusadf (unsigned accum a)

38 GNU Compiler Collection (GCC) Internals

[Runtime Function]short fract __fractudaqq (unsigned long accum a)
[Runtime Function]fract __fractudahq (unsigned long accum a)
[Runtime Function]long fract __fractudasq (unsigned long accum a)
[Runtime Function]long long fract __fractudadq (unsigned long accum a)
[Runtime Function]short accum __fractudaha (unsigned long accum a)
[Runtime Function]accum __fractudasa (unsigned long accum a)
[Runtime Function]long accum __fractudada (unsigned long accum a)
[Runtime Function]long long accum __fractudata (unsigned long accum a)
[Runtime Function]unsigned short fract __fractudauqq (unsigned long

accum a)
[Runtime Function]unsigned fract __fractudauhq (unsigned long accum a)
[Runtime Function]unsigned long fract __fractudausq (unsigned long accum

a)
[Runtime Function]unsigned long long fract __fractudaudq (unsigned long

accum a)
[Runtime Function]unsigned short accum __fractudauha2 (unsigned long

accum a)
[Runtime Function]unsigned accum __fractudausa2 (unsigned long accum a)
[Runtime Function]unsigned long long accum __fractudauta2 (unsigned long

accum a)
[Runtime Function]signed char __fractudaqi (unsigned long accum a)
[Runtime Function]short __fractudahi (unsigned long accum a)
[Runtime Function]int __fractudasi (unsigned long accum a)
[Runtime Function]long __fractudadi (unsigned long accum a)
[Runtime Function]long long __fractudati (unsigned long accum a)
[Runtime Function]float __fractudasf (unsigned long accum a)
[Runtime Function]double __fractudadf (unsigned long accum a)
[Runtime Function]short fract __fractutaqq (unsigned long long accum a)
[Runtime Function]fract __fractutahq (unsigned long long accum a)
[Runtime Function]long fract __fractutasq (unsigned long long accum a)
[Runtime Function]long long fract __fractutadq (unsigned long long accum

a)
[Runtime Function]short accum __fractutaha (unsigned long long accum a)
[Runtime Function]accum __fractutasa (unsigned long long accum a)
[Runtime Function]long accum __fractutada (unsigned long long accum a)
[Runtime Function]long long accum __fractutata (unsigned long long accum

a)
[Runtime Function]unsigned short fract __fractutauqq (unsigned long long

accum a)
[Runtime Function]unsigned fract __fractutauhq (unsigned long long accum

a)
[Runtime Function]unsigned long fract __fractutausq (unsigned long long

accum a)
[Runtime Function]unsigned long long fract __fractutaudq (unsigned long

long accum a)
[Runtime Function]unsigned short accum __fractutauha2 (unsigned long long

accum a)

Chapter 4: The GCC low-level runtime library 39

[Runtime Function]unsigned accum __fractutausa2 (unsigned long long accum
a)

[Runtime Function]unsigned long accum __fractutauda2 (unsigned long long
accum a)

[Runtime Function]signed char __fractutaqi (unsigned long long accum a)
[Runtime Function]short __fractutahi (unsigned long long accum a)
[Runtime Function]int __fractutasi (unsigned long long accum a)
[Runtime Function]long __fractutadi (unsigned long long accum a)
[Runtime Function]long long __fractutati (unsigned long long accum a)
[Runtime Function]float __fractutasf (unsigned long long accum a)
[Runtime Function]double __fractutadf (unsigned long long accum a)
[Runtime Function]short fract __fractqiqq (signed char a)
[Runtime Function]fract __fractqihq (signed char a)
[Runtime Function]long fract __fractqisq (signed char a)
[Runtime Function]long long fract __fractqidq (signed char a)
[Runtime Function]short accum __fractqiha (signed char a)
[Runtime Function]accum __fractqisa (signed char a)
[Runtime Function]long accum __fractqida (signed char a)
[Runtime Function]long long accum __fractqita (signed char a)
[Runtime Function]unsigned short fract __fractqiuqq (signed char a)
[Runtime Function]unsigned fract __fractqiuhq (signed char a)
[Runtime Function]unsigned long fract __fractqiusq (signed char a)
[Runtime Function]unsigned long long fract __fractqiudq (signed char a)
[Runtime Function]unsigned short accum __fractqiuha (signed char a)
[Runtime Function]unsigned accum __fractqiusa (signed char a)
[Runtime Function]unsigned long accum __fractqiuda (signed char a)
[Runtime Function]unsigned long long accum __fractqiuta (signed char a)
[Runtime Function]short fract __fracthiqq (short a)
[Runtime Function]fract __fracthihq (short a)
[Runtime Function]long fract __fracthisq (short a)
[Runtime Function]long long fract __fracthidq (short a)
[Runtime Function]short accum __fracthiha (short a)
[Runtime Function]accum __fracthisa (short a)
[Runtime Function]long accum __fracthida (short a)
[Runtime Function]long long accum __fracthita (short a)
[Runtime Function]unsigned short fract __fracthiuqq (short a)
[Runtime Function]unsigned fract __fracthiuhq (short a)
[Runtime Function]unsigned long fract __fracthiusq (short a)
[Runtime Function]unsigned long long fract __fracthiudq (short a)
[Runtime Function]unsigned short accum __fracthiuha (short a)
[Runtime Function]unsigned accum __fracthiusa (short a)
[Runtime Function]unsigned long accum __fracthiuda (short a)
[Runtime Function]unsigned long long accum __fracthiuta (short a)
[Runtime Function]short fract __fractsiqq (int a)
[Runtime Function]fract __fractsihq (int a)
[Runtime Function]long fract __fractsisq (int a)
[Runtime Function]long long fract __fractsidq (int a)

40 GNU Compiler Collection (GCC) Internals

[Runtime Function]short accum __fractsiha (int a)
[Runtime Function]accum __fractsisa (int a)
[Runtime Function]long accum __fractsida (int a)
[Runtime Function]long long accum __fractsita (int a)
[Runtime Function]unsigned short fract __fractsiuqq (int a)
[Runtime Function]unsigned fract __fractsiuhq (int a)
[Runtime Function]unsigned long fract __fractsiusq (int a)
[Runtime Function]unsigned long long fract __fractsiudq (int a)
[Runtime Function]unsigned short accum __fractsiuha (int a)
[Runtime Function]unsigned accum __fractsiusa (int a)
[Runtime Function]unsigned long accum __fractsiuda (int a)
[Runtime Function]unsigned long long accum __fractsiuta (int a)
[Runtime Function]short fract __fractdiqq (long a)
[Runtime Function]fract __fractdihq (long a)
[Runtime Function]long fract __fractdisq (long a)
[Runtime Function]long long fract __fractdidq (long a)
[Runtime Function]short accum __fractdiha (long a)
[Runtime Function]accum __fractdisa (long a)
[Runtime Function]long accum __fractdida (long a)
[Runtime Function]long long accum __fractdita (long a)
[Runtime Function]unsigned short fract __fractdiuqq (long a)
[Runtime Function]unsigned fract __fractdiuhq (long a)
[Runtime Function]unsigned long fract __fractdiusq (long a)
[Runtime Function]unsigned long long fract __fractdiudq (long a)
[Runtime Function]unsigned short accum __fractdiuha (long a)
[Runtime Function]unsigned accum __fractdiusa (long a)
[Runtime Function]unsigned long accum __fractdiuda (long a)
[Runtime Function]unsigned long long accum __fractdiuta (long a)
[Runtime Function]short fract __fracttiqq (long long a)
[Runtime Function]fract __fracttihq (long long a)
[Runtime Function]long fract __fracttisq (long long a)
[Runtime Function]long long fract __fracttidq (long long a)
[Runtime Function]short accum __fracttiha (long long a)
[Runtime Function]accum __fracttisa (long long a)
[Runtime Function]long accum __fracttida (long long a)
[Runtime Function]long long accum __fracttita (long long a)
[Runtime Function]unsigned short fract __fracttiuqq (long long a)
[Runtime Function]unsigned fract __fracttiuhq (long long a)
[Runtime Function]unsigned long fract __fracttiusq (long long a)
[Runtime Function]unsigned long long fract __fracttiudq (long long a)
[Runtime Function]unsigned short accum __fracttiuha (long long a)
[Runtime Function]unsigned accum __fracttiusa (long long a)
[Runtime Function]unsigned long accum __fracttiuda (long long a)
[Runtime Function]unsigned long long accum __fracttiuta (long long a)
[Runtime Function]short fract __fractsfqq (float a)
[Runtime Function]fract __fractsfhq (float a)
[Runtime Function]long fract __fractsfsq (float a)

Chapter 4: The GCC low-level runtime library 41

[Runtime Function]long long fract __fractsfdq (float a)
[Runtime Function]short accum __fractsfha (float a)
[Runtime Function]accum __fractsfsa (float a)
[Runtime Function]long accum __fractsfda (float a)
[Runtime Function]long long accum __fractsfta (float a)
[Runtime Function]unsigned short fract __fractsfuqq (float a)
[Runtime Function]unsigned fract __fractsfuhq (float a)
[Runtime Function]unsigned long fract __fractsfusq (float a)
[Runtime Function]unsigned long long fract __fractsfudq (float a)
[Runtime Function]unsigned short accum __fractsfuha (float a)
[Runtime Function]unsigned accum __fractsfusa (float a)
[Runtime Function]unsigned long accum __fractsfuda (float a)
[Runtime Function]unsigned long long accum __fractsfuta (float a)
[Runtime Function]short fract __fractdfqq (double a)
[Runtime Function]fract __fractdfhq (double a)
[Runtime Function]long fract __fractdfsq (double a)
[Runtime Function]long long fract __fractdfdq (double a)
[Runtime Function]short accum __fractdfha (double a)
[Runtime Function]accum __fractdfsa (double a)
[Runtime Function]long accum __fractdfda (double a)
[Runtime Function]long long accum __fractdfta (double a)
[Runtime Function]unsigned short fract __fractdfuqq (double a)
[Runtime Function]unsigned fract __fractdfuhq (double a)
[Runtime Function]unsigned long fract __fractdfusq (double a)
[Runtime Function]unsigned long long fract __fractdfudq (double a)
[Runtime Function]unsigned short accum __fractdfuha (double a)
[Runtime Function]unsigned accum __fractdfusa (double a)
[Runtime Function]unsigned long accum __fractdfuda (double a)
[Runtime Function]unsigned long long accum __fractdfuta (double a)

These functions convert from fractional and signed non-fractionals to fractionals and
signed non-fractionals, without saturation.

[Runtime Function]fract __satfractqqhq2 (short fract a)
[Runtime Function]long fract __satfractqqsq2 (short fract a)
[Runtime Function]long long fract __satfractqqdq2 (short fract a)
[Runtime Function]short accum __satfractqqha (short fract a)
[Runtime Function]accum __satfractqqsa (short fract a)
[Runtime Function]long accum __satfractqqda (short fract a)
[Runtime Function]long long accum __satfractqqta (short fract a)
[Runtime Function]unsigned short fract __satfractqquqq (short fract a)
[Runtime Function]unsigned fract __satfractqquhq (short fract a)
[Runtime Function]unsigned long fract __satfractqqusq (short fract a)
[Runtime Function]unsigned long long fract __satfractqqudq (short fract

a)
[Runtime Function]unsigned short accum __satfractqquha (short fract a)
[Runtime Function]unsigned accum __satfractqqusa (short fract a)
[Runtime Function]unsigned long accum __satfractqquda (short fract a)

42 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned long long accum __satfractqquta (short fract
a)

[Runtime Function]short fract __satfracthqqq2 (fract a)
[Runtime Function]long fract __satfracthqsq2 (fract a)
[Runtime Function]long long fract __satfracthqdq2 (fract a)
[Runtime Function]short accum __satfracthqha (fract a)
[Runtime Function]accum __satfracthqsa (fract a)
[Runtime Function]long accum __satfracthqda (fract a)
[Runtime Function]long long accum __satfracthqta (fract a)
[Runtime Function]unsigned short fract __satfracthquqq (fract a)
[Runtime Function]unsigned fract __satfracthquhq (fract a)
[Runtime Function]unsigned long fract __satfracthqusq (fract a)
[Runtime Function]unsigned long long fract __satfracthqudq (fract a)
[Runtime Function]unsigned short accum __satfracthquha (fract a)
[Runtime Function]unsigned accum __satfracthqusa (fract a)
[Runtime Function]unsigned long accum __satfracthquda (fract a)
[Runtime Function]unsigned long long accum __satfracthquta (fract a)
[Runtime Function]short fract __satfractsqqq2 (long fract a)
[Runtime Function]fract __satfractsqhq2 (long fract a)
[Runtime Function]long long fract __satfractsqdq2 (long fract a)
[Runtime Function]short accum __satfractsqha (long fract a)
[Runtime Function]accum __satfractsqsa (long fract a)
[Runtime Function]long accum __satfractsqda (long fract a)
[Runtime Function]long long accum __satfractsqta (long fract a)
[Runtime Function]unsigned short fract __satfractsquqq (long fract a)
[Runtime Function]unsigned fract __satfractsquhq (long fract a)
[Runtime Function]unsigned long fract __satfractsqusq (long fract a)
[Runtime Function]unsigned long long fract __satfractsqudq (long fract a)
[Runtime Function]unsigned short accum __satfractsquha (long fract a)
[Runtime Function]unsigned accum __satfractsqusa (long fract a)
[Runtime Function]unsigned long accum __satfractsquda (long fract a)
[Runtime Function]unsigned long long accum __satfractsquta (long fract a)
[Runtime Function]short fract __satfractdqqq2 (long long fract a)
[Runtime Function]fract __satfractdqhq2 (long long fract a)
[Runtime Function]long fract __satfractdqsq2 (long long fract a)
[Runtime Function]short accum __satfractdqha (long long fract a)
[Runtime Function]accum __satfractdqsa (long long fract a)
[Runtime Function]long accum __satfractdqda (long long fract a)
[Runtime Function]long long accum __satfractdqta (long long fract a)
[Runtime Function]unsigned short fract __satfractdquqq (long long fract a)
[Runtime Function]unsigned fract __satfractdquhq (long long fract a)
[Runtime Function]unsigned long fract __satfractdqusq (long long fract a)
[Runtime Function]unsigned long long fract __satfractdqudq (long long

fract a)
[Runtime Function]unsigned short accum __satfractdquha (long long fract a)
[Runtime Function]unsigned accum __satfractdqusa (long long fract a)
[Runtime Function]unsigned long accum __satfractdquda (long long fract a)

Chapter 4: The GCC low-level runtime library 43

[Runtime Function]unsigned long long accum __satfractdquta (long long
fract a)

[Runtime Function]short fract __satfracthaqq (short accum a)
[Runtime Function]fract __satfracthahq (short accum a)
[Runtime Function]long fract __satfracthasq (short accum a)
[Runtime Function]long long fract __satfracthadq (short accum a)
[Runtime Function]accum __satfracthasa2 (short accum a)
[Runtime Function]long accum __satfracthada2 (short accum a)
[Runtime Function]long long accum __satfracthata2 (short accum a)
[Runtime Function]unsigned short fract __satfracthauqq (short accum a)
[Runtime Function]unsigned fract __satfracthauhq (short accum a)
[Runtime Function]unsigned long fract __satfracthausq (short accum a)
[Runtime Function]unsigned long long fract __satfracthaudq (short accum

a)
[Runtime Function]unsigned short accum __satfracthauha (short accum a)
[Runtime Function]unsigned accum __satfracthausa (short accum a)
[Runtime Function]unsigned long accum __satfracthauda (short accum a)
[Runtime Function]unsigned long long accum __satfracthauta (short accum

a)
[Runtime Function]short fract __satfractsaqq (accum a)
[Runtime Function]fract __satfractsahq (accum a)
[Runtime Function]long fract __satfractsasq (accum a)
[Runtime Function]long long fract __satfractsadq (accum a)
[Runtime Function]short accum __satfractsaha2 (accum a)
[Runtime Function]long accum __satfractsada2 (accum a)
[Runtime Function]long long accum __satfractsata2 (accum a)
[Runtime Function]unsigned short fract __satfractsauqq (accum a)
[Runtime Function]unsigned fract __satfractsauhq (accum a)
[Runtime Function]unsigned long fract __satfractsausq (accum a)
[Runtime Function]unsigned long long fract __satfractsaudq (accum a)
[Runtime Function]unsigned short accum __satfractsauha (accum a)
[Runtime Function]unsigned accum __satfractsausa (accum a)
[Runtime Function]unsigned long accum __satfractsauda (accum a)
[Runtime Function]unsigned long long accum __satfractsauta (accum a)
[Runtime Function]short fract __satfractdaqq (long accum a)
[Runtime Function]fract __satfractdahq (long accum a)
[Runtime Function]long fract __satfractdasq (long accum a)
[Runtime Function]long long fract __satfractdadq (long accum a)
[Runtime Function]short accum __satfractdaha2 (long accum a)
[Runtime Function]accum __satfractdasa2 (long accum a)
[Runtime Function]long long accum __satfractdata2 (long accum a)
[Runtime Function]unsigned short fract __satfractdauqq (long accum a)
[Runtime Function]unsigned fract __satfractdauhq (long accum a)
[Runtime Function]unsigned long fract __satfractdausq (long accum a)
[Runtime Function]unsigned long long fract __satfractdaudq (long accum

a)
[Runtime Function]unsigned short accum __satfractdauha (long accum a)

44 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned accum __satfractdausa (long accum a)
[Runtime Function]unsigned long accum __satfractdauda (long accum a)
[Runtime Function]unsigned long long accum __satfractdauta (long accum

a)
[Runtime Function]short fract __satfracttaqq (long long accum a)
[Runtime Function]fract __satfracttahq (long long accum a)
[Runtime Function]long fract __satfracttasq (long long accum a)
[Runtime Function]long long fract __satfracttadq (long long accum a)
[Runtime Function]short accum __satfracttaha2 (long long accum a)
[Runtime Function]accum __satfracttasa2 (long long accum a)
[Runtime Function]long accum __satfracttada2 (long long accum a)
[Runtime Function]unsigned short fract __satfracttauqq (long long accum

a)
[Runtime Function]unsigned fract __satfracttauhq (long long accum a)
[Runtime Function]unsigned long fract __satfracttausq (long long accum a)
[Runtime Function]unsigned long long fract __satfracttaudq (long long

accum a)
[Runtime Function]unsigned short accum __satfracttauha (long long accum

a)
[Runtime Function]unsigned accum __satfracttausa (long long accum a)
[Runtime Function]unsigned long accum __satfracttauda (long long accum a)
[Runtime Function]unsigned long long accum __satfracttauta (long long

accum a)
[Runtime Function]short fract __satfractuqqqq (unsigned short fract a)
[Runtime Function]fract __satfractuqqhq (unsigned short fract a)
[Runtime Function]long fract __satfractuqqsq (unsigned short fract a)
[Runtime Function]long long fract __satfractuqqdq (unsigned short fract a)
[Runtime Function]short accum __satfractuqqha (unsigned short fract a)
[Runtime Function]accum __satfractuqqsa (unsigned short fract a)
[Runtime Function]long accum __satfractuqqda (unsigned short fract a)
[Runtime Function]long long accum __satfractuqqta (unsigned short fract a)
[Runtime Function]unsigned fract __satfractuqquhq2 (unsigned short fract a)
[Runtime Function]unsigned long fract __satfractuqqusq2 (unsigned short

fract a)
[Runtime Function]unsigned long long fract __satfractuqqudq2 (unsigned

short fract a)
[Runtime Function]unsigned short accum __satfractuqquha (unsigned short

fract a)
[Runtime Function]unsigned accum __satfractuqqusa (unsigned short fract a)
[Runtime Function]unsigned long accum __satfractuqquda (unsigned short

fract a)
[Runtime Function]unsigned long long accum __satfractuqquta (unsigned

short fract a)
[Runtime Function]short fract __satfractuhqqq (unsigned fract a)
[Runtime Function]fract __satfractuhqhq (unsigned fract a)
[Runtime Function]long fract __satfractuhqsq (unsigned fract a)
[Runtime Function]long long fract __satfractuhqdq (unsigned fract a)

Chapter 4: The GCC low-level runtime library 45

[Runtime Function]short accum __satfractuhqha (unsigned fract a)
[Runtime Function]accum __satfractuhqsa (unsigned fract a)
[Runtime Function]long accum __satfractuhqda (unsigned fract a)
[Runtime Function]long long accum __satfractuhqta (unsigned fract a)
[Runtime Function]unsigned short fract __satfractuhquqq2 (unsigned fract

a)
[Runtime Function]unsigned long fract __satfractuhqusq2 (unsigned fract

a)
[Runtime Function]unsigned long long fract __satfractuhqudq2 (unsigned

fract a)
[Runtime Function]unsigned short accum __satfractuhquha (unsigned fract

a)
[Runtime Function]unsigned accum __satfractuhqusa (unsigned fract a)
[Runtime Function]unsigned long accum __satfractuhquda (unsigned fract a)
[Runtime Function]unsigned long long accum __satfractuhquta (unsigned

fract a)
[Runtime Function]short fract __satfractusqqq (unsigned long fract a)
[Runtime Function]fract __satfractusqhq (unsigned long fract a)
[Runtime Function]long fract __satfractusqsq (unsigned long fract a)
[Runtime Function]long long fract __satfractusqdq (unsigned long fract a)
[Runtime Function]short accum __satfractusqha (unsigned long fract a)
[Runtime Function]accum __satfractusqsa (unsigned long fract a)
[Runtime Function]long accum __satfractusqda (unsigned long fract a)
[Runtime Function]long long accum __satfractusqta (unsigned long fract a)
[Runtime Function]unsigned short fract __satfractusquqq2 (unsigned long

fract a)
[Runtime Function]unsigned fract __satfractusquhq2 (unsigned long fract a)
[Runtime Function]unsigned long long fract __satfractusqudq2 (unsigned

long fract a)
[Runtime Function]unsigned short accum __satfractusquha (unsigned long

fract a)
[Runtime Function]unsigned accum __satfractusqusa (unsigned long fract a)
[Runtime Function]unsigned long accum __satfractusquda (unsigned long

fract a)
[Runtime Function]unsigned long long accum __satfractusquta (unsigned

long fract a)
[Runtime Function]short fract __satfractudqqq (unsigned long long fract a)
[Runtime Function]fract __satfractudqhq (unsigned long long fract a)
[Runtime Function]long fract __satfractudqsq (unsigned long long fract a)
[Runtime Function]long long fract __satfractudqdq (unsigned long long fract

a)
[Runtime Function]short accum __satfractudqha (unsigned long long fract a)
[Runtime Function]accum __satfractudqsa (unsigned long long fract a)
[Runtime Function]long accum __satfractudqda (unsigned long long fract a)
[Runtime Function]long long accum __satfractudqta (unsigned long long fract

a)

46 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned short fract __satfractudquqq2 (unsigned long
long fract a)

[Runtime Function]unsigned fract __satfractudquhq2 (unsigned long long
fract a)

[Runtime Function]unsigned long fract __satfractudqusq2 (unsigned long
long fract a)

[Runtime Function]unsigned short accum __satfractudquha (unsigned long
long fract a)

[Runtime Function]unsigned accum __satfractudqusa (unsigned long long fract
a)

[Runtime Function]unsigned long accum __satfractudquda (unsigned long
long fract a)

[Runtime Function]unsigned long long accum __satfractudquta (unsigned
long long fract a)

[Runtime Function]short fract __satfractuhaqq (unsigned short accum a)
[Runtime Function]fract __satfractuhahq (unsigned short accum a)
[Runtime Function]long fract __satfractuhasq (unsigned short accum a)
[Runtime Function]long long fract __satfractuhadq (unsigned short accum

a)
[Runtime Function]short accum __satfractuhaha (unsigned short accum a)
[Runtime Function]accum __satfractuhasa (unsigned short accum a)
[Runtime Function]long accum __satfractuhada (unsigned short accum a)
[Runtime Function]long long accum __satfractuhata (unsigned short accum

a)
[Runtime Function]unsigned short fract __satfractuhauqq (unsigned short

accum a)
[Runtime Function]unsigned fract __satfractuhauhq (unsigned short accum

a)
[Runtime Function]unsigned long fract __satfractuhausq (unsigned short

accum a)
[Runtime Function]unsigned long long fract __satfractuhaudq (unsigned

short accum a)
[Runtime Function]unsigned accum __satfractuhausa2 (unsigned short accum

a)
[Runtime Function]unsigned long accum __satfractuhauda2 (unsigned short

accum a)
[Runtime Function]unsigned long long accum __satfractuhauta2 (unsigned

short accum a)
[Runtime Function]short fract __satfractusaqq (unsigned accum a)
[Runtime Function]fract __satfractusahq (unsigned accum a)
[Runtime Function]long fract __satfractusasq (unsigned accum a)
[Runtime Function]long long fract __satfractusadq (unsigned accum a)
[Runtime Function]short accum __satfractusaha (unsigned accum a)
[Runtime Function]accum __satfractusasa (unsigned accum a)
[Runtime Function]long accum __satfractusada (unsigned accum a)
[Runtime Function]long long accum __satfractusata (unsigned accum a)

Chapter 4: The GCC low-level runtime library 47

[Runtime Function]unsigned short fract __satfractusauqq (unsigned accum
a)

[Runtime Function]unsigned fract __satfractusauhq (unsigned accum a)
[Runtime Function]unsigned long fract __satfractusausq (unsigned accum

a)
[Runtime Function]unsigned long long fract __satfractusaudq (unsigned

accum a)
[Runtime Function]unsigned short accum __satfractusauha2 (unsigned

accum a)
[Runtime Function]unsigned long accum __satfractusauda2 (unsigned accum

a)
[Runtime Function]unsigned long long accum __satfractusauta2 (unsigned

accum a)
[Runtime Function]short fract __satfractudaqq (unsigned long accum a)
[Runtime Function]fract __satfractudahq (unsigned long accum a)
[Runtime Function]long fract __satfractudasq (unsigned long accum a)
[Runtime Function]long long fract __satfractudadq (unsigned long accum a)
[Runtime Function]short accum __satfractudaha (unsigned long accum a)
[Runtime Function]accum __satfractudasa (unsigned long accum a)
[Runtime Function]long accum __satfractudada (unsigned long accum a)
[Runtime Function]long long accum __satfractudata (unsigned long accum a)
[Runtime Function]unsigned short fract __satfractudauqq (unsigned long

accum a)
[Runtime Function]unsigned fract __satfractudauhq (unsigned long accum a)
[Runtime Function]unsigned long fract __satfractudausq (unsigned long

accum a)
[Runtime Function]unsigned long long fract __satfractudaudq (unsigned

long accum a)
[Runtime Function]unsigned short accum __satfractudauha2 (unsigned long

accum a)
[Runtime Function]unsigned accum __satfractudausa2 (unsigned long accum

a)
[Runtime Function]unsigned long long accum __satfractudauta2 (unsigned

long accum a)
[Runtime Function]short fract __satfractutaqq (unsigned long long accum a)
[Runtime Function]fract __satfractutahq (unsigned long long accum a)
[Runtime Function]long fract __satfractutasq (unsigned long long accum a)
[Runtime Function]long long fract __satfractutadq (unsigned long long

accum a)
[Runtime Function]short accum __satfractutaha (unsigned long long accum a)
[Runtime Function]accum __satfractutasa (unsigned long long accum a)
[Runtime Function]long accum __satfractutada (unsigned long long accum a)
[Runtime Function]long long accum __satfractutata (unsigned long long

accum a)
[Runtime Function]unsigned short fract __satfractutauqq (unsigned long

long accum a)

48 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned fract __satfractutauhq (unsigned long long
accum a)

[Runtime Function]unsigned long fract __satfractutausq (unsigned long
long accum a)

[Runtime Function]unsigned long long fract __satfractutaudq (unsigned
long long accum a)

[Runtime Function]unsigned short accum __satfractutauha2 (unsigned long
long accum a)

[Runtime Function]unsigned accum __satfractutausa2 (unsigned long long
accum a)

[Runtime Function]unsigned long accum __satfractutauda2 (unsigned long
long accum a)

[Runtime Function]short fract __satfractqiqq (signed char a)
[Runtime Function]fract __satfractqihq (signed char a)
[Runtime Function]long fract __satfractqisq (signed char a)
[Runtime Function]long long fract __satfractqidq (signed char a)
[Runtime Function]short accum __satfractqiha (signed char a)
[Runtime Function]accum __satfractqisa (signed char a)
[Runtime Function]long accum __satfractqida (signed char a)
[Runtime Function]long long accum __satfractqita (signed char a)
[Runtime Function]unsigned short fract __satfractqiuqq (signed char a)
[Runtime Function]unsigned fract __satfractqiuhq (signed char a)
[Runtime Function]unsigned long fract __satfractqiusq (signed char a)
[Runtime Function]unsigned long long fract __satfractqiudq (signed char

a)
[Runtime Function]unsigned short accum __satfractqiuha (signed char a)
[Runtime Function]unsigned accum __satfractqiusa (signed char a)
[Runtime Function]unsigned long accum __satfractqiuda (signed char a)
[Runtime Function]unsigned long long accum __satfractqiuta (signed char

a)
[Runtime Function]short fract __satfracthiqq (short a)
[Runtime Function]fract __satfracthihq (short a)
[Runtime Function]long fract __satfracthisq (short a)
[Runtime Function]long long fract __satfracthidq (short a)
[Runtime Function]short accum __satfracthiha (short a)
[Runtime Function]accum __satfracthisa (short a)
[Runtime Function]long accum __satfracthida (short a)
[Runtime Function]long long accum __satfracthita (short a)
[Runtime Function]unsigned short fract __satfracthiuqq (short a)
[Runtime Function]unsigned fract __satfracthiuhq (short a)
[Runtime Function]unsigned long fract __satfracthiusq (short a)
[Runtime Function]unsigned long long fract __satfracthiudq (short a)
[Runtime Function]unsigned short accum __satfracthiuha (short a)
[Runtime Function]unsigned accum __satfracthiusa (short a)
[Runtime Function]unsigned long accum __satfracthiuda (short a)
[Runtime Function]unsigned long long accum __satfracthiuta (short a)
[Runtime Function]short fract __satfractsiqq (int a)

Chapter 4: The GCC low-level runtime library 49

[Runtime Function]fract __satfractsihq (int a)
[Runtime Function]long fract __satfractsisq (int a)
[Runtime Function]long long fract __satfractsidq (int a)
[Runtime Function]short accum __satfractsiha (int a)
[Runtime Function]accum __satfractsisa (int a)
[Runtime Function]long accum __satfractsida (int a)
[Runtime Function]long long accum __satfractsita (int a)
[Runtime Function]unsigned short fract __satfractsiuqq (int a)
[Runtime Function]unsigned fract __satfractsiuhq (int a)
[Runtime Function]unsigned long fract __satfractsiusq (int a)
[Runtime Function]unsigned long long fract __satfractsiudq (int a)
[Runtime Function]unsigned short accum __satfractsiuha (int a)
[Runtime Function]unsigned accum __satfractsiusa (int a)
[Runtime Function]unsigned long accum __satfractsiuda (int a)
[Runtime Function]unsigned long long accum __satfractsiuta (int a)
[Runtime Function]short fract __satfractdiqq (long a)
[Runtime Function]fract __satfractdihq (long a)
[Runtime Function]long fract __satfractdisq (long a)
[Runtime Function]long long fract __satfractdidq (long a)
[Runtime Function]short accum __satfractdiha (long a)
[Runtime Function]accum __satfractdisa (long a)
[Runtime Function]long accum __satfractdida (long a)
[Runtime Function]long long accum __satfractdita (long a)
[Runtime Function]unsigned short fract __satfractdiuqq (long a)
[Runtime Function]unsigned fract __satfractdiuhq (long a)
[Runtime Function]unsigned long fract __satfractdiusq (long a)
[Runtime Function]unsigned long long fract __satfractdiudq (long a)
[Runtime Function]unsigned short accum __satfractdiuha (long a)
[Runtime Function]unsigned accum __satfractdiusa (long a)
[Runtime Function]unsigned long accum __satfractdiuda (long a)
[Runtime Function]unsigned long long accum __satfractdiuta (long a)
[Runtime Function]short fract __satfracttiqq (long long a)
[Runtime Function]fract __satfracttihq (long long a)
[Runtime Function]long fract __satfracttisq (long long a)
[Runtime Function]long long fract __satfracttidq (long long a)
[Runtime Function]short accum __satfracttiha (long long a)
[Runtime Function]accum __satfracttisa (long long a)
[Runtime Function]long accum __satfracttida (long long a)
[Runtime Function]long long accum __satfracttita (long long a)
[Runtime Function]unsigned short fract __satfracttiuqq (long long a)
[Runtime Function]unsigned fract __satfracttiuhq (long long a)
[Runtime Function]unsigned long fract __satfracttiusq (long long a)
[Runtime Function]unsigned long long fract __satfracttiudq (long long a)
[Runtime Function]unsigned short accum __satfracttiuha (long long a)
[Runtime Function]unsigned accum __satfracttiusa (long long a)
[Runtime Function]unsigned long accum __satfracttiuda (long long a)
[Runtime Function]unsigned long long accum __satfracttiuta (long long a)

50 GNU Compiler Collection (GCC) Internals

[Runtime Function]short fract __satfractsfqq (float a)
[Runtime Function]fract __satfractsfhq (float a)
[Runtime Function]long fract __satfractsfsq (float a)
[Runtime Function]long long fract __satfractsfdq (float a)
[Runtime Function]short accum __satfractsfha (float a)
[Runtime Function]accum __satfractsfsa (float a)
[Runtime Function]long accum __satfractsfda (float a)
[Runtime Function]long long accum __satfractsfta (float a)
[Runtime Function]unsigned short fract __satfractsfuqq (float a)
[Runtime Function]unsigned fract __satfractsfuhq (float a)
[Runtime Function]unsigned long fract __satfractsfusq (float a)
[Runtime Function]unsigned long long fract __satfractsfudq (float a)
[Runtime Function]unsigned short accum __satfractsfuha (float a)
[Runtime Function]unsigned accum __satfractsfusa (float a)
[Runtime Function]unsigned long accum __satfractsfuda (float a)
[Runtime Function]unsigned long long accum __satfractsfuta (float a)
[Runtime Function]short fract __satfractdfqq (double a)
[Runtime Function]fract __satfractdfhq (double a)
[Runtime Function]long fract __satfractdfsq (double a)
[Runtime Function]long long fract __satfractdfdq (double a)
[Runtime Function]short accum __satfractdfha (double a)
[Runtime Function]accum __satfractdfsa (double a)
[Runtime Function]long accum __satfractdfda (double a)
[Runtime Function]long long accum __satfractdfta (double a)
[Runtime Function]unsigned short fract __satfractdfuqq (double a)
[Runtime Function]unsigned fract __satfractdfuhq (double a)
[Runtime Function]unsigned long fract __satfractdfusq (double a)
[Runtime Function]unsigned long long fract __satfractdfudq (double a)
[Runtime Function]unsigned short accum __satfractdfuha (double a)
[Runtime Function]unsigned accum __satfractdfusa (double a)
[Runtime Function]unsigned long accum __satfractdfuda (double a)
[Runtime Function]unsigned long long accum __satfractdfuta (double a)

The functions convert from fractional and signed non-fractionals to fractionals, with
saturation.

[Runtime Function]unsigned char __fractunsqqqi (short fract a)
[Runtime Function]unsigned short __fractunsqqhi (short fract a)
[Runtime Function]unsigned int __fractunsqqsi (short fract a)
[Runtime Function]unsigned long __fractunsqqdi (short fract a)
[Runtime Function]unsigned long long __fractunsqqti (short fract a)
[Runtime Function]unsigned char __fractunshqqi (fract a)
[Runtime Function]unsigned short __fractunshqhi (fract a)
[Runtime Function]unsigned int __fractunshqsi (fract a)
[Runtime Function]unsigned long __fractunshqdi (fract a)
[Runtime Function]unsigned long long __fractunshqti (fract a)
[Runtime Function]unsigned char __fractunssqqi (long fract a)
[Runtime Function]unsigned short __fractunssqhi (long fract a)

Chapter 4: The GCC low-level runtime library 51

[Runtime Function]unsigned int __fractunssqsi (long fract a)
[Runtime Function]unsigned long __fractunssqdi (long fract a)
[Runtime Function]unsigned long long __fractunssqti (long fract a)
[Runtime Function]unsigned char __fractunsdqqi (long long fract a)
[Runtime Function]unsigned short __fractunsdqhi (long long fract a)
[Runtime Function]unsigned int __fractunsdqsi (long long fract a)
[Runtime Function]unsigned long __fractunsdqdi (long long fract a)
[Runtime Function]unsigned long long __fractunsdqti (long long fract a)
[Runtime Function]unsigned char __fractunshaqi (short accum a)
[Runtime Function]unsigned short __fractunshahi (short accum a)
[Runtime Function]unsigned int __fractunshasi (short accum a)
[Runtime Function]unsigned long __fractunshadi (short accum a)
[Runtime Function]unsigned long long __fractunshati (short accum a)
[Runtime Function]unsigned char __fractunssaqi (accum a)
[Runtime Function]unsigned short __fractunssahi (accum a)
[Runtime Function]unsigned int __fractunssasi (accum a)
[Runtime Function]unsigned long __fractunssadi (accum a)
[Runtime Function]unsigned long long __fractunssati (accum a)
[Runtime Function]unsigned char __fractunsdaqi (long accum a)
[Runtime Function]unsigned short __fractunsdahi (long accum a)
[Runtime Function]unsigned int __fractunsdasi (long accum a)
[Runtime Function]unsigned long __fractunsdadi (long accum a)
[Runtime Function]unsigned long long __fractunsdati (long accum a)
[Runtime Function]unsigned char __fractunstaqi (long long accum a)
[Runtime Function]unsigned short __fractunstahi (long long accum a)
[Runtime Function]unsigned int __fractunstasi (long long accum a)
[Runtime Function]unsigned long __fractunstadi (long long accum a)
[Runtime Function]unsigned long long __fractunstati (long long accum a)
[Runtime Function]unsigned char __fractunsuqqqi (unsigned short fract a)
[Runtime Function]unsigned short __fractunsuqqhi (unsigned short fract a)
[Runtime Function]unsigned int __fractunsuqqsi (unsigned short fract a)
[Runtime Function]unsigned long __fractunsuqqdi (unsigned short fract a)
[Runtime Function]unsigned long long __fractunsuqqti (unsigned short fract

a)
[Runtime Function]unsigned char __fractunsuhqqi (unsigned fract a)
[Runtime Function]unsigned short __fractunsuhqhi (unsigned fract a)
[Runtime Function]unsigned int __fractunsuhqsi (unsigned fract a)
[Runtime Function]unsigned long __fractunsuhqdi (unsigned fract a)
[Runtime Function]unsigned long long __fractunsuhqti (unsigned fract a)
[Runtime Function]unsigned char __fractunsusqqi (unsigned long fract a)
[Runtime Function]unsigned short __fractunsusqhi (unsigned long fract a)
[Runtime Function]unsigned int __fractunsusqsi (unsigned long fract a)
[Runtime Function]unsigned long __fractunsusqdi (unsigned long fract a)
[Runtime Function]unsigned long long __fractunsusqti (unsigned long fract

a)
[Runtime Function]unsigned char __fractunsudqqi (unsigned long long fract a)

52 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned short __fractunsudqhi (unsigned long long fract
a)

[Runtime Function]unsigned int __fractunsudqsi (unsigned long long fract a)
[Runtime Function]unsigned long __fractunsudqdi (unsigned long long fract a)
[Runtime Function]unsigned long long __fractunsudqti (unsigned long long

fract a)
[Runtime Function]unsigned char __fractunsuhaqi (unsigned short accum a)
[Runtime Function]unsigned short __fractunsuhahi (unsigned short accum a)
[Runtime Function]unsigned int __fractunsuhasi (unsigned short accum a)
[Runtime Function]unsigned long __fractunsuhadi (unsigned short accum a)
[Runtime Function]unsigned long long __fractunsuhati (unsigned short

accum a)
[Runtime Function]unsigned char __fractunsusaqi (unsigned accum a)
[Runtime Function]unsigned short __fractunsusahi (unsigned accum a)
[Runtime Function]unsigned int __fractunsusasi (unsigned accum a)
[Runtime Function]unsigned long __fractunsusadi (unsigned accum a)
[Runtime Function]unsigned long long __fractunsusati (unsigned accum a)
[Runtime Function]unsigned char __fractunsudaqi (unsigned long accum a)
[Runtime Function]unsigned short __fractunsudahi (unsigned long accum a)
[Runtime Function]unsigned int __fractunsudasi (unsigned long accum a)
[Runtime Function]unsigned long __fractunsudadi (unsigned long accum a)
[Runtime Function]unsigned long long __fractunsudati (unsigned long

accum a)
[Runtime Function]unsigned char __fractunsutaqi (unsigned long long accum

a)
[Runtime Function]unsigned short __fractunsutahi (unsigned long long accum

a)
[Runtime Function]unsigned int __fractunsutasi (unsigned long long accum

a)
[Runtime Function]unsigned long __fractunsutadi (unsigned long long accum

a)
[Runtime Function]unsigned long long __fractunsutati (unsigned long long

accum a)
[Runtime Function]short fract __fractunsqiqq (unsigned char a)
[Runtime Function]fract __fractunsqihq (unsigned char a)
[Runtime Function]long fract __fractunsqisq (unsigned char a)
[Runtime Function]long long fract __fractunsqidq (unsigned char a)
[Runtime Function]short accum __fractunsqiha (unsigned char a)
[Runtime Function]accum __fractunsqisa (unsigned char a)
[Runtime Function]long accum __fractunsqida (unsigned char a)
[Runtime Function]long long accum __fractunsqita (unsigned char a)
[Runtime Function]unsigned short fract __fractunsqiuqq (unsigned char a)
[Runtime Function]unsigned fract __fractunsqiuhq (unsigned char a)
[Runtime Function]unsigned long fract __fractunsqiusq (unsigned char a)
[Runtime Function]unsigned long long fract __fractunsqiudq (unsigned

char a)
[Runtime Function]unsigned short accum __fractunsqiuha (unsigned char a)

Chapter 4: The GCC low-level runtime library 53

[Runtime Function]unsigned accum __fractunsqiusa (unsigned char a)
[Runtime Function]unsigned long accum __fractunsqiuda (unsigned char a)
[Runtime Function]unsigned long long accum __fractunsqiuta (unsigned

char a)
[Runtime Function]short fract __fractunshiqq (unsigned short a)
[Runtime Function]fract __fractunshihq (unsigned short a)
[Runtime Function]long fract __fractunshisq (unsigned short a)
[Runtime Function]long long fract __fractunshidq (unsigned short a)
[Runtime Function]short accum __fractunshiha (unsigned short a)
[Runtime Function]accum __fractunshisa (unsigned short a)
[Runtime Function]long accum __fractunshida (unsigned short a)
[Runtime Function]long long accum __fractunshita (unsigned short a)
[Runtime Function]unsigned short fract __fractunshiuqq (unsigned short a)
[Runtime Function]unsigned fract __fractunshiuhq (unsigned short a)
[Runtime Function]unsigned long fract __fractunshiusq (unsigned short a)
[Runtime Function]unsigned long long fract __fractunshiudq (unsigned

short a)
[Runtime Function]unsigned short accum __fractunshiuha (unsigned short a)
[Runtime Function]unsigned accum __fractunshiusa (unsigned short a)
[Runtime Function]unsigned long accum __fractunshiuda (unsigned short a)
[Runtime Function]unsigned long long accum __fractunshiuta (unsigned

short a)
[Runtime Function]short fract __fractunssiqq (unsigned int a)
[Runtime Function]fract __fractunssihq (unsigned int a)
[Runtime Function]long fract __fractunssisq (unsigned int a)
[Runtime Function]long long fract __fractunssidq (unsigned int a)
[Runtime Function]short accum __fractunssiha (unsigned int a)
[Runtime Function]accum __fractunssisa (unsigned int a)
[Runtime Function]long accum __fractunssida (unsigned int a)
[Runtime Function]long long accum __fractunssita (unsigned int a)
[Runtime Function]unsigned short fract __fractunssiuqq (unsigned int a)
[Runtime Function]unsigned fract __fractunssiuhq (unsigned int a)
[Runtime Function]unsigned long fract __fractunssiusq (unsigned int a)
[Runtime Function]unsigned long long fract __fractunssiudq (unsigned int

a)
[Runtime Function]unsigned short accum __fractunssiuha (unsigned int a)
[Runtime Function]unsigned accum __fractunssiusa (unsigned int a)
[Runtime Function]unsigned long accum __fractunssiuda (unsigned int a)
[Runtime Function]unsigned long long accum __fractunssiuta (unsigned int

a)
[Runtime Function]short fract __fractunsdiqq (unsigned long a)
[Runtime Function]fract __fractunsdihq (unsigned long a)
[Runtime Function]long fract __fractunsdisq (unsigned long a)
[Runtime Function]long long fract __fractunsdidq (unsigned long a)
[Runtime Function]short accum __fractunsdiha (unsigned long a)
[Runtime Function]accum __fractunsdisa (unsigned long a)
[Runtime Function]long accum __fractunsdida (unsigned long a)

54 GNU Compiler Collection (GCC) Internals

[Runtime Function]long long accum __fractunsdita (unsigned long a)
[Runtime Function]unsigned short fract __fractunsdiuqq (unsigned long a)
[Runtime Function]unsigned fract __fractunsdiuhq (unsigned long a)
[Runtime Function]unsigned long fract __fractunsdiusq (unsigned long a)
[Runtime Function]unsigned long long fract __fractunsdiudq (unsigned

long a)
[Runtime Function]unsigned short accum __fractunsdiuha (unsigned long a)
[Runtime Function]unsigned accum __fractunsdiusa (unsigned long a)
[Runtime Function]unsigned long accum __fractunsdiuda (unsigned long a)
[Runtime Function]unsigned long long accum __fractunsdiuta (unsigned

long a)
[Runtime Function]short fract __fractunstiqq (unsigned long long a)
[Runtime Function]fract __fractunstihq (unsigned long long a)
[Runtime Function]long fract __fractunstisq (unsigned long long a)
[Runtime Function]long long fract __fractunstidq (unsigned long long a)
[Runtime Function]short accum __fractunstiha (unsigned long long a)
[Runtime Function]accum __fractunstisa (unsigned long long a)
[Runtime Function]long accum __fractunstida (unsigned long long a)
[Runtime Function]long long accum __fractunstita (unsigned long long a)
[Runtime Function]unsigned short fract __fractunstiuqq (unsigned long

long a)
[Runtime Function]unsigned fract __fractunstiuhq (unsigned long long a)
[Runtime Function]unsigned long fract __fractunstiusq (unsigned long long

a)
[Runtime Function]unsigned long long fract __fractunstiudq (unsigned

long long a)
[Runtime Function]unsigned short accum __fractunstiuha (unsigned long

long a)
[Runtime Function]unsigned accum __fractunstiusa (unsigned long long a)
[Runtime Function]unsigned long accum __fractunstiuda (unsigned long long

a)
[Runtime Function]unsigned long long accum __fractunstiuta (unsigned

long long a)
These functions convert from fractionals to unsigned non-fractionals; and from un-
signed non-fractionals to fractionals, without saturation.

[Runtime Function]short fract __satfractunsqiqq (unsigned char a)
[Runtime Function]fract __satfractunsqihq (unsigned char a)
[Runtime Function]long fract __satfractunsqisq (unsigned char a)
[Runtime Function]long long fract __satfractunsqidq (unsigned char a)
[Runtime Function]short accum __satfractunsqiha (unsigned char a)
[Runtime Function]accum __satfractunsqisa (unsigned char a)
[Runtime Function]long accum __satfractunsqida (unsigned char a)
[Runtime Function]long long accum __satfractunsqita (unsigned char a)
[Runtime Function]unsigned short fract __satfractunsqiuqq (unsigned char

a)
[Runtime Function]unsigned fract __satfractunsqiuhq (unsigned char a)

Chapter 4: The GCC low-level runtime library 55

[Runtime Function]unsigned long fract __satfractunsqiusq (unsigned char
a)

[Runtime Function]unsigned long long fract __satfractunsqiudq
(unsigned char a)

[Runtime Function]unsigned short accum __satfractunsqiuha (unsigned char
a)

[Runtime Function]unsigned accum __satfractunsqiusa (unsigned char a)
[Runtime Function]unsigned long accum __satfractunsqiuda (unsigned char

a)
[Runtime Function]unsigned long long accum __satfractunsqiuta

(unsigned char a)
[Runtime Function]short fract __satfractunshiqq (unsigned short a)
[Runtime Function]fract __satfractunshihq (unsigned short a)
[Runtime Function]long fract __satfractunshisq (unsigned short a)
[Runtime Function]long long fract __satfractunshidq (unsigned short a)
[Runtime Function]short accum __satfractunshiha (unsigned short a)
[Runtime Function]accum __satfractunshisa (unsigned short a)
[Runtime Function]long accum __satfractunshida (unsigned short a)
[Runtime Function]long long accum __satfractunshita (unsigned short a)
[Runtime Function]unsigned short fract __satfractunshiuqq (unsigned

short a)
[Runtime Function]unsigned fract __satfractunshiuhq (unsigned short a)
[Runtime Function]unsigned long fract __satfractunshiusq (unsigned short

a)
[Runtime Function]unsigned long long fract __satfractunshiudq

(unsigned short a)
[Runtime Function]unsigned short accum __satfractunshiuha (unsigned

short a)
[Runtime Function]unsigned accum __satfractunshiusa (unsigned short a)
[Runtime Function]unsigned long accum __satfractunshiuda (unsigned short

a)
[Runtime Function]unsigned long long accum __satfractunshiuta

(unsigned short a)
[Runtime Function]short fract __satfractunssiqq (unsigned int a)
[Runtime Function]fract __satfractunssihq (unsigned int a)
[Runtime Function]long fract __satfractunssisq (unsigned int a)
[Runtime Function]long long fract __satfractunssidq (unsigned int a)
[Runtime Function]short accum __satfractunssiha (unsigned int a)
[Runtime Function]accum __satfractunssisa (unsigned int a)
[Runtime Function]long accum __satfractunssida (unsigned int a)
[Runtime Function]long long accum __satfractunssita (unsigned int a)
[Runtime Function]unsigned short fract __satfractunssiuqq (unsigned int

a)
[Runtime Function]unsigned fract __satfractunssiuhq (unsigned int a)
[Runtime Function]unsigned long fract __satfractunssiusq (unsigned int

a)

56 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned long long fract __satfractunssiudq
(unsigned int a)

[Runtime Function]unsigned short accum __satfractunssiuha (unsigned int
a)

[Runtime Function]unsigned accum __satfractunssiusa (unsigned int a)
[Runtime Function]unsigned long accum __satfractunssiuda (unsigned int

a)
[Runtime Function]unsigned long long accum __satfractunssiuta

(unsigned int a)
[Runtime Function]short fract __satfractunsdiqq (unsigned long a)
[Runtime Function]fract __satfractunsdihq (unsigned long a)
[Runtime Function]long fract __satfractunsdisq (unsigned long a)
[Runtime Function]long long fract __satfractunsdidq (unsigned long a)
[Runtime Function]short accum __satfractunsdiha (unsigned long a)
[Runtime Function]accum __satfractunsdisa (unsigned long a)
[Runtime Function]long accum __satfractunsdida (unsigned long a)
[Runtime Function]long long accum __satfractunsdita (unsigned long a)
[Runtime Function]unsigned short fract __satfractunsdiuqq (unsigned long

a)
[Runtime Function]unsigned fract __satfractunsdiuhq (unsigned long a)
[Runtime Function]unsigned long fract __satfractunsdiusq (unsigned long

a)
[Runtime Function]unsigned long long fract __satfractunsdiudq

(unsigned long a)
[Runtime Function]unsigned short accum __satfractunsdiuha (unsigned long

a)
[Runtime Function]unsigned accum __satfractunsdiusa (unsigned long a)
[Runtime Function]unsigned long accum __satfractunsdiuda (unsigned long

a)
[Runtime Function]unsigned long long accum __satfractunsdiuta

(unsigned long a)
[Runtime Function]short fract __satfractunstiqq (unsigned long long a)
[Runtime Function]fract __satfractunstihq (unsigned long long a)
[Runtime Function]long fract __satfractunstisq (unsigned long long a)
[Runtime Function]long long fract __satfractunstidq (unsigned long long a)
[Runtime Function]short accum __satfractunstiha (unsigned long long a)
[Runtime Function]accum __satfractunstisa (unsigned long long a)
[Runtime Function]long accum __satfractunstida (unsigned long long a)
[Runtime Function]long long accum __satfractunstita (unsigned long long a)
[Runtime Function]unsigned short fract __satfractunstiuqq (unsigned long

long a)
[Runtime Function]unsigned fract __satfractunstiuhq (unsigned long long a)
[Runtime Function]unsigned long fract __satfractunstiusq (unsigned long

long a)
[Runtime Function]unsigned long long fract __satfractunstiudq

(unsigned long long a)

Chapter 4: The GCC low-level runtime library 57

[Runtime Function]unsigned short accum __satfractunstiuha (unsigned long
long a)

[Runtime Function]unsigned accum __satfractunstiusa (unsigned long long a)
[Runtime Function]unsigned long accum __satfractunstiuda (unsigned long

long a)
[Runtime Function]unsigned long long accum __satfractunstiuta

(unsigned long long a)
These functions convert from unsigned non-fractionals to fractionals, with saturation.

4.5 Language-independent routines for exception handling

document me!
_Unwind_DeleteException

_Unwind_Find_FDE

_Unwind_ForcedUnwind

_Unwind_GetGR

_Unwind_GetIP

_Unwind_GetLanguageSpecificData

_Unwind_GetRegionStart

_Unwind_GetTextRelBase

_Unwind_GetDataRelBase

_Unwind_RaiseException

_Unwind_Resume

_Unwind_SetGR

_Unwind_SetIP

_Unwind_FindEnclosingFunction

_Unwind_SjLj_Register

_Unwind_SjLj_Unregister

_Unwind_SjLj_RaiseException

_Unwind_SjLj_ForcedUnwind

_Unwind_SjLj_Resume

__deregister_frame

__deregister_frame_info

__deregister_frame_info_bases

__register_frame

__register_frame_info

__register_frame_info_bases

__register_frame_info_table

__register_frame_info_table_bases

__register_frame_table

4.6 Miscellaneous runtime library routines

4.6.1 Cache control functions

[Runtime Function]void __clear_cache (char *beg, char *end)
This function clears the instruction cache between beg and end.

Chapter 5: Language Front Ends in GCC 59

5 Language Front Ends in GCC

The interface to front ends for languages in GCC, and in particular the tree structure (see
Chapter 9 [Trees], page 107), was initially designed for C, and many aspects of it are still
somewhat biased towards C and C-like languages. It is, however, reasonably well suited to
other procedural languages, and front ends for many such languages have been written for
GCC.

Writing a compiler as a front end for GCC, rather than compiling directly to assembler
or generating C code which is then compiled by GCC, has several advantages:
• GCC front ends benefit from the support for many different target machines already

present in GCC.
• GCC front ends benefit from all the optimizations in GCC. Some of these, such as

alias analysis, may work better when GCC is compiling directly from source code then
when it is compiling from generated C code.

• Better debugging information is generated when compiling directly from source code
than when going via intermediate generated C code.

Because of the advantages of writing a compiler as a GCC front end, GCC front ends
have also been created for languages very different from those for which GCC was designed,
such as the declarative logic/functional language Mercury. For these reasons, it may also
be useful to implement compilers created for specialized purposes (for example, as part of
a research project) as GCC front ends.

Chapter 6: Source Tree Structure and Build System 61

6 Source Tree Structure and Build System

This chapter describes the structure of the GCC source tree, and how GCC is built.
The user documentation for building and installing GCC is in a separate manual
(http://gcc.gnu.org/install/), with which it is presumed that you are familiar.

6.1 Configure Terms and History

The configure and build process has a long and colorful history, and can be confusing
to anyone who doesn’t know why things are the way they are. While there are other
documents which describe the configuration process in detail, here are a few things that
everyone working on GCC should know.

There are three system names that the build knows about: the machine you are building
on (build), the machine that you are building for (host), and the machine that GCC will
produce code for (target). When you configure GCC, you specify these with ‘--build=’,
‘--host=’, and ‘--target=’.

Specifying the host without specifying the build should be avoided, as configure may
(and once did) assume that the host you specify is also the build, which may not be true.

If build, host, and target are all the same, this is called a native. If build and host are the
same but target is different, this is called a cross. If build, host, and target are all different
this is called a canadian (for obscure reasons dealing with Canada’s political party and the
background of the person working on the build at that time). If host and target are the
same, but build is different, you are using a cross-compiler to build a native for a different
system. Some people call this a host-x-host, crossed native, or cross-built native. If build
and target are the same, but host is different, you are using a cross compiler to build a cross
compiler that produces code for the machine you’re building on. This is rare, so there is no
common way of describing it. There is a proposal to call this a crossback.

If build and host are the same, the GCC you are building will also be used to build the
target libraries (like libstdc++). If build and host are different, you must have already
built and installed a cross compiler that will be used to build the target libraries (if you
configured with ‘--target=foo-bar’, this compiler will be called foo-bar-gcc).

In the case of target libraries, the machine you’re building for is the machine you specified
with ‘--target’. So, build is the machine you’re building on (no change there), host is the
machine you’re building for (the target libraries are built for the target, so host is the target
you specified), and target doesn’t apply (because you’re not building a compiler, you’re
building libraries). The configure/make process will adjust these variables as needed. It
also sets $with_cross_host to the original ‘--host’ value in case you need it.

The libiberty support library is built up to three times: once for the host, once for the
target (even if they are the same), and once for the build if build and host are different.
This allows it to be used by all programs which are generated in the course of the build
process.

6.2 Top Level Source Directory

The top level source directory in a GCC distribution contains several files and directories
that are shared with other software distributions such as that of GNU Binutils. It also
contains several subdirectories that contain parts of GCC and its runtime libraries:

http://gcc.gnu.org/install/

62 GNU Compiler Collection (GCC) Internals

‘boehm-gc’
The Boehm conservative garbage collector, used as part of the Java runtime
library.

‘contrib’ Contributed scripts that may be found useful in conjunction with GCC. One
of these, ‘contrib/texi2pod.pl’, is used to generate man pages from Texinfo
manuals as part of the GCC build process.

‘fastjar’ An implementation of the jar command, used with the Java front end.

‘fixincludes’
The support for fixing system headers to work with GCC. See
‘fixincludes/README’ for more information. The headers fixed by this mech-
anism are installed in ‘libsubdir/include-fixed’. Along with those headers,
‘README-fixinc’ is also installed, as ‘libsubdir/include-fixed/README’.

‘gcc’ The main sources of GCC itself (except for runtime libraries), including op-
timizers, support for different target architectures, language front ends, and
testsuites. See Section 6.3 [The ‘gcc’ Subdirectory], page 63, for details.

‘include’ Headers for the libiberty library.

‘intl’ GNU libintl, from GNU gettext, for systems which do not include it in libc.

‘libada’ The Ada runtime library.

‘libcpp’ The C preprocessor library.

‘libgfortran’
The Fortran runtime library.

‘libffi’ The libffi library, used as part of the Java runtime library.

‘libiberty’
The libiberty library, used for portability and for some generally useful data
structures and algorithms. See Section “Introduction” in gnu libiberty , for
more information about this library.

‘libjava’ The Java runtime library.

‘libmudflap’
The libmudflap library, used for instrumenting pointer and array dereferencing
operations.

‘libobjc’ The Objective-C and Objective-C++ runtime library.

‘libstdc++-v3’
The C++ runtime library.

‘maintainer-scripts’
Scripts used by the gccadmin account on gcc.gnu.org.

‘zlib’ The zlib compression library, used by the Java front end and as part of the
Java runtime library.

The build system in the top level directory, including how recursion into subdirectories
works and how building runtime libraries for multilibs is handled, is documented in a sepa-
rate manual, included with GNU Binutils. See Section “GNU configure and build system”
in The GNU configure and build system, for details.

Chapter 6: Source Tree Structure and Build System 63

6.3 The ‘gcc’ Subdirectory

The ‘gcc’ directory contains many files that are part of the C sources of GCC, other files used
as part of the configuration and build process, and subdirectories including documentation
and a testsuite. The files that are sources of GCC are documented in a separate chapter.
See Chapter 8 [Passes and Files of the Compiler], page 93.

6.3.1 Subdirectories of ‘gcc’

The ‘gcc’ directory contains the following subdirectories:

‘language ’
Subdirectories for various languages. Directories containing a file
‘config-lang.in’ are language subdirectories. The contents of the
subdirectories ‘cp’ (for C++), ‘objc’ (for Objective-C) and ‘objcp’ (for
Objective-C++) are documented in this manual (see Chapter 8 [Passes and
Files of the Compiler], page 93); those for other languages are not. See
Section 6.3.8 [Anatomy of a Language Front End], page 71, for details of the
files in these directories.

‘config’ Configuration files for supported architectures and operating systems. See
Section 6.3.9 [Anatomy of a Target Back End], page 75, for details of the files
in this directory.

‘doc’ Texinfo documentation for GCC, together with automatically generated man
pages and support for converting the installation manual to HTML. See
Section 6.3.7 [Documentation], page 68.

‘ginclude’
System headers installed by GCC, mainly those required by the C standard of
freestanding implementations. See Section 6.3.6 [Headers Installed by GCC],
page 68, for details of when these and other headers are installed.

‘po’ Message catalogs with translations of messages produced by GCC into various
languages, ‘language.po’. This directory also contains ‘gcc.pot’, the template
for these message catalogues, ‘exgettext’, a wrapper around gettext to ex-
tract the messages from the GCC sources and create ‘gcc.pot’, which is run
by ‘make gcc.pot’, and ‘EXCLUDES’, a list of files from which messages should
not be extracted.

‘testsuite’
The GCC testsuites (except for those for runtime libraries). See Section 6.4
[Testsuites], page 76.

6.3.2 Configuration in the ‘gcc’ Directory

The ‘gcc’ directory is configured with an Autoconf-generated script ‘configure’. The
‘configure’ script is generated from ‘configure.ac’ and ‘aclocal.m4’. From the files
‘configure.ac’ and ‘acconfig.h’, Autoheader generates the file ‘config.in’. The file
‘cstamp-h.in’ is used as a timestamp.

6.3.2.1 Scripts Used by ‘configure’

‘configure’ uses some other scripts to help in its work:

64 GNU Compiler Collection (GCC) Internals

• The standard GNU ‘config.sub’ and ‘config.guess’ files, kept in the top level direc-
tory, are used.

• The file ‘config.gcc’ is used to handle configuration specific to the particular target
machine. The file ‘config.build’ is used to handle configuration specific to the par-
ticular build machine. The file ‘config.host’ is used to handle configuration specific
to the particular host machine. (In general, these should only be used for features
that cannot reasonably be tested in Autoconf feature tests.) See Section 6.3.2.2 [The
‘config.build’; ‘config.host’; and ‘config.gcc’ Files], page 64, for details of the
contents of these files.

• Each language subdirectory has a file ‘language/config-lang.in’ that is used for
front-end-specific configuration. See Section 6.3.8.2 [The Front End ‘config-lang.in’
File], page 74, for details of this file.

• A helper script ‘configure.frag’ is used as part of creating the output of ‘configure’.

6.3.2.2 The ‘config.build’; ‘config.host’; and ‘config.gcc’ Files

The ‘config.build’ file contains specific rules for particular systems which GCC is built
on. This should be used as rarely as possible, as the behavior of the build system can always
be detected by autoconf.

The ‘config.host’ file contains specific rules for particular systems which GCC will run
on. This is rarely needed.

The ‘config.gcc’ file contains specific rules for particular systems which GCC will gen-
erate code for. This is usually needed.

Each file has a list of the shell variables it sets, with descriptions, at the top of the file.
FIXME: document the contents of these files, and what variables should be set to control

build, host and target configuration.

6.3.2.3 Files Created by configure

Here we spell out what files will be set up by ‘configure’ in the ‘gcc’ directory. Some
other files are created as temporary files in the configuration process, and are not used in
the subsequent build; these are not documented.
• ‘Makefile’ is constructed from ‘Makefile.in’, together with the host and target frag-

ments (see Chapter 19 [Makefile Fragments], page 529) ‘t-target ’ and ‘x-host ’ from
‘config’, if any, and language Makefile fragments ‘language/Make-lang.in’.

• ‘auto-host.h’ contains information about the host machine determined by
‘configure’. If the host machine is different from the build machine, then
‘auto-build.h’ is also created, containing such information about the build machine.

• ‘config.status’ is a script that may be run to recreate the current configuration.
• ‘configargs.h’ is a header containing details of the arguments passed to ‘configure’

to configure GCC, and of the thread model used.
• ‘cstamp-h’ is used as a timestamp.
• ‘fixinc/Makefile’ is constructed from ‘fixinc/Makefile.in’.
• ‘gccbug’, a script for reporting bugs in GCC, is constructed from ‘gccbug.in’.
• ‘intl/Makefile’ is constructed from ‘intl/Makefile.in’.

Chapter 6: Source Tree Structure and Build System 65

• If a language ‘config-lang.in’ file (see Section 6.3.8.2 [The Front End
‘config-lang.in’ File], page 74) sets outputs, then the files listed in outputs there
are also generated.

The following configuration headers are created from the Makefile, using ‘mkconfig.sh’,
rather than directly by ‘configure’. ‘config.h’, ‘bconfig.h’ and ‘tconfig.h’ all contain
the ‘xm-machine.h’ header, if any, appropriate to the host, build and target machines
respectively, the configuration headers for the target, and some definitions; for the host
and build machines, these include the autoconfigured headers generated by ‘configure’.
The other configuration headers are determined by ‘config.gcc’. They also contain the
typedefs for rtx, rtvec and tree.
• ‘config.h’, for use in programs that run on the host machine.
• ‘bconfig.h’, for use in programs that run on the build machine.
• ‘tconfig.h’, for use in programs and libraries for the target machine.
• ‘tm_p.h’, which includes the header ‘machine-protos.h’ that contains prototypes for

functions in the target ‘.c’ file. FIXME: why is such a separate header necessary?

6.3.3 Build System in the ‘gcc’ Directory

FIXME: describe the build system, including what is built in what stages. Also list the
various source files that are used in the build process but aren’t source files of GCC itself
and so aren’t documented below (see Chapter 8 [Passes], page 93).

6.3.4 Makefile Targets

These targets are available from the ‘gcc’ directory:

all This is the default target. Depending on what your build/host/target configu-
ration is, it coordinates all the things that need to be built.

doc Produce info-formatted documentation and man pages. Essentially it calls
‘make man’ and ‘make info’.

dvi Produce DVI-formatted documentation.

pdf Produce PDF-formatted documentation.

html Produce HTML-formatted documentation.

man Generate man pages.

info Generate info-formatted pages.

mostlyclean
Delete the files made while building the compiler.

clean That, and all the other files built by ‘make all’.

distclean
That, and all the files created by configure.

maintainer-clean
Distclean plus any file that can be generated from other files. Note that addi-
tional tools may be required beyond what is normally needed to build gcc.

66 GNU Compiler Collection (GCC) Internals

srcextra Generates files in the source directory that do not exist in CVS but should go
into a release tarball. One example is ‘gcc/java/parse.c’ which is generated
from the CVS source file ‘gcc/java/parse.y’.

srcinfo
srcman Copies the info-formatted and manpage documentation into the source directory

usually for the purpose of generating a release tarball.

install Installs gcc.

uninstall
Deletes installed files.

check Run the testsuite. This creates a ‘testsuite’ subdirectory that has various
‘.sum’ and ‘.log’ files containing the results of the testing. You can run subsets
with, for example, ‘make check-gcc’. You can specify specific tests by setting
RUNTESTFLAGS to be the name of the ‘.exp’ file, optionally followed by (for
some tests) an equals and a file wildcard, like:

make check-gcc RUNTESTFLAGS="execute.exp=19980413-*"

Note that running the testsuite may require additional tools be installed, such
as TCL or dejagnu.

The toplevel tree from which you start GCC compilation is not the GCC directory,
but rather a complex Makefile that coordinates the various steps of the build, including
bootstrapping the compiler and using the new compiler to build target libraries.

When GCC is configured for a native configuration, the default action for make is to
do a full three-stage bootstrap. This means that GCC is built three times—once with the
native compiler, once with the native-built compiler it just built, and once with the compiler
it built the second time. In theory, the last two should produce the same results, which
‘make compare’ can check. Each stage is configured separately and compiled into a separate
directory, to minimize problems due to ABI incompatibilities between the native compiler
and GCC.

If you do a change, rebuilding will also start from the first stage and “bubble” up the
change through the three stages. Each stage is taken from its build directory (if it had
been built previously), rebuilt, and copied to its subdirectory. This will allow you to, for
example, continue a bootstrap after fixing a bug which causes the stage2 build to crash.
It does not provide as good coverage of the compiler as bootstrapping from scratch, but it
ensures that the new code is syntactically correct (e.g., that you did not use GCC extensions
by mistake), and avoids spurious bootstrap comparison failures1.

Other targets available from the top level include:

bootstrap-lean
Like bootstrap, except that the various stages are removed once they’re no
longer needed. This saves disk space.

1 Except if the compiler was buggy and miscompiled some of the files that were not modified. In this case,
it’s best to use make restrap.

Chapter 6: Source Tree Structure and Build System 67

bootstrap2
bootstrap2-lean

Performs only the first two stages of bootstrap. Unlike a three-stage bootstrap,
this does not perform a comparison to test that the compiler is running prop-
erly. Note that the disk space required by a “lean” bootstrap is approximately
independent of the number of stages.

stageN-bubble (N = 1...4)
Rebuild all the stages up to N, with the appropriate flags, “bubbling” the
changes as described above.

all-stageN (N = 1...4)
Assuming that stage N has already been built, rebuild it with the appropriate
flags. This is rarely needed.

cleanstrap
Remove everything (‘make clean’) and rebuilds (‘make bootstrap’).

compare Compares the results of stages 2 and 3. This ensures that the compiler is
running properly, since it should produce the same object files regardless of
how it itself was compiled.

profiledbootstrap
Builds a compiler with profiling feedback information. For more information,
see Section “Building with profile feedback” in Installing GCC .

restrap Restart a bootstrap, so that everything that was not built with the system
compiler is rebuilt.

stageN-start (N = 1...4)
For each package that is bootstrapped, rename directories so that, for example,
‘gcc’ points to the stageN GCC, compiled with the stageN-1 GCC2.
You will invoke this target if you need to test or debug the stageN GCC. If
you only need to execute GCC (but you need not run ‘make’ either to rebuild it
or to run test suites), you should be able to work directly in the ‘stageN-gcc’
directory. This makes it easier to debug multiple stages in parallel.

stage For each package that is bootstrapped, relocate its build directory to indicate
its stage. For example, if the ‘gcc’ directory points to the stage2 GCC, after
invoking this target it will be renamed to ‘stage2-gcc’.

If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers,
set BOOT_CFLAGS on the command line when doing ‘make’.

Usually, the first stage only builds the languages that the compiler is written in: typically,
C and maybe Ada. If you are debugging a miscompilation of a different stage2 front-end (for
example, of the Fortran front-end), you may want to have front-ends for other languages in
the first stage as well. To do so, set STAGE1_LANGUAGES on the command line when doing
‘make’.

For example, in the aforementioned scenario of debugging a Fortran front-end miscompi-
lation caused by the stage1 compiler, you may need a command like

2 Customarily, the system compiler is also termed the ‘stage0’ GCC.

68 GNU Compiler Collection (GCC) Internals

make stage2-bubble STAGE1_LANGUAGES=c,fortran

Alternatively, you can use per-language targets to build and test languages that are not
enabled by default in stage1. For example, make f951 will build a Fortran compiler even in
the stage1 build directory.

6.3.5 Library Source Files and Headers under the ‘gcc’ Directory

FIXME: list here, with explanation, all the C source files and headers under the ‘gcc’
directory that aren’t built into the GCC executable but rather are part of runtime libraries
and object files, such as ‘crtstuff.c’ and ‘unwind-dw2.c’. See Section 6.3.6 [Headers
Installed by GCC], page 68, for more information about the ‘ginclude’ directory.

6.3.6 Headers Installed by GCC

In general, GCC expects the system C library to provide most of the headers to be used
with it. However, GCC will fix those headers if necessary to make them work with GCC,
and will install some headers required of freestanding implementations. These headers are
installed in ‘libsubdir/include’. Headers for non-C runtime libraries are also installed
by GCC; these are not documented here. (FIXME: document them somewhere.)

Several of the headers GCC installs are in the ‘ginclude’ directory. These headers,
‘iso646.h’, ‘stdarg.h’, ‘stdbool.h’, and ‘stddef.h’, are installed in ‘libsub-
dir/include’, unless the target Makefile fragment (see Section 19.1 [Target Fragment],
page 529) overrides this by setting USER_H.

In addition to these headers and those generated by fixing system headers to work with
GCC, some other headers may also be installed in ‘libsubdir/include’. ‘config.gcc’
may set extra_headers; this specifies additional headers under ‘config’ to be installed on
some systems.

GCC installs its own version of <float.h>, from ‘ginclude/float.h’. This is done to
cope with command-line options that change the representation of floating point numbers.

GCC also installs its own version of <limits.h>; this is generated from ‘glimits.h’, to-
gether with ‘limitx.h’ and ‘limity.h’ if the system also has its own version of <limits.h>.
(GCC provides its own header because it is required of ISO C freestanding implementations,
but needs to include the system header from its own header as well because other stan-
dards such as POSIX specify additional values to be defined in <limits.h>.) The system’s
<limits.h> header is used via ‘libsubdir/include/syslimits.h’, which is copied from
‘gsyslimits.h’ if it does not need fixing to work with GCC; if it needs fixing, ‘syslimits.h’
is the fixed copy.

GCC can also install <tgmath.h>. It will do this when ‘config.gcc’ sets use_gcc_tgmath
to yes.

6.3.7 Building Documentation

The main GCC documentation is in the form of manuals in Texinfo format. These are
installed in Info format; DVI versions may be generated by ‘make dvi’, PDF versions by
‘make pdf’, and HTML versions by make html. In addition, some man pages are generated
from the Texinfo manuals, there are some other text files with miscellaneous documentation,
and runtime libraries have their own documentation outside the ‘gcc’ directory. FIXME:
document the documentation for runtime libraries somewhere.

Chapter 6: Source Tree Structure and Build System 69

6.3.7.1 Texinfo Manuals

The manuals for GCC as a whole, and the C and C++ front ends, are in files ‘doc/*.texi’.
Other front ends have their own manuals in files ‘language/*.texi’. Common files
‘doc/include/*.texi’ are provided which may be included in multiple manuals; the
following files are in ‘doc/include’:

‘fdl.texi’
The GNU Free Documentation License.

‘funding.texi’
The section “Funding Free Software”.

‘gcc-common.texi’
Common definitions for manuals.

‘gpl.texi’
‘gpl_v3.texi’

The GNU General Public License.

‘texinfo.tex’
A copy of ‘texinfo.tex’ known to work with the GCC manuals.

DVI-formatted manuals are generated by ‘make dvi’, which uses texi2dvi (via the Make-
file macro $(TEXI2DVI)). PDF-formatted manuals are generated by ‘make pdf’, which uses
texi2pdf (via the Makefile macro $(TEXI2PDF)). HTML formatted manuals are generated
by make html. Info manuals are generated by ‘make info’ (which is run as part of a boot-
strap); this generates the manuals in the source directory, using makeinfo via the Makefile
macro $(MAKEINFO), and they are included in release distributions.

Manuals are also provided on the GCC web site, in both HTML and PostScript forms.
This is done via the script ‘maintainer-scripts/update_web_docs’. Each manual to be
provided online must be listed in the definition of MANUALS in that file; a file ‘name.texi’
must only appear once in the source tree, and the output manual must have the same
name as the source file. (However, other Texinfo files, included in manuals but not them-
selves the root files of manuals, may have names that appear more than once in the source
tree.) The manual file ‘name.texi’ should only include other files in its own directory or in
‘doc/include’. HTML manuals will be generated by ‘makeinfo --html’, PostScript manu-
als by texi2dvi and dvips, and PDF manuals by texi2pdf. All Texinfo files that are parts
of manuals must be checked into SVN, even if they are generated files, for the generation
of online manuals to work.

The installation manual, ‘doc/install.texi’, is also provided on the GCC web site. The
HTML version is generated by the script ‘doc/install.texi2html’.

6.3.7.2 Man Page Generation

Because of user demand, in addition to full Texinfo manuals, man pages are provided which
contain extracts from those manuals. These man pages are generated from the Texinfo
manuals using ‘contrib/texi2pod.pl’ and pod2man. (The man page for g++, ‘cp/g++.1’,
just contains a ‘.so’ reference to ‘gcc.1’, but all the other man pages are generated from
Texinfo manuals.)

Because many systems may not have the necessary tools installed to generate the man
pages, they are only generated if the ‘configure’ script detects that recent enough tools

70 GNU Compiler Collection (GCC) Internals

are installed, and the Makefiles allow generating man pages to fail without aborting the
build. Man pages are also included in release distributions. They are generated in the
source directory.

Magic comments in Texinfo files starting ‘@c man’ control what parts of a Texinfo file
go into a man page. Only a subset of Texinfo is supported by ‘texi2pod.pl’, and it may
be necessary to add support for more Texinfo features to this script when generating new
man pages. To improve the man page output, some special Texinfo macros are provided in
‘doc/include/gcc-common.texi’ which ‘texi2pod.pl’ understands:

@gcctabopt
Use in the form ‘@table @gcctabopt’ for tables of options, where for printed
output the effect of ‘@code’ is better than that of ‘@option’ but for man page
output a different effect is wanted.

@gccoptlist
Use for summary lists of options in manuals.

@gol Use at the end of each line inside ‘@gccoptlist’. This is necessary to avoid
problems with differences in how the ‘@gccoptlist’ macro is handled by dif-
ferent Texinfo formatters.

FIXME: describe the ‘texi2pod.pl’ input language and magic comments in more detail.

6.3.7.3 Miscellaneous Documentation

In addition to the formal documentation that is installed by GCC, there are several other
text files with miscellaneous documentation:

‘ABOUT-GCC-NLS’
Notes on GCC’s Native Language Support. FIXME: this should be part of this
manual rather than a separate file.

‘ABOUT-NLS’
Notes on the Free Translation Project.

‘COPYING’ The GNU General Public License.

‘COPYING.LIB’
The GNU Lesser General Public License.

‘*ChangeLog*’
‘*/ChangeLog*’

Change log files for various parts of GCC.

‘LANGUAGES’
Details of a few changes to the GCC front-end interface. FIXME: the infor-
mation in this file should be part of general documentation of the front-end
interface in this manual.

‘ONEWS’ Information about new features in old versions of GCC. (For recent versions,
the information is on the GCC web site.)

‘README.Portability’
Information about portability issues when writing code in GCC. FIXME: why
isn’t this part of this manual or of the GCC Coding Conventions?

Chapter 6: Source Tree Structure and Build System 71

FIXME: document such files in subdirectories, at least ‘config’, ‘cp’, ‘objc’, ‘testsuite’.

6.3.8 Anatomy of a Language Front End

A front end for a language in GCC has the following parts:

• A directory ‘language ’ under ‘gcc’ containing source files for that front end. See
Section 6.3.8.1 [The Front End ‘language ’ Directory], page 72, for details.

• A mention of the language in the list of supported languages in ‘gcc/doc/install.texi’.

• A mention of the name under which the language’s runtime library is recog-
nized by ‘--enable-shared=package ’ in the documentation of that option in
‘gcc/doc/install.texi’.

• A mention of any special prerequisites for building the front end in the documentation
of prerequisites in ‘gcc/doc/install.texi’.

• Details of contributors to that front end in ‘gcc/doc/contrib.texi’. If the details are
in that front end’s own manual then there should be a link to that manual’s list in
‘contrib.texi’.

• Information about support for that language in ‘gcc/doc/frontends.texi’.

• Information about standards for that language, and the front end’s support for them,
in ‘gcc/doc/standards.texi’. This may be a link to such information in the front
end’s own manual.

• Details of source file suffixes for that language and ‘-x lang ’ options supported, in
‘gcc/doc/invoke.texi’.

• Entries in default_compilers in ‘gcc.c’ for source file suffixes for that language.

• Preferably testsuites, which may be under ‘gcc/testsuite’ or runtime library direc-
tories. FIXME: document somewhere how to write testsuite harnesses.

• Probably a runtime library for the language, outside the ‘gcc’ directory. FIXME:
document this further.

• Details of the directories of any runtime libraries in ‘gcc/doc/sourcebuild.texi’.

If the front end is added to the official GCC source repository, the following are also
necessary:

• At least one Bugzilla component for bugs in that front end and runtime libraries. This
category needs to be mentioned in ‘gcc/gccbug.in’, as well as being added to the
Bugzilla database.

• Normally, one or more maintainers of that front end listed in ‘MAINTAINERS’.

• Mentions on the GCC web site in ‘index.html’ and ‘frontends.html’, with any rele-
vant links on ‘readings.html’. (Front ends that are not an official part of GCC may
also be listed on ‘frontends.html’, with relevant links.)

• A news item on ‘index.html’, and possibly an announcement on the
gcc-announce@gcc.gnu.org mailing list.

• The front end’s manuals should be mentioned in ‘maintainer-scripts/update_web_docs’
(see Section 6.3.7.1 [Texinfo Manuals], page 69) and the online manuals should be
linked to from ‘onlinedocs/index.html’.

mailto:gcc-announce@gcc.gnu.org

72 GNU Compiler Collection (GCC) Internals

• Any old releases or CVS repositories of the front end, before its in-
clusion in GCC, should be made available on the GCC FTP site
ftp://gcc.gnu.org/pub/gcc/old-releases/.

• The release and snapshot script ‘maintainer-scripts/gcc_release’
should be updated to generate appropriate tarballs for this front
end. The associated ‘maintainer-scripts/snapshot-README’ and
‘maintainer-scripts/snapshot-index.html’ files should be updated to list
the tarballs and diffs for this front end.

• If this front end includes its own version files that include the current date,
‘maintainer-scripts/update_version’ should be updated accordingly.

6.3.8.1 The Front End ‘language ’ Directory

A front end ‘language ’ directory contains the source files of that front end (but not of any
runtime libraries, which should be outside the ‘gcc’ directory). This includes documenta-
tion, and possibly some subsidiary programs build alongside the front end. Certain files are
special and other parts of the compiler depend on their names:

‘config-lang.in’
This file is required in all language subdirectories. See Section 6.3.8.2 [The
Front End ‘config-lang.in’ File], page 74, for details of its contents

‘Make-lang.in’
This file is required in all language subdirectories. It contains targets
lang.hook (where lang is the setting of language in ‘config-lang.in’) for
the following values of hook , and any other Makefile rules required to build
those targets (which may if necessary use other Makefiles specified in outputs
in ‘config-lang.in’, although this is deprecated). It also adds any testsuite
targets that can use the standard rule in ‘gcc/Makefile.in’ to the variable
lang_checks.

all.cross
start.encap
rest.encap

FIXME: exactly what goes in each of these targets?

tags Build an etags ‘TAGS’ file in the language subdirectory in the source
tree.

info Build info documentation for the front end, in the build directory.
This target is only called by ‘make bootstrap’ if a suitable version
of makeinfo is available, so does not need to check for this, and
should fail if an error occurs.

dvi Build DVI documentation for the front end, in the build directory.
This should be done using $(TEXI2DVI), with appropriate ‘-I’ ar-
guments pointing to directories of included files.

pdf Build PDF documentation for the front end, in the build direc-
tory. This should be done using $(TEXI2PDF), with appropriate
‘-I’ arguments pointing to directories of included files.

ftp://gcc.gnu.org/pub/gcc/old-releases/

Chapter 6: Source Tree Structure and Build System 73

html Build HTML documentation for the front end, in the build direc-
tory.

man Build generated man pages for the front end from Texinfo man-
uals (see Section 6.3.7.2 [Man Page Generation], page 69), in the
build directory. This target is only called if the necessary tools are
available, but should ignore errors so as not to stop the build if
errors occur; man pages are optional and the tools involved may be
installed in a broken way.

install-common
Install everything that is part of the front end, apart from the
compiler executables listed in compilers in ‘config-lang.in’.

install-info
Install info documentation for the front end, if it is present in the
source directory. This target should have dependencies on info files
that should be installed.

install-man
Install man pages for the front end. This target should ignore
errors.

srcextra Copies its dependencies into the source directory. This generally
should be used for generated files such as Bison output files
which are not present in CVS, but should be included in any
release tarballs. This target will be executed during a bootstrap
if ‘--enable-generated-files-in-srcdir’ was specified as a
‘configure’ option.

srcinfo
srcman Copies its dependencies into the source directory.

These targets will be executed during a bootstrap if
‘--enable-generated-files-in-srcdir’ was specified as a
‘configure’ option.

uninstall
Uninstall files installed by installing the compiler. This is currently
documented not to be supported, so the hook need not do anything.

mostlyclean
clean
distclean
maintainer-clean

The language parts of the standard GNU ‘*clean’ targets. See
Section “Standard Targets for Users” in GNU Coding Standards,
for details of the standard targets. For GCC, maintainer-clean
should delete all generated files in the source directory that are
not checked into CVS, but should not delete anything checked into
CVS.

‘Make-lang.in’ must also define a variable lang_OBJS to a list of host object
files that are used by that language.

74 GNU Compiler Collection (GCC) Internals

‘lang.opt’
This file registers the set of switches that the front end accepts on the command
line, and their ‘--help’ text. See Chapter 7 [Options], page 89.

‘lang-specs.h’
This file provides entries for default_compilers in ‘gcc.c’ which override the
default of giving an error that a compiler for that language is not installed.

‘language-tree.def’
This file, which need not exist, defines any language-specific tree codes.

6.3.8.2 The Front End ‘config-lang.in’ File

Each language subdirectory contains a ‘config-lang.in’ file. In addition the main direc-
tory contains ‘c-config-lang.in’, which contains limited information for the C language.
This file is a shell script that may define some variables describing the language:

language This definition must be present, and gives the name of the language for some
purposes such as arguments to ‘--enable-languages’.

lang_requires
If defined, this variable lists (space-separated) language front ends other than
C that this front end requires to be enabled (with the names given being their
language settings). For example, the Java front end depends on the C++ front
end, so sets ‘lang_requires=c++’.

subdir_requires
If defined, this variable lists (space-separated) front end directories other than
C that this front end requires to be present. For example, the Objective-C++
front end uses source files from the C++ and Objective-C front ends, so sets
‘subdir_requires="cp objc"’.

target_libs
If defined, this variable lists (space-separated) targets in the top level ‘Makefile’
to build the runtime libraries for this language, such as target-libobjc.

lang_dirs
If defined, this variable lists (space-separated) top level directories (parallel to
‘gcc’), apart from the runtime libraries, that should not be configured if this
front end is not built.

build_by_default
If defined to ‘no’, this language front end is not built unless enabled in a
‘--enable-languages’ argument. Otherwise, front ends are built by default,
subject to any special logic in ‘configure.ac’ (as is present to disable the Ada
front end if the Ada compiler is not already installed).

boot_language
If defined to ‘yes’, this front end is built in stage 1 of the bootstrap. This is
only relevant to front ends written in their own languages.

compilers
If defined, a space-separated list of compiler executables that will be run by the
driver. The names here will each end with ‘\$(exeext)’.

Chapter 6: Source Tree Structure and Build System 75

outputs If defined, a space-separated list of files that should be generated by ‘configure’
substituting values in them. This mechanism can be used to create a file ‘lan-
guage/Makefile’ from ‘language/Makefile.in’, but this is deprecated, build-
ing everything from the single ‘gcc/Makefile’ is preferred.

gtfiles If defined, a space-separated list of files that should be scanned by gengtype.c
to generate the garbage collection tables and routines for this language. This
excludes the files that are common to all front ends. See Chapter 22 [Type
Information], page 537.

6.3.9 Anatomy of a Target Back End

A back end for a target architecture in GCC has the following parts:

• A directory ‘machine ’ under ‘gcc/config’, containing a machine description
‘machine.md’ file (see Chapter 16 [Machine Descriptions], page 269), header files
‘machine.h’ and ‘machine-protos.h’ and a source file ‘machine.c’ (see Chapter 17
[Target Description Macros and Functions], page 369), possibly a target Makefile
fragment ‘t-machine ’ (see Section 19.1 [The Target Makefile Fragment], page 529),
and maybe some other files. The names of these files may be changed from the
defaults given by explicit specifications in ‘config.gcc’.

• If necessary, a file ‘machine-modes.def’ in the ‘machine ’ directory, containing addi-
tional machine modes to represent condition codes. See Section 17.16 [Condition Code],
page 449, for further details.

• An optional ‘machine.opt’ file in the ‘machine ’ directory, containing a list of target-
specific options. You can also add other option files using the extra_options variable
in ‘config.gcc’. See Chapter 7 [Options], page 89.

• Entries in ‘config.gcc’ (see Section 6.3.2.2 [The ‘config.gcc’ File], page 64) for the
systems with this target architecture.

• Documentation in ‘gcc/doc/invoke.texi’ for any command-line options supported by
this target (see Section 17.3 [Run-time Target Specification], page 378). This means
both entries in the summary table of options and details of the individual options.

• Documentation in ‘gcc/doc/extend.texi’ for any target-specific attributes supported
(see Section 17.25 [Defining target-specific uses of __attribute__], page 502), including
where the same attribute is already supported on some targets, which are enumerated
in the manual.

• Documentation in ‘gcc/doc/extend.texi’ for any target-specific pragmas supported.

• Documentation in ‘gcc/doc/extend.texi’ of any target-specific built-in functions sup-
ported.

• Documentation in ‘gcc/doc/extend.texi’ of any target-specific format checking styles
supported.

• Documentation in ‘gcc/doc/md.texi’ of any target-specific constraint letters (see
Section 16.8.5 [Constraints for Particular Machines], page 288).

• A note in ‘gcc/doc/contrib.texi’ under the person or people who contributed the
target support.

76 GNU Compiler Collection (GCC) Internals

• Entries in ‘gcc/doc/install.texi’ for all target triplets supported with this target
architecture, giving details of any special notes about installation for this target, or
saying that there are no special notes if there are none.

• Possibly other support outside the ‘gcc’ directory for runtime libraries. FIXME: refer-
ence docs for this. The libstdc++ porting manual needs to be installed as info for this
to work, or to be a chapter of this manual.

If the back end is added to the official GCC source repository, the following are also
necessary:
• An entry for the target architecture in ‘readings.html’ on the GCC web site, with

any relevant links.
• Details of the properties of the back end and target architecture in ‘backends.html’

on the GCC web site.
• A news item about the contribution of support for that target architecture, in

‘index.html’ on the GCC web site.
• Normally, one or more maintainers of that target listed in ‘MAINTAINERS’. Some existing

architectures may be unmaintained, but it would be unusual to add support for a target
that does not have a maintainer when support is added.

6.4 Testsuites

GCC contains several testsuites to help maintain compiler quality. Most of the runtime
libraries and language front ends in GCC have testsuites. Currently only the C language
testsuites are documented here; FIXME: document the others.

6.4.1 Idioms Used in Testsuite Code

In general, C testcases have a trailing ‘-n.c’, starting with ‘-1.c’, in case other testcases
with similar names are added later. If the test is a test of some well-defined feature, it
should have a name referring to that feature such as ‘feature-1.c’. If it does not test a
well-defined feature but just happens to exercise a bug somewhere in the compiler, and a
bug report has been filed for this bug in the GCC bug database, ‘prbug-number-1.c’ is
the appropriate form of name. Otherwise (for miscellaneous bugs not filed in the GCC bug
database), and previously more generally, test cases are named after the date on which they
were added. This allows people to tell at a glance whether a test failure is because of a
recently found bug that has not yet been fixed, or whether it may be a regression, but does
not give any other information about the bug or where discussion of it may be found. Some
other language testsuites follow similar conventions.

In the ‘gcc.dg’ testsuite, it is often necessary to test that an error is indeed a hard error
and not just a warning—for example, where it is a constraint violation in the C standard,
which must become an error with ‘-pedantic-errors’. The following idiom, where the
first line shown is line line of the file and the line that generates the error, is used for this:

/* { dg-bogus "warning" "warning in place of error" } */

/* { dg-error "regexp" "message" { target *-*-* } line } */

It may be necessary to check that an expression is an integer constant expression and has
a certain value. To check that E has value V , an idiom similar to the following is used:

char x[((E) == (V) ? 1 : -1)];

Chapter 6: Source Tree Structure and Build System 77

In ‘gcc.dg’ tests, __typeof__ is sometimes used to make assertions about the types of
expressions. See, for example, ‘gcc.dg/c99-condexpr-1.c’. The more subtle uses depend
on the exact rules for the types of conditional expressions in the C standard; see, for example,
‘gcc.dg/c99-intconst-1.c’.

It is useful to be able to test that optimizations are being made properly. This cannot
be done in all cases, but it can be done where the optimization will lead to code being
optimized away (for example, where flow analysis or alias analysis should show that certain
code cannot be called) or to functions not being called because they have been expanded
as built-in functions. Such tests go in ‘gcc.c-torture/execute’. Where code should be
optimized away, a call to a nonexistent function such as link_failure () may be inserted;
a definition

#ifndef __OPTIMIZE__

void

link_failure (void)

{

abort ();

}

#endif

will also be needed so that linking still succeeds when the test is run without optimization.
When all calls to a built-in function should have been optimized and no calls to the non-
built-in version of the function should remain, that function may be defined as static to
call abort () (although redeclaring a function as static may not work on all targets).

All testcases must be portable. Target-specific testcases must have appropriate code to
avoid causing failures on unsupported systems; unfortunately, the mechanisms for this differ
by directory.

FIXME: discuss non-C testsuites here.

6.4.2 Directives used within DejaGnu tests

Test directives appear within comments in a test source file and begin with dg-. Some of
these are defined within DejaGnu and others are local to the GCC testsuite.

The order in which test directives appear in a test can be important: directives local to
GCC sometimes override information used by the DejaGnu directives, which know nothing
about the GCC directives, so the DejaGnu directives must precede GCC directives.

Several test directives include selectors which are usually preceded by the keyword target
or xfail. A selector is: one or more target triplets, possibly including wildcard charac-
ters; a single effective-target keyword; or a logical expression. Depending on the con-
text, the selector specifies whether a test is skipped and reported as unsupported or is
expected to fail. Use ‘*-*-*’ to match any target. Effective-target keywords are defined in
‘target-supports.exp’ in the GCC testsuite.

A selector expression appears within curly braces and uses a single logical operator: one
of ‘!’, ‘&&’, or ‘||’. An operand is another selector expression, an effective-target keyword,
a single target triplet, or a list of target triplets within quotes or curly braces. For example:

{ target { ! "hppa*-*-* ia64*-*-*" } }

{ target { powerpc*-*-* && lp64 } }

{ xfail { lp64 || vect_no_align } }

78 GNU Compiler Collection (GCC) Internals

{ dg-do do-what-keyword [{ target/xfail selector }] }
do-what-keyword specifies how the test is compiled and whether it is executed.
It is one of:

preprocess
Compile with ‘-E’ to run only the preprocessor.

compile Compile with ‘-S’ to produce an assembly code file.

assemble Compile with ‘-c’ to produce a relocatable object file.

link Compile, assemble, and link to produce an executable file.

run Produce and run an executable file, which is expected to return an
exit code of 0.

The default is compile. That can be overridden for a set of tests by redefining
dg-do-what-default within the .exp file for those tests.
If the directive includes the optional ‘{ target selector }’ then the test is
skipped unless the target system is included in the list of target triplets or
matches the effective-target keyword.
If ‘do-what-keyword’ is run and the directive includes the optional ‘{ xfail
selector }’ and the selector is met then the test is expected to fail. The
xfail clause is ignored for other values of ‘do-what-keyword’; those tests can
use directive dg-xfail-if.

{ dg-options options [{ target selector }] }
This DejaGnu directive provides a list of compiler options, to be used if the
target system matches selector, that replace the default options used for this
set of tests.

{ dg-add-options feature ... }
Add any compiler options that are needed to access certain features. This
directive does nothing on targets that enable the features by default, or that
don’t provide them at all. It must come after all dg-options directives.
The supported values of feature are:

c99_runtime
The target’s C99 runtime (both headers and libraries).

mips16_attribute
mips16 function attributes. Only MIPS targets support this fea-
ture, and only then in certain modes.

{ dg-timeout n [{target selector }] }
Set the time limit for the compilation and for the execution of the test to the
specified number of seconds.

{ dg-timeout-factor x [{ target selector }] }
Multiply the normal time limit for compilation and execution of the test by the
specified floating-point factor. The normal timeout limit, in seconds, is found
by searching the following in order:
• the value defined by an earlier dg-timeout directive in the test

Chapter 6: Source Tree Structure and Build System 79

• variable tool timeout defined by the set of tests

• gcc,timeout set in the target board

• 300

{ dg-skip-if comment { selector } { include-opts } { exclude-opts } }
Skip the test if the test system is included in selector and if each of the options
in include-opts is in the set of options with which the test would be compiled
and if none of the options in exclude-opts is in the set of options with which
the test would be compiled.

Use ‘"*"’ for an empty include-opts list and ‘""’ for an empty exclude-opts list.

{ dg-xfail-if comment { selector } { include-opts } { exclude-opts } }
Expect the test to fail if the conditions (which are the same as for dg-skip-if)
are met. This does not affect the execute step.

{ dg-xfail-run-if comment { selector } { include-opts } { exclude-opts } }
Expect the execute step of a test to fail if the conditions (which are the same
as for dg-skip-if) and dg-xfail-if) are met.

{ dg-require-support args }
Skip the test if the target does not provide the required support; see
‘gcc-dg.exp’ in the GCC testsuite for the actual directives. These
directives must appear after any dg-do directive in the test and before any
dg-additional-sources directive. They require at least one argument,
which can be an empty string if the specific procedure does not examine the
argument.

{ dg-require-effective-target keyword }
Skip the test if the test target, including current multilib flags, is not covered
by the effective-target keyword. This directive must appear after any dg-do
directive in the test and before any dg-additional-sources directive.

{ dg-shouldfail comment { selector } { include-opts } { exclude-opts } }
Expect the test executable to return a nonzero exit status if the conditions
(which are the same as for dg-skip-if) are met.

{ dg-error regexp [comment [{ target/xfail selector } [line] }]] }
This DejaGnu directive appears on a source line that is expected to get an error
message, or else specifies the source line associated with the message. If there is
no message for that line or if the text of that message is not matched by regexp
then the check fails and comment is included in the FAIL message. The check
does not look for the string ‘"error"’ unless it is part of regexp.

{ dg-warning regexp [comment [{ target/xfail selector } [line] }]] }
This DejaGnu directive appears on a source line that is expected to get a
warning message, or else specifies the source line associated with the message.
If there is no message for that line or if the text of that message is not matched
by regexp then the check fails and comment is included in the FAIL message.
The check does not look for the string ‘"warning"’ unless it is part of regexp.

80 GNU Compiler Collection (GCC) Internals

{ dg-message regexp [comment [{ target/xfail selector } [line] }]] }
The line is expected to get a message other than an error or warning. If there is
no message for that line or if the text of that message is not matched by regexp
then the check fails and comment is included in the FAIL message.

{ dg-bogus regexp [comment [{ target/xfail selector } [line] }]] }
This DejaGnu directive appears on a source line that should not get a message
matching regexp, or else specifies the source line associated with the bogus
message. It is usually used with ‘xfail’ to indicate that the message is a
known problem for a particular set of targets.

{ dg-excess-errors comment [{ target/xfail selector }] }
This DejaGnu directive indicates that the test is expected to fail due to compiler
messages that are not handled by ‘dg-error’, ‘dg-warning’ or ‘dg-bogus’. For
this directive ‘xfail’ has the same effect as ‘target’.

{ dg-output regexp [{ target/xfail selector }] }
This DejaGnu directive compares regexp to the combined output that the test
executable writes to ‘stdout’ and ‘stderr’.

{ dg-prune-output regexp }
Prune messages matching regexp from test output.

{ dg-additional-files "filelist" }
Specify additional files, other than source files, that must be copied to the
system where the compiler runs.

{ dg-additional-sources "filelist" }
Specify additional source files to appear in the compile line following the main
test file.

{ dg-final { local-directive } }
This DejaGnu directive is placed within a comment anywhere in the source file
and is processed after the test has been compiled and run. Multiple ‘dg-final’
commands are processed in the order in which they appear in the source file.
The GCC testsuite defines the following directives to be used within dg-final.

cleanup-coverage-files
Removes coverage data files generated for this test.

cleanup-repo-files
Removes files generated for this test for ‘-frepo’.

cleanup-rtl-dump suffix

Removes RTL dump files generated for this test.

cleanup-tree-dump suffix

Removes tree dump files matching suffix which were generated for
this test.

cleanup-saved-temps
Removes files for the current test which were kept for
‘--save-temps’.

Chapter 6: Source Tree Structure and Build System 81

scan-file filename regexp [{ target/xfail selector }]
Passes if regexp matches text in filename.

scan-file-not filename regexp [{ target/xfail selector }]
Passes if regexp does not match text in filename.

scan-hidden symbol [{ target/xfail selector }]
Passes if symbol is defined as a hidden symbol in the test’s assembly
output.

scan-not-hidden symbol [{ target/xfail selector }]
Passes if symbol is not defined as a hidden symbol in the test’s
assembly output.

scan-assembler-times regex num [{ target/xfail selector }]
Passes if regex is matched exactly num times in the test’s assembler
output.

scan-assembler regex [{ target/xfail selector }]
Passes if regex matches text in the test’s assembler output.

scan-assembler-not regex [{ target/xfail selector }]
Passes if regex does not match text in the test’s assembler output.

scan-assembler-dem regex [{ target/xfail selector }]
Passes if regex matches text in the test’s demangled assembler out-
put.

scan-assembler-dem-not regex [{ target/xfail selector }]
Passes if regex does not match text in the test’s demangled assem-
bler output.

scan-tree-dump-times regex num suffix [{ target/xfail selector }]
Passes if regex is found exactly num times in the dump file with
suffix suffix.

scan-tree-dump regex suffix [{ target/xfail selector }]
Passes if regex matches text in the dump file with suffix suffix.

scan-tree-dump-not regex suffix [{ target/xfail selector }]
Passes if regex does not match text in the dump file with suffix
suffix.

scan-tree-dump-dem regex suffix [{ target/xfail selector }]
Passes if regex matches demangled text in the dump file with suffix
suffix.

scan-tree-dump-dem-not regex suffix [{ target/xfail selector }]
Passes if regex does not match demangled text in the dump file
with suffix suffix.

output-exists [{ target/xfail selector }]
Passes if compiler output file exists.

output-exists-not [{ target/xfail selector }]
Passes if compiler output file does not exist.

82 GNU Compiler Collection (GCC) Internals

run-gcov sourcefile

Check line counts in gcov tests.

run-gcov [branches] [calls] { opts sourcefile }
Check branch and/or call counts, in addition to line counts, in gcov
tests.

6.4.3 Ada Language Testsuites

The Ada testsuite includes executable tests from the ACATS 2.5 testsuite, publicly available
at http://www.adaic.org/compilers/acats/2.5

These tests are integrated in the GCC testsuite in the ‘gcc/testsuite/ada/acats’ di-
rectory, and enabled automatically when running make check, assuming the Ada language
has been enabled when configuring GCC.

You can also run the Ada testsuite independently, using make check-ada, or run a subset
of the tests by specifying which chapter to run, e.g.:

$ make check-ada CHAPTERS="c3 c9"

The tests are organized by directory, each directory corresponding to a chapter of the Ada
Reference Manual. So for example, c9 corresponds to chapter 9, which deals with tasking
features of the language.

There is also an extra chapter called ‘gcc’ containing a template for creating new exe-
cutable tests.

The tests are run using two sh scripts: ‘run_acats’ and ‘run_all.sh’. To run the
tests using a simulator or a cross target, see the small customization section at the top of
‘run_all.sh’.

These tests are run using the build tree: they can be run without doing a make install.

6.4.4 C Language Testsuites

GCC contains the following C language testsuites, in the ‘gcc/testsuite’ directory:

‘gcc.dg’ This contains tests of particular features of the C compiler, using the more
modern ‘dg’ harness. Correctness tests for various compiler features should go
here if possible.
Magic comments determine whether the file is preprocessed, compiled, linked
or run. In these tests, error and warning message texts are compared against
expected texts or regular expressions given in comments. These tests are run
with the options ‘-ansi -pedantic’ unless other options are given in the test.
Except as noted below they are not run with multiple optimization options.

‘gcc.dg/compat’
This subdirectory contains tests for binary compatibility using ‘compat.exp’,
which in turn uses the language-independent support (see Section 6.4.8 [Support
for testing binary compatibility], page 86).

‘gcc.dg/cpp’
This subdirectory contains tests of the preprocessor.

‘gcc.dg/debug’
This subdirectory contains tests for debug formats. Tests in this subdirectory
are run for each debug format that the compiler supports.

http://www.adaic.org/compilers/acats/2.5

Chapter 6: Source Tree Structure and Build System 83

‘gcc.dg/format’
This subdirectory contains tests of the ‘-Wformat’ format checking. Tests in
this directory are run with and without ‘-DWIDE’.

‘gcc.dg/noncompile’
This subdirectory contains tests of code that should not compile and does not
need any special compilation options. They are run with multiple optimization
options, since sometimes invalid code crashes the compiler with optimization.

‘gcc.dg/special’
FIXME: describe this.

‘gcc.c-torture’
This contains particular code fragments which have historically broken easily.
These tests are run with multiple optimization options, so tests for features
which only break at some optimization levels belong here. This also contains
tests to check that certain optimizations occur. It might be worthwhile to
separate the correctness tests cleanly from the code quality tests, but it hasn’t
been done yet.

‘gcc.c-torture/compat’
FIXME: describe this.
This directory should probably not be used for new tests.

‘gcc.c-torture/compile’
This testsuite contains test cases that should compile, but do not need to link
or run. These test cases are compiled with several different combinations of
optimization options. All warnings are disabled for these test cases, so this
directory is not suitable if you wish to test for the presence or absence of
compiler warnings. While special options can be set, and tests disabled on
specific platforms, by the use of ‘.x’ files, mostly these test cases should not
contain platform dependencies. FIXME: discuss how defines such as NO_LABEL_
VALUES and STACK_SIZE are used.

‘gcc.c-torture/execute’
This testsuite contains test cases that should compile, link and run; otherwise
the same comments as for ‘gcc.c-torture/compile’ apply.

‘gcc.c-torture/execute/ieee’
This contains tests which are specific to IEEE floating point.

‘gcc.c-torture/unsorted’
FIXME: describe this.
This directory should probably not be used for new tests.

‘gcc.c-torture/misc-tests’
This directory contains C tests that require special handling. Some of these
tests have individual expect files, and others share special-purpose expect files:

‘bprob*.c’
Test ‘-fbranch-probabilities’ using ‘bprob.exp’, which in
turn uses the generic, language-independent framework (see

84 GNU Compiler Collection (GCC) Internals

Section 6.4.7 [Support for testing profile-directed optimizations],
page 85).

‘dg-*.c’ Test the testsuite itself using ‘dg-test.exp’.

‘gcov*.c’ Test gcov output using ‘gcov.exp’, which in turn uses the
language-independent support (see Section 6.4.6 [Support for
testing gcov], page 84).

‘i386-pf-*.c’
Test i386-specific support for data prefetch using
‘i386-prefetch.exp’.

FIXME: merge in ‘testsuite/README.gcc’ and discuss the format of test cases and
magic comments more.

6.4.5 The Java library testsuites.

Runtime tests are executed via ‘make check’ in the ‘target/libjava/testsuite’ directory
in the build tree. Additional runtime tests can be checked into this testsuite.

Regression testing of the core packages in libgcj is also covered by the Mauve testsuite.
The Mauve Project develops tests for the Java Class Libraries. These tests are run as
part of libgcj testing by placing the Mauve tree within the libjava testsuite sources at
‘libjava/testsuite/libjava.mauve/mauve’, or by specifying the location of that tree
when invoking ‘make’, as in ‘make MAUVEDIR=~/mauve check’.

To detect regressions, a mechanism in ‘mauve.exp’ compares the failures for a test run
against the list of expected failures in ‘libjava/testsuite/libjava.mauve/xfails’ from
the source hierarchy. Update this file when adding new failing tests to Mauve, or when
fixing bugs in libgcj that had caused Mauve test failures.

We encourage developers to contribute test cases to Mauve.

6.4.6 Support for testing gcov

Language-independent support for testing gcov, and for checking that branch profiling
produces expected values, is provided by the expect file ‘gcov.exp’. gcov tests also rely
on procedures in ‘gcc.dg.exp’ to compile and run the test program. A typical gcov test
contains the following DejaGnu commands within comments:

{ dg-options "-fprofile-arcs -ftest-coverage" }

{ dg-do run { target native } }

{ dg-final { run-gcov sourcefile } }

Checks of gcov output can include line counts, branch percentages, and call return per-
centages. All of these checks are requested via commands that appear in comments in the
test’s source file. Commands to check line counts are processed by default. Commands to
check branch percentages and call return percentages are processed if the run-gcov com-
mand has arguments branches or calls, respectively. For example, the following specifies
checking both, as well as passing ‘-b’ to gcov:

{ dg-final { run-gcov branches calls { -b sourcefile } } }

A line count command appears within a comment on the source line that is expected to
get the specified count and has the form count(cnt). A test should only check line counts
for lines that will get the same count for any architecture.

http://sourceware.org/mauve/

Chapter 6: Source Tree Structure and Build System 85

Commands to check branch percentages (branch) and call return percentages (returns)
are very similar to each other. A beginning command appears on or before the first of a
range of lines that will report the percentage, and the ending command follows that range
of lines. The beginning command can include a list of percentages, all of which are expected
to be found within the range. A range is terminated by the next command of the same kind.
A command branch(end) or returns(end) marks the end of a range without starting a
new one. For example:

if (i > 10 && j > i && j < 20) /* branch(27 50 75) */

/* branch(end) */

foo (i, j);

For a call return percentage, the value specified is the percentage of calls reported to
return. For a branch percentage, the value is either the expected percentage or 100 mi-
nus that value, since the direction of a branch can differ depending on the target or the
optimization level.

Not all branches and calls need to be checked. A test should not check for branches that
might be optimized away or replaced with predicated instructions. Don’t check for calls
inserted by the compiler or ones that might be inlined or optimized away.

A single test can check for combinations of line counts, branch percentages, and call
return percentages. The command to check a line count must appear on the line that will
report that count, but commands to check branch percentages and call return percentages
can bracket the lines that report them.

6.4.7 Support for testing profile-directed optimizations

The file ‘profopt.exp’ provides language-independent support for checking correct execu-
tion of a test built with profile-directed optimization. This testing requires that a test
program be built and executed twice. The first time it is compiled to generate profile data,
and the second time it is compiled to use the data that was generated during the first
execution. The second execution is to verify that the test produces the expected results.

To check that the optimization actually generated better code, a test can be built and
run a third time with normal optimizations to verify that the performance is better with the
profile-directed optimizations. ‘profopt.exp’ has the beginnings of this kind of support.

‘profopt.exp’ provides generic support for profile-directed optimizations. Each set of
tests that uses it provides information about a specific optimization:

tool tool being tested, e.g., gcc

profile_option
options used to generate profile data

feedback_option
options used to optimize using that profile data

prof_ext suffix of profile data files

PROFOPT_OPTIONS
list of options with which to run each test, similar to the lists for torture tests

86 GNU Compiler Collection (GCC) Internals

6.4.8 Support for testing binary compatibility

The file ‘compat.exp’ provides language-independent support for binary compatibility test-
ing. It supports testing interoperability of two compilers that follow the same ABI, or of
multiple sets of compiler options that should not affect binary compatibility. It is intended
to be used for testsuites that complement ABI testsuites.

A test supported by this framework has three parts, each in a separate source file: a main
program and two pieces that interact with each other to split up the functionality being
tested.

‘testname_main.suffix ’
Contains the main program, which calls a function in file ‘testname_x.suffix ’.

‘testname_x.suffix ’
Contains at least one call to a function in ‘testname_y.suffix ’.

‘testname_y.suffix ’
Shares data with, or gets arguments from, ‘testname_x.suffix ’.

Within each test, the main program and one functional piece are compiled by the GCC
under test. The other piece can be compiled by an alternate compiler. If no alternate
compiler is specified, then all three source files are all compiled by the GCC under test.
You can specify pairs of sets of compiler options. The first element of such a pair specifies
options used with the GCC under test, and the second element of the pair specifies options
used with the alternate compiler. Each test is compiled with each pair of options.

‘compat.exp’ defines default pairs of compiler options. These can be overridden by defin-
ing the environment variable COMPAT_OPTIONS as:

COMPAT_OPTIONS="[list [list {tst1} {alt1}]

...[list {tstn} {altn}]]"

where tsti and alti are lists of options, with tsti used by the compiler under test and alti
used by the alternate compiler. For example, with [list [list {-g -O0} {-O3}] [list
{-fpic} {-fPIC -O2}]], the test is first built with ‘-g -O0’ by the compiler under test and
with ‘-O3’ by the alternate compiler. The test is built a second time using ‘-fpic’ by the
compiler under test and ‘-fPIC -O2’ by the alternate compiler.

An alternate compiler is specified by defining an environment variable to be the full
pathname of an installed compiler; for C define ALT_CC_UNDER_TEST, and for C++ define
ALT_CXX_UNDER_TEST. These will be written to the ‘site.exp’ file used by DejaGnu. The
default is to build each test with the compiler under test using the first of each pair of
compiler options from COMPAT_OPTIONS. When ALT_CC_UNDER_TEST or ALT_CXX_UNDER_
TEST is same, each test is built using the compiler under test but with combinations of the
options from COMPAT_OPTIONS.

To run only the C++ compatibility suite using the compiler under test and another version
of GCC using specific compiler options, do the following from ‘objdir/gcc’:

rm site.exp

make -k \

ALT_CXX_UNDER_TEST=${alt_prefix}/bin/g++ \

COMPAT_OPTIONS="lists as shown above" \

check-c++ \

RUNTESTFLAGS="compat.exp"

Chapter 6: Source Tree Structure and Build System 87

A test that fails when the source files are compiled with different compilers, but passes
when the files are compiled with the same compiler, demonstrates incompatibility of the
generated code or runtime support. A test that fails for the alternate compiler but passes
for the compiler under test probably tests for a bug that was fixed in the compiler under
test but is present in the alternate compiler.

The binary compatibility tests support a small number of test framework commands that
appear within comments in a test file.

dg-require-*
These commands can be used in ‘testname_main.suffix ’ to skip the test if
specific support is not available on the target.

dg-options
The specified options are used for compiling this particular source file, ap-
pended to the options from COMPAT_OPTIONS. When this command appears in
‘testname_main.suffix ’ the options are also used to link the test program.

dg-xfail-if
This command can be used in a secondary source file to specify that compilation
is expected to fail for particular options on particular targets.

6.4.9 Support for torture testing using multiple options

Throughout the compiler testsuite there are several directories whose tests are run
multiple times, each with a different set of options. These are known as torture tests.
‘gcc/testsuite/lib/torture-options.exp’ defines procedures to set up these lists:

torture-init
Initialize use of torture lists.

set-torture-options
Set lists of torture options to use for tests with and without loops. Optionally
combine a set of torture options with a set of other options, as is done with
Objective-C runtime options.

torture-finish
Finalize use of torture lists.

The ‘.exp’ file for a set of tests that use torture options must include calls to these three
procedures if:
• It calls gcc-dg-runtest and overrides DG TORTURE OPTIONS.
• It calls ${tool}-torture or ${tool}-torture-execute, where tool is c, fortran, or

objc.
• It calls dg-pch.

It is not necessary for a ‘.exp’ file that calls gcc-dg-runtest to call the torture procedures
if the tests should use the list in DG TORTURE OPTIONS defined in ‘gcc-dg.exp’.

Most uses of torture options can override the default lists by defin-
ing TORTURE OPTIONS or add to the default list by defining ADDI-
TIONAL TORTURE OPTIONS. Define these in a ‘.dejagnurc’ file or add
them to the ‘site.exp’ file; for example

88 GNU Compiler Collection (GCC) Internals

set ADDITIONAL_TORTURE_OPTIONS [list \

{ -O2 -ftree-loop-linear } \

{ -O2 -fpeel-loops }]

Chapter 7: Option specification files 89

7 Option specification files

Most GCC command-line options are described by special option definition files, the names
of which conventionally end in .opt. This chapter describes the format of these files.

7.1 Option file format

Option files are a simple list of records in which each field occupies its own line and in which
the records themselves are separated by blank lines. Comments may appear on their own
line anywhere within the file and are preceded by semicolons. Whitespace is allowed before
the semicolon.

The files can contain the following types of record:

• A language definition record. These records have two fields: the string ‘Language’ and
the name of the language. Once a language has been declared in this way, it can be
used as an option property. See Section 7.2 [Option properties], page 90.

• A target specific save record to save additional information. These records have two
fields: the string ‘TargetSave’, and a declaration type to go in the cl_target_option
structure.

• An option definition record. These records have the following fields:

1. the name of the option, with the leading “-” removed

2. a space-separated list of option properties (see Section 7.2 [Option properties],
page 90)

3. the help text to use for ‘--help’ (omitted if the second field contains the
Undocumented property).

By default, all options beginning with “f”, “W” or “m” are implicitly assumed to take a
“no-” form. This form should not be listed separately. If an option beginning with one
of these letters does not have a “no-” form, you can use the RejectNegative property
to reject it.

The help text is automatically line-wrapped before being displayed. Normally the name
of the option is printed on the left-hand side of the output and the help text is printed
on the right. However, if the help text contains a tab character, the text to the left of
the tab is used instead of the option’s name and the text to the right of the tab forms
the help text. This allows you to elaborate on what type of argument the option takes.

• A target mask record. These records have one field of the form ‘Mask(x)’. The options-
processing script will automatically allocate a bit in target_flags (see Section 17.3
[Run-time Target], page 378) for each mask name x and set the macro MASK_x to the
appropriate bitmask. It will also declare a TARGET_x macro that has the value 1 when
bit MASK_x is set and 0 otherwise.

They are primarily intended to declare target masks that are not associated with user
options, either because these masks represent internal switches or because the options
are not available on all configurations and yet the masks always need to be defined.

90 GNU Compiler Collection (GCC) Internals

7.2 Option properties

The second field of an option record can specify the following properties:

Common The option is available for all languages and targets.

Target The option is available for all languages but is target-specific.

language The option is available when compiling for the given language.
It is possible to specify several different languages for the same option. Each lan-
guage must have been declared by an earlier Language record. See Section 7.1
[Option file format], page 89.

RejectNegative
The option does not have a “no-” form. All options beginning with “f”, “W”
or “m” are assumed to have a “no-” form unless this property is used.

Negative(othername)
The option will turn off another option othername, which is the the option
name with the leading “-” removed. This chain action will propagate through
the Negative property of the option to be turned off.

Joined
Separate The option takes a mandatory argument. Joined indicates that the option and

argument can be included in the same argv entry (as with -mflush-func=name ,
for example). Separate indicates that the option and argument can be separate
argv entries (as with -o). An option is allowed to have both of these properties.

JoinedOrMissing
The option takes an optional argument. If the argument is given, it will be part
of the same argv entry as the option itself.
This property cannot be used alongside Joined or Separate.

UInteger The option’s argument is a non-negative integer. The option parser will check
and convert the argument before passing it to the relevant option handler.
UInteger should also be used on options like -falign-loops where both -
falign-loops and -falign-loops=n are supported to make sure the saved
options are given a full integer.

Var(var) The state of this option should be stored in variable var. The way that the
state is stored depends on the type of option:
• If the option uses the Mask or InverseMask properties, var is the integer

variable that contains the mask.
• If the option is a normal on/off switch, var is an integer variable that is

nonzero when the option is enabled. The options parser will set the variable
to 1 when the positive form of the option is used and 0 when the “no-”
form is used.

• If the option takes an argument and has the UInteger property, var is an
integer variable that stores the value of the argument.

• Otherwise, if the option takes an argument, var is a pointer to the argument
string. The pointer will be null if the argument is optional and wasn’t given.

Chapter 7: Option specification files 91

The option-processing script will usually declare var in ‘options.c’ and leave
it to be zero-initialized at start-up time. You can modify this behavior using
VarExists and Init.

Var(var, set)
The option controls an integer variable var and is active when var equals set.
The option parser will set var to set when the positive form of the option is
used and !set when the “no-” form is used.

var is declared in the same way as for the single-argument form described above.

VarExists
The variable specified by the Var property already exists. No definition should
be added to ‘options.c’ in response to this option record.

You should use this property only if the variable is declared outside ‘options.c’.

Init(value)
The variable specified by the Var property should be statically initialized to
value.

Mask(name)
The option is associated with a bit in the target_flags variable (see
Section 17.3 [Run-time Target], page 378) and is active when that bit is set.
You may also specify Var to select a variable other than target_flags.

The options-processing script will automatically allocate a unique bit for the
option. If the option is attached to ‘target_flags’, the script will set the
macro MASK_name to the appropriate bitmask. It will also declare a TARGET_
name macro that has the value 1 when the option is active and 0 otherwise. If
you use Var to attach the option to a different variable, the associated macros
are called OPTION_MASK_name and OPTION_name respectively.

You can disable automatic bit allocation using MaskExists.

InverseMask(othername)
InverseMask(othername, thisname)

The option is the inverse of another option that has the Mask(othername) prop-
erty. If thisname is given, the options-processing script will declare a TARGET_
thisname macro that is 1 when the option is active and 0 otherwise.

MaskExists
The mask specified by the Mask property already exists. No MASK or TARGET
definitions should be added to ‘options.h’ in response to this option record.

The main purpose of this property is to support synonymous options. The
first option should use ‘Mask(name)’ and the others should use ‘Mask(name)
MaskExists’.

Report The state of the option should be printed by ‘-fverbose-asm’.

Undocumented
The option is deliberately missing documentation and should not be included
in the ‘--help’ output.

92 GNU Compiler Collection (GCC) Internals

Condition(cond)
The option should only be accepted if preprocessor condition cond is true. Note
that any C declarations associated with the option will be present even if cond
is false; cond simply controls whether the option is accepted and whether it is
printed in the ‘--help’ output.

Save Build the cl_target_option structure to hold a copy of the option, add the
functions cl_target_option_save and cl_target_option_restore to save
and restore the options.

Chapter 8: Passes and Files of the Compiler 93

8 Passes and Files of the Compiler

This chapter is dedicated to giving an overview of the optimization and code generation
passes of the compiler. In the process, it describes some of the language front end interface,
though this description is no where near complete.

8.1 Parsing pass

The language front end is invoked only once, via lang_hooks.parse_file, to parse the
entire input. The language front end may use any intermediate language representation
deemed appropriate. The C front end uses GENERIC trees (CROSSREF), plus a double
handful of language specific tree codes defined in ‘c-common.def’. The Fortran front end
uses a completely different private representation.

At some point the front end must translate the representation used in the front end to a
representation understood by the language-independent portions of the compiler. Current
practice takes one of two forms. The C front end manually invokes the gimplifier (CROSS-
REF) on each function, and uses the gimplifier callbacks to convert the language-specific
tree nodes directly to GIMPLE (CROSSREF) before passing the function off to be com-
piled. The Fortran front end converts from a private representation to GENERIC, which is
later lowered to GIMPLE when the function is compiled. Which route to choose probably
depends on how well GENERIC (plus extensions) can be made to match up with the source
language and necessary parsing data structures.

BUG: Gimplification must occur before nested function lowering, and nested function
lowering must be done by the front end before passing the data off to cgraph.

TODO: Cgraph should control nested function lowering. It would only be invoked when
it is certain that the outer-most function is used.

TODO: Cgraph needs a gimplify function callback. It should be invoked when (1) it is
certain that the function is used, (2) warning flags specified by the user require some amount
of compilation in order to honor, (3) the language indicates that semantic analysis is not
complete until gimplification occurs. Hum. . . this sounds overly complicated. Perhaps we
should just have the front end gimplify always; in most cases it’s only one function call.

The front end needs to pass all function definitions and top level declarations off to the
middle-end so that they can be compiled and emitted to the object file. For a simple
procedural language, it is usually most convenient to do this as each top level declaration
or definition is seen. There is also a distinction to be made between generating functional
code and generating complete debug information. The only thing that is absolutely required
for functional code is that function and data definitions be passed to the middle-end. For
complete debug information, function, data and type declarations should all be passed as
well.

In any case, the front end needs each complete top-level function or data declaration,
and each data definition should be passed to rest_of_decl_compilation. Each complete
type definition should be passed to rest_of_type_compilation. Each function definition
should be passed to cgraph_finalize_function.

TODO: I know rest of compilation currently has all sorts of RTL generation semantics.
I plan to move all code generation bits (both Tree and RTL) to compile function. Should
we hide cgraph from the front ends and move back to rest of compilation as the official

94 GNU Compiler Collection (GCC) Internals

interface? Possibly we should rename all three interfaces such that the names match in
some meaningful way and that is more descriptive than "rest of".

The middle-end will, at its option, emit the function and data definitions immediately or
queue them for later processing.

8.2 Gimplification pass

Gimplification is a whimsical term for the process of converting the intermediate repre-
sentation of a function into the GIMPLE language (CROSSREF). The term stuck, and so
words like “gimplification”, “gimplify”, “gimplifier” and the like are sprinkled throughout
this section of code.

While a front end may certainly choose to generate GIMPLE directly if it chooses, this
can be a moderately complex process unless the intermediate language used by the front
end is already fairly simple. Usually it is easier to generate GENERIC trees plus extensions
and let the language-independent gimplifier do most of the work.

The main entry point to this pass is gimplify_function_tree located in ‘gimplify.c’.
From here we process the entire function gimplifying each statement in turn. The main
workhorse for this pass is gimplify_expr. Approximately everything passes through here
at least once, and it is from here that we invoke the lang_hooks.gimplify_expr callback.

The callback should examine the expression in question and return GS_UNHANDLED if the
expression is not a language specific construct that requires attention. Otherwise it should
alter the expression in some way to such that forward progress is made toward producing
valid GIMPLE. If the callback is certain that the transformation is complete and the
expression is valid GIMPLE, it should return GS_ALL_DONE. Otherwise it should return
GS_OK, which will cause the expression to be processed again. If the callback encounters
an error during the transformation (because the front end is relying on the gimplification
process to finish semantic checks), it should return GS_ERROR.

8.3 Pass manager

The pass manager is located in ‘passes.c’, ‘tree-optimize.c’ and ‘tree-pass.h’. Its
job is to run all of the individual passes in the correct order, and take care of standard
bookkeeping that applies to every pass.

The theory of operation is that each pass defines a structure that represents everything
we need to know about that pass—when it should be run, how it should be run, what
intermediate language form or on-the-side data structures it needs. We register the pass to
be run in some particular order, and the pass manager arranges for everything to happen
in the correct order.

The actuality doesn’t completely live up to the theory at present. Command-line switches
and timevar_id_t enumerations must still be defined elsewhere. The pass manager vali-
dates constraints but does not attempt to (re-)generate data structures or lower intermediate
language form based on the requirements of the next pass. Nevertheless, what is present is
useful, and a far sight better than nothing at all.

Each pass may have its own dump file (for GCC debugging purposes). Passes without
any names, or with a name starting with a star, do not dump anything.

Chapter 8: Passes and Files of the Compiler 95

TODO: describe the global variables set up by the pass manager, and a brief description
of how a new pass should use it. I need to look at what info RTL passes use first. . .

8.4 Tree SSA passes

The following briefly describes the Tree optimization passes that are run after gimplification
and what source files they are located in.
• Remove useless statements

This pass is an extremely simple sweep across the gimple code in which we identify
obviously dead code and remove it. Here we do things like simplify if statements
with constant conditions, remove exception handling constructs surrounding code that
obviously cannot throw, remove lexical bindings that contain no variables, and other
assorted simplistic cleanups. The idea is to get rid of the obvious stuff quickly rather
than wait until later when it’s more work to get rid of it. This pass is located in
‘tree-cfg.c’ and described by pass_remove_useless_stmts.

• Mudflap declaration registration
If mudflap (see Section “-fmudflap -fmudflapth -fmudflapir” in Using the GNU Compiler
Collection (GCC)) is enabled, we generate code to register some variable declarations
with the mudflap runtime. Specifically, the runtime tracks the lifetimes of those variable
declarations that have their addresses taken, or whose bounds are unknown at compile
time (extern). This pass generates new exception handling constructs (try/finally),
and so must run before those are lowered. In addition, the pass enqueues declarations
of static variables whose lifetimes extend to the entire program. The pass is located in
‘tree-mudflap.c’ and is described by pass_mudflap_1.

• OpenMP lowering
If OpenMP generation (‘-fopenmp’) is enabled, this pass lowers OpenMP constructs
into GIMPLE.
Lowering of OpenMP constructs involves creating replacement expressions for local
variables that have been mapped using data sharing clauses, exposing the control flow
of most synchronization directives and adding region markers to facilitate the creation
of the control flow graph. The pass is located in ‘omp-low.c’ and is described by
pass_lower_omp.

• OpenMP expansion
If OpenMP generation (‘-fopenmp’) is enabled, this pass expands parallel regions
into their own functions to be invoked by the thread library. The pass is located
in ‘omp-low.c’ and is described by pass_expand_omp.

• Lower control flow
This pass flattens if statements (COND_EXPR) and moves lexical bindings (BIND_EXPR)
out of line. After this pass, all if statements will have exactly two goto statements in
its then and else arms. Lexical binding information for each statement will be found
in TREE_BLOCK rather than being inferred from its position under a BIND_EXPR. This
pass is found in ‘gimple-low.c’ and is described by pass_lower_cf.

• Lower exception handling control flow
This pass decomposes high-level exception handling constructs (TRY_FINALLY_EXPR and
TRY_CATCH_EXPR) into a form that explicitly represents the control flow involved. After

96 GNU Compiler Collection (GCC) Internals

this pass, lookup_stmt_eh_region will return a non-negative number for any state-
ment that may have EH control flow semantics; examine tree_can_throw_internal
or tree_can_throw_external for exact semantics. Exact control flow may be ex-
tracted from foreach_reachable_handler. The EH region nesting tree is defined in
‘except.h’ and built in ‘except.c’. The lowering pass itself is in ‘tree-eh.c’ and is
described by pass_lower_eh.

• Build the control flow graph
This pass decomposes a function into basic blocks and creates all of the edges that
connect them. It is located in ‘tree-cfg.c’ and is described by pass_build_cfg.

• Find all referenced variables
This pass walks the entire function and collects an array of all variables referenced
in the function, referenced_vars. The index at which a variable is found in the
array is used as a UID for the variable within this function. This data is needed by
the SSA rewriting routines. The pass is located in ‘tree-dfa.c’ and is described by
pass_referenced_vars.

• Enter static single assignment form
This pass rewrites the function such that it is in SSA form. After this pass, all is_
gimple_reg variables will be referenced by SSA_NAME, and all occurrences of other
variables will be annotated with VDEFS and VUSES; PHI nodes will have been inserted
as necessary for each basic block. This pass is located in ‘tree-ssa.c’ and is described
by pass_build_ssa.

• Warn for uninitialized variables
This pass scans the function for uses of SSA_NAMEs that are fed by default definition.
For non-parameter variables, such uses are uninitialized. The pass is run twice, before
and after optimization (if turned on). In the first pass we only warn for uses that
are positively uninitialized; in the second pass we warn for uses that are possibly
uninitialized. The pass is located in ‘tree-ssa.c’ and is defined by pass_early_
warn_uninitialized and pass_late_warn_uninitialized.

• Dead code elimination
This pass scans the function for statements without side effects whose result is unused.
It does not do memory life analysis, so any value that is stored in memory is considered
used. The pass is run multiple times throughout the optimization process. It is located
in ‘tree-ssa-dce.c’ and is described by pass_dce.

• Dominator optimizations
This pass performs trivial dominator-based copy and constant propagation, expression
simplification, and jump threading. It is run multiple times throughout the optimiza-
tion process. It it located in ‘tree-ssa-dom.c’ and is described by pass_dominator.

• Forward propagation of single-use variables
This pass attempts to remove redundant computation by substituting variables that are
used once into the expression that uses them and seeing if the result can be simplified.
It is located in ‘tree-ssa-forwprop.c’ and is described by pass_forwprop.

• Copy Renaming
This pass attempts to change the name of compiler temporaries involved in copy oper-
ations such that SSA->normal can coalesce the copy away. When compiler temporaries

Chapter 8: Passes and Files of the Compiler 97

are copies of user variables, it also renames the compiler temporary to the user variable
resulting in better use of user symbols. It is located in ‘tree-ssa-copyrename.c’ and
is described by pass_copyrename.

• PHI node optimizations
This pass recognizes forms of PHI inputs that can be represented as conditional expres-
sions and rewrites them into straight line code. It is located in ‘tree-ssa-phiopt.c’
and is described by pass_phiopt.

• May-alias optimization
This pass performs a flow sensitive SSA-based points-to analysis. The resulting may-
alias, must-alias, and escape analysis information is used to promote variables from
in-memory addressable objects to non-aliased variables that can be renamed into SSA
form. We also update the VDEF/VUSE memory tags for non-renameable aggregates so
that we get fewer false kills. The pass is located in ‘tree-ssa-alias.c’ and is described
by pass_may_alias.
Interprocedural points-to information is located in ‘tree-ssa-structalias.c’ and de-
scribed by pass_ipa_pta.

• Profiling
This pass rewrites the function in order to collect runtime block and value profiling
data. Such data may be fed back into the compiler on a subsequent run so as to
allow optimization based on expected execution frequencies. The pass is located in
‘predict.c’ and is described by pass_profile.

• Lower complex arithmetic
This pass rewrites complex arithmetic operations into their component scalar arith-
metic operations. The pass is located in ‘tree-complex.c’ and is described by pass_
lower_complex.

• Scalar replacement of aggregates
This pass rewrites suitable non-aliased local aggregate variables into a set of scalar
variables. The resulting scalar variables are rewritten into SSA form, which allows
subsequent optimization passes to do a significantly better job with them. The pass is
located in ‘tree-sra.c’ and is described by pass_sra.

• Dead store elimination
This pass eliminates stores to memory that are subsequently overwritten by another
store, without any intervening loads. The pass is located in ‘tree-ssa-dse.c’ and is
described by pass_dse.

• Tail recursion elimination
This pass transforms tail recursion into a loop. It is located in ‘tree-tailcall.c’ and
is described by pass_tail_recursion.

• Forward store motion
This pass sinks stores and assignments down the flowgraph closer to their use point.
The pass is located in ‘tree-ssa-sink.c’ and is described by pass_sink_code.

• Partial redundancy elimination
This pass eliminates partially redundant computations, as well as performing load
motion. The pass is located in ‘tree-ssa-pre.c’ and is described by pass_pre.

98 GNU Compiler Collection (GCC) Internals

Just before partial redundancy elimination, if ‘-funsafe-math-optimizations’ is on,
GCC tries to convert divisions to multiplications by the reciprocal. The pass is located
in ‘tree-ssa-math-opts.c’ and is described by pass_cse_reciprocal.

• Full redundancy elimination

This is a simpler form of PRE that only eliminates redundancies that occur an all
paths. It is located in ‘tree-ssa-pre.c’ and described by pass_fre.

• Loop optimization

The main driver of the pass is placed in ‘tree-ssa-loop.c’ and described by pass_
loop.

The optimizations performed by this pass are:

Loop invariant motion. This pass moves only invariants that would be hard to handle
on RTL level (function calls, operations that expand to nontrivial sequences of insns).
With ‘-funswitch-loops’ it also moves operands of conditions that are invariant out of
the loop, so that we can use just trivial invariantness analysis in loop unswitching. The
pass also includes store motion. The pass is implemented in ‘tree-ssa-loop-im.c’.

Canonical induction variable creation. This pass creates a simple counter for number
of iterations of the loop and replaces the exit condition of the loop using it, in case
when a complicated analysis is necessary to determine the number of iterations. Later
optimizations then may determine the number easily. The pass is implemented in
‘tree-ssa-loop-ivcanon.c’.

Induction variable optimizations. This pass performs standard induction variable op-
timizations, including strength reduction, induction variable merging and induction
variable elimination. The pass is implemented in ‘tree-ssa-loop-ivopts.c’.

Loop unswitching. This pass moves the conditional jumps that are invariant out of the
loops. To achieve this, a duplicate of the loop is created for each possible outcome of
conditional jump(s). The pass is implemented in ‘tree-ssa-loop-unswitch.c’. This
pass should eventually replace the RTL level loop unswitching in ‘loop-unswitch.c’,
but currently the RTL level pass is not completely redundant yet due to deficiencies in
tree level alias analysis.

The optimizations also use various utility functions contained in ‘tree-ssa-loop-manip.c’,
‘cfgloop.c’, ‘cfgloopanal.c’ and ‘cfgloopmanip.c’.

Vectorization. This pass transforms loops to operate on vector types instead of scalar
types. Data parallelism across loop iterations is exploited to group data elements from
consecutive iterations into a vector and operate on them in parallel. Depending on
available target support the loop is conceptually unrolled by a factor VF (vectorization
factor), which is the number of elements operated upon in parallel in each iteration, and
the VF copies of each scalar operation are fused to form a vector operation. Additional
loop transformations such as peeling and versioning may take place to align the number
of iterations, and to align the memory accesses in the loop. The pass is implemented in
‘tree-vectorizer.c’ (the main driver and general utilities), ‘tree-vect-analyze.c’
and ‘tree-vect-transform.c’. Analysis of data references is in ‘tree-data-ref.c’.

Autoparallelization. This pass splits the loop iteration space to run into several threads.
The pass is implemented in ‘tree-parloops.c’.

Chapter 8: Passes and Files of the Compiler 99

• Tree level if-conversion for vectorizer
This pass applies if-conversion to simple loops to help vectorizer. We identify if con-
vertible loops, if-convert statements and merge basic blocks in one big block. The idea
is to present loop in such form so that vectorizer can have one to one mapping between
statements and available vector operations. This patch re-introduces COND EXPR at
GIMPLE level. This pass is located in ‘tree-if-conv.c’ and is described by pass_
if_conversion.

• Conditional constant propagation
This pass relaxes a lattice of values in order to identify those that must be constant
even in the presence of conditional branches. The pass is located in ‘tree-ssa-ccp.c’
and is described by pass_ccp.
A related pass that works on memory loads and stores, and not just register values, is
located in ‘tree-ssa-ccp.c’ and described by pass_store_ccp.

• Conditional copy propagation
This is similar to constant propagation but the lattice of values is the “copy-of” relation.
It eliminates redundant copies from the code. The pass is located in ‘tree-ssa-copy.c’
and described by pass_copy_prop.
A related pass that works on memory copies, and not just register copies, is located in
‘tree-ssa-copy.c’ and described by pass_store_copy_prop.

• Value range propagation
This transformation is similar to constant propagation but instead of propagating sin-
gle constant values, it propagates known value ranges. The implementation is based on
Patterson’s range propagation algorithm (Accurate Static Branch Prediction by Value
Range Propagation, J. R. C. Patterson, PLDI ’95). In contrast to Patterson’s algo-
rithm, this implementation does not propagate branch probabilities nor it uses more
than a single range per SSA name. This means that the current implementation cannot
be used for branch prediction (though adapting it would not be difficult). The pass is
located in ‘tree-vrp.c’ and is described by pass_vrp.

• Folding built-in functions
This pass simplifies built-in functions, as applicable, with constant arguments or with
inferable string lengths. It is located in ‘tree-ssa-ccp.c’ and is described by pass_
fold_builtins.

• Split critical edges
This pass identifies critical edges and inserts empty basic blocks such that the edge
is no longer critical. The pass is located in ‘tree-cfg.c’ and is described by pass_
split_crit_edges.

• Control dependence dead code elimination
This pass is a stronger form of dead code elimination that can eliminate unnecessary
control flow statements. It is located in ‘tree-ssa-dce.c’ and is described by pass_
cd_dce.

• Tail call elimination
This pass identifies function calls that may be rewritten into jumps. No code trans-
formation is actually applied here, but the data and control flow problem is solved.

100 GNU Compiler Collection (GCC) Internals

The code transformation requires target support, and so is delayed until RTL. In the
meantime CALL_EXPR_TAILCALL is set indicating the possibility. The pass is located in
‘tree-tailcall.c’ and is described by pass_tail_calls. The RTL transformation
is handled by fixup_tail_calls in ‘calls.c’.

• Warn for function return without value
For non-void functions, this pass locates return statements that do not specify a value
and issues a warning. Such a statement may have been injected by falling off the end
of the function. This pass is run last so that we have as much time as possible to prove
that the statement is not reachable. It is located in ‘tree-cfg.c’ and is described by
pass_warn_function_return.

• Mudflap statement annotation
If mudflap is enabled, we rewrite some memory accesses with code to validate that
the memory access is correct. In particular, expressions involving pointer dereferences
(INDIRECT_REF, ARRAY_REF, etc.) are replaced by code that checks the selected address
range against the mudflap runtime’s database of valid regions. This check includes
an inline lookup into a direct-mapped cache, based on shift/mask operations of the
pointer value, with a fallback function call into the runtime. The pass is located in
‘tree-mudflap.c’ and is described by pass_mudflap_2.

• Leave static single assignment form
This pass rewrites the function such that it is in normal form. At the same time, we
eliminate as many single-use temporaries as possible, so the intermediate language is
no longer GIMPLE, but GENERIC. The pass is located in ‘tree-outof-ssa.c’ and
is described by pass_del_ssa.

• Merge PHI nodes that feed into one another
This is part of the CFG cleanup passes. It attempts to join PHI nodes from a
forwarder CFG block into another block with PHI nodes. The pass is located in
‘tree-cfgcleanup.c’ and is described by pass_merge_phi.

• Return value optimization
If a function always returns the same local variable, and that local variable is an
aggregate type, then the variable is replaced with the return value for the function
(i.e., the function’s DECL RESULT). This is equivalent to the C++ named return
value optimization applied to GIMPLE. The pass is located in ‘tree-nrv.c’ and is
described by pass_nrv.

• Return slot optimization
If a function returns a memory object and is called as var = foo(), this pass tries to
change the call so that the address of var is sent to the caller to avoid an extra memory
copy. This pass is located in tree-nrv.c and is described by pass_return_slot.

• Optimize calls to __builtin_object_size

This is a propagation pass similar to CCP that tries to remove calls to __builtin_
object_size when the size of the object can be computed at compile-time. This pass
is located in ‘tree-object-size.c’ and is described by pass_object_sizes.

• Loop invariant motion
This pass removes expensive loop-invariant computations out of loops. The pass is
located in ‘tree-ssa-loop.c’ and described by pass_lim.

Chapter 8: Passes and Files of the Compiler 101

• Loop nest optimizations
This is a family of loop transformations that works on loop nests. It includes loop
interchange, scaling, skewing and reversal and they are all geared to the optimiza-
tion of data locality in array traversals and the removal of dependencies that hamper
optimizations such as loop parallelization and vectorization. The pass is located in
‘tree-loop-linear.c’ and described by pass_linear_transform.

• Removal of empty loops
This pass removes loops with no code in them. The pass is located in
‘tree-ssa-loop-ivcanon.c’ and described by pass_empty_loop.

• Unrolling of small loops
This pass completely unrolls loops with few iterations. The pass is located in
‘tree-ssa-loop-ivcanon.c’ and described by pass_complete_unroll.

• Predictive commoning
This pass makes the code reuse the computations from the previous iterations of the
loops, especially loads and stores to memory. It does so by storing the values of these
computations to a bank of temporary variables that are rotated at the end of loop. To
avoid the need for this rotation, the loop is then unrolled and the copies of the loop
body are rewritten to use the appropriate version of the temporary variable. This pass
is located in ‘tree-predcom.c’ and described by pass_predcom.

• Array prefetching
This pass issues prefetch instructions for array references inside loops. The pass is
located in ‘tree-ssa-loop-prefetch.c’ and described by pass_loop_prefetch.

• Reassociation
This pass rewrites arithmetic expressions to enable optimizations that operate
on them, like redundancy elimination and vectorization. The pass is located in
‘tree-ssa-reassoc.c’ and described by pass_reassoc.

• Optimization of stdarg functions
This pass tries to avoid the saving of register arguments into the stack on entry to
stdarg functions. If the function doesn’t use any va_start macros, no registers need
to be saved. If va_start macros are used, the va_list variables don’t escape the
function, it is only necessary to save registers that will be used in va_arg macros.
For instance, if va_arg is only used with integral types in the function, floating point
registers don’t need to be saved. This pass is located in tree-stdarg.c and described
by pass_stdarg.

8.5 RTL passes

The following briefly describes the RTL generation and optimization passes that are run
after the Tree optimization passes.
• RTL generation

The source files for RTL generation include ‘stmt.c’, ‘calls.c’, ‘expr.c’, ‘explow.c’,
‘expmed.c’, ‘function.c’, ‘optabs.c’ and ‘emit-rtl.c’. Also, the file ‘insn-emit.c’,
generated from the machine description by the program genemit, is used in this pass.
The header file ‘expr.h’ is used for communication within this pass.

102 GNU Compiler Collection (GCC) Internals

The header files ‘insn-flags.h’ and ‘insn-codes.h’, generated from the machine
description by the programs genflags and gencodes, tell this pass which standard
names are available for use and which patterns correspond to them.

• Generation of exception landing pads

This pass generates the glue that handles communication between the exception han-
dling library routines and the exception handlers within the function. Entry points in
the function that are invoked by the exception handling library are called landing pads.
The code for this pass is located in ‘except.c’.

• Control flow graph cleanup

This pass removes unreachable code, simplifies jumps to next, jumps to jump, jumps
across jumps, etc. The pass is run multiple times. For historical reasons, it is occasion-
ally referred to as the “jump optimization pass”. The bulk of the code for this pass is
in ‘cfgcleanup.c’, and there are support routines in ‘cfgrtl.c’ and ‘jump.c’.

• Forward propagation of single-def values

This pass attempts to remove redundant computation by substituting variables that
come from a single definition, and seeing if the result can be simplified. It performs
copy propagation and addressing mode selection. The pass is run twice, with values
being propagated into loops only on the second run. The code is located in ‘fwprop.c’.

• Common subexpression elimination

This pass removes redundant computation within basic blocks, and optimizes address-
ing modes based on cost. The pass is run twice. The code for this pass is located in
‘cse.c’.

• Global common subexpression elimination

This pass performs two different types of GCSE depending on whether you are opti-
mizing for size or not (LCM based GCSE tends to increase code size for a gain in speed,
while Morel-Renvoise based GCSE does not). When optimizing for size, GCSE is done
using Morel-Renvoise Partial Redundancy Elimination, with the exception that it does
not try to move invariants out of loops—that is left to the loop optimization pass. If
MR PRE GCSE is done, code hoisting (aka unification) is also done, as well as load
motion. If you are optimizing for speed, LCM (lazy code motion) based GCSE is done.
LCM is based on the work of Knoop, Ruthing, and Steffen. LCM based GCSE also does
loop invariant code motion. We also perform load and store motion when optimizing
for speed. Regardless of which type of GCSE is used, the GCSE pass also performs
global constant and copy propagation. The source file for this pass is ‘gcse.c’, and the
LCM routines are in ‘lcm.c’.

• Loop optimization

This pass performs several loop related optimizations. The source files ‘cfgloopanal.c’
and ‘cfgloopmanip.c’ contain generic loop analysis and manipulation code. Initializa-
tion and finalization of loop structures is handled by ‘loop-init.c’. A loop invariant
motion pass is implemented in ‘loop-invariant.c’. Basic block level optimizations—
unrolling, peeling and unswitching loops— are implemented in ‘loop-unswitch.c’
and ‘loop-unroll.c’. Replacing of the exit condition of loops by special machine-
dependent instructions is handled by ‘loop-doloop.c’.

Chapter 8: Passes and Files of the Compiler 103

• Jump bypassing
This pass is an aggressive form of GCSE that transforms the control flow graph of a
function by propagating constants into conditional branch instructions. The source file
for this pass is ‘gcse.c’.

• If conversion
This pass attempts to replace conditional branches and surrounding assignments with
arithmetic, boolean value producing comparison instructions, and conditional move
instructions. In the very last invocation after reload, it will generate predicated in-
structions when supported by the target. The code is located in ‘ifcvt.c’.

• Web construction
This pass splits independent uses of each pseudo-register. This can improve effect of
the other transformation, such as CSE or register allocation. The code for this pass is
located in ‘web.c’.

• Instruction combination
This pass attempts to combine groups of two or three instructions that are related by
data flow into single instructions. It combines the RTL expressions for the instructions
by substitution, simplifies the result using algebra, and then attempts to match the
result against the machine description. The code is located in ‘combine.c’.

• Register movement
This pass looks for cases where matching constraints would force an instruction to
need a reload, and this reload would be a register-to-register move. It then attempts to
change the registers used by the instruction to avoid the move instruction. The code
is located in ‘regmove.c’.

• Mode switching optimization
This pass looks for instructions that require the processor to be in a specific “mode”
and minimizes the number of mode changes required to satisfy all users. What these
modes are, and what they apply to are completely target-specific. The code for this
pass is located in ‘mode-switching.c’.

• Modulo scheduling
This pass looks at innermost loops and reorders their instructions by overlapping differ-
ent iterations. Modulo scheduling is performed immediately before instruction schedul-
ing. The code for this pass is located in ‘modulo-sched.c’.

• Instruction scheduling
This pass looks for instructions whose output will not be available by the time that it
is used in subsequent instructions. Memory loads and floating point instructions often
have this behavior on RISC machines. It re-orders instructions within a basic block to
try to separate the definition and use of items that otherwise would cause pipeline stalls.
This pass is performed twice, before and after register allocation. The code for this
pass is located in ‘haifa-sched.c’, ‘sched-deps.c’, ‘sched-ebb.c’, ‘sched-rgn.c’
and ‘sched-vis.c’.

• Register allocation
These passes make sure that all occurrences of pseudo registers are eliminated, either
by allocating them to a hard register, replacing them by an equivalent expression (e.g.
a constant) or by placing them on the stack. This is done in several subpasses:

104 GNU Compiler Collection (GCC) Internals

• Register move optimizations. This pass makes some simple RTL code trans-
formations which improve the subsequent register allocation. The source file is
‘regmove.c’.

• The integrated register allocator (IRA). It is called integrated because coalescing,
register live range splitting, and hard register preferencing are done on-the-fly dur-
ing coloring. It also has better integration with the reload pass. Pseudo-registers
spilled by the allocator or the reload have still a chance to get hard-registers if
the reload evicts some pseudo-registers from hard-registers. The allocator helps to
choose better pseudos for spilling based on their live ranges and to coalesce stack
slots allocated for the spilled pseudo-registers. IRA is a regional register allocator
which is transformed into Chaitin-Briggs allocator if there is one region. By de-
fault, IRA chooses regions using register pressure but the user can force it to use
one region or regions corresponding to all loops.
Source files of the allocator are ‘ira.c’, ‘ira-build.c’, ‘ira-costs.c’,
‘ira-conflicts.c’, ‘ira-color.c’, ‘ira-emit.c’, ‘ira-lives’, plus header files
‘ira.h’ and ‘ira-int.h’ used for the communication between the allocator and
the rest of the compiler and between the IRA files.

• Reloading. This pass renumbers pseudo registers with the hardware registers num-
bers they were allocated. Pseudo registers that did not get hard registers are re-
placed with stack slots. Then it finds instructions that are invalid because a value
has failed to end up in a register, or has ended up in a register of the wrong kind.
It fixes up these instructions by reloading the problematical values temporarily
into registers. Additional instructions are generated to do the copying.
The reload pass also optionally eliminates the frame pointer and inserts instruc-
tions to save and restore call-clobbered registers around calls.
Source files are ‘reload.c’ and ‘reload1.c’, plus the header ‘reload.h’ used for
communication between them.

• Basic block reordering
This pass implements profile guided code positioning. If profile information is not avail-
able, various types of static analysis are performed to make the predictions normally
coming from the profile feedback (IE execution frequency, branch probability, etc). It
is implemented in the file ‘bb-reorder.c’, and the various prediction routines are in
‘predict.c’.

• Variable tracking
This pass computes where the variables are stored at each position in code and gener-
ates notes describing the variable locations to RTL code. The location lists are then
generated according to these notes to debug information if the debugging information
format supports location lists. The code is located in ‘var-tracking.c’.

• Delayed branch scheduling
This optional pass attempts to find instructions that can go into the delay slots of other
instructions, usually jumps and calls. The code for this pass is located in ‘reorg.c’.

• Branch shortening
On many RISC machines, branch instructions have a limited range. Thus, longer
sequences of instructions must be used for long branches. In this pass, the compiler

Chapter 8: Passes and Files of the Compiler 105

figures out what how far each instruction will be from each other instruction, and
therefore whether the usual instructions, or the longer sequences, must be used for
each branch. The code for this pass is located in ‘final.c’.

• Register-to-stack conversion
Conversion from usage of some hard registers to usage of a register stack may be done
at this point. Currently, this is supported only for the floating-point registers of the
Intel 80387 coprocessor. The code for this pass is located in ‘reg-stack.c’.

• Final
This pass outputs the assembler code for the function. The source files are ‘final.c’
plus ‘insn-output.c’; the latter is generated automatically from the machine descrip-
tion by the tool ‘genoutput’. The header file ‘conditions.h’ is used for communication
between these files. If mudflap is enabled, the queue of deferred declarations and any
addressed constants (e.g., string literals) is processed by mudflap_finish_file into a
synthetic constructor function containing calls into the mudflap runtime.

• Debugging information output
This is run after final because it must output the stack slot offsets for pseudo registers
that did not get hard registers. Source files are ‘dbxout.c’ for DBX symbol table
format, ‘sdbout.c’ for SDB symbol table format, ‘dwarfout.c’ for DWARF symbol
table format, files ‘dwarf2out.c’ and ‘dwarf2asm.c’ for DWARF2 symbol table format,
and ‘vmsdbgout.c’ for VMS debug symbol table format.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 107

9 Trees: The intermediate representation used by
the C and C++ front ends

This chapter documents the internal representation used by GCC to represent C and C++
source programs. When presented with a C or C++ source program, GCC parses the
program, performs semantic analysis (including the generation of error messages), and then
produces the internal representation described here. This representation contains a complete
representation for the entire translation unit provided as input to the front end. This
representation is then typically processed by a code-generator in order to produce machine
code, but could also be used in the creation of source browsers, intelligent editors, automatic
documentation generators, interpreters, and any other programs needing the ability to
process C or C++ code.

This chapter explains the internal representation. In particular, it documents the internal
representation for C and C++ source constructs, and the macros, functions, and variables
that can be used to access these constructs. The C++ representation is largely a superset
of the representation used in the C front end. There is only one construct used in C that
does not appear in the C++ front end and that is the GNU “nested function” extension.
Many of the macros documented here do not apply in C because the corresponding language
constructs do not appear in C.

If you are developing a “back end”, be it is a code-generator or some other tool, that uses
this representation, you may occasionally find that you need to ask questions not easily
answered by the functions and macros available here. If that situation occurs, it is quite
likely that GCC already supports the functionality you desire, but that the interface is
simply not documented here. In that case, you should ask the GCC maintainers (via mail
to gcc@gcc.gnu.org) about documenting the functionality you require. Similarly, if you
find yourself writing functions that do not deal directly with your back end, but instead
might be useful to other people using the GCC front end, you should submit your patches
for inclusion in GCC.

9.1 Deficiencies

There are many places in which this document is incomplet and incorrekt. It is, as of yet,
only preliminary documentation.

9.2 Overview

The central data structure used by the internal representation is the tree. These nodes,
while all of the C type tree, are of many varieties. A tree is a pointer type, but the object
to which it points may be of a variety of types. From this point forward, we will refer to
trees in ordinary type, rather than in this font, except when talking about the actual C
type tree.

You can tell what kind of node a particular tree is by using the TREE_CODE macro. Many,
many macros take trees as input and return trees as output. However, most macros require
a certain kind of tree node as input. In other words, there is a type-system for trees, but it
is not reflected in the C type-system.

For safety, it is useful to configure GCC with ‘--enable-checking’. Although this results
in a significant performance penalty (since all tree types are checked at run-time), and is

mailto:gcc@gcc.gnu.org

108 GNU Compiler Collection (GCC) Internals

therefore inappropriate in a release version, it is extremely helpful during the development
process.

Many macros behave as predicates. Many, although not all, of these predicates end in
‘_P’. Do not rely on the result type of these macros being of any particular type. You may,
however, rely on the fact that the type can be compared to 0, so that statements like

if (TEST_P (t) && !TEST_P (y))

x = 1;

and
int i = (TEST_P (t) != 0);

are legal. Macros that return int values now may be changed to return tree values, or
other pointers in the future. Even those that continue to return int may return multiple
nonzero codes where previously they returned only zero and one. Therefore, you should not
write code like

if (TEST_P (t) == 1)

as this code is not guaranteed to work correctly in the future.

You should not take the address of values returned by the macros or functions described
here. In particular, no guarantee is given that the values are lvalues.

In general, the names of macros are all in uppercase, while the names of functions are
entirely in lowercase. There are rare exceptions to this rule. You should assume that any
macro or function whose name is made up entirely of uppercase letters may evaluate its
arguments more than once. You may assume that a macro or function whose name is made
up entirely of lowercase letters will evaluate its arguments only once.

The error_mark_node is a special tree. Its tree code is ERROR_MARK, but since there is
only ever one node with that code, the usual practice is to compare the tree against error_
mark_node. (This test is just a test for pointer equality.) If an error has occurred during
front-end processing the flag errorcount will be set. If the front end has encountered code
it cannot handle, it will issue a message to the user and set sorrycount. When these
flags are set, any macro or function which normally returns a tree of a particular kind may
instead return the error_mark_node. Thus, if you intend to do any processing of erroneous
code, you must be prepared to deal with the error_mark_node.

Occasionally, a particular tree slot (like an operand to an expression, or a particular field
in a declaration) will be referred to as “reserved for the back end”. These slots are used to
store RTL when the tree is converted to RTL for use by the GCC back end. However, if
that process is not taking place (e.g., if the front end is being hooked up to an intelligent
editor), then those slots may be used by the back end presently in use.

If you encounter situations that do not match this documentation, such as tree nodes of
types not mentioned here, or macros documented to return entities of a particular kind that
instead return entities of some different kind, you have found a bug, either in the front end
or in the documentation. Please report these bugs as you would any other bug.

9.2.1 Trees

This section is not here yet.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 109

9.2.2 Identifiers

An IDENTIFIER_NODE represents a slightly more general concept that the standard C or
C++ concept of identifier. In particular, an IDENTIFIER_NODE may contain a ‘$’, or other
extraordinary characters.

There are never two distinct IDENTIFIER_NODEs representing the same identifier. There-
fore, you may use pointer equality to compare IDENTIFIER_NODEs, rather than using a
routine like strcmp.

You can use the following macros to access identifiers:

IDENTIFIER_POINTER
The string represented by the identifier, represented as a char*. This string is
always NUL-terminated, and contains no embedded NUL characters.

IDENTIFIER_LENGTH
The length of the string returned by IDENTIFIER_POINTER, not including the
trailing NUL. This value of IDENTIFIER_LENGTH (x) is always the same as
strlen (IDENTIFIER_POINTER (x)).

IDENTIFIER_OPNAME_P
This predicate holds if the identifier represents the name of an overloaded
operator. In this case, you should not depend on the contents of either the
IDENTIFIER_POINTER or the IDENTIFIER_LENGTH.

IDENTIFIER_TYPENAME_P
This predicate holds if the identifier represents the name of a user-defined con-
version operator. In this case, the TREE_TYPE of the IDENTIFIER_NODE holds
the type to which the conversion operator converts.

9.2.3 Containers

Two common container data structures can be represented directly with tree nodes. A
TREE_LIST is a singly linked list containing two trees per node. These are the TREE_
PURPOSE and TREE_VALUE of each node. (Often, the TREE_PURPOSE contains some kind of
tag, or additional information, while the TREE_VALUE contains the majority of the payload.
In other cases, the TREE_PURPOSE is simply NULL_TREE, while in still others both the TREE_
PURPOSE and TREE_VALUE are of equal stature.) Given one TREE_LIST node, the next node
is found by following the TREE_CHAIN. If the TREE_CHAIN is NULL_TREE, then you have
reached the end of the list.

A TREE_VEC is a simple vector. The TREE_VEC_LENGTH is an integer (not a tree) giving the
number of nodes in the vector. The nodes themselves are accessed using the TREE_VEC_ELT
macro, which takes two arguments. The first is the TREE_VEC in question; the second is an
integer indicating which element in the vector is desired. The elements are indexed from
zero.

9.3 Types

All types have corresponding tree nodes. However, you should not assume that there is
exactly one tree node corresponding to each type. There are often multiple nodes corre-
sponding to the same type.

110 GNU Compiler Collection (GCC) Internals

For the most part, different kinds of types have different tree codes. (For example, pointer
types use a POINTER_TYPE code while arrays use an ARRAY_TYPE code.) However, pointers to
member functions use the RECORD_TYPE code. Therefore, when writing a switch statement
that depends on the code associated with a particular type, you should take care to handle
pointers to member functions under the RECORD_TYPE case label.

In C++, an array type is not qualified; rather the type of the array elements is qualified.
This situation is reflected in the intermediate representation. The macros described here
will always examine the qualification of the underlying element type when applied to an
array type. (If the element type is itself an array, then the recursion continues until a
non-array type is found, and the qualification of this type is examined.) So, for example,
CP_TYPE_CONST_P will hold of the type const int ()[7], denoting an array of seven ints.

The following functions and macros deal with cv-qualification of types:

CP_TYPE_QUALS
This macro returns the set of type qualifiers applied to this type. This value is
TYPE_UNQUALIFIED if no qualifiers have been applied. The TYPE_QUAL_CONST
bit is set if the type is const-qualified. The TYPE_QUAL_VOLATILE bit is set if
the type is volatile-qualified. The TYPE_QUAL_RESTRICT bit is set if the type
is restrict-qualified.

CP_TYPE_CONST_P
This macro holds if the type is const-qualified.

CP_TYPE_VOLATILE_P
This macro holds if the type is volatile-qualified.

CP_TYPE_RESTRICT_P
This macro holds if the type is restrict-qualified.

CP_TYPE_CONST_NON_VOLATILE_P
This predicate holds for a type that is const-qualified, but not volatile-
qualified; other cv-qualifiers are ignored as well: only the const-ness is tested.

TYPE_MAIN_VARIANT
This macro returns the unqualified version of a type. It may be applied to an
unqualified type, but it is not always the identity function in that case.

A few other macros and functions are usable with all types:

TYPE_SIZE
The number of bits required to represent the type, represented as an INTEGER_
CST. For an incomplete type, TYPE_SIZE will be NULL_TREE.

TYPE_ALIGN
The alignment of the type, in bits, represented as an int.

TYPE_NAME
This macro returns a declaration (in the form of a TYPE_DECL) for the type.
(Note this macro does not return a IDENTIFIER_NODE, as you might expect,
given its name!) You can look at the DECL_NAME of the TYPE_DECL to obtain
the actual name of the type. The TYPE_NAME will be NULL_TREE for a type that
is not a built-in type, the result of a typedef, or a named class type.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 111

CP_INTEGRAL_TYPE
This predicate holds if the type is an integral type. Notice that in C++, enu-
merations are not integral types.

ARITHMETIC_TYPE_P
This predicate holds if the type is an integral type (in the C++ sense) or a
floating point type.

CLASS_TYPE_P
This predicate holds for a class-type.

TYPE_BUILT_IN
This predicate holds for a built-in type.

TYPE_PTRMEM_P
This predicate holds if the type is a pointer to data member.

TYPE_PTR_P
This predicate holds if the type is a pointer type, and the pointee is not a data
member.

TYPE_PTRFN_P
This predicate holds for a pointer to function type.

TYPE_PTROB_P
This predicate holds for a pointer to object type. Note however that it does not
hold for the generic pointer to object type void *. You may use TYPE_PTROBV_P
to test for a pointer to object type as well as void *.

TYPE_CANONICAL
This macro returns the “canonical” type for the given type node. Canonical
types are used to improve performance in the C++ and Objective-C++ front
ends by allowing efficient comparison between two type nodes in same_type_p:
if the TYPE_CANONICAL values of the types are equal, the types are equivalent;
otherwise, the types are not equivalent. The notion of equivalence for canonical
types is the same as the notion of type equivalence in the language itself. For
instance,
When TYPE_CANONICAL is NULL_TREE, there is no canonical type for the given
type node. In this case, comparison between this type and any other type
requires the compiler to perform a deep, “structural” comparison to see if the
two type nodes have the same form and properties.
The canonical type for a node is always the most fundamental type in the
equivalence class of types. For instance, int is its own canonical type. A
typedef I of int will have int as its canonical type. Similarly, I* and a typedef
IP (defined to I*) will has int* as their canonical type. When building a new
type node, be sure to set TYPE_CANONICAL to the appropriate canonical type.
If the new type is a compound type (built from other types), and any of those
other types require structural equality, use SET_TYPE_STRUCTURAL_EQUALITY to
ensure that the new type also requires structural equality. Finally, if for some
reason you cannot guarantee that TYPE_CANONICAL will point to the canonical
type, use SET_TYPE_STRUCTURAL_EQUALITY to make sure that the new type–and

112 GNU Compiler Collection (GCC) Internals

any type constructed based on it–requires structural equality. If you suspect
that the canonical type system is miscomparing types, pass --param verify-
canonical-types=1 to the compiler or configure with --enable-checking to
force the compiler to verify its canonical-type comparisons against the structural
comparisons; the compiler will then print any warnings if the canonical types
miscompare.

TYPE_STRUCTURAL_EQUALITY_P
This predicate holds when the node requires structural equality checks, e.g.,
when TYPE_CANONICAL is NULL_TREE.

SET_TYPE_STRUCTURAL_EQUALITY
This macro states that the type node it is given requires structural equality
checks, e.g., it sets TYPE_CANONICAL to NULL_TREE.

same_type_p
This predicate takes two types as input, and holds if they are the same type.
For example, if one type is a typedef for the other, or both are typedefs
for the same type. This predicate also holds if the two trees given as input
are simply copies of one another; i.e., there is no difference between them at
the source level, but, for whatever reason, a duplicate has been made in the
representation. You should never use == (pointer equality) to compare types;
always use same_type_p instead.

Detailed below are the various kinds of types, and the macros that can be used to access
them. Although other kinds of types are used elsewhere in G++, the types described here
are the only ones that you will encounter while examining the intermediate representation.

VOID_TYPE
Used to represent the void type.

INTEGER_TYPE
Used to represent the various integral types, including char, short, int, long,
and long long. This code is not used for enumeration types, nor for the bool
type. The TYPE_PRECISION is the number of bits used in the representation,
represented as an unsigned int. (Note that in the general case this is not
the same value as TYPE_SIZE; suppose that there were a 24-bit integer type,
but that alignment requirements for the ABI required 32-bit alignment. Then,
TYPE_SIZE would be an INTEGER_CST for 32, while TYPE_PRECISION would be
24.) The integer type is unsigned if TYPE_UNSIGNED holds; otherwise, it is
signed.

The TYPE_MIN_VALUE is an INTEGER_CST for the smallest integer that may be
represented by this type. Similarly, the TYPE_MAX_VALUE is an INTEGER_CST for
the largest integer that may be represented by this type.

REAL_TYPE
Used to represent the float, double, and long double types. The number of
bits in the floating-point representation is given by TYPE_PRECISION, as in the
INTEGER_TYPE case.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 113

FIXED_POINT_TYPE
Used to represent the short _Fract, _Fract, long _Fract, long long _Fract,
short _Accum, _Accum, long _Accum, and long long _Accum types. The num-
ber of bits in the fixed-point representation is given by TYPE_PRECISION, as in
the INTEGER_TYPE case. There may be padding bits, fractional bits and integral
bits. The number of fractional bits is given by TYPE_FBIT, and the number of
integral bits is given by TYPE_IBIT. The fixed-point type is unsigned if TYPE_
UNSIGNED holds; otherwise, it is signed. The fixed-point type is saturating if
TYPE_SATURATING holds; otherwise, it is not saturating.

COMPLEX_TYPE
Used to represent GCC built-in __complex__ data types. The TREE_TYPE is
the type of the real and imaginary parts.

ENUMERAL_TYPE
Used to represent an enumeration type. The TYPE_PRECISION gives (as an
int), the number of bits used to represent the type. If there are no negative
enumeration constants, TYPE_UNSIGNED will hold. The minimum and maximum
enumeration constants may be obtained with TYPE_MIN_VALUE and TYPE_MAX_
VALUE, respectively; each of these macros returns an INTEGER_CST.
The actual enumeration constants themselves may be obtained by looking at
the TYPE_VALUES. This macro will return a TREE_LIST, containing the con-
stants. The TREE_PURPOSE of each node will be an IDENTIFIER_NODE giving
the name of the constant; the TREE_VALUE will be an INTEGER_CST giving the
value assigned to that constant. These constants will appear in the order in
which they were declared. The TREE_TYPE of each of these constants will be
the type of enumeration type itself.

BOOLEAN_TYPE
Used to represent the bool type.

POINTER_TYPE
Used to represent pointer types, and pointer to data member types. The TREE_
TYPE gives the type to which this type points. If the type is a pointer to data
member type, then TYPE_PTRMEM_P will hold. For a pointer to data member
type of the form ‘T X::*’, TYPE_PTRMEM_CLASS_TYPE will be the type X, while
TYPE_PTRMEM_POINTED_TO_TYPE will be the type T.

REFERENCE_TYPE
Used to represent reference types. The TREE_TYPE gives the type to which this
type refers.

FUNCTION_TYPE
Used to represent the type of non-member functions and of static member
functions. The TREE_TYPE gives the return type of the function. The TYPE_
ARG_TYPES are a TREE_LIST of the argument types. The TREE_VALUE of each
node in this list is the type of the corresponding argument; the TREE_PURPOSE is
an expression for the default argument value, if any. If the last node in the list
is void_list_node (a TREE_LIST node whose TREE_VALUE is the void_type_
node), then functions of this type do not take variable arguments. Otherwise,
they do take a variable number of arguments.

114 GNU Compiler Collection (GCC) Internals

Note that in C (but not in C++) a function declared like void f() is an unpro-
totyped function taking a variable number of arguments; the TYPE_ARG_TYPES
of such a function will be NULL.

METHOD_TYPE
Used to represent the type of a non-static member function. Like a FUNCTION_
TYPE, the return type is given by the TREE_TYPE. The type of *this, i.e., the
class of which functions of this type are a member, is given by the TYPE_METHOD_
BASETYPE. The TYPE_ARG_TYPES is the parameter list, as for a FUNCTION_TYPE,
and includes the this argument.

ARRAY_TYPE
Used to represent array types. The TREE_TYPE gives the type of the elements
in the array. If the array-bound is present in the type, the TYPE_DOMAIN is an
INTEGER_TYPE whose TYPE_MIN_VALUE and TYPE_MAX_VALUE will be the lower
and upper bounds of the array, respectively. The TYPE_MIN_VALUE will always
be an INTEGER_CST for zero, while the TYPE_MAX_VALUE will be one less than
the number of elements in the array, i.e., the highest value which may be used
to index an element in the array.

RECORD_TYPE
Used to represent struct and class types, as well as pointers to member
functions and similar constructs in other languages. TYPE_FIELDS contains the
items contained in this type, each of which can be a FIELD_DECL, VAR_DECL,
CONST_DECL, or TYPE_DECL. You may not make any assumptions about the
ordering of the fields in the type or whether one or more of them overlap. If
TYPE_PTRMEMFUNC_P holds, then this type is a pointer-to-member type. In that
case, the TYPE_PTRMEMFUNC_FN_TYPE is a POINTER_TYPE pointing to a METHOD_
TYPE. The METHOD_TYPE is the type of a function pointed to by the pointer-
to-member function. If TYPE_PTRMEMFUNC_P does not hold, this type is a class
type. For more information, see see Section 9.4.2 [Classes], page 116.

UNION_TYPE
Used to represent union types. Similar to RECORD_TYPE except that all FIELD_
DECL nodes in TYPE_FIELD start at bit position zero.

QUAL_UNION_TYPE
Used to represent part of a variant record in Ada. Similar to UNION_TYPE except
that each FIELD_DECL has a DECL_QUALIFIER field, which contains a boolean
expression that indicates whether the field is present in the object. The type
will only have one field, so each field’s DECL_QUALIFIER is only evaluated if none
of the expressions in the previous fields in TYPE_FIELDS are nonzero. Normally
these expressions will reference a field in the outer object using a PLACEHOLDER_
EXPR.

UNKNOWN_TYPE
This node is used to represent a type the knowledge of which is insufficient for
a sound processing.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 115

OFFSET_TYPE
This node is used to represent a pointer-to-data member. For a data member
X::m the TYPE_OFFSET_BASETYPE is X and the TREE_TYPE is the type of m.

TYPENAME_TYPE
Used to represent a construct of the form typename T::A. The TYPE_CONTEXT
is T; the TYPE_NAME is an IDENTIFIER_NODE for A. If the type is specified via a
template-id, then TYPENAME_TYPE_FULLNAME yields a TEMPLATE_ID_EXPR. The
TREE_TYPE is non-NULL if the node is implicitly generated in support for the
implicit typename extension; in which case the TREE_TYPE is a type node for
the base-class.

TYPEOF_TYPE
Used to represent the __typeof__ extension. The TYPE_FIELDS is the expres-
sion the type of which is being represented.

There are variables whose values represent some of the basic types. These include:

void_type_node
A node for void.

integer_type_node
A node for int.

unsigned_type_node.
A node for unsigned int.

char_type_node.
A node for char.

It may sometimes be useful to compare one of these variables with a type in hand, using
same_type_p.

9.4 Scopes

The root of the entire intermediate representation is the variable global_namespace. This is
the namespace specified with :: in C++ source code. All other namespaces, types, variables,
functions, and so forth can be found starting with this namespace.

Besides namespaces, the other high-level scoping construct in C++ is the class. (Through-
out this manual the term class is used to mean the types referred to in the ANSI/ISO C++
Standard as classes; these include types defined with the class, struct, and union key-
words.)

9.4.1 Namespaces

A namespace is represented by a NAMESPACE_DECL node.

However, except for the fact that it is distinguished as the root of the representation,
the global namespace is no different from any other namespace. Thus, in what follows, we
describe namespaces generally, rather than the global namespace in particular.

The following macros and functions can be used on a NAMESPACE_DECL:

116 GNU Compiler Collection (GCC) Internals

DECL_NAME
This macro is used to obtain the IDENTIFIER_NODE corresponding to the un-
qualified name of the name of the namespace (see Section 9.2.2 [Identifiers],
page 109). The name of the global namespace is ‘::’, even though in C++
the global namespace is unnamed. However, you should use comparison with
global_namespace, rather than DECL_NAME to determine whether or not a
namespace is the global one. An unnamed namespace will have a DECL_NAME
equal to anonymous_namespace_name. Within a single translation unit, all un-
named namespaces will have the same name.

DECL_CONTEXT
This macro returns the enclosing namespace. The DECL_CONTEXT for the
global_namespace is NULL_TREE.

DECL_NAMESPACE_ALIAS
If this declaration is for a namespace alias, then DECL_NAMESPACE_ALIAS is the
namespace for which this one is an alias.
Do not attempt to use cp_namespace_decls for a namespace which is an alias.
Instead, follow DECL_NAMESPACE_ALIAS links until you reach an ordinary, non-
alias, namespace, and call cp_namespace_decls there.

DECL_NAMESPACE_STD_P
This predicate holds if the namespace is the special ::std namespace.

cp_namespace_decls
This function will return the declarations contained in the namespace, including
types, overloaded functions, other namespaces, and so forth. If there are no dec-
larations, this function will return NULL_TREE. The declarations are connected
through their TREE_CHAIN fields.
Although most entries on this list will be declarations, TREE_LIST nodes may
also appear. In this case, the TREE_VALUE will be an OVERLOAD. The value of the
TREE_PURPOSE is unspecified; back ends should ignore this value. As with the
other kinds of declarations returned by cp_namespace_decls, the TREE_CHAIN
will point to the next declaration in this list.
For more information on the kinds of declarations that can occur on this list,
See Section 9.5 [Declarations], page 118. Some declarations will not appear on
this list. In particular, no FIELD_DECL, LABEL_DECL, or PARM_DECL nodes will
appear here.
This function cannot be used with namespaces that have DECL_NAMESPACE_
ALIAS set.

9.4.2 Classes

A class type is represented by either a RECORD_TYPE or a UNION_TYPE. A class declared
with the union tag is represented by a UNION_TYPE, while classes declared with either the
struct or the class tag are represented by RECORD_TYPEs. You can use the CLASSTYPE_
DECLARED_CLASS macro to discern whether or not a particular type is a class as opposed
to a struct. This macro will be true only for classes declared with the class tag.

Almost all non-function members are available on the TYPE_FIELDS list. Given one mem-
ber, the next can be found by following the TREE_CHAIN. You should not depend in any

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 117

way on the order in which fields appear on this list. All nodes on this list will be ‘DECL’
nodes. A FIELD_DECL is used to represent a non-static data member, a VAR_DECL is used to
represent a static data member, and a TYPE_DECL is used to represent a type. Note that the
CONST_DECL for an enumeration constant will appear on this list, if the enumeration type
was declared in the class. (Of course, the TYPE_DECL for the enumeration type will appear
here as well.) There are no entries for base classes on this list. In particular, there is no
FIELD_DECL for the “base-class portion” of an object.

The TYPE_VFIELD is a compiler-generated field used to point to virtual function tables.
It may or may not appear on the TYPE_FIELDS list. However, back ends should handle the
TYPE_VFIELD just like all the entries on the TYPE_FIELDS list.

The function members are available on the TYPE_METHODS list. Again, subsequent mem-
bers are found by following the TREE_CHAIN field. If a function is overloaded, each of the
overloaded functions appears; no OVERLOAD nodes appear on the TYPE_METHODS list. Im-
plicitly declared functions (including default constructors, copy constructors, assignment
operators, and destructors) will appear on this list as well.

Every class has an associated binfo, which can be obtained with TYPE_BINFO. Binfos
are used to represent base-classes. The binfo given by TYPE_BINFO is the degenerate case,
whereby every class is considered to be its own base-class. The base binfos for a particular
binfo are held in a vector, whose length is obtained with BINFO_N_BASE_BINFOS. The base
binfos themselves are obtained with BINFO_BASE_BINFO and BINFO_BASE_ITERATE. To add
a new binfo, use BINFO_BASE_APPEND. The vector of base binfos can be obtained with
BINFO_BASE_BINFOS, but normally you do not need to use that. The class type associated
with a binfo is given by BINFO_TYPE. It is not always the case that BINFO_TYPE (TYPE_
BINFO (x)), because of typedefs and qualified types. Neither is it the case that TYPE_BINFO
(BINFO_TYPE (y)) is the same binfo as y. The reason is that if y is a binfo representing a
base-class B of a derived class D, then BINFO_TYPE (y) will be B, and TYPE_BINFO (BINFO_
TYPE (y)) will be B as its own base-class, rather than as a base-class of D.

The access to a base type can be found with BINFO_BASE_ACCESS. This will produce
access_public_node, access_private_node or access_protected_node. If bases are
always public, BINFO_BASE_ACCESSES may be NULL.

BINFO_VIRTUAL_P is used to specify whether the binfo is inherited virtually or not. The
other flags, BINFO_MARKED_P and BINFO_FLAG_1 to BINFO_FLAG_6 can be used for language
specific use.

The following macros can be used on a tree node representing a class-type.

LOCAL_CLASS_P
This predicate holds if the class is local class i.e. declared inside a function
body.

TYPE_POLYMORPHIC_P
This predicate holds if the class has at least one virtual function (declared or
inherited).

TYPE_HAS_DEFAULT_CONSTRUCTOR
This predicate holds whenever its argument represents a class-type with default
constructor.

118 GNU Compiler Collection (GCC) Internals

CLASSTYPE_HAS_MUTABLE
TYPE_HAS_MUTABLE_P

These predicates hold for a class-type having a mutable data member.

CLASSTYPE_NON_POD_P
This predicate holds only for class-types that are not PODs.

TYPE_HAS_NEW_OPERATOR
This predicate holds for a class-type that defines operator new.

TYPE_HAS_ARRAY_NEW_OPERATOR
This predicate holds for a class-type for which operator new[] is defined.

TYPE_OVERLOADS_CALL_EXPR
This predicate holds for class-type for which the function call operator() is
overloaded.

TYPE_OVERLOADS_ARRAY_REF
This predicate holds for a class-type that overloads operator[]

TYPE_OVERLOADS_ARROW
This predicate holds for a class-type for which operator-> is overloaded.

9.5 Declarations

This section covers the various kinds of declarations that appear in the internal represen-
tation, except for declarations of functions (represented by FUNCTION_DECL nodes), which
are described in Section 9.6 [Functions], page 123.

9.5.1 Working with declarations

Some macros can be used with any kind of declaration. These include:

DECL_NAME
This macro returns an IDENTIFIER_NODE giving the name of the entity.

TREE_TYPE
This macro returns the type of the entity declared.

TREE_FILENAME
This macro returns the name of the file in which the entity was declared, as
a char*. For an entity declared implicitly by the compiler (like __builtin_
memcpy), this will be the string "<internal>".

TREE_LINENO
This macro returns the line number at which the entity was declared, as an
int.

DECL_ARTIFICIAL
This predicate holds if the declaration was implicitly generated by the compiler.
For example, this predicate will hold of an implicitly declared member function,
or of the TYPE_DECL implicitly generated for a class type. Recall that in C++
code like:

struct S {};

is roughly equivalent to C code like:

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 119

struct S {};

typedef struct S S;

The implicitly generated typedef declaration is represented by a TYPE_DECL
for which DECL_ARTIFICIAL holds.

DECL_NAMESPACE_SCOPE_P
This predicate holds if the entity was declared at a namespace scope.

DECL_CLASS_SCOPE_P
This predicate holds if the entity was declared at a class scope.

DECL_FUNCTION_SCOPE_P
This predicate holds if the entity was declared inside a function body.

The various kinds of declarations include:

LABEL_DECL
These nodes are used to represent labels in function bodies. For more informa-
tion, see Section 9.6 [Functions], page 123. These nodes only appear in block
scopes.

CONST_DECL
These nodes are used to represent enumeration constants. The value of the
constant is given by DECL_INITIAL which will be an INTEGER_CST with the
same type as the TREE_TYPE of the CONST_DECL, i.e., an ENUMERAL_TYPE.

RESULT_DECL
These nodes represent the value returned by a function. When a value is as-
signed to a RESULT_DECL, that indicates that the value should be returned, via
bitwise copy, by the function. You can use DECL_SIZE and DECL_ALIGN on a
RESULT_DECL, just as with a VAR_DECL.

TYPE_DECL
These nodes represent typedef declarations. The TREE_TYPE is the type de-
clared to have the name given by DECL_NAME. In some cases, there is no asso-
ciated name.

VAR_DECL These nodes represent variables with namespace or block scope, as well as static
data members. The DECL_SIZE and DECL_ALIGN are analogous to TYPE_SIZE
and TYPE_ALIGN. For a declaration, you should always use the DECL_SIZE and
DECL_ALIGN rather than the TYPE_SIZE and TYPE_ALIGN given by the TREE_
TYPE, since special attributes may have been applied to the variable to give it a
particular size and alignment. You may use the predicates DECL_THIS_STATIC
or DECL_THIS_EXTERN to test whether the storage class specifiers static or
extern were used to declare a variable.
If this variable is initialized (but does not require a constructor), the DECL_
INITIAL will be an expression for the initializer. The initializer should be
evaluated, and a bitwise copy into the variable performed. If the DECL_INITIAL
is the error_mark_node, there is an initializer, but it is given by an explicit
statement later in the code; no bitwise copy is required.
GCC provides an extension that allows either automatic variables, or global
variables, to be placed in particular registers. This extension is being used for

120 GNU Compiler Collection (GCC) Internals

a particular VAR_DECL if DECL_REGISTER holds for the VAR_DECL, and if DECL_
ASSEMBLER_NAME is not equal to DECL_NAME. In that case, DECL_ASSEMBLER_
NAME is the name of the register into which the variable will be placed.

PARM_DECL
Used to represent a parameter to a function. Treat these nodes similarly to VAR_
DECL nodes. These nodes only appear in the DECL_ARGUMENTS for a FUNCTION_
DECL.

The DECL_ARG_TYPE for a PARM_DECL is the type that will actually be used when
a value is passed to this function. It may be a wider type than the TREE_TYPE
of the parameter; for example, the ordinary type might be short while the
DECL_ARG_TYPE is int.

FIELD_DECL
These nodes represent non-static data members. The DECL_SIZE and DECL_
ALIGN behave as for VAR_DECL nodes. The position of the field within the
parent record is specified by a combination of three attributes. DECL_FIELD_
OFFSET is the position, counting in bytes, of the DECL_OFFSET_ALIGN-bit sized
word containing the bit of the field closest to the beginning of the structure.
DECL_FIELD_BIT_OFFSET is the bit offset of the first bit of the field within this
word; this may be nonzero even for fields that are not bit-fields, since DECL_
OFFSET_ALIGN may be greater than the natural alignment of the field’s type.

If DECL_C_BIT_FIELD holds, this field is a bit-field. In a bit-field, DECL_BIT_
FIELD_TYPE also contains the type that was originally specified for it, while
DECL TYPE may be a modified type with lesser precision, according to the
size of the bit field.

NAMESPACE_DECL
See Section 9.4.1 [Namespaces], page 115.

TEMPLATE_DECL
These nodes are used to represent class, function, and variable (static data
member) templates. The DECL_TEMPLATE_SPECIALIZATIONS are a TREE_LIST.
The TREE_VALUE of each node in the list is a TEMPLATE_DECLs or FUNCTION_
DECLs representing specializations (including instantiations) of this template.
Back ends can safely ignore TEMPLATE_DECLs, but should examine FUNCTION_
DECL nodes on the specializations list just as they would ordinary FUNCTION_
DECL nodes.

For a class template, the DECL_TEMPLATE_INSTANTIATIONS list contains the
instantiations. The TREE_VALUE of each node is an instantiation of the class.
The DECL_TEMPLATE_SPECIALIZATIONS contains partial specializations of the
class.

USING_DECL
Back ends can safely ignore these nodes.

9.5.2 Internal structure

DECL nodes are represented internally as a hierarchy of structures.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 121

9.5.2.1 Current structure hierarchy

struct tree_decl_minimal
This is the minimal structure to inherit from in order for common DECL macros
to work. The fields it contains are a unique ID, source location, context, and
name.

struct tree_decl_common
This structure inherits from struct tree_decl_minimal. It contains fields
that most DECL nodes need, such as a field to store alignment, machine mode,
size, and attributes.

struct tree_field_decl
This structure inherits from struct tree_decl_common. It is used to represent
FIELD_DECL.

struct tree_label_decl
This structure inherits from struct tree_decl_common. It is used to represent
LABEL_DECL.

struct tree_translation_unit_decl
This structure inherits from struct tree_decl_common. It is used to represent
TRANSLATION_UNIT_DECL.

struct tree_decl_with_rtl
This structure inherits from struct tree_decl_common. It contains a field to
store the low-level RTL associated with a DECL node.

struct tree_result_decl
This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent RESULT_DECL.

struct tree_const_decl
This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent CONST_DECL.

struct tree_parm_decl
This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent PARM_DECL.

struct tree_decl_with_vis
This structure inherits from struct tree_decl_with_rtl. It contains fields
necessary to store visibility information, as well as a section name and assembler
name.

struct tree_var_decl
This structure inherits from struct tree_decl_with_vis. It is used to repre-
sent VAR_DECL.

struct tree_function_decl
This structure inherits from struct tree_decl_with_vis. It is used to repre-
sent FUNCTION_DECL.

122 GNU Compiler Collection (GCC) Internals

9.5.2.2 Adding new DECL node types

Adding a new DECL tree consists of the following steps

Add a new tree code for the DECL node
For language specific DECL nodes, there is a ‘.def’ file in each frontend directory
where the tree code should be added. For DECL nodes that are part of the
middle-end, the code should be added to ‘tree.def’.

Create a new structure type for the DECL node
These structures should inherit from one of the existing structures in the lan-
guage hierarchy by using that structure as the first member.

struct tree_foo_decl

{

struct tree_decl_with_vis common;

}

Would create a structure name tree_foo_decl that inherits from struct tree_
decl_with_vis.
For language specific DECL nodes, this new structure type should go in the
appropriate ‘.h’ file. For DECL nodes that are part of the middle-end, the
structure type should go in ‘tree.h’.

Add a member to the tree structure enumerator for the node
For garbage collection and dynamic checking purposes, each DECL node struc-
ture type is required to have a unique enumerator value specified with it. For
language specific DECL nodes, this new enumerator value should go in the ap-
propriate ‘.def’ file. For DECL nodes that are part of the middle-end, the
enumerator values are specified in ‘treestruct.def’.

Update union tree_node
In order to make your new structure type usable, it must be added to union
tree_node. For language specific DECL nodes, a new entry should be added to
the appropriate ‘.h’ file of the form

struct tree_foo_decl GTY ((tag ("TS_VAR_DECL"))) foo_decl;

For DECL nodes that are part of the middle-end, the additional member goes
directly into union tree_node in ‘tree.h’.

Update dynamic checking info
In order to be able to check whether accessing a named portion of union tree_
node is legal, and whether a certain DECL node contains one of the enumerated
DECL node structures in the hierarchy, a simple lookup table is used. This
lookup table needs to be kept up to date with the tree structure hierarchy, or
else checking and containment macros will fail inappropriately.
For language specific DECL nodes, their is an init_ts function in an appropri-
ate ‘.c’ file, which initializes the lookup table. Code setting up the table for
new DECL nodes should be added there. For each DECL tree code and enumera-
tor value representing a member of the inheritance hierarchy, the table should
contain 1 if that tree code inherits (directly or indirectly) from that member.
Thus, a FOO_DECL node derived from struct decl_with_rtl, and enumerator
value TS_FOO_DECL, would be set up as follows

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 123

tree_contains_struct[FOO_DECL][TS_FOO_DECL] = 1;

tree_contains_struct[FOO_DECL][TS_DECL_WRTL] = 1;

tree_contains_struct[FOO_DECL][TS_DECL_COMMON] = 1;

tree_contains_struct[FOO_DECL][TS_DECL_MINIMAL] = 1;

For DECL nodes that are part of the middle-end, the setup code goes into
‘tree.c’.

Add macros to access any new fields and flags
Each added field or flag should have a macro that is used to access it, that
performs appropriate checking to ensure only the right type of DECL nodes
access the field.
These macros generally take the following form

#define FOO_DECL_FIELDNAME(NODE) FOO_DECL_CHECK(NODE)->foo_decl.fieldname

However, if the structure is simply a base class for further structures, something
like the following should be used

#define BASE_STRUCT_CHECK(T) CONTAINS_STRUCT_CHECK(T, TS_BASE_STRUCT)

#define BASE_STRUCT_FIELDNAME(NODE) \

(BASE_STRUCT_CHECK(NODE)->base_struct.fieldname

9.6 Functions

A function is represented by a FUNCTION_DECL node. A set of overloaded functions is
sometimes represented by a OVERLOAD node.

An OVERLOAD node is not a declaration, so none of the ‘DECL_’ macros should be used on
an OVERLOAD. An OVERLOAD node is similar to a TREE_LIST. Use OVL_CURRENT to get the
function associated with an OVERLOAD node; use OVL_NEXT to get the next OVERLOAD node
in the list of overloaded functions. The macros OVL_CURRENT and OVL_NEXT are actually
polymorphic; you can use them to work with FUNCTION_DECL nodes as well as with overloads.
In the case of a FUNCTION_DECL, OVL_CURRENT will always return the function itself, and
OVL_NEXT will always be NULL_TREE.

To determine the scope of a function, you can use the DECL_CONTEXT macro. This macro
will return the class (either a RECORD_TYPE or a UNION_TYPE) or namespace (a NAMESPACE_
DECL) of which the function is a member. For a virtual function, this macro returns the
class in which the function was actually defined, not the base class in which the virtual
declaration occurred.

If a friend function is defined in a class scope, the DECL_FRIEND_CONTEXT macro can be
used to determine the class in which it was defined. For example, in

class C { friend void f() {} };

the DECL_CONTEXT for f will be the global_namespace, but the DECL_FRIEND_CONTEXT will
be the RECORD_TYPE for C.

In C, the DECL_CONTEXT for a function maybe another function. This representation
indicates that the GNU nested function extension is in use. For details on the semantics of
nested functions, see the GCC Manual. The nested function can refer to local variables in
its containing function. Such references are not explicitly marked in the tree structure; back
ends must look at the DECL_CONTEXT for the referenced VAR_DECL. If the DECL_CONTEXT
for the referenced VAR_DECL is not the same as the function currently being processed, and
neither DECL_EXTERNAL nor TREE_STATIC hold, then the reference is to a local variable in a
containing function, and the back end must take appropriate action.

124 GNU Compiler Collection (GCC) Internals

9.6.1 Function Basics

The following macros and functions can be used on a FUNCTION_DECL:

DECL_MAIN_P
This predicate holds for a function that is the program entry point ::code.

DECL_NAME
This macro returns the unqualified name of the function, as an IDENTIFIER_
NODE. For an instantiation of a function template, the DECL_NAME is the unqual-
ified name of the template, not something like f<int>. The value of DECL_NAME
is undefined when used on a constructor, destructor, overloaded operator, or
type-conversion operator, or any function that is implicitly generated by the
compiler. See below for macros that can be used to distinguish these cases.

DECL_ASSEMBLER_NAME
This macro returns the mangled name of the function, also an IDENTIFIER_
NODE. This name does not contain leading underscores on systems that prefix
all identifiers with underscores. The mangled name is computed in the same
way on all platforms; if special processing is required to deal with the object
file format used on a particular platform, it is the responsibility of the back end
to perform those modifications. (Of course, the back end should not modify
DECL_ASSEMBLER_NAME itself.)
Using DECL_ASSEMBLER_NAME will cause additional memory to be allocated (for
the mangled name of the entity) so it should be used only when emitting assem-
bly code. It should not be used within the optimizers to determine whether or
not two declarations are the same, even though some of the existing optimizers
do use it in that way. These uses will be removed over time.

DECL_EXTERNAL
This predicate holds if the function is undefined.

TREE_PUBLIC
This predicate holds if the function has external linkage.

DECL_LOCAL_FUNCTION_P
This predicate holds if the function was declared at block scope, even though
it has a global scope.

DECL_ANTICIPATED
This predicate holds if the function is a built-in function but its prototype is
not yet explicitly declared.

DECL_EXTERN_C_FUNCTION_P
This predicate holds if the function is declared as an ‘extern "C"’ function.

DECL_LINKONCE_P
This macro holds if multiple copies of this function may be emitted in various
translation units. It is the responsibility of the linker to merge the various
copies. Template instantiations are the most common example of functions
for which DECL_LINKONCE_P holds; G++ instantiates needed templates in all
translation units which require them, and then relies on the linker to remove
duplicate instantiations.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 125

FIXME: This macro is not yet implemented.

DECL_FUNCTION_MEMBER_P
This macro holds if the function is a member of a class, rather than a member
of a namespace.

DECL_STATIC_FUNCTION_P
This predicate holds if the function a static member function.

DECL_NONSTATIC_MEMBER_FUNCTION_P
This macro holds for a non-static member function.

DECL_CONST_MEMFUNC_P
This predicate holds for a const-member function.

DECL_VOLATILE_MEMFUNC_P
This predicate holds for a volatile-member function.

DECL_CONSTRUCTOR_P
This macro holds if the function is a constructor.

DECL_NONCONVERTING_P
This predicate holds if the constructor is a non-converting constructor.

DECL_COMPLETE_CONSTRUCTOR_P
This predicate holds for a function which is a constructor for an object of a
complete type.

DECL_BASE_CONSTRUCTOR_P
This predicate holds for a function which is a constructor for a base class sub-
object.

DECL_COPY_CONSTRUCTOR_P
This predicate holds for a function which is a copy-constructor.

DECL_DESTRUCTOR_P
This macro holds if the function is a destructor.

DECL_COMPLETE_DESTRUCTOR_P
This predicate holds if the function is the destructor for an object a complete
type.

DECL_OVERLOADED_OPERATOR_P
This macro holds if the function is an overloaded operator.

DECL_CONV_FN_P
This macro holds if the function is a type-conversion operator.

DECL_GLOBAL_CTOR_P
This predicate holds if the function is a file-scope initialization function.

DECL_GLOBAL_DTOR_P
This predicate holds if the function is a file-scope finalization function.

DECL_THUNK_P
This predicate holds if the function is a thunk.

126 GNU Compiler Collection (GCC) Internals

These functions represent stub code that adjusts the this pointer and then
jumps to another function. When the jumped-to function returns, control is
transferred directly to the caller, without returning to the thunk. The first
parameter to the thunk is always the this pointer; the thunk should add THUNK_
DELTA to this value. (The THUNK_DELTA is an int, not an INTEGER_CST.)
Then, if THUNK_VCALL_OFFSET (an INTEGER_CST) is nonzero the adjusted this
pointer must be adjusted again. The complete calculation is given by the fol-
lowing pseudo-code:

this += THUNK_DELTA

if (THUNK_VCALL_OFFSET)

this += (*((ptrdiff_t **) this))[THUNK_VCALL_OFFSET]

Finally, the thunk should jump to the location given by DECL_INITIAL; this
will always be an expression for the address of a function.

DECL_NON_THUNK_FUNCTION_P
This predicate holds if the function is not a thunk function.

GLOBAL_INIT_PRIORITY
If either DECL_GLOBAL_CTOR_P or DECL_GLOBAL_DTOR_P holds, then this gives
the initialization priority for the function. The linker will arrange that all
functions for which DECL_GLOBAL_CTOR_P holds are run in increasing order of
priority before main is called. When the program exits, all functions for which
DECL_GLOBAL_DTOR_P holds are run in the reverse order.

DECL_ARTIFICIAL
This macro holds if the function was implicitly generated by the compiler,
rather than explicitly declared. In addition to implicitly generated class member
functions, this macro holds for the special functions created to implement static
initialization and destruction, to compute run-time type information, and so
forth.

DECL_ARGUMENTS
This macro returns the PARM_DECL for the first argument to the function. Sub-
sequent PARM_DECL nodes can be obtained by following the TREE_CHAIN links.

DECL_RESULT
This macro returns the RESULT_DECL for the function.

TREE_TYPE
This macro returns the FUNCTION_TYPE or METHOD_TYPE for the function.

TYPE_RAISES_EXCEPTIONS
This macro returns the list of exceptions that a (member-)function can raise.
The returned list, if non NULL, is comprised of nodes whose TREE_VALUE repre-
sents a type.

TYPE_NOTHROW_P
This predicate holds when the exception-specification of its arguments is of the
form ‘()’.

DECL_ARRAY_DELETE_OPERATOR_P
This predicate holds if the function an overloaded operator delete[].

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 127

DECL_FUNCTION_SPECIFIC_TARGET
This macro returns a tree node that holds the target options that are to be
used to compile this particular function or NULL_TREE if the function is to be
compiled with the target options specified on the command line.

DECL_FUNCTION_SPECIFIC_OPTIMIZATION
This macro returns a tree node that holds the optimization options that are to
be used to compile this particular function or NULL_TREE if the function is to
be compiled with the optimization options specified on the command line.

9.6.2 Function Bodies

A function that has a definition in the current translation unit will have a non-NULL DECL_
INITIAL. However, back ends should not make use of the particular value given by DECL_
INITIAL.

The DECL_SAVED_TREE macro will give the complete body of the function.

9.6.2.1 Statements

There are tree nodes corresponding to all of the source-level statement constructs, used
within the C and C++ frontends. These are enumerated here, together with a list of the
various macros that can be used to obtain information about them. There are a few macros
that can be used with all statements:

STMT_IS_FULL_EXPR_P
In C++, statements normally constitute “full expressions”; temporaries created
during a statement are destroyed when the statement is complete. However,
G++ sometimes represents expressions by statements; these statements will not
have STMT_IS_FULL_EXPR_P set. Temporaries created during such statements
should be destroyed when the innermost enclosing statement with STMT_IS_
FULL_EXPR_P set is exited.

Here is the list of the various statement nodes, and the macros used to access them.
This documentation describes the use of these nodes in non-template functions (including
instantiations of template functions). In template functions, the same nodes are used, but
sometimes in slightly different ways.

Many of the statements have substatements. For example, a while loop will have a body,
which is itself a statement. If the substatement is NULL_TREE, it is considered equivalent to
a statement consisting of a single ;, i.e., an expression statement in which the expression has
been omitted. A substatement may in fact be a list of statements, connected via their TREE_
CHAINs. So, you should always process the statement tree by looping over substatements,
like this:

void process_stmt (stmt)

tree stmt;

{

while (stmt)

{

switch (TREE_CODE (stmt))

{

case IF_STMT:

process_stmt (THEN_CLAUSE (stmt));

/* More processing here. */

128 GNU Compiler Collection (GCC) Internals

break;

...

}

stmt = TREE_CHAIN (stmt);

}

}

In other words, while the then clause of an if statement in C++ can be only one statement
(although that one statement may be a compound statement), the intermediate represen-
tation will sometimes use several statements chained together.

ASM_EXPR

Used to represent an inline assembly statement. For an inline assembly state-
ment like:

asm ("mov x, y");

The ASM_STRING macro will return a STRING_CST node for "mov x, y". If
the original statement made use of the extended-assembly syntax, then ASM_
OUTPUTS, ASM_INPUTS, and ASM_CLOBBERS will be the outputs, inputs, and
clobbers for the statement, represented as STRING_CST nodes. The extended-
assembly syntax looks like:

asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

The first string is the ASM_STRING, containing the instruction template. The
next two strings are the output and inputs, respectively; this statement has no
clobbers. As this example indicates, “plain” assembly statements are merely
a special case of extended assembly statements; they have no cv-qualifiers,
outputs, inputs, or clobbers. All of the strings will be NUL-terminated, and will
contain no embedded NUL-characters.

If the assembly statement is declared volatile, or if the statement was not
an extended assembly statement, and is therefore implicitly volatile, then the
predicate ASM_VOLATILE_P will hold of the ASM_EXPR.

BREAK_STMT
Used to represent a break statement. There are no additional fields.

CASE_LABEL_EXPR
Use to represent a case label, range of case labels, or a default label. If
CASE_LOW is NULL_TREE, then this is a default label. Otherwise, if CASE_HIGH
is NULL_TREE, then this is an ordinary case label. In this case, CASE_LOW is
an expression giving the value of the label. Both CASE_LOW and CASE_HIGH
are INTEGER_CST nodes. These values will have the same type as the condition
expression in the switch statement.

Otherwise, if both CASE_LOW and CASE_HIGH are defined, the statement is a
range of case labels. Such statements originate with the extension that allows
users to write things of the form:

case 2 ... 5:

The first value will be CASE_LOW, while the second will be CASE_HIGH.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 129

CLEANUP_STMT
Used to represent an action that should take place upon exit from the enclos-
ing scope. Typically, these actions are calls to destructors for local objects,
but back ends cannot rely on this fact. If these nodes are in fact representing
such destructors, CLEANUP_DECL will be the VAR_DECL destroyed. Otherwise,
CLEANUP_DECL will be NULL_TREE. In any case, the CLEANUP_EXPR is the ex-
pression to execute. The cleanups executed on exit from a scope should be run
in the reverse order of the order in which the associated CLEANUP_STMTs were
encountered.

CONTINUE_STMT
Used to represent a continue statement. There are no additional fields.

CTOR_STMT
Used to mark the beginning (if CTOR_BEGIN_P holds) or end (if CTOR_END_P
holds of the main body of a constructor. See also SUBOBJECT for more informa-
tion on how to use these nodes.

DECL_STMT
Used to represent a local declaration. The DECL_STMT_DECL macro can be
used to obtain the entity declared. This declaration may be a LABEL_DECL,
indicating that the label declared is a local label. (As an extension, GCC
allows the declaration of labels with scope.) In C, this declaration may be a
FUNCTION_DECL, indicating the use of the GCC nested function extension. For
more information, see Section 9.6 [Functions], page 123.

DO_STMT

Used to represent a do loop. The body of the loop is given by DO_BODY while
the termination condition for the loop is given by DO_COND. The condition for
a do-statement is always an expression.

EMPTY_CLASS_EXPR
Used to represent a temporary object of a class with no data whose address is
never taken. (All such objects are interchangeable.) The TREE_TYPE represents
the type of the object.

EXPR_STMT
Used to represent an expression statement. Use EXPR_STMT_EXPR to obtain the
expression.

FOR_STMT

Used to represent a for statement. The FOR_INIT_STMT is the initialization
statement for the loop. The FOR_COND is the termination condition. The FOR_
EXPR is the expression executed right before the FOR_COND on each loop iteration;
often, this expression increments a counter. The body of the loop is given by
FOR_BODY. Note that FOR_INIT_STMT and FOR_BODY return statements, while
FOR_COND and FOR_EXPR return expressions.

GOTO_EXPR
Used to represent a goto statement. The GOTO_DESTINATION will usually be
a LABEL_DECL. However, if the “computed goto” extension has been used, the

130 GNU Compiler Collection (GCC) Internals

GOTO_DESTINATION will be an arbitrary expression indicating the destination.
This expression will always have pointer type.

HANDLER

Used to represent a C++ catch block. The HANDLER_TYPE is the type of ex-
ception that will be caught by this handler; it is equal (by pointer equality) to
NULL if this handler is for all types. HANDLER_PARMS is the DECL_STMT for the
catch parameter, and HANDLER_BODY is the code for the block itself.

IF_STMT

Used to represent an if statement. The IF_COND is the expression.
If the condition is a TREE_LIST, then the TREE_PURPOSE is a statement (usually
a DECL_STMT). Each time the condition is evaluated, the statement should be
executed. Then, the TREE_VALUE should be used as the conditional expression
itself. This representation is used to handle C++ code like this:

if (int i = 7) ...

where there is a new local variable (or variables) declared within the condition.
The THEN_CLAUSE represents the statement given by the then condition, while
the ELSE_CLAUSE represents the statement given by the else condition.

LABEL_EXPR
Used to represent a label. The LABEL_DECL declared by this statement can be
obtained with the LABEL_EXPR_LABEL macro. The IDENTIFIER_NODE giving the
name of the label can be obtained from the LABEL_DECL with DECL_NAME.

RETURN_STMT
Used to represent a return statement. The RETURN_EXPR is the expression
returned; it will be NULL_TREE if the statement was just

return;

SUBOBJECT
In a constructor, these nodes are used to mark the point at which a subobject
of this is fully constructed. If, after this point, an exception is thrown before a
CTOR_STMT with CTOR_END_P set is encountered, the SUBOBJECT_CLEANUP must
be executed. The cleanups must be executed in the reverse order in which they
appear.

SWITCH_STMT
Used to represent a switch statement. The SWITCH_STMT_COND is the expres-
sion on which the switch is occurring. See the documentation for an IF_STMT
for more information on the representation used for the condition. The SWITCH_
STMT_BODY is the body of the switch statement. The SWITCH_STMT_TYPE is the
original type of switch expression as given in the source, before any compiler
conversions.

TRY_BLOCK
Used to represent a try block. The body of the try block is given by TRY_
STMTS. Each of the catch blocks is a HANDLER node. The first handler is given
by TRY_HANDLERS. Subsequent handlers are obtained by following the TREE_
CHAIN link from one handler to the next. The body of the handler is given by
HANDLER_BODY.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 131

If CLEANUP_P holds of the TRY_BLOCK, then the TRY_HANDLERS will not be a
HANDLER node. Instead, it will be an expression that should be executed if
an exception is thrown in the try block. It must rethrow the exception after
executing that code. And, if an exception is thrown while the expression is
executing, terminate must be called.

USING_STMT
Used to represent a using directive. The namespace is given by USING_STMT_
NAMESPACE, which will be a NAMESPACE DECL. This node is needed inside
template functions, to implement using directives during instantiation.

WHILE_STMT
Used to represent a while loop. The WHILE_COND is the termination condition
for the loop. See the documentation for an IF_STMT for more information on
the representation used for the condition.
The WHILE_BODY is the body of the loop.

9.7 Attributes in trees

Attributes, as specified using the __attribute__ keyword, are represented internally as a
TREE_LIST. The TREE_PURPOSE is the name of the attribute, as an IDENTIFIER_NODE. The
TREE_VALUE is a TREE_LIST of the arguments of the attribute, if any, or NULL_TREE if there
are no arguments; the arguments are stored as the TREE_VALUE of successive entries in the
list, and may be identifiers or expressions. The TREE_CHAIN of the attribute is the next
attribute in a list of attributes applying to the same declaration or type, or NULL_TREE if
there are no further attributes in the list.

Attributes may be attached to declarations and to types; these attributes may be accessed
with the following macros. All attributes are stored in this way, and many also cause other
changes to the declaration or type or to other internal compiler data structures.

[Tree Macro]tree DECL_ATTRIBUTES (tree decl)
This macro returns the attributes on the declaration decl.

[Tree Macro]tree TYPE_ATTRIBUTES (tree type)
This macro returns the attributes on the type type.

9.8 Expressions

The internal representation for expressions is for the most part quite straightforward. How-
ever, there are a few facts that one must bear in mind. In particular, the expression “tree”
is actually a directed acyclic graph. (For example there may be many references to the
integer constant zero throughout the source program; many of these will be represented by
the same expression node.) You should not rely on certain kinds of node being shared, nor
should you rely on certain kinds of nodes being unshared.

The following macros can be used with all expression nodes:

TREE_TYPE
Returns the type of the expression. This value may not be precisely the same
type that would be given the expression in the original program.

132 GNU Compiler Collection (GCC) Internals

In what follows, some nodes that one might expect to always have type bool are docu-
mented to have either integral or boolean type. At some point in the future, the C front
end may also make use of this same intermediate representation, and at this point these
nodes will certainly have integral type. The previous sentence is not meant to imply that
the C++ front end does not or will not give these nodes integral type.

Below, we list the various kinds of expression nodes. Except where noted otherwise, the
operands to an expression are accessed using the TREE_OPERAND macro. For example, to
access the first operand to a binary plus expression expr, use:

TREE_OPERAND (expr, 0)

As this example indicates, the operands are zero-indexed.

All the expressions starting with OMP_ represent directives and clauses used by the
OpenMP API http://www.openmp.org/.

The table below begins with constants, moves on to unary expressions, then proceeds to
binary expressions, and concludes with various other kinds of expressions:

INTEGER_CST
These nodes represent integer constants. Note that the type of these constants
is obtained with TREE_TYPE; they are not always of type int. In particular,
char constants are represented with INTEGER_CST nodes. The value of the
integer constant e is given by

((TREE_INT_CST_HIGH (e) << HOST_BITS_PER_WIDE_INT)

+ TREE_INST_CST_LOW (e))

HOST BITS PER WIDE INT is at least thirty-two on all platforms. Both
TREE_INT_CST_HIGH and TREE_INT_CST_LOW return a HOST_WIDE_INT. The
value of an INTEGER_CST is interpreted as a signed or unsigned quantity de-
pending on the type of the constant. In general, the expression given above will
overflow, so it should not be used to calculate the value of the constant.

The variable integer_zero_node is an integer constant with value zero. Sim-
ilarly, integer_one_node is an integer constant with value one. The size_
zero_node and size_one_node variables are analogous, but have type size_t
rather than int.

The function tree_int_cst_lt is a predicate which holds if its first argument
is less than its second. Both constants are assumed to have the same signed-
ness (i.e., either both should be signed or both should be unsigned.) The full
width of the constant is used when doing the comparison; the usual rules about
promotions and conversions are ignored. Similarly, tree_int_cst_equal holds
if the two constants are equal. The tree_int_cst_sgn function returns the
sign of a constant. The value is 1, 0, or -1 according on whether the constant
is greater than, equal to, or less than zero. Again, the signedness of the con-
stant’s type is taken into account; an unsigned constant is never less than zero,
no matter what its bit-pattern.

REAL_CST

FIXME: Talk about how to obtain representations of this constant, do compar-
isons, and so forth.

http://www.openmp.org/

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 133

FIXED_CST
These nodes represent fixed-point constants. The type of these constants is
obtained with TREE_TYPE. TREE_FIXED_CST_PTR points to to struct fixed value;
TREE_FIXED_CST returns the structure itself. Struct fixed value contains data
with the size of two HOST BITS PER WIDE INT and mode as the associated
fixed-point machine mode for data.

COMPLEX_CST
These nodes are used to represent complex number constants, that is a __
complex__ whose parts are constant nodes. The TREE_REALPART and TREE_
IMAGPART return the real and the imaginary parts respectively.

VECTOR_CST
These nodes are used to represent vector constants, whose parts are constant
nodes. Each individual constant node is either an integer or a double constant
node. The first operand is a TREE_LIST of the constant nodes and is accessed
through TREE_VECTOR_CST_ELTS.

STRING_CST
These nodes represent string-constants. The TREE_STRING_LENGTH returns the
length of the string, as an int. The TREE_STRING_POINTER is a char* contain-
ing the string itself. The string may not be NUL-terminated, and it may contain
embedded NUL characters. Therefore, the TREE_STRING_LENGTH includes the
trailing NUL if it is present.

For wide string constants, the TREE_STRING_LENGTH is the number of bytes in
the string, and the TREE_STRING_POINTER points to an array of the bytes of
the string, as represented on the target system (that is, as integers in the target
endianness). Wide and non-wide string constants are distinguished only by the
TREE_TYPE of the STRING_CST.

FIXME: The formats of string constants are not well-defined when the target
system bytes are not the same width as host system bytes.

PTRMEM_CST
These nodes are used to represent pointer-to-member constants. The PTRMEM_
CST_CLASS is the class type (either a RECORD_TYPE or UNION_TYPE within which
the pointer points), and the PTRMEM_CST_MEMBER is the declaration for the
pointed to object. Note that the DECL_CONTEXT for the PTRMEM_CST_MEMBER
is in general different from the PTRMEM_CST_CLASS. For example, given:

struct B { int i; };

struct D : public B {};

int D::*dp = &D::i;

The PTRMEM_CST_CLASS for &D::i is D, even though the DECL_CONTEXT for the
PTRMEM_CST_MEMBER is B, since B::i is a member of B, not D.

VAR_DECL

These nodes represent variables, including static data members. For more in-
formation, see Section 9.5 [Declarations], page 118.

134 GNU Compiler Collection (GCC) Internals

NEGATE_EXPR
These nodes represent unary negation of the single operand, for both integer
and floating-point types. The type of negation can be determined by looking
at the type of the expression.

The behavior of this operation on signed arithmetic overflow is controlled by
the flag_wrapv and flag_trapv variables.

ABS_EXPR These nodes represent the absolute value of the single operand, for both integer
and floating-point types. This is typically used to implement the abs, labs and
llabs builtins for integer types, and the fabs, fabsf and fabsl builtins for
floating point types. The type of abs operation can be determined by looking
at the type of the expression.

This node is not used for complex types. To represent the modulus or complex
abs of a complex value, use the BUILT_IN_CABS, BUILT_IN_CABSF or BUILT_IN_
CABSL builtins, as used to implement the C99 cabs, cabsf and cabsl built-in
functions.

BIT_NOT_EXPR
These nodes represent bitwise complement, and will always have integral type.
The only operand is the value to be complemented.

TRUTH_NOT_EXPR
These nodes represent logical negation, and will always have integral (or
boolean) type. The operand is the value being negated. The type of the
operand and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.

PREDECREMENT_EXPR
PREINCREMENT_EXPR
POSTDECREMENT_EXPR
POSTINCREMENT_EXPR

These nodes represent increment and decrement expressions. The value of the
single operand is computed, and the operand incremented or decremented. In
the case of PREDECREMENT_EXPR and PREINCREMENT_EXPR, the value of the ex-
pression is the value resulting after the increment or decrement; in the case of
POSTDECREMENT_EXPR and POSTINCREMENT_EXPR is the value before the incre-
ment or decrement occurs. The type of the operand, like that of the result, will
be either integral, boolean, or floating-point.

ADDR_EXPR
These nodes are used to represent the address of an object. (These expres-
sions will always have pointer or reference type.) The operand may be another
expression, or it may be a declaration.

As an extension, GCC allows users to take the address of a label. In this case,
the operand of the ADDR_EXPR will be a LABEL_DECL. The type of such an
expression is void*.

If the object addressed is not an lvalue, a temporary is created, and the address
of the temporary is used.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 135

INDIRECT_REF
These nodes are used to represent the object pointed to by a pointer. The
operand is the pointer being dereferenced; it will always have pointer or refer-
ence type.

FIX_TRUNC_EXPR
These nodes represent conversion of a floating-point value to an integer. The
single operand will have a floating-point type, while the complete expression
will have an integral (or boolean) type. The operand is rounded towards zero.

FLOAT_EXPR
These nodes represent conversion of an integral (or boolean) value to a floating-
point value. The single operand will have integral type, while the complete
expression will have a floating-point type.
FIXME: How is the operand supposed to be rounded? Is this dependent on
‘-mieee’?

COMPLEX_EXPR
These nodes are used to represent complex numbers constructed from two ex-
pressions of the same (integer or real) type. The first operand is the real part
and the second operand is the imaginary part.

CONJ_EXPR
These nodes represent the conjugate of their operand.

REALPART_EXPR
IMAGPART_EXPR

These nodes represent respectively the real and the imaginary parts of complex
numbers (their sole argument).

NON_LVALUE_EXPR
These nodes indicate that their one and only operand is not an lvalue. A back
end can treat these identically to the single operand.

NOP_EXPR These nodes are used to represent conversions that do not require any code-
generation. For example, conversion of a char* to an int* does not require any
code be generated; such a conversion is represented by a NOP_EXPR. The single
operand is the expression to be converted. The conversion from a pointer to a
reference is also represented with a NOP_EXPR.

CONVERT_EXPR
These nodes are similar to NOP_EXPRs, but are used in those situations where
code may need to be generated. For example, if an int* is converted to an
int code may need to be generated on some platforms. These nodes are never
used for C++-specific conversions, like conversions between pointers to different
classes in an inheritance hierarchy. Any adjustments that need to be made in
such cases are always indicated explicitly. Similarly, a user-defined conversion
is never represented by a CONVERT_EXPR; instead, the function calls are made
explicit.

FIXED_CONVERT_EXPR
These nodes are used to represent conversions that involve fixed-point values.
For example, from a fixed-point value to another fixed-point value, from an

136 GNU Compiler Collection (GCC) Internals

integer to a fixed-point value, from a fixed-point value to an integer, from a
floating-point value to a fixed-point value, or from a fixed-point value to a
floating-point value.

THROW_EXPR
These nodes represent throw expressions. The single operand is an expression
for the code that should be executed to throw the exception. However, there
is one implicit action not represented in that expression; namely the call to
__throw. This function takes no arguments. If setjmp/longjmp exceptions are
used, the function __sjthrow is called instead. The normal GCC back end uses
the function emit_throw to generate this code; you can examine this function
to see what needs to be done.

LSHIFT_EXPR
RSHIFT_EXPR

These nodes represent left and right shifts, respectively. The first operand is
the value to shift; it will always be of integral type. The second operand is
an expression for the number of bits by which to shift. Right shift should be
treated as arithmetic, i.e., the high-order bits should be zero-filled when the
expression has unsigned type and filled with the sign bit when the expression
has signed type. Note that the result is undefined if the second operand is larger
than or equal to the first operand’s type size.

BIT_IOR_EXPR
BIT_XOR_EXPR
BIT_AND_EXPR

These nodes represent bitwise inclusive or, bitwise exclusive or, and bitwise
and, respectively. Both operands will always have integral type.

TRUTH_ANDIF_EXPR
TRUTH_ORIF_EXPR

These nodes represent logical “and” and logical “or”, respectively. These oper-
ators are not strict; i.e., the second operand is evaluated only if the value of the
expression is not determined by evaluation of the first operand. The type of the
operands and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.

TRUTH_AND_EXPR
TRUTH_OR_EXPR
TRUTH_XOR_EXPR

These nodes represent logical and, logical or, and logical exclusive or. They are
strict; both arguments are always evaluated. There are no corresponding oper-
ators in C or C++, but the front end will sometimes generate these expressions
anyhow, if it can tell that strictness does not matter. The type of the operands
and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.

POINTER_PLUS_EXPR
This node represents pointer arithmetic. The first operand is always a
pointer/reference type. The second operand is always an unsigned integer type

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 137

compatible with sizetype. This is the only binary arithmetic operand that can
operate on pointer types.

PLUS_EXPR
MINUS_EXPR
MULT_EXPR

These nodes represent various binary arithmetic operations. Respectively, these
operations are addition, subtraction (of the second operand from the first) and
multiplication. Their operands may have either integral or floating type, but
there will never be case in which one operand is of floating type and the other
is of integral type.
The behavior of these operations on signed arithmetic overflow is controlled by
the flag_wrapv and flag_trapv variables.

RDIV_EXPR
This node represents a floating point division operation.

TRUNC_DIV_EXPR
FLOOR_DIV_EXPR
CEIL_DIV_EXPR
ROUND_DIV_EXPR

These nodes represent integer division operations that return an integer result.
TRUNC_DIV_EXPR rounds towards zero, FLOOR_DIV_EXPR rounds towards nega-
tive infinity, CEIL_DIV_EXPR rounds towards positive infinity and ROUND_DIV_
EXPR rounds to the closest integer. Integer division in C and C++ is truncating,
i.e. TRUNC_DIV_EXPR.
The behavior of these operations on signed arithmetic overflow, when dividing
the minimum signed integer by minus one, is controlled by the flag_wrapv and
flag_trapv variables.

TRUNC_MOD_EXPR
FLOOR_MOD_EXPR
CEIL_MOD_EXPR
ROUND_MOD_EXPR

These nodes represent the integer remainder or modulus operation. The integer
modulus of two operands a and b is defined as a - (a/b)*b where the division
calculated using the corresponding division operator. Hence for TRUNC_MOD_
EXPR this definition assumes division using truncation towards zero, i.e. TRUNC_
DIV_EXPR. Integer remainder in C and C++ uses truncating division, i.e. TRUNC_
MOD_EXPR.

EXACT_DIV_EXPR
The EXACT_DIV_EXPR code is used to represent integer divisions where the nu-
merator is known to be an exact multiple of the denominator. This allows the
backend to choose between the faster of TRUNC_DIV_EXPR, CEIL_DIV_EXPR and
FLOOR_DIV_EXPR for the current target.

ARRAY_REF
These nodes represent array accesses. The first operand is the array; the second
is the index. To calculate the address of the memory accessed, you must scale

138 GNU Compiler Collection (GCC) Internals

the index by the size of the type of the array elements. The type of these
expressions must be the type of a component of the array. The third and
fourth operands are used after gimplification to represent the lower bound and
component size but should not be used directly; call array_ref_low_bound and
array_ref_element_size instead.

ARRAY_RANGE_REF
These nodes represent access to a range (or “slice”) of an array. The operands
are the same as that for ARRAY_REF and have the same meanings. The type of
these expressions must be an array whose component type is the same as that
of the first operand. The range of that array type determines the amount of
data these expressions access.

TARGET_MEM_REF
These nodes represent memory accesses whose address directly map to an ad-
dressing mode of the target architecture. The first argument is TMR_SYMBOL and
must be a VAR_DECL of an object with a fixed address. The second argument is
TMR_BASE and the third one is TMR_INDEX. The fourth argument is TMR_STEP
and must be an INTEGER_CST. The fifth argument is TMR_OFFSET and must
be an INTEGER_CST. Any of the arguments may be NULL if the appropriate
component does not appear in the address. Address of the TARGET_MEM_REF is
determined in the following way.

&TMR_SYMBOL + TMR_BASE + TMR_INDEX * TMR_STEP + TMR_OFFSET

The sixth argument is the reference to the original memory access, which is
preserved for the purposes of the RTL alias analysis. The seventh argument is
a tag representing the results of tree level alias analysis.

LT_EXPR
LE_EXPR
GT_EXPR
GE_EXPR
EQ_EXPR
NE_EXPR These nodes represent the less than, less than or equal to, greater than, greater

than or equal to, equal, and not equal comparison operators. The first and
second operand with either be both of integral type or both of floating type.
The result type of these expressions will always be of integral or boolean type.
These operations return the result type’s zero value for false, and the result
type’s one value for true.

For floating point comparisons, if we honor IEEE NaNs and either operand is
NaN, then NE_EXPR always returns true and the remaining operators always
return false. On some targets, comparisons against an IEEE NaN, other than
equality and inequality, may generate a floating point exception.

ORDERED_EXPR
UNORDERED_EXPR

These nodes represent non-trapping ordered and unordered comparison opera-
tors. These operations take two floating point operands and determine whether
they are ordered or unordered relative to each other. If either operand is an

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 139

IEEE NaN, their comparison is defined to be unordered, otherwise the compar-
ison is defined to be ordered. The result type of these expressions will always
be of integral or boolean type. These operations return the result type’s zero
value for false, and the result type’s one value for true.

UNLT_EXPR
UNLE_EXPR
UNGT_EXPR
UNGE_EXPR
UNEQ_EXPR
LTGT_EXPR

These nodes represent the unordered comparison operators. These operations
take two floating point operands and determine whether the operands are un-
ordered or are less than, less than or equal to, greater than, greater than or
equal to, or equal respectively. For example, UNLT_EXPR returns true if either
operand is an IEEE NaN or the first operand is less than the second. With the
possible exception of LTGT_EXPR, all of these operations are guaranteed not to
generate a floating point exception. The result type of these expressions will
always be of integral or boolean type. These operations return the result type’s
zero value for false, and the result type’s one value for true.

MODIFY_EXPR
These nodes represent assignment. The left-hand side is the first operand; the
right-hand side is the second operand. The left-hand side will be a VAR_DECL,
INDIRECT_REF, COMPONENT_REF, or other lvalue.
These nodes are used to represent not only assignment with ‘=’ but also com-
pound assignments (like ‘+=’), by reduction to ‘=’ assignment. In other words,
the representation for ‘i += 3’ looks just like that for ‘i = i + 3’.

INIT_EXPR
These nodes are just like MODIFY_EXPR, but are used only when a variable
is initialized, rather than assigned to subsequently. This means that we can
assume that the target of the initialization is not used in computing its own
value; any reference to the lhs in computing the rhs is undefined.

COMPONENT_REF
These nodes represent non-static data member accesses. The first operand is
the object (rather than a pointer to it); the second operand is the FIELD_DECL
for the data member. The third operand represents the byte offset of the field,
but should not be used directly; call component_ref_field_offset instead.

COMPOUND_EXPR
These nodes represent comma-expressions. The first operand is an expression
whose value is computed and thrown away prior to the evaluation of the second
operand. The value of the entire expression is the value of the second operand.

COND_EXPR
These nodes represent ?: expressions. The first operand is of boolean or integral
type. If it evaluates to a nonzero value, the second operand should be evaluated,
and returned as the value of the expression. Otherwise, the third operand is
evaluated, and returned as the value of the expression.

140 GNU Compiler Collection (GCC) Internals

The second operand must have the same type as the entire expression, unless
it unconditionally throws an exception or calls a noreturn function, in which
case it should have void type. The same constraints apply to the third operand.
This allows array bounds checks to be represented conveniently as (i >= 0 &&
i < 10) ? i : abort().
As a GNU extension, the C language front-ends allow the second operand of the
?: operator may be omitted in the source. For example, x ? : 3 is equivalent
to x ? x : 3, assuming that x is an expression without side-effects. In the
tree representation, however, the second operand is always present, possibly
protected by SAVE_EXPR if the first argument does cause side-effects.

CALL_EXPR
These nodes are used to represent calls to functions, including non-static mem-
ber functions. CALL_EXPRs are implemented as expression nodes with a variable
number of operands. Rather than using TREE_OPERAND to extract them, it is
preferable to use the specialized accessor macros and functions that operate
specifically on CALL_EXPR nodes.
CALL_EXPR_FN returns a pointer to the function to call; it is always an expression
whose type is a POINTER_TYPE.
The number of arguments to the call is returned by call_expr_nargs, while
the arguments themselves can be accessed with the CALL_EXPR_ARG macro. The
arguments are zero-indexed and numbered left-to-right. You can iterate over
the arguments using FOR_EACH_CALL_EXPR_ARG, as in:

tree call, arg;

call_expr_arg_iterator iter;

FOR_EACH_CALL_EXPR_ARG (arg, iter, call)

/* arg is bound to successive arguments of call. */

...;

For non-static member functions, there will be an operand corresponding to
the this pointer. There will always be expressions corresponding to all of the
arguments, even if the function is declared with default arguments and some
arguments are not explicitly provided at the call sites.
CALL_EXPRs also have a CALL_EXPR_STATIC_CHAIN operand that is used to im-
plement nested functions. This operand is otherwise null.

STMT_EXPR
These nodes are used to represent GCC’s statement-expression extension. The
statement-expression extension allows code like this:

int f() { return ({ int j; j = 3; j + 7; }); }

In other words, an sequence of statements may occur where a single expression
would normally appear. The STMT_EXPR node represents such an expression.
The STMT_EXPR_STMT gives the statement contained in the expression. The
value of the expression is the value of the last sub-statement in the body. More
precisely, the value is the value computed by the last statement nested inside
BIND_EXPR, TRY_FINALLY_EXPR, or TRY_CATCH_EXPR. For example, in:

({ 3; })

the value is 3 while in:

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 141

({ if (x) { 3; } })

there is no value. If the STMT_EXPR does not yield a value, it’s type will be
void.

BIND_EXPR
These nodes represent local blocks. The first operand is a list of variables,
connected via their TREE_CHAIN field. These will never require cleanups. The
scope of these variables is just the body of the BIND_EXPR. The body of the
BIND_EXPR is the second operand.

LOOP_EXPR
These nodes represent “infinite” loops. The LOOP_EXPR_BODY represents the
body of the loop. It should be executed forever, unless an EXIT_EXPR is en-
countered.

EXIT_EXPR
These nodes represent conditional exits from the nearest enclosing LOOP_EXPR.
The single operand is the condition; if it is nonzero, then the loop should be
exited. An EXIT_EXPR will only appear within a LOOP_EXPR.

CLEANUP_POINT_EXPR
These nodes represent full-expressions. The single operand is an expression
to evaluate. Any destructor calls engendered by the creation of temporaries
during the evaluation of that expression should be performed immediately after
the expression is evaluated.

CONSTRUCTOR
These nodes represent the brace-enclosed initializers for a structure or array.
The first operand is reserved for use by the back end. The second operand
is a TREE_LIST. If the TREE_TYPE of the CONSTRUCTOR is a RECORD_TYPE or
UNION_TYPE, then the TREE_PURPOSE of each node in the TREE_LIST will be a
FIELD_DECL and the TREE_VALUE of each node will be the expression used to
initialize that field.
If the TREE_TYPE of the CONSTRUCTOR is an ARRAY_TYPE, then the TREE_PURPOSE
of each element in the TREE_LIST will be an INTEGER_CST or a RANGE_EXPR
of two INTEGER_CSTs. A single INTEGER_CST indicates which element of the
array (indexed from zero) is being assigned to. A RANGE_EXPR indicates an
inclusive range of elements to initialize. In both cases the TREE_VALUE is the
corresponding initializer. It is re-evaluated for each element of a RANGE_EXPR.
If the TREE_PURPOSE is NULL_TREE, then the initializer is for the next available
array element.
In the front end, you should not depend on the fields appearing in any particular
order. However, in the middle end, fields must appear in declaration order. You
should not assume that all fields will be represented. Unrepresented fields will
be set to zero.

COMPOUND_LITERAL_EXPR
These nodes represent ISO C99 compound literals. The COMPOUND_LITERAL_
EXPR_DECL_STMT is a DECL_STMT containing an anonymous VAR_DECL for the
unnamed object represented by the compound literal; the DECL_INITIAL of that

142 GNU Compiler Collection (GCC) Internals

VAR_DECL is a CONSTRUCTOR representing the brace-enclosed list of initializers in
the compound literal. That anonymous VAR_DECL can also be accessed directly
by the COMPOUND_LITERAL_EXPR_DECL macro.

SAVE_EXPR
A SAVE_EXPR represents an expression (possibly involving side-effects) that is
used more than once. The side-effects should occur only the first time the
expression is evaluated. Subsequent uses should just reuse the computed value.
The first operand to the SAVE_EXPR is the expression to evaluate. The side-
effects should be executed where the SAVE_EXPR is first encountered in a depth-
first preorder traversal of the expression tree.

TARGET_EXPR
A TARGET_EXPR represents a temporary object. The first operand is a VAR_
DECL for the temporary variable. The second operand is the initializer for the
temporary. The initializer is evaluated and, if non-void, copied (bitwise) into
the temporary. If the initializer is void, that means that it will perform the
initialization itself.
Often, a TARGET_EXPR occurs on the right-hand side of an assignment, or as
the second operand to a comma-expression which is itself the right-hand side
of an assignment, etc. In this case, we say that the TARGET_EXPR is “normal”;
otherwise, we say it is “orphaned”. For a normal TARGET_EXPR the temporary
variable should be treated as an alias for the left-hand side of the assignment,
rather than as a new temporary variable.
The third operand to the TARGET_EXPR, if present, is a cleanup-expression (i.e.,
destructor call) for the temporary. If this expression is orphaned, then this
expression must be executed when the statement containing this expression is
complete. These cleanups must always be executed in the order opposite to
that in which they were encountered. Note that if a temporary is created on
one branch of a conditional operator (i.e., in the second or third operand to a
COND_EXPR), the cleanup must be run only if that branch is actually executed.
See STMT_IS_FULL_EXPR_P for more information about running these cleanups.

AGGR_INIT_EXPR
An AGGR_INIT_EXPR represents the initialization as the return value of a func-
tion call, or as the result of a constructor. An AGGR_INIT_EXPR will only appear
as a full-expression, or as the second operand of a TARGET_EXPR. AGGR_INIT_
EXPRs have a representation similar to that of CALL_EXPRs. You can use the
AGGR_INIT_EXPR_FN and AGGR_INIT_EXPR_ARG macros to access the function
to call and the arguments to pass.
If AGGR_INIT_VIA_CTOR_P holds of the AGGR_INIT_EXPR, then the initialization
is via a constructor call. The address of the AGGR_INIT_EXPR_SLOT operand,
which is always a VAR_DECL, is taken, and this value replaces the first argument
in the argument list.
In either case, the expression is void.

VA_ARG_EXPR
This node is used to implement support for the C/C++ variable argument-
list mechanism. It represents expressions like va_arg (ap, type). Its TREE_

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 143

TYPE yields the tree representation for type and its sole argument yields the
representation for ap.

CHANGE_DYNAMIC_TYPE_EXPR
Indicates the special aliasing required by C++ placement new. It has two
operands: a type and a location. It means that the dynamic type of the loca-
tion is changing to be the specified type. The alias analysis code takes this into
account when doing type based alias analysis.

OMP_PARALLEL
Represents #pragma omp parallel [clause1 ... clauseN]. It has four
operands:

Operand OMP_PARALLEL_BODY is valid while in GENERIC and High GIMPLE
forms. It contains the body of code to be executed by all the threads. During
GIMPLE lowering, this operand becomes NULL and the body is emitted linearly
after OMP_PARALLEL.

Operand OMP_PARALLEL_CLAUSES is the list of clauses associated with the di-
rective.

Operand OMP_PARALLEL_FN is created by pass_lower_omp, it contains the
FUNCTION_DECL for the function that will contain the body of the parallel
region.

Operand OMP_PARALLEL_DATA_ARG is also created by pass_lower_omp. If there
are shared variables to be communicated to the children threads, this operand
will contain the VAR_DECL that contains all the shared values and variables.

OMP_FOR

Represents #pragma omp for [clause1 ... clauseN]. It has 5 operands:

Operand OMP_FOR_BODY contains the loop body.

Operand OMP_FOR_CLAUSES is the list of clauses associated with the directive.

Operand OMP_FOR_INIT is the loop initialization code of the form VAR = N1.

Operand OMP_FOR_COND is the loop conditional expression of the form VAR
{<,>,<=,>=} N2.

Operand OMP_FOR_INCR is the loop index increment of the form VAR {+=,-=}
INCR.

Operand OMP_FOR_PRE_BODY contains side-effect code from operands OMP_FOR_
INIT, OMP_FOR_COND and OMP_FOR_INC. These side-effects are part of the OMP_
FOR block but must be evaluated before the start of loop body.

The loop index variable VAR must be a signed integer variable, which is implicitly
private to each thread. Bounds N1 and N2 and the increment expression INCR
are required to be loop invariant integer expressions that are evaluated without
any synchronization. The evaluation order, frequency of evaluation and side-
effects are unspecified by the standard.

OMP_SECTIONS
Represents #pragma omp sections [clause1 ... clauseN].

144 GNU Compiler Collection (GCC) Internals

Operand OMP_SECTIONS_BODY contains the sections body, which in turn con-
tains a set of OMP_SECTION nodes for each of the concurrent sections delimited
by #pragma omp section.
Operand OMP_SECTIONS_CLAUSES is the list of clauses associated with the di-
rective.

OMP_SECTION
Section delimiter for OMP_SECTIONS.

OMP_SINGLE
Represents #pragma omp single.
Operand OMP_SINGLE_BODY contains the body of code to be executed by a single
thread.
Operand OMP_SINGLE_CLAUSES is the list of clauses associated with the direc-
tive.

OMP_MASTER
Represents #pragma omp master.
Operand OMP_MASTER_BODY contains the body of code to be executed by the
master thread.

OMP_ORDERED
Represents #pragma omp ordered.
Operand OMP_ORDERED_BODY contains the body of code to be executed in the
sequential order dictated by the loop index variable.

OMP_CRITICAL
Represents #pragma omp critical [name].
Operand OMP_CRITICAL_BODY is the critical section.
Operand OMP_CRITICAL_NAME is an optional identifier to label the critical sec-
tion.

OMP_RETURN
This does not represent any OpenMP directive, it is an artificial marker to
indicate the end of the body of an OpenMP. It is used by the flow graph
(tree-cfg.c) and OpenMP region building code (omp-low.c).

OMP_CONTINUE
Similarly, this instruction does not represent an OpenMP directive, it is used
by OMP_FOR and OMP_SECTIONS to mark the place where the code needs to loop
to the next iteration (in the case of OMP_FOR) or the next section (in the case
of OMP_SECTIONS).
In some cases, OMP_CONTINUE is placed right before OMP_RETURN. But if there
are cleanups that need to occur right after the looping body, it will be emitted
between OMP_CONTINUE and OMP_RETURN.

OMP_ATOMIC
Represents #pragma omp atomic.
Operand 0 is the address at which the atomic operation is to be performed.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 145

Operand 1 is the expression to evaluate. The gimplifier tries three alternative
code generation strategies. Whenever possible, an atomic update built-in is
used. If that fails, a compare-and-swap loop is attempted. If that also fails, a
regular critical section around the expression is used.

OMP_CLAUSE
Represents clauses associated with one of the OMP_ directives. Clauses are rep-
resented by separate sub-codes defined in ‘tree.h’. Clauses codes can be one
of: OMP_CLAUSE_PRIVATE, OMP_CLAUSE_SHARED, OMP_CLAUSE_FIRSTPRIVATE,
OMP_CLAUSE_LASTPRIVATE, OMP_CLAUSE_COPYIN, OMP_CLAUSE_COPYPRIVATE,
OMP_CLAUSE_IF, OMP_CLAUSE_NUM_THREADS, OMP_CLAUSE_SCHEDULE,
OMP_CLAUSE_NOWAIT, OMP_CLAUSE_ORDERED, OMP_CLAUSE_DEFAULT, and
OMP_CLAUSE_REDUCTION. Each code represents the corresponding OpenMP
clause.

Clauses associated with the same directive are chained together via
OMP_CLAUSE_CHAIN. Those clauses that accept a list of variables are restricted
to exactly one, accessed with OMP_CLAUSE_VAR. Therefore, multiple variables
under the same clause C need to be represented as multiple C clauses chained
together. This facilitates adding new clauses during compilation.

VEC_LSHIFT_EXPR
VEC_RSHIFT_EXPR

These nodes represent whole vector left and right shifts, respectively. The first
operand is the vector to shift; it will always be of vector type. The second
operand is an expression for the number of bits by which to shift. Note that
the result is undefined if the second operand is larger than or equal to the first
operand’s type size.

VEC_WIDEN_MULT_HI_EXPR
VEC_WIDEN_MULT_LO_EXPR

These nodes represent widening vector multiplication of the high and low parts
of the two input vectors, respectively. Their operands are vectors that contain
the same number of elements (N) of the same integral type. The result is a
vector that contains half as many elements, of an integral type whose size is
twice as wide. In the case of VEC_WIDEN_MULT_HI_EXPR the high N/2 elements
of the two vector are multiplied to produce the vector of N/2 products. In the
case of VEC_WIDEN_MULT_LO_EXPR the low N/2 elements of the two vector are
multiplied to produce the vector of N/2 products.

VEC_UNPACK_HI_EXPR
VEC_UNPACK_LO_EXPR

These nodes represent unpacking of the high and low parts of the input vector,
respectively. The single operand is a vector that contains N elements of the
same integral or floating point type. The result is a vector that contains half
as many elements, of an integral or floating point type whose size is twice as
wide. In the case of VEC_UNPACK_HI_EXPR the high N/2 elements of the vector
are extracted and widened (promoted). In the case of VEC_UNPACK_LO_EXPR
the low N/2 elements of the vector are extracted and widened (promoted).

146 GNU Compiler Collection (GCC) Internals

VEC_UNPACK_FLOAT_HI_EXPR
VEC_UNPACK_FLOAT_LO_EXPR

These nodes represent unpacking of the high and low parts of the input vector,
where the values are converted from fixed point to floating point. The single
operand is a vector that contains N elements of the same integral type. The
result is a vector that contains half as many elements of a floating point type
whose size is twice as wide. In the case of VEC_UNPACK_HI_EXPR the high N/2
elements of the vector are extracted, converted and widened. In the case of VEC_
UNPACK_LO_EXPR the low N/2 elements of the vector are extracted, converted
and widened.

VEC_PACK_TRUNC_EXPR
This node represents packing of truncated elements of the two input vectors into
the output vector. Input operands are vectors that contain the same number
of elements of the same integral or floating point type. The result is a vector
that contains twice as many elements of an integral or floating point type whose
size is half as wide. The elements of the two vectors are demoted and merged
(concatenated) to form the output vector.

VEC_PACK_SAT_EXPR
This node represents packing of elements of the two input vectors into the
output vector using saturation. Input operands are vectors that contain the
same number of elements of the same integral type. The result is a vector that
contains twice as many elements of an integral type whose size is half as wide.
The elements of the two vectors are demoted and merged (concatenated) to
form the output vector.

VEC_PACK_FIX_TRUNC_EXPR
This node represents packing of elements of the two input vectors into the
output vector, where the values are converted from floating point to fixed point.
Input operands are vectors that contain the same number of elements of a
floating point type. The result is a vector that contains twice as many elements
of an integral type whose size is half as wide. The elements of the two vectors
are merged (concatenated) to form the output vector.

VEC_EXTRACT_EVEN_EXPR
VEC_EXTRACT_ODD_EXPR

These nodes represent extracting of the even/odd elements of the two input
vectors, respectively. Their operands and result are vectors that contain the
same number of elements of the same type.

VEC_INTERLEAVE_HIGH_EXPR
VEC_INTERLEAVE_LOW_EXPR

These nodes represent merging and interleaving of the high/low elements of
the two input vectors, respectively. The operands and the result are vectors
that contain the same number of elements (N) of the same type. In the case of
VEC_INTERLEAVE_HIGH_EXPR, the high N/2 elements of the first input vector are
interleaved with the high N/2 elements of the second input vector. In the case
of VEC_INTERLEAVE_LOW_EXPR, the low N/2 elements of the first input vector
are interleaved with the low N/2 elements of the second input vector.

Chapter 10: RTL Representation 147

10 RTL Representation

The last part of the compiler work is done on a low-level intermediate representation called
Register Transfer Language. In this language, the instructions to be output are described,
pretty much one by one, in an algebraic form that describes what the instruction does.

RTL is inspired by Lisp lists. It has both an internal form, made up of structures that
point at other structures, and a textual form that is used in the machine description and
in printed debugging dumps. The textual form uses nested parentheses to indicate the
pointers in the internal form.

10.1 RTL Object Types

RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors.
Expressions are the most important ones. An RTL expression (“RTX”, for short) is a C
structure, but it is usually referred to with a pointer; a type that is given the typedef name
rtx.

An integer is simply an int; their written form uses decimal digits. A wide integer is an
integral object whose type is HOST_WIDE_INT; their written form uses decimal digits.

A string is a sequence of characters. In core it is represented as a char * in usual C
fashion, and it is written in C syntax as well. However, strings in RTL may never be null.
If you write an empty string in a machine description, it is represented in core as a null
pointer rather than as a pointer to a null character. In certain contexts, these null pointers
instead of strings are valid. Within RTL code, strings are most commonly found inside
symbol_ref expressions, but they appear in other contexts in the RTL expressions that
make up machine descriptions.

In a machine description, strings are normally written with double quotes, as you would
in C. However, strings in machine descriptions may extend over many lines, which is invalid
C, and adjacent string constants are not concatenated as they are in C. Any string constant
may be surrounded with a single set of parentheses. Sometimes this makes the machine
description easier to read.

There is also a special syntax for strings, which can be useful when C code is embedded
in a machine description. Wherever a string can appear, it is also valid to write a C-style
brace block. The entire brace block, including the outermost pair of braces, is considered to
be the string constant. Double quote characters inside the braces are not special. Therefore,
if you write string constants in the C code, you need not escape each quote character with
a backslash.

A vector contains an arbitrary number of pointers to expressions. The number of elements
in the vector is explicitly present in the vector. The written form of a vector consists
of square brackets (‘[...]’) surrounding the elements, in sequence and with whitespace
separating them. Vectors of length zero are not created; null pointers are used instead.

Expressions are classified by expression codes (also called RTX codes). The expression
code is a name defined in ‘rtl.def’, which is also (in uppercase) a C enumeration constant.
The possible expression codes and their meanings are machine-independent. The code of
an RTX can be extracted with the macro GET_CODE (x) and altered with PUT_CODE (x,
newcode).

148 GNU Compiler Collection (GCC) Internals

The expression code determines how many operands the expression contains, and what
kinds of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand what
kind of object it is. Instead, you must know from its context—from the expression code of
the containing expression. For example, in an expression of code subreg, the first operand
is to be regarded as an expression and the second operand as an integer. In an expression
of code plus, there are two operands, both of which are to be regarded as expressions. In
a symbol_ref expression, there is one operand, which is to be regarded as a string.

Expressions are written as parentheses containing the name of the expression type, its
flags and machine mode if any, and then the operands of the expression (separated by
spaces).

Expression code names in the ‘md’ file are written in lowercase, but when they appear in C
code they are written in uppercase. In this manual, they are shown as follows: const_int.

In a few contexts a null pointer is valid where an expression is normally wanted. The
written form of this is (nil).

10.2 RTL Classes and Formats

The various expression codes are divided into several classes, which are represented by single
characters. You can determine the class of an RTX code with the macro GET_RTX_CLASS
(code). Currently, ‘rtl.def’ defines these classes:

RTX_OBJ An RTX code that represents an actual object, such as a register (REG) or a
memory location (MEM, SYMBOL_REF). LO_SUM) is also included; instead, SUBREG
and STRICT_LOW_PART are not in this class, but in class x.

RTX_CONST_OBJ
An RTX code that represents a constant object. HIGH is also included in this
class.

RTX_COMPARE
An RTX code for a non-symmetric comparison, such as GEU or LT.

RTX_COMM_COMPARE
An RTX code for a symmetric (commutative) comparison, such as EQ or
ORDERED.

RTX_UNARY
An RTX code for a unary arithmetic operation, such as NEG, NOT, or ABS. This
category also includes value extension (sign or zero) and conversions between
integer and floating point.

RTX_COMM_ARITH
An RTX code for a commutative binary operation, such as PLUS or AND. NE
and EQ are comparisons, so they have class <.

RTX_BIN_ARITH
An RTX code for a non-commutative binary operation, such as MINUS, DIV, or
ASHIFTRT.

Chapter 10: RTL Representation 149

RTX_BITFIELD_OPS
An RTX code for a bit-field operation. Currently only ZERO_EXTRACT and
SIGN_EXTRACT. These have three inputs and are lvalues (so they can be used
for insertion as well). See Section 10.11 [Bit-Fields], page 177.

RTX_TERNARY
An RTX code for other three input operations. Currently only IF_THEN_ELSE
and VEC_MERGE.

RTX_INSN An RTX code for an entire instruction: INSN, JUMP_INSN, and CALL_INSN. See
Section 10.18 [Insns], page 187.

RTX_MATCH
An RTX code for something that matches in insns, such as MATCH_DUP. These
only occur in machine descriptions.

RTX_AUTOINC
An RTX code for an auto-increment addressing mode, such as POST_INC.

RTX_EXTRA
All other RTX codes. This category includes the remaining codes used only in
machine descriptions (DEFINE_*, etc.). It also includes all the codes describing
side effects (SET, USE, CLOBBER, etc.) and the non-insns that may appear on
an insn chain, such as NOTE, BARRIER, and CODE_LABEL. SUBREG is also part of
this class.

For each expression code, ‘rtl.def’ specifies the number of contained objects and their
kinds using a sequence of characters called the format of the expression code. For example,
the format of subreg is ‘ei’.

These are the most commonly used format characters:

e An expression (actually a pointer to an expression).

i An integer.

w A wide integer.

s A string.

E A vector of expressions.

A few other format characters are used occasionally:

u ‘u’ is equivalent to ‘e’ except that it is printed differently in debugging dumps.
It is used for pointers to insns.

n ‘n’ is equivalent to ‘i’ except that it is printed differently in debugging dumps.
It is used for the line number or code number of a note insn.

S ‘S’ indicates a string which is optional. In the RTL objects in core, ‘S’ is
equivalent to ‘s’, but when the object is read, from an ‘md’ file, the string value
of this operand may be omitted. An omitted string is taken to be the null
string.

150 GNU Compiler Collection (GCC) Internals

V ‘V’ indicates a vector which is optional. In the RTL objects in core, ‘V’ is
equivalent to ‘E’, but when the object is read from an ‘md’ file, the vector value
of this operand may be omitted. An omitted vector is effectively the same as a
vector of no elements.

B ‘B’ indicates a pointer to basic block structure.

0 ‘0’ means a slot whose contents do not fit any normal category. ‘0’ slots are
not printed at all in dumps, and are often used in special ways by small parts
of the compiler.

There are macros to get the number of operands and the format of an expression code:

GET_RTX_LENGTH (code)
Number of operands of an RTX of code code.

GET_RTX_FORMAT (code)
The format of an RTX of code code, as a C string.

Some classes of RTX codes always have the same format. For example, it is safe to assume
that all comparison operations have format ee.

1 All codes of this class have format e.

<
c
2 All codes of these classes have format ee.

b
3 All codes of these classes have format eee.

i All codes of this class have formats that begin with iuueiee. See Section 10.18
[Insns], page 187. Note that not all RTL objects linked onto an insn chain are
of class i.

o
m
x You can make no assumptions about the format of these codes.

10.3 Access to Operands

Operands of expressions are accessed using the macros XEXP, XINT, XWINT and XSTR. Each
of these macros takes two arguments: an expression-pointer (RTX) and an operand number
(counting from zero). Thus,

XEXP (x, 2)

accesses operand 2 of expression x, as an expression.
XINT (x, 2)

accesses the same operand as an integer. XSTR, used in the same fashion, would access it as
a string.

Any operand can be accessed as an integer, as an expression or as a string. You must
choose the correct method of access for the kind of value actually stored in the operand.
You would do this based on the expression code of the containing expression. That is also
how you would know how many operands there are.

Chapter 10: RTL Representation 151

For example, if x is a subreg expression, you know that it has two operands which can
be correctly accessed as XEXP (x, 0) and XINT (x, 1). If you did XINT (x, 0), you would
get the address of the expression operand but cast as an integer; that might occasionally
be useful, but it would be cleaner to write (int) XEXP (x, 0). XEXP (x, 1) would also
compile without error, and would return the second, integer operand cast as an expression
pointer, which would probably result in a crash when accessed. Nothing stops you from
writing XEXP (x, 28) either, but this will access memory past the end of the expression
with unpredictable results.

Access to operands which are vectors is more complicated. You can use the macro XVEC
to get the vector-pointer itself, or the macros XVECEXP and XVECLEN to access the elements
and length of a vector.

XVEC (exp, idx)
Access the vector-pointer which is operand number idx in exp.

XVECLEN (exp, idx)
Access the length (number of elements) in the vector which is in operand number
idx in exp. This value is an int.

XVECEXP (exp, idx, eltnum)
Access element number eltnum in the vector which is in operand number idx
in exp. This value is an RTX.
It is up to you to make sure that eltnum is not negative and is less than XVECLEN
(exp, idx).

All the macros defined in this section expand into lvalues and therefore can be used to
assign the operands, lengths and vector elements as well as to access them.

10.4 Access to Special Operands

Some RTL nodes have special annotations associated with them.

MEM

MEM_ALIAS_SET (x)
If 0, x is not in any alias set, and may alias anything. Otherwise,
x can only alias MEMs in a conflicting alias set. This value is set in
a language-dependent manner in the front-end, and should not be
altered in the back-end. In some front-ends, these numbers may
correspond in some way to types, or other language-level entities,
but they need not, and the back-end makes no such assumptions.
These set numbers are tested with alias_sets_conflict_p.

MEM_EXPR (x)
If this register is known to hold the value of some user-level dec-
laration, this is that tree node. It may also be a COMPONENT_REF,
in which case this is some field reference, and TREE_OPERAND (x,
0) contains the declaration, or another COMPONENT_REF, or null if
there is no compile-time object associated with the reference.

MEM_OFFSET (x)
The offset from the start of MEM_EXPR as a CONST_INT rtx.

152 GNU Compiler Collection (GCC) Internals

MEM_SIZE (x)
The size in bytes of the memory reference as a CONST_INT rtx.
This is mostly relevant for BLKmode references as otherwise the size
is implied by the mode.

MEM_ALIGN (x)
The known alignment in bits of the memory reference.

REG

ORIGINAL_REGNO (x)
This field holds the number the register “originally” had; for a
pseudo register turned into a hard reg this will hold the old pseudo
register number.

REG_EXPR (x)
If this register is known to hold the value of some user-level decla-
ration, this is that tree node.

REG_OFFSET (x)
If this register is known to hold the value of some user-level decla-
ration, this is the offset into that logical storage.

SYMBOL_REF

SYMBOL_REF_DECL (x)
If the symbol_ref x was created for a VAR_DECL or a FUNCTION_
DECL, that tree is recorded here. If this value is null, then x was
created by back end code generation routines, and there is no as-
sociated front end symbol table entry.
SYMBOL_REF_DECL may also point to a tree of class ’c’, that is,
some sort of constant. In this case, the symbol_ref is an entry in
the per-file constant pool; again, there is no associated front end
symbol table entry.

SYMBOL_REF_CONSTANT (x)
If ‘CONSTANT_POOL_ADDRESS_P (x)’ is true, this is the constant
pool entry for x. It is null otherwise.

SYMBOL_REF_DATA (x)
A field of opaque type used to store SYMBOL_REF_DECL or SYMBOL_
REF_CONSTANT.

SYMBOL_REF_FLAGS (x)
In a symbol_ref, this is used to communicate various predicates
about the symbol. Some of these are common enough to be com-
puted by common code, some are specific to the target. The com-
mon bits are:

SYMBOL_FLAG_FUNCTION
Set if the symbol refers to a function.

SYMBOL_FLAG_LOCAL
Set if the symbol is local to this “module”. See TARGET_
BINDS_LOCAL_P.

Chapter 10: RTL Representation 153

SYMBOL_FLAG_EXTERNAL
Set if this symbol is not defined in this translation
unit. Note that this is not the inverse of SYMBOL_FLAG_
LOCAL.

SYMBOL_FLAG_SMALL
Set if the symbol is located in the small data section.
See TARGET_IN_SMALL_DATA_P.

SYMBOL_REF_TLS_MODEL (x)
This is a multi-bit field accessor that returns the tls_
model to be used for a thread-local storage symbol. It
returns zero for non-thread-local symbols.

SYMBOL_FLAG_HAS_BLOCK_INFO
Set if the symbol has SYMBOL_REF_BLOCK and SYMBOL_
REF_BLOCK_OFFSET fields.

SYMBOL_FLAG_ANCHOR
Set if the symbol is used as a section anchor. “Sec-
tion anchors” are symbols that have a known position
within an object_block and that can be used to ac-
cess nearby members of that block. They are used to
implement ‘-fsection-anchors’.
If this flag is set, then SYMBOL_FLAG_HAS_BLOCK_INFO
will be too.

Bits beginning with SYMBOL_FLAG_MACH_DEP are available for the
target’s use.

SYMBOL_REF_BLOCK (x)
If ‘SYMBOL_REF_HAS_BLOCK_INFO_P (x)’, this is the ‘object_block’ structure
to which the symbol belongs, or NULL if it has not been assigned a block.

SYMBOL_REF_BLOCK_OFFSET (x)
If ‘SYMBOL_REF_HAS_BLOCK_INFO_P (x)’, this is the offset of x from the first
object in ‘SYMBOL_REF_BLOCK (x)’. The value is negative if x has not yet been
assigned to a block, or it has not been given an offset within that block.

10.5 Flags in an RTL Expression

RTL expressions contain several flags (one-bit bit-fields) that are used in certain types of
expression. Most often they are accessed with the following macros, which expand into
lvalues.

CONSTANT_POOL_ADDRESS_P (x)
Nonzero in a symbol_ref if it refers to part of the current function’s constant
pool. For most targets these addresses are in a .rodata section entirely separate
from the function, but for some targets the addresses are close to the beginning
of the function. In either case GCC assumes these addresses can be addressed
directly, perhaps with the help of base registers. Stored in the unchanging field
and printed as ‘/u’.

154 GNU Compiler Collection (GCC) Internals

RTL_CONST_CALL_P (x)
In a call_insn indicates that the insn represents a call to a const function.
Stored in the unchanging field and printed as ‘/u’.

RTL_PURE_CALL_P (x)
In a call_insn indicates that the insn represents a call to a pure function.
Stored in the return_val field and printed as ‘/i’.

RTL_CONST_OR_PURE_CALL_P (x)
In a call_insn, true if RTL_CONST_CALL_P or RTL_PURE_CALL_P is true.

RTL_LOOPING_CONST_OR_PURE_CALL_P (x)
In a call_insn indicates that the insn represents a possibly infinite looping
call to a const or pure function. Stored in the call field and printed as ‘/c’.
Only true if one of RTL_CONST_CALL_P or RTL_PURE_CALL_P is true.

INSN_ANNULLED_BRANCH_P (x)
In a jump_insn, call_insn, or insn indicates that the branch is an annulling
one. See the discussion under sequence below. Stored in the unchanging field
and printed as ‘/u’.

INSN_DELETED_P (x)
In an insn, call_insn, jump_insn, code_label, barrier, or note, nonzero if
the insn has been deleted. Stored in the volatil field and printed as ‘/v’.

INSN_FROM_TARGET_P (x)
In an insn or jump_insn or call_insn in a delay slot of a branch, indicates that
the insn is from the target of the branch. If the branch insn has INSN_ANNULLED_
BRANCH_P set, this insn will only be executed if the branch is taken. For annulled
branches with INSN_FROM_TARGET_P clear, the insn will be executed only if the
branch is not taken. When INSN_ANNULLED_BRANCH_P is not set, this insn will
always be executed. Stored in the in_struct field and printed as ‘/s’.

LABEL_PRESERVE_P (x)
In a code_label or note, indicates that the label is referenced by code or data
not visible to the RTL of a given function. Labels referenced by a non-local
goto will have this bit set. Stored in the in_struct field and printed as ‘/s’.

LABEL_REF_NONLOCAL_P (x)
In label_ref and reg_label expressions, nonzero if this is a reference to a
non-local label. Stored in the volatil field and printed as ‘/v’.

MEM_IN_STRUCT_P (x)
In mem expressions, nonzero for reference to an entire structure, union or array,
or to a component of one. Zero for references to a scalar variable or through
a pointer to a scalar. If both this flag and MEM_SCALAR_P are clear, then we
don’t know whether this mem is in a structure or not. Both flags should never
be simultaneously set. Stored in the in_struct field and printed as ‘/s’.

MEM_KEEP_ALIAS_SET_P (x)
In mem expressions, 1 if we should keep the alias set for this mem unchanged
when we access a component. Set to 1, for example, when we are already in

Chapter 10: RTL Representation 155

a non-addressable component of an aggregate. Stored in the jump field and
printed as ‘/j’.

MEM_SCALAR_P (x)
In mem expressions, nonzero for reference to a scalar known not to be a member
of a structure, union, or array. Zero for such references and for indirections
through pointers, even pointers pointing to scalar types. If both this flag and
MEM_IN_STRUCT_P are clear, then we don’t know whether this mem is in a struc-
ture or not. Both flags should never be simultaneously set. Stored in the
return_val field and printed as ‘/i’.

MEM_VOLATILE_P (x)
In mem, asm_operands, and asm_input expressions, nonzero for volatile memory
references. Stored in the volatil field and printed as ‘/v’.

MEM_NOTRAP_P (x)
In mem, nonzero for memory references that will not trap. Stored in the call
field and printed as ‘/c’.

MEM_POINTER (x)
Nonzero in a mem if the memory reference holds a pointer. Stored in the frame_
related field and printed as ‘/f’.

REG_FUNCTION_VALUE_P (x)
Nonzero in a reg if it is the place in which this function’s value is going to be
returned. (This happens only in a hard register.) Stored in the return_val
field and printed as ‘/i’.

REG_POINTER (x)
Nonzero in a reg if the register holds a pointer. Stored in the frame_related
field and printed as ‘/f’.

REG_USERVAR_P (x)
In a reg, nonzero if it corresponds to a variable present in the user’s source
code. Zero for temporaries generated internally by the compiler. Stored in the
volatil field and printed as ‘/v’.
The same hard register may be used also for collecting the values of functions
called by this one, but REG_FUNCTION_VALUE_P is zero in this kind of use.

RTX_FRAME_RELATED_P (x)
Nonzero in an insn, call_insn, jump_insn, barrier, or set which is part of a
function prologue and sets the stack pointer, sets the frame pointer, or saves a
register. This flag should also be set on an instruction that sets up a temporary
register to use in place of the frame pointer. Stored in the frame_related field
and printed as ‘/f’.
In particular, on RISC targets where there are limits on the sizes of immediate
constants, it is sometimes impossible to reach the register save area directly from
the stack pointer. In that case, a temporary register is used that is near enough
to the register save area, and the Canonical Frame Address, i.e., DWARF2’s
logical frame pointer, register must (temporarily) be changed to be this tem-
porary register. So, the instruction that sets this temporary register must be
marked as RTX_FRAME_RELATED_P.

156 GNU Compiler Collection (GCC) Internals

If the marked instruction is overly complex (defined in terms of what
dwarf2out_frame_debug_expr can handle), you will also have to create a
REG_FRAME_RELATED_EXPR note and attach it to the instruction. This note
should contain a simple expression of the computation performed by this
instruction, i.e., one that dwarf2out_frame_debug_expr can handle.
This flag is required for exception handling support on targets with RTL pro-
logues.

MEM_READONLY_P (x)
Nonzero in a mem, if the memory is statically allocated and read-only.
Read-only in this context means never modified during the lifetime of the pro-
gram, not necessarily in ROM or in write-disabled pages. A common example
of the later is a shared library’s global offset table. This table is initialized by
the runtime loader, so the memory is technically writable, but after control is
transfered from the runtime loader to the application, this memory will never
be subsequently modified.
Stored in the unchanging field and printed as ‘/u’.

SCHED_GROUP_P (x)
During instruction scheduling, in an insn, call_insn or jump_insn, indicates
that the previous insn must be scheduled together with this insn. This is
used to ensure that certain groups of instructions will not be split up by the
instruction scheduling pass, for example, use insns before a call_insn may not
be separated from the call_insn. Stored in the in_struct field and printed
as ‘/s’.

SET_IS_RETURN_P (x)
For a set, nonzero if it is for a return. Stored in the jump field and printed as
‘/j’.

SIBLING_CALL_P (x)
For a call_insn, nonzero if the insn is a sibling call. Stored in the jump field
and printed as ‘/j’.

STRING_POOL_ADDRESS_P (x)
For a symbol_ref expression, nonzero if it addresses this function’s string con-
stant pool. Stored in the frame_related field and printed as ‘/f’.

SUBREG_PROMOTED_UNSIGNED_P (x)
Returns a value greater then zero for a subreg that has SUBREG_PROMOTED_
VAR_P nonzero if the object being referenced is kept zero-extended, zero if it
is kept sign-extended, and less then zero if it is extended some other way via
the ptr_extend instruction. Stored in the unchanging field and volatil field,
printed as ‘/u’ and ‘/v’. This macro may only be used to get the value it
may not be used to change the value. Use SUBREG_PROMOTED_UNSIGNED_SET to
change the value.

SUBREG_PROMOTED_UNSIGNED_SET (x)
Set the unchanging and volatil fields in a subreg to reflect zero, sign, or
other extension. If volatil is zero, then unchanging as nonzero means zero

Chapter 10: RTL Representation 157

extension and as zero means sign extension. If volatil is nonzero then some
other type of extension was done via the ptr_extend instruction.

SUBREG_PROMOTED_VAR_P (x)
Nonzero in a subreg if it was made when accessing an object that was promoted
to a wider mode in accord with the PROMOTED_MODE machine description macro
(see Section 17.5 [Storage Layout], page 381). In this case, the mode of the
subreg is the declared mode of the object and the mode of SUBREG_REG is the
mode of the register that holds the object. Promoted variables are always either
sign- or zero-extended to the wider mode on every assignment. Stored in the
in_struct field and printed as ‘/s’.

SYMBOL_REF_USED (x)
In a symbol_ref, indicates that x has been used. This is normally only used
to ensure that x is only declared external once. Stored in the used field.

SYMBOL_REF_WEAK (x)
In a symbol_ref, indicates that x has been declared weak. Stored in the
return_val field and printed as ‘/i’.

SYMBOL_REF_FLAG (x)
In a symbol_ref, this is used as a flag for machine-specific purposes. Stored in
the volatil field and printed as ‘/v’.
Most uses of SYMBOL_REF_FLAG are historic and may be subsumed by SYMBOL_
REF_FLAGS. Certainly use of SYMBOL_REF_FLAGS is mandatory if the target
requires more than one bit of storage.

These are the fields to which the above macros refer:

call In a mem, 1 means that the memory reference will not trap.
In a call, 1 means that this pure or const call may possibly infinite loop.
In an RTL dump, this flag is represented as ‘/c’.

frame_related
In an insn or set expression, 1 means that it is part of a function prologue
and sets the stack pointer, sets the frame pointer, saves a register, or sets up a
temporary register to use in place of the frame pointer.
In reg expressions, 1 means that the register holds a pointer.
In mem expressions, 1 means that the memory reference holds a pointer.
In symbol_ref expressions, 1 means that the reference addresses this function’s
string constant pool.
In an RTL dump, this flag is represented as ‘/f’.

in_struct
In mem expressions, it is 1 if the memory datum referred to is all or part of a
structure or array; 0 if it is (or might be) a scalar variable. A reference through
a C pointer has 0 because the pointer might point to a scalar variable. This
information allows the compiler to determine something about possible cases of
aliasing.

158 GNU Compiler Collection (GCC) Internals

In reg expressions, it is 1 if the register has its entire life contained within the
test expression of some loop.
In subreg expressions, 1 means that the subreg is accessing an object that has
had its mode promoted from a wider mode.
In label_ref expressions, 1 means that the referenced label is outside the
innermost loop containing the insn in which the label_ref was found.
In code_label expressions, it is 1 if the label may never be deleted. This is
used for labels which are the target of non-local gotos. Such a label that would
have been deleted is replaced with a note of type NOTE_INSN_DELETED_LABEL.
In an insn during dead-code elimination, 1 means that the insn is dead code.
In an insn or jump_insn during reorg for an insn in the delay slot of a branch,
1 means that this insn is from the target of the branch.
In an insn during instruction scheduling, 1 means that this insn must be sched-
uled as part of a group together with the previous insn.
In an RTL dump, this flag is represented as ‘/s’.

return_val
In reg expressions, 1 means the register contains the value to be returned by
the current function. On machines that pass parameters in registers, the same
register number may be used for parameters as well, but this flag is not set on
such uses.
In mem expressions, 1 means the memory reference is to a scalar known not to
be a member of a structure, union, or array.
In symbol_ref expressions, 1 means the referenced symbol is weak.
In call expressions, 1 means the call is pure.
In an RTL dump, this flag is represented as ‘/i’.

jump In a mem expression, 1 means we should keep the alias set for this mem un-
changed when we access a component.
In a set, 1 means it is for a return.
In a call_insn, 1 means it is a sibling call.
In an RTL dump, this flag is represented as ‘/j’.

unchanging
In reg and mem expressions, 1 means that the value of the expression never
changes.
In subreg expressions, it is 1 if the subreg references an unsigned object whose
mode has been promoted to a wider mode.
In an insn or jump_insn in the delay slot of a branch instruction, 1 means an
annulling branch should be used.
In a symbol_ref expression, 1 means that this symbol addresses something in
the per-function constant pool.
In a call_insn 1 means that this instruction is a call to a const function.
In an RTL dump, this flag is represented as ‘/u’.

Chapter 10: RTL Representation 159

used This flag is used directly (without an access macro) at the end of RTL generation
for a function, to count the number of times an expression appears in insns.
Expressions that appear more than once are copied, according to the rules for
shared structure (see Section 10.20 [Sharing], page 196).
For a reg, it is used directly (without an access macro) by the leaf register
renumbering code to ensure that each register is only renumbered once.
In a symbol_ref, it indicates that an external declaration for the symbol has
already been written.

volatil In a mem, asm_operands, or asm_input expression, it is 1 if the memory refer-
ence is volatile. Volatile memory references may not be deleted, reordered or
combined.
In a symbol_ref expression, it is used for machine-specific purposes.
In a reg expression, it is 1 if the value is a user-level variable. 0 indicates an
internal compiler temporary.
In an insn, 1 means the insn has been deleted.
In label_ref and reg_label expressions, 1 means a reference to a non-local
label.
In an RTL dump, this flag is represented as ‘/v’.

10.6 Machine Modes

A machine mode describes a size of data object and the representation used for it. In the C
code, machine modes are represented by an enumeration type, enum machine_mode, defined
in ‘machmode.def’. Each RTL expression has room for a machine mode and so do certain
kinds of tree expressions (declarations and types, to be precise).

In debugging dumps and machine descriptions, the machine mode of an RTL expression
is written after the expression code with a colon to separate them. The letters ‘mode’ which
appear at the end of each machine mode name are omitted. For example, (reg:SI 38) is
a reg expression with machine mode SImode. If the mode is VOIDmode, it is not written at
all.

Here is a table of machine modes. The term “byte” below refers to an object of BITS_
PER_UNIT bits (see Section 17.5 [Storage Layout], page 381).

BImode “Bit” mode represents a single bit, for predicate registers.

QImode “Quarter-Integer” mode represents a single byte treated as an integer.

HImode “Half-Integer” mode represents a two-byte integer.

PSImode “Partial Single Integer” mode represents an integer which occupies four bytes
but which doesn’t really use all four. On some machines, this is the right mode
to use for pointers.

SImode “Single Integer” mode represents a four-byte integer.

PDImode “Partial Double Integer” mode represents an integer which occupies eight bytes
but which doesn’t really use all eight. On some machines, this is the right mode
to use for certain pointers.

160 GNU Compiler Collection (GCC) Internals

DImode “Double Integer” mode represents an eight-byte integer.

TImode “Tetra Integer” (?) mode represents a sixteen-byte integer.

OImode “Octa Integer” (?) mode represents a thirty-two-byte integer.

QFmode “Quarter-Floating” mode represents a quarter-precision (single byte) floating
point number.

HFmode “Half-Floating” mode represents a half-precision (two byte) floating point num-
ber.

TQFmode “Three-Quarter-Floating” (?) mode represents a three-quarter-precision (three
byte) floating point number.

SFmode “Single Floating” mode represents a four byte floating point number. In the
common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a
single-precision IEEE floating point number; it can also be used for double-
precision (on processors with 16-bit bytes) and single-precision VAX and IBM
types.

DFmode “Double Floating” mode represents an eight byte floating point number. In the
common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a
double-precision IEEE floating point number.

XFmode “Extended Floating” mode represents an IEEE extended floating point number.
This mode only has 80 meaningful bits (ten bytes). Some processors require
such numbers to be padded to twelve bytes, others to sixteen; this mode is used
for either.

SDmode “Single Decimal Floating” mode represents a four byte decimal floating point
number (as distinct from conventional binary floating point).

DDmode “Double Decimal Floating” mode represents an eight byte decimal floating point
number.

TDmode “Tetra Decimal Floating” mode represents a sixteen byte decimal floating point
number all 128 of whose bits are meaningful.

TFmode “Tetra Floating” mode represents a sixteen byte floating point number all 128
of whose bits are meaningful. One common use is the IEEE quad-precision
format.

QQmode “Quarter-Fractional” mode represents a single byte treated as a signed frac-
tional number. The default format is “s.7”.

HQmode “Half-Fractional” mode represents a two-byte signed fractional number. The
default format is “s.15”.

SQmode “Single Fractional” mode represents a four-byte signed fractional number. The
default format is “s.31”.

DQmode “Double Fractional” mode represents an eight-byte signed fractional number.
The default format is “s.63”.

TQmode “Tetra Fractional” mode represents a sixteen-byte signed fractional number.
The default format is “s.127”.

Chapter 10: RTL Representation 161

UQQmode “Unsigned Quarter-Fractional” mode represents a single byte treated as an
unsigned fractional number. The default format is “.8”.

UHQmode “Unsigned Half-Fractional” mode represents a two-byte unsigned fractional
number. The default format is “.16”.

USQmode “Unsigned Single Fractional” mode represents a four-byte unsigned fractional
number. The default format is “.32”.

UDQmode “Unsigned Double Fractional” mode represents an eight-byte unsigned frac-
tional number. The default format is “.64”.

UTQmode “Unsigned Tetra Fractional” mode represents a sixteen-byte unsigned fractional
number. The default format is “.128”.

HAmode “Half-Accumulator” mode represents a two-byte signed accumulator. The de-
fault format is “s8.7”.

SAmode “Single Accumulator” mode represents a four-byte signed accumulator. The
default format is “s16.15”.

DAmode “Double Accumulator” mode represents an eight-byte signed accumulator. The
default format is “s32.31”.

TAmode “Tetra Accumulator” mode represents a sixteen-byte signed accumulator. The
default format is “s64.63”.

UHAmode “Unsigned Half-Accumulator” mode represents a two-byte unsigned accumula-
tor. The default format is “8.8”.

USAmode “Unsigned Single Accumulator” mode represents a four-byte unsigned accumu-
lator. The default format is “16.16”.

UDAmode “Unsigned Double Accumulator” mode represents an eight-byte unsigned accu-
mulator. The default format is “32.32”.

UTAmode “Unsigned Tetra Accumulator” mode represents a sixteen-byte unsigned accu-
mulator. The default format is “64.64”.

CCmode “Condition Code” mode represents the value of a condition code, which is a
machine-specific set of bits used to represent the result of a comparison oper-
ation. Other machine-specific modes may also be used for the condition code.
These modes are not used on machines that use cc0 (see see Section 17.16
[Condition Code], page 449).

BLKmode “Block” mode represents values that are aggregates to which none of the other
modes apply. In RTL, only memory references can have this mode, and only if
they appear in string-move or vector instructions. On machines which have no
such instructions, BLKmode will not appear in RTL.

VOIDmode Void mode means the absence of a mode or an unspecified mode. For example,
RTL expressions of code const_int have mode VOIDmode because they can be
taken to have whatever mode the context requires. In debugging dumps of
RTL, VOIDmode is expressed by the absence of any mode.

162 GNU Compiler Collection (GCC) Internals

QCmode, HCmode, SCmode, DCmode, XCmode, TCmode
These modes stand for a complex number represented as a pair of floating
point values. The floating point values are in QFmode, HFmode, SFmode, DFmode,
XFmode, and TFmode, respectively.

CQImode, CHImode, CSImode, CDImode, CTImode, COImode
These modes stand for a complex number represented as a pair of integer values.
The integer values are in QImode, HImode, SImode, DImode, TImode, and OImode,
respectively.

The machine description defines Pmode as a C macro which expands into the machine
mode used for addresses. Normally this is the mode whose size is BITS_PER_WORD, SImode
on 32-bit machines.

The only modes which a machine description must support are QImode, and the modes
corresponding to BITS_PER_WORD, FLOAT_TYPE_SIZE and DOUBLE_TYPE_SIZE. The compiler
will attempt to use DImode for 8-byte structures and unions, but this can be prevented by
overriding the definition of MAX_FIXED_MODE_SIZE. Alternatively, you can have the compiler
use TImode for 16-byte structures and unions. Likewise, you can arrange for the C type
short int to avoid using HImode.

Very few explicit references to machine modes remain in the compiler and these few
references will soon be removed. Instead, the machine modes are divided into mode classes.
These are represented by the enumeration type enum mode_class defined in ‘machmode.h’.
The possible mode classes are:

MODE_INT Integer modes. By default these are BImode, QImode, HImode, SImode, DImode,
TImode, and OImode.

MODE_PARTIAL_INT
The “partial integer” modes, PQImode, PHImode, PSImode and PDImode.

MODE_FLOAT
Floating point modes. By default these are QFmode, HFmode, TQFmode, SFmode,
DFmode, XFmode and TFmode.

MODE_DECIMAL_FLOAT
Decimal floating point modes. By default these are SDmode, DDmode and TDmode.

MODE_FRACT
Signed fractional modes. By default these are QQmode, HQmode, SQmode, DQmode
and TQmode.

MODE_UFRACT
Unsigned fractional modes. By default these are UQQmode, UHQmode, USQmode,
UDQmode and UTQmode.

MODE_ACCUM
Signed accumulator modes. By default these are HAmode, SAmode, DAmode and
TAmode.

MODE_UACCUM
Unsigned accumulator modes. By default these are UHAmode, USAmode, UDAmode
and UTAmode.

Chapter 10: RTL Representation 163

MODE_COMPLEX_INT
Complex integer modes. (These are not currently implemented).

MODE_COMPLEX_FLOAT
Complex floating point modes. By default these are QCmode, HCmode, SCmode,
DCmode, XCmode, and TCmode.

MODE_FUNCTION
Algol or Pascal function variables including a static chain. (These are not
currently implemented).

MODE_CC Modes representing condition code values. These are CCmode plus any CC_MODE
modes listed in the ‘machine-modes.def’. See Section 16.12 [Jump Patterns],
page 334, also see Section 17.16 [Condition Code], page 449.

MODE_RANDOM
This is a catchall mode class for modes which don’t fit into the above classes.
Currently VOIDmode and BLKmode are in MODE_RANDOM.

Here are some C macros that relate to machine modes:

GET_MODE (x)
Returns the machine mode of the RTX x.

PUT_MODE (x, newmode)
Alters the machine mode of the RTX x to be newmode.

NUM_MACHINE_MODES
Stands for the number of machine modes available on the target machine. This
is one greater than the largest numeric value of any machine mode.

GET_MODE_NAME (m)
Returns the name of mode m as a string.

GET_MODE_CLASS (m)
Returns the mode class of mode m.

GET_MODE_WIDER_MODE (m)
Returns the next wider natural mode. For example, the expression GET_MODE_
WIDER_MODE (QImode) returns HImode.

GET_MODE_SIZE (m)
Returns the size in bytes of a datum of mode m.

GET_MODE_BITSIZE (m)
Returns the size in bits of a datum of mode m.

GET_MODE_IBIT (m)
Returns the number of integral bits of a datum of fixed-point mode m.

GET_MODE_FBIT (m)
Returns the number of fractional bits of a datum of fixed-point mode m.

GET_MODE_MASK (m)
Returns a bitmask containing 1 for all bits in a word that fit within mode m.
This macro can only be used for modes whose bitsize is less than or equal to
HOST_BITS_PER_INT.

164 GNU Compiler Collection (GCC) Internals

GET_MODE_ALIGNMENT (m)
Return the required alignment, in bits, for an object of mode m.

GET_MODE_UNIT_SIZE (m)
Returns the size in bytes of the subunits of a datum of mode m. This is the
same as GET_MODE_SIZE except in the case of complex modes. For them, the
unit size is the size of the real or imaginary part.

GET_MODE_NUNITS (m)
Returns the number of units contained in a mode, i.e., GET_MODE_SIZE divided
by GET_MODE_UNIT_SIZE.

GET_CLASS_NARROWEST_MODE (c)
Returns the narrowest mode in mode class c.

The global variables byte_mode and word_mode contain modes whose classes are MODE_
INT and whose bitsizes are either BITS_PER_UNIT or BITS_PER_WORD, respectively. On 32-bit
machines, these are QImode and SImode, respectively.

10.7 Constant Expression Types

The simplest RTL expressions are those that represent constant values.

(const_int i)
This type of expression represents the integer value i. i is customarily accessed
with the macro INTVAL as in INTVAL (exp), which is equivalent to XWINT (exp,
0).
Constants generated for modes with fewer bits than HOST_WIDE_INT must be
sign extended to full width (e.g., with gen_int_mode).
There is only one expression object for the integer value zero; it is the value
of the variable const0_rtx. Likewise, the only expression for integer value one
is found in const1_rtx, the only expression for integer value two is found in
const2_rtx, and the only expression for integer value negative one is found
in constm1_rtx. Any attempt to create an expression of code const_int
and value zero, one, two or negative one will return const0_rtx, const1_rtx,
const2_rtx or constm1_rtx as appropriate.
Similarly, there is only one object for the integer whose value is STORE_FLAG_
VALUE. It is found in const_true_rtx. If STORE_FLAG_VALUE is one, const_
true_rtx and const1_rtx will point to the same object. If STORE_FLAG_VALUE
is −1, const_true_rtx and constm1_rtx will point to the same object.

(const_double:m i0 i1 ...)
Represents either a floating-point constant of mode m or an integer constant too
large to fit into HOST_BITS_PER_WIDE_INT bits but small enough to fit within
twice that number of bits (GCC does not provide a mechanism to represent
even larger constants). In the latter case, m will be VOIDmode.
If m is VOIDmode, the bits of the value are stored in i0 and i1. i0 is customarily
accessed with the macro CONST_DOUBLE_LOW and i1 with CONST_DOUBLE_HIGH.
If the constant is floating point (regardless of its precision), then the number
of integers used to store the value depends on the size of REAL_VALUE_TYPE

Chapter 10: RTL Representation 165

(see Section 17.23 [Floating Point], page 499). The integers represent a float-
ing point number, but not precisely in the target machine’s or host machine’s
floating point format. To convert them to the precise bit pattern used by the
target machine, use the macro REAL_VALUE_TO_TARGET_DOUBLE and friends (see
Section 17.21.2 [Data Output], page 470).

(const_fixed:m ...)
Represents a fixed-point constant of mode m. The operand is a data structure
of type struct fixed_value and is accessed with the macro CONST_FIXED_
VALUE. The high part of data is accessed with CONST_FIXED_VALUE_HIGH; the
low part is accessed with CONST_FIXED_VALUE_LOW.

(const_vector:m [x0 x1 ...])
Represents a vector constant. The square brackets stand for the vector contain-
ing the constant elements. x0, x1 and so on are the const_int, const_double
or const_fixed elements.
The number of units in a const_vector is obtained with the macro CONST_
VECTOR_NUNITS as in CONST_VECTOR_NUNITS (v).
Individual elements in a vector constant are accessed with the macro CONST_
VECTOR_ELT as in CONST_VECTOR_ELT (v, n) where v is the vector constant
and n is the element desired.

(const_string str)
Represents a constant string with value str. Currently this is used only for insn
attributes (see Section 16.19 [Insn Attributes], page 350) since constant strings
in C are placed in memory.

(symbol_ref:mode symbol)
Represents the value of an assembler label for data. symbol is a string that
describes the name of the assembler label. If it starts with a ‘*’, the label is
the rest of symbol not including the ‘*’. Otherwise, the label is symbol, usually
prefixed with ‘_’.
The symbol_ref contains a mode, which is usually Pmode. Usually that is the
only mode for which a symbol is directly valid.

(label_ref:mode label)
Represents the value of an assembler label for code. It contains one operand,
an expression, which must be a code_label or a note of type NOTE_INSN_
DELETED_LABEL that appears in the instruction sequence to identify the place
where the label should go.
The reason for using a distinct expression type for code label references is so
that jump optimization can distinguish them.
The label_ref contains a mode, which is usually Pmode. Usually that is the
only mode for which a label is directly valid.

(const:m exp)
Represents a constant that is the result of an assembly-time arithmetic com-
putation. The operand, exp, is an expression that contains only constants
(const_int, symbol_ref and label_ref expressions) combined with plus and

166 GNU Compiler Collection (GCC) Internals

minus. However, not all combinations are valid, since the assembler cannot do
arbitrary arithmetic on relocatable symbols.
m should be Pmode.

(high:m exp)
Represents the high-order bits of exp, usually a symbol_ref. The number of
bits is machine-dependent and is normally the number of bits specified in an
instruction that initializes the high order bits of a register. It is used with lo_
sum to represent the typical two-instruction sequence used in RISC machines
to reference a global memory location.
m should be Pmode.

The macro CONST0_RTX (mode) refers to an expression with value 0 in mode mode. If
mode mode is of mode class MODE_INT, it returns const0_rtx. If mode mode is of mode class
MODE_FLOAT, it returns a CONST_DOUBLE expression in mode mode. Otherwise, it returns a
CONST_VECTOR expression in mode mode. Similarly, the macro CONST1_RTX (mode) refers
to an expression with value 1 in mode mode and similarly for CONST2_RTX. The CONST1_RTX
and CONST2_RTX macros are undefined for vector modes.

10.8 Registers and Memory

Here are the RTL expression types for describing access to machine registers and to main
memory.

(reg:m n)
For small values of the integer n (those that are less than FIRST_PSEUDO_
REGISTER), this stands for a reference to machine register number n: a hard
register. For larger values of n, it stands for a temporary value or pseudo
register. The compiler’s strategy is to generate code assuming an unlimited
number of such pseudo registers, and later convert them into hard registers or
into memory references.
m is the machine mode of the reference. It is necessary because machines can
generally refer to each register in more than one mode. For example, a register
may contain a full word but there may be instructions to refer to it as a half
word or as a single byte, as well as instructions to refer to it as a floating point
number of various precisions.
Even for a register that the machine can access in only one mode, the mode
must always be specified.
The symbol FIRST_PSEUDO_REGISTER is defined by the machine description,
since the number of hard registers on the machine is an invariant characteristic
of the machine. Note, however, that not all of the machine registers must be
general registers. All the machine registers that can be used for storage of data
are given hard register numbers, even those that can be used only in certain
instructions or can hold only certain types of data.
A hard register may be accessed in various modes throughout one function,
but each pseudo register is given a natural mode and is accessed only in that
mode. When it is necessary to describe an access to a pseudo register using a
nonnatural mode, a subreg expression is used.

Chapter 10: RTL Representation 167

A reg expression with a machine mode that specifies more than one word
of data may actually stand for several consecutive registers. If in addition the
register number specifies a hardware register, then it actually represents several
consecutive hardware registers starting with the specified one.
Each pseudo register number used in a function’s RTL code is represented by
a unique reg expression.
Some pseudo register numbers, those within the range of FIRST_VIRTUAL_
REGISTER to LAST_VIRTUAL_REGISTER only appear during the RTL generation
phase and are eliminated before the optimization phases. These represent lo-
cations in the stack frame that cannot be determined until RTL generation for
the function has been completed. The following virtual register numbers are
defined:

VIRTUAL_INCOMING_ARGS_REGNUM
This points to the first word of the incoming arguments passed
on the stack. Normally these arguments are placed there by the
caller, but the callee may have pushed some arguments that were
previously passed in registers.
When RTL generation is complete, this virtual register is replaced
by the sum of the register given by ARG_POINTER_REGNUM and the
value of FIRST_PARM_OFFSET.

VIRTUAL_STACK_VARS_REGNUM
If FRAME_GROWS_DOWNWARD is defined to a nonzero value, this points
to immediately above the first variable on the stack. Otherwise, it
points to the first variable on the stack.
VIRTUAL_STACK_VARS_REGNUM is replaced with the sum of the reg-
ister given by FRAME_POINTER_REGNUM and the value STARTING_
FRAME_OFFSET.

VIRTUAL_STACK_DYNAMIC_REGNUM
This points to the location of dynamically allocated memory on the
stack immediately after the stack pointer has been adjusted by the
amount of memory desired.
This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_DYNAMIC_OFFSET.

VIRTUAL_OUTGOING_ARGS_REGNUM
This points to the location in the stack at which outgoing arguments
should be written when the stack is pre-pushed (arguments pushed
using push insns should always use STACK_POINTER_REGNUM).
This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_POINTER_OFFSET.

(subreg:m1 reg:m2 bytenum)
subreg expressions are used to refer to a register in a machine mode other than
its natural one, or to refer to one register of a multi-part reg that actually refers
to several registers.

168 GNU Compiler Collection (GCC) Internals

Each pseudo register has a natural mode. If it is necessary to operate on it in
a different mode, the register must be enclosed in a subreg.

There are currently three supported types for the first operand of a subreg:

• pseudo registers This is the most common case. Most subregs have pseudo
regs as their first operand.

• mem subregs of mem were common in earlier versions of GCC and are still
supported. During the reload pass these are replaced by plain mems. On
machines that do not do instruction scheduling, use of subregs of mem are
still used, but this is no longer recommended. Such subregs are considered
to be register_operands rather than memory_operands before and dur-
ing reload. Because of this, the scheduling passes cannot properly sched-
ule instructions with subregs of mem, so for machines that do scheduling,
subregs of mem should never be used. To support this, the combine and
recog passes have explicit code to inhibit the creation of subregs of mem
when INSN_SCHEDULING is defined.

The use of subregs of mem after the reload pass is an area that is not well
understood and should be avoided. There is still some code in the compiler
to support this, but this code has possibly rotted. This use of subregs is
discouraged and will most likely not be supported in the future.

• hard registers It is seldom necessary to wrap hard registers in subregs; such
registers would normally reduce to a single reg rtx. This use of subregs is
discouraged and may not be supported in the future.

subregs of subregs are not supported. Using simplify_gen_subreg is the
recommended way to avoid this problem.

subregs come in two distinct flavors, each having its own usage and rules:

Paradoxical subregs
When m1 is strictly wider than m2, the subreg expression is called
paradoxical. The canonical test for this class of subreg is:

GET_MODE_SIZE (m1) > GET_MODE_SIZE (m2)

Paradoxical subregs can be used as both lvalues and rvalues. When
used as an lvalue, the low-order bits of the source value are stored
in reg and the high-order bits are discarded. When used as an
rvalue, the low-order bits of the subreg are taken from reg while
the high-order bits may or may not be defined.

The high-order bits of rvalues are in the following circumstances:

• subregs of mem When m2 is smaller than a word, the macro
LOAD_EXTEND_OP, can control how the high-order bits are de-
fined.

• subreg of regs The upper bits are defined when SUBREG_
PROMOTED_VAR_P is true. SUBREG_PROMOTED_UNSIGNED_P de-
scribes what the upper bits hold. Such subregs usually rep-
resent local variables, register variables and parameter pseudo
variables that have been promoted to a wider mode.

Chapter 10: RTL Representation 169

bytenum is always zero for a paradoxical subreg, even on big-
endian targets.

For example, the paradoxical subreg:
(set (subreg:SI (reg:HI x) 0) y)

stores the lower 2 bytes of y in x and discards the upper 2 bytes.
A subsequent:

(set z (subreg:SI (reg:HI x) 0))

would set the lower two bytes of z to y and set the upper two bytes
to an unknown value assuming SUBREG_PROMOTED_VAR_P is false.

Normal subregs
When m1 is at least as narrow as m2 the subreg expression is
called normal.

Normal subregs restrict consideration to certain bits of reg. There
are two cases. If m1 is smaller than a word, the subreg refers to
the least-significant part (or lowpart) of one word of reg. If m1 is
word-sized or greater, the subreg refers to one or more complete
words.

When used as an lvalue, subreg is a word-based accessor. Storing
to a subreg modifies all the words of reg that overlap the subreg,
but it leaves the other words of reg alone.

When storing to a normal subreg that is smaller than a word, the
other bits of the referenced word are usually left in an undefined
state. This laxity makes it easier to generate efficient code for
such instructions. To represent an instruction that preserves all
the bits outside of those in the subreg, use strict_low_part or
zero_extract around the subreg.

bytenum must identify the offset of the first byte of the subreg
from the start of reg, assuming that reg is laid out in memory
order. The memory order of bytes is defined by two target macros,
WORDS_BIG_ENDIAN and BYTES_BIG_ENDIAN:

• WORDS_BIG_ENDIAN, if set to 1, says that byte number zero is
part of the most significant word; otherwise, it is part of the
least significant word.

• BYTES_BIG_ENDIAN, if set to 1, says that byte number zero is
the most significant byte within a word; otherwise, it is the
least significant byte within a word.

On a few targets, FLOAT_WORDS_BIG_ENDIAN disagrees with WORDS_
BIG_ENDIAN. However, most parts of the compiler treat floating
point values as if they had the same endianness as integer values.
This works because they handle them solely as a collection of integer
values, with no particular numerical value. Only real.c and the
runtime libraries care about FLOAT_WORDS_BIG_ENDIAN.

Thus,

170 GNU Compiler Collection (GCC) Internals

(subreg:HI (reg:SI x) 2)

on a BYTES_BIG_ENDIAN, ‘UNITS_PER_WORD == 4’ target is the same
as

(subreg:HI (reg:SI x) 0)

on a little-endian, ‘UNITS_PER_WORD == 4’ target. Both subregs
access the lower two bytes of register x.

A MODE_PARTIAL_INT mode behaves as if it were as wide as the corresponding
MODE_INT mode, except that it has an unknown number of undefined bits. For
example:

(subreg:PSI (reg:SI 0) 0)

accesses the whole of ‘(reg:SI 0)’, but the exact relationship between
the PSImode value and the SImode value is not defined. If we assume
‘UNITS_PER_WORD <= 4’, then the following two subregs:

(subreg:PSI (reg:DI 0) 0)

(subreg:PSI (reg:DI 0) 4)

represent independent 4-byte accesses to the two halves of ‘(reg:DI 0)’. Both
subregs have an unknown number of undefined bits.
If ‘UNITS_PER_WORD <= 2’ then these two subregs:

(subreg:HI (reg:PSI 0) 0)

(subreg:HI (reg:PSI 0) 2)

represent independent 2-byte accesses that together span the whole of
‘(reg:PSI 0)’. Storing to the first subreg does not affect the value of the
second, and vice versa. ‘(reg:PSI 0)’ has an unknown number of undefined
bits, so the assignment:

(set (subreg:HI (reg:PSI 0) 0) (reg:HI 4))

does not guarantee that ‘(subreg:HI (reg:PSI 0) 0)’ has the value ‘(reg:HI
4)’.
The rules above apply to both pseudo regs and hard regs. If the semantics
are not correct for particular combinations of m1, m2 and hard reg, the target-
specific code must ensure that those combinations are never used. For example:

CANNOT_CHANGE_MODE_CLASS (m2, m1, class)

must be true for every class class that includes reg.
The first operand of a subreg expression is customarily accessed with the
SUBREG_REG macro and the second operand is customarily accessed with the
SUBREG_BYTE macro.
It has been several years since a platform in which BYTES_BIG_ENDIAN not
equal to WORDS_BIG_ENDIAN has been tested. Anyone wishing to support such
a platform in the future may be confronted with code rot.

(scratch:m)
This represents a scratch register that will be required for the execution of a
single instruction and not used subsequently. It is converted into a reg by either
the local register allocator or the reload pass.
scratch is usually present inside a clobber operation (see Section 10.15 [Side
Effects], page 180).

Chapter 10: RTL Representation 171

(cc0) This refers to the machine’s condition code register. It has no operands and
may not have a machine mode. There are two ways to use it:

• To stand for a complete set of condition code flags. This is best on most
machines, where each comparison sets the entire series of flags.

With this technique, (cc0) may be validly used in only two contexts: as
the destination of an assignment (in test and compare instructions) and in
comparison operators comparing against zero (const_int with value zero;
that is to say, const0_rtx).

• To stand for a single flag that is the result of a single condition. This is
useful on machines that have only a single flag bit, and in which comparison
instructions must specify the condition to test.

With this technique, (cc0) may be validly used in only two contexts: as the
destination of an assignment (in test and compare instructions) where the
source is a comparison operator, and as the first operand of if_then_else
(in a conditional branch).

There is only one expression object of code cc0; it is the value of the variable
cc0_rtx. Any attempt to create an expression of code cc0 will return cc0_rtx.

Instructions can set the condition code implicitly. On many machines, nearly
all instructions set the condition code based on the value that they compute or
store. It is not necessary to record these actions explicitly in the RTL because
the machine description includes a prescription for recognizing the instructions
that do so (by means of the macro NOTICE_UPDATE_CC). See Section 17.16
[Condition Code], page 449. Only instructions whose sole purpose is to set
the condition code, and instructions that use the condition code, need mention
(cc0).

On some machines, the condition code register is given a register number and
a reg is used instead of (cc0). This is usually the preferable approach if only
a small subset of instructions modify the condition code. Other machines store
condition codes in general registers; in such cases a pseudo register should be
used.

Some machines, such as the SPARC and RS/6000, have two sets of arithmetic
instructions, one that sets and one that does not set the condition code. This
is best handled by normally generating the instruction that does not set the
condition code, and making a pattern that both performs the arithmetic and
sets the condition code register (which would not be (cc0) in this case). For
examples, search for ‘addcc’ and ‘andcc’ in ‘sparc.md’.

(pc) This represents the machine’s program counter. It has no operands and may
not have a machine mode. (pc) may be validly used only in certain specific
contexts in jump instructions.

There is only one expression object of code pc; it is the value of the variable
pc_rtx. Any attempt to create an expression of code pc will return pc_rtx.

All instructions that do not jump alter the program counter implicitly by in-
crementing it, but there is no need to mention this in the RTL.

172 GNU Compiler Collection (GCC) Internals

(mem:m addr alias)
This RTX represents a reference to main memory at an address represented by
the expression addr. m specifies how large a unit of memory is accessed. alias
specifies an alias set for the reference. In general two items are in different alias
sets if they cannot reference the same memory address.

The construct (mem:BLK (scratch)) is considered to alias all other memories.
Thus it may be used as a memory barrier in epilogue stack deallocation patterns.

(concatm rtx rtx)
This RTX represents the concatenation of two other RTXs. This is used for
complex values. It should only appear in the RTL attached to declarations and
during RTL generation. It should not appear in the ordinary insn chain.

(concatnm [rtx ...])
This RTX represents the concatenation of all the rtx to make a single value.
Like concat, this should only appear in declarations, and not in the insn chain.

10.9 RTL Expressions for Arithmetic

Unless otherwise specified, all the operands of arithmetic expressions must be valid for
mode m. An operand is valid for mode m if it has mode m, or if it is a const_int or
const_double and m is a mode of class MODE_INT.

For commutative binary operations, constants should be placed in the second operand.

(plus:m x y)
(ss_plus:m x y)
(us_plus:m x y)

These three expressions all represent the sum of the values represented by x and
y carried out in machine mode m. They differ in their behavior on overflow of
integer modes. plus wraps round modulo the width of m; ss_plus saturates
at the maximum signed value representable in m; us_plus saturates at the
maximum unsigned value.

(lo_sum:m x y)
This expression represents the sum of x and the low-order bits of y. It is used
with high (see Section 10.7 [Constants], page 164) to represent the typical
two-instruction sequence used in RISC machines to reference a global memory
location.

The number of low order bits is machine-dependent but is normally the number
of bits in a Pmode item minus the number of bits set by high.

m should be Pmode.

(minus:m x y)
(ss_minus:m x y)
(us_minus:m x y)

These three expressions represent the result of subtracting y from x, carried
out in mode M. Behavior on overflow is the same as for the three variants of
plus (see above).

Chapter 10: RTL Representation 173

(compare:m x y)
Represents the result of subtracting y from x for purposes of comparison. The
result is computed without overflow, as if with infinite precision.
Of course, machines can’t really subtract with infinite precision. However, they
can pretend to do so when only the sign of the result will be used, which is
the case when the result is stored in the condition code. And that is the only
way this kind of expression may validly be used: as a value to be stored in the
condition codes, either (cc0) or a register. See Section 10.10 [Comparisons],
page 176.
The mode m is not related to the modes of x and y, but instead is the mode
of the condition code value. If (cc0) is used, it is VOIDmode. Otherwise it
is some mode in class MODE_CC, often CCmode. See Section 17.16 [Condition
Code], page 449. If m is VOIDmode or CCmode, the operation returns sufficient
information (in an unspecified format) so that any comparison operator can
be applied to the result of the COMPARE operation. For other modes in class
MODE_CC, the operation only returns a subset of this information.
Normally, x and y must have the same mode. Otherwise, compare is valid only
if the mode of x is in class MODE_INT and y is a const_int or const_double
with mode VOIDmode. The mode of x determines what mode the comparison is
to be done in; thus it must not be VOIDmode.
If one of the operands is a constant, it should be placed in the second operand
and the comparison code adjusted as appropriate.
A compare specifying two VOIDmode constants is not valid since there is no way
to know in what mode the comparison is to be performed; the comparison must
either be folded during the compilation or the first operand must be loaded into
a register while its mode is still known.

(neg:m x)
(ss_neg:m x)
(us_neg:m x)

These two expressions represent the negation (subtraction from zero) of the
value represented by x, carried out in mode m. They differ in the behavior
on overflow of integer modes. In the case of neg, the negation of the operand
may be a number not representable in mode m, in which case it is truncated
to m. ss_neg and us_neg ensure that an out-of-bounds result saturates to the
maximum or minimum signed or unsigned value.

(mult:m x y)
(ss_mult:m x y)
(us_mult:m x y)

Represents the signed product of the values represented by x and y carried out
in machine mode m. ss_mult and us_mult ensure that an out-of-bounds result
saturates to the maximum or minimum signed or unsigned value.
Some machines support a multiplication that generates a product wider than
the operands. Write the pattern for this as

(mult:m (sign_extend:m x) (sign_extend:m y))

where m is wider than the modes of x and y, which need not be the same.

174 GNU Compiler Collection (GCC) Internals

For unsigned widening multiplication, use the same idiom, but with zero_
extend instead of sign_extend.

(div:m x y)
(ss_div:m x y)

Represents the quotient in signed division of x by y, carried out in machine mode
m. If m is a floating point mode, it represents the exact quotient; otherwise,
the integerized quotient. ss_div ensures that an out-of-bounds result saturates
to the maximum or minimum signed value.

Some machines have division instructions in which the operands and quo-
tient widths are not all the same; you should represent such instructions using
truncate and sign_extend as in,

(truncate:m1 (div:m2 x (sign_extend:m2 y)))

(udiv:m x y)
(us_div:m x y)

Like div but represents unsigned division. us_div ensures that an out-of-
bounds result saturates to the maximum or minimum unsigned value.

(mod:m x y)
(umod:m x y)

Like div and udiv but represent the remainder instead of the quotient.

(smin:m x y)
(smax:m x y)

Represents the smaller (for smin) or larger (for smax) of x and y, interpreted
as signed values in mode m. When used with floating point, if both operands
are zeros, or if either operand is NaN, then it is unspecified which of the two
operands is returned as the result.

(umin:m x y)
(umax:m x y)

Like smin and smax, but the values are interpreted as unsigned integers.

(not:m x)
Represents the bitwise complement of the value represented by x, carried out
in mode m, which must be a fixed-point machine mode.

(and:m x y)
Represents the bitwise logical-and of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point machine mode.

(ior:m x y)
Represents the bitwise inclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point mode.

(xor:m x y)
Represents the bitwise exclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point mode.

Chapter 10: RTL Representation 175

(ashift:m x c)
(ss_ashift:m x c)
(us_ashift:m x c)

These three expressions represent the result of arithmetically shifting x left by
c places. They differ in their behavior on overflow of integer modes. An ashift
operation is a plain shift with no special behavior in case of a change in the
sign bit; ss_ashift and us_ashift saturates to the minimum or maximum
representable value if any of the bits shifted out differs from the final sign bit.
x have mode m, a fixed-point machine mode. c be a fixed-point mode or be a
constant with mode VOIDmode; which mode is determined by the mode called
for in the machine description entry for the left-shift instruction. For example,
on the VAX, the mode of c is QImode regardless of m.

(lshiftrt:m x c)
(ashiftrt:m x c)

Like ashift but for right shift. Unlike the case for left shift, these two opera-
tions are distinct.

(rotate:m x c)
(rotatert:m x c)

Similar but represent left and right rotate. If c is a constant, use rotate.

(abs:m x)
Represents the absolute value of x, computed in mode m.

(sqrt:m x)
Represents the square root of x, computed in mode m. Most often m will be a
floating point mode.

(ffs:m x)
Represents one plus the index of the least significant 1-bit in x, represented as
an integer of mode m. (The value is zero if x is zero.) The mode of x need
not be m; depending on the target machine, various mode combinations may
be valid.

(clz:m x)
Represents the number of leading 0-bits in x, represented as an integer of mode
m, starting at the most significant bit position. If x is zero, the value is deter-
mined by CLZ_DEFINED_VALUE_AT_ZERO (see Section 17.30 [Misc], page 508).
Note that this is one of the few expressions that is not invariant under widening.
The mode of x will usually be an integer mode.

(ctz:m x)
Represents the number of trailing 0-bits in x, represented as an integer of mode
m, starting at the least significant bit position. If x is zero, the value is deter-
mined by CTZ_DEFINED_VALUE_AT_ZERO (see Section 17.30 [Misc], page 508).
Except for this case, ctz(x) is equivalent to ffs(x) - 1. The mode of x will
usually be an integer mode.

(popcount:m x)
Represents the number of 1-bits in x, represented as an integer of mode m. The
mode of x will usually be an integer mode.

176 GNU Compiler Collection (GCC) Internals

(parity:m x)
Represents the number of 1-bits modulo 2 in x, represented as an integer of
mode m. The mode of x will usually be an integer mode.

(bswap:m x)
Represents the value x with the order of bytes reversed, carried out in mode
m, which must be a fixed-point machine mode.

10.10 Comparison Operations

Comparison operators test a relation on two operands and are considered to represent a
machine-dependent nonzero value described by, but not necessarily equal to, STORE_FLAG_
VALUE (see Section 17.30 [Misc], page 508) if the relation holds, or zero if it does not, for
comparison operators whose results have a ‘MODE INT’ mode, FLOAT_STORE_FLAG_VALUE
(see Section 17.30 [Misc], page 508) if the relation holds, or zero if it does not, for comparison
operators that return floating-point values, and a vector of either VECTOR_STORE_FLAG_
VALUE (see Section 17.30 [Misc], page 508) if the relation holds, or of zeros if it does not, for
comparison operators that return vector results. The mode of the comparison operation is
independent of the mode of the data being compared. If the comparison operation is being
tested (e.g., the first operand of an if_then_else), the mode must be VOIDmode.

There are two ways that comparison operations may be used. The comparison operators
may be used to compare the condition codes (cc0) against zero, as in (eq (cc0) (const_
int 0)). Such a construct actually refers to the result of the preceding instruction in which
the condition codes were set. The instruction setting the condition code must be adjacent
to the instruction using the condition code; only note insns may separate them.

Alternatively, a comparison operation may directly compare two data objects. The mode
of the comparison is determined by the operands; they must both be valid for a common
machine mode. A comparison with both operands constant would be invalid as the machine
mode could not be deduced from it, but such a comparison should never exist in RTL due
to constant folding.

In the example above, if (cc0) were last set to (compare x y), the comparison operation
is identical to (eq x y). Usually only one style of comparisons is supported on a particular
machine, but the combine pass will try to merge the operations to produce the eq shown
in case it exists in the context of the particular insn involved.

Inequality comparisons come in two flavors, signed and unsigned. Thus, there are distinct
expression codes gt and gtu for signed and unsigned greater-than. These can produce differ-
ent results for the same pair of integer values: for example, 1 is signed greater-than −1 but
not unsigned greater-than, because −1 when regarded as unsigned is actually 0xffffffff
which is greater than 1.

The signed comparisons are also used for floating point values. Floating point comparisons
are distinguished by the machine modes of the operands.

(eq:m x y)
STORE_FLAG_VALUE if the values represented by x and y are equal, otherwise 0.

(ne:m x y)
STORE_FLAG_VALUE if the values represented by x and y are not equal, otherwise
0.

Chapter 10: RTL Representation 177

(gt:m x y)
STORE_FLAG_VALUE if the x is greater than y. If they are fixed-point, the com-
parison is done in a signed sense.

(gtu:m x y)
Like gt but does unsigned comparison, on fixed-point numbers only.

(lt:m x y)
(ltu:m x y)

Like gt and gtu but test for “less than”.

(ge:m x y)
(geu:m x y)

Like gt and gtu but test for “greater than or equal”.

(le:m x y)
(leu:m x y)

Like gt and gtu but test for “less than or equal”.

(if_then_else cond then else)
This is not a comparison operation but is listed here because it is always used in
conjunction with a comparison operation. To be precise, cond is a comparison
expression. This expression represents a choice, according to cond, between the
value represented by then and the one represented by else.
On most machines, if_then_else expressions are valid only to express condi-
tional jumps.

(cond [test1 value1 test2 value2 ...] default)
Similar to if_then_else, but more general. Each of test1, test2, . . . is per-
formed in turn. The result of this expression is the value corresponding to the
first nonzero test, or default if none of the tests are nonzero expressions.
This is currently not valid for instruction patterns and is supported only for
insn attributes. See Section 16.19 [Insn Attributes], page 350.

10.11 Bit-Fields

Special expression codes exist to represent bit-field instructions.

(sign_extract:m loc size pos)
This represents a reference to a sign-extended bit-field contained or starting in
loc (a memory or register reference). The bit-field is size bits wide and starts
at bit pos. The compilation option BITS_BIG_ENDIAN says which end of the
memory unit pos counts from.
If loc is in memory, its mode must be a single-byte integer mode. If loc is in a
register, the mode to use is specified by the operand of the insv or extv pattern
(see Section 16.9 [Standard Names], page 309) and is usually a full-word integer
mode, which is the default if none is specified.
The mode of pos is machine-specific and is also specified in the insv or extv
pattern.
The mode m is the same as the mode that would be used for loc if it were a
register.

178 GNU Compiler Collection (GCC) Internals

A sign_extract can not appear as an lvalue, or part thereof, in RTL.

(zero_extract:m loc size pos)
Like sign_extract but refers to an unsigned or zero-extended bit-field. The
same sequence of bits are extracted, but they are filled to an entire word with
zeros instead of by sign-extension.
Unlike sign_extract, this type of expressions can be lvalues in RTL; they may
appear on the left side of an assignment, indicating insertion of a value into the
specified bit-field.

10.12 Vector Operations

All normal RTL expressions can be used with vector modes; they are interpreted as operat-
ing on each part of the vector independently. Additionally, there are a few new expressions
to describe specific vector operations.

(vec_merge:m vec1 vec2 items)
This describes a merge operation between two vectors. The result is a vector of
mode m; its elements are selected from either vec1 or vec2. Which elements are
selected is described by items, which is a bit mask represented by a const_int;
a zero bit indicates the corresponding element in the result vector is taken from
vec2 while a set bit indicates it is taken from vec1.

(vec_select:m vec1 selection)
This describes an operation that selects parts of a vector. vec1 is the source
vector, selection is a parallel that contains a const_int for each of the sub-
parts of the result vector, giving the number of the source subpart that should
be stored into it.

(vec_concat:m vec1 vec2)
Describes a vector concat operation. The result is a concatenation of the vectors
vec1 and vec2; its length is the sum of the lengths of the two inputs.

(vec_duplicate:m vec)
This operation converts a small vector into a larger one by duplicating the input
values. The output vector mode must have the same submodes as the input
vector mode, and the number of output parts must be an integer multiple of
the number of input parts.

10.13 Conversions

All conversions between machine modes must be represented by explicit conversion oper-
ations. For example, an expression which is the sum of a byte and a full word cannot be
written as (plus:SI (reg:QI 34) (reg:SI 80)) because the plus operation requires two
operands of the same machine mode. Therefore, the byte-sized operand is enclosed in a
conversion operation, as in

(plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))

The conversion operation is not a mere placeholder, because there may be more than one
way of converting from a given starting mode to the desired final mode. The conversion
operation code says how to do it.

Chapter 10: RTL Representation 179

For all conversion operations, x must not be VOIDmode because the mode in which to do
the conversion would not be known. The conversion must either be done at compile-time
or x must be placed into a register.

(sign_extend:m x)
Represents the result of sign-extending the value x to machine mode m. m
must be a fixed-point mode and x a fixed-point value of a mode narrower than
m.

(zero_extend:m x)
Represents the result of zero-extending the value x to machine mode m. m
must be a fixed-point mode and x a fixed-point value of a mode narrower than
m.

(float_extend:m x)
Represents the result of extending the value x to machine mode m. m must be
a floating point mode and x a floating point value of a mode narrower than m.

(truncate:m x)
Represents the result of truncating the value x to machine mode m. m must
be a fixed-point mode and x a fixed-point value of a mode wider than m.

(ss_truncate:m x)
Represents the result of truncating the value x to machine mode m, using
signed saturation in the case of overflow. Both m and the mode of x must be
fixed-point modes.

(us_truncate:m x)
Represents the result of truncating the value x to machine mode m, using
unsigned saturation in the case of overflow. Both m and the mode of x must
be fixed-point modes.

(float_truncate:m x)
Represents the result of truncating the value x to machine mode m. m must
be a floating point mode and x a floating point value of a mode wider than m.

(float:m x)
Represents the result of converting fixed point value x, regarded as signed, to
floating point mode m.

(unsigned_float:m x)
Represents the result of converting fixed point value x, regarded as unsigned,
to floating point mode m.

(fix:m x)
When m is a floating-point mode, represents the result of converting floating
point value x (valid for mode m) to an integer, still represented in floating point
mode m, by rounding towards zero.
When m is a fixed-point mode, represents the result of converting floating point
value x to mode m, regarded as signed. How rounding is done is not specified, so
this operation may be used validly in compiling C code only for integer-valued
operands.

180 GNU Compiler Collection (GCC) Internals

(unsigned_fix:m x)
Represents the result of converting floating point value x to fixed point mode
m, regarded as unsigned. How rounding is done is not specified.

(fract_convert:m x)
Represents the result of converting fixed-point value x to fixed-point mode m,
signed integer value x to fixed-point mode m, floating-point value x to fixed-
point mode m, fixed-point value x to integer mode m regarded as signed, or
fixed-point value x to floating-point mode m. When overflows or underflows
happen, the results are undefined.

(sat_fract:m x)
Represents the result of converting fixed-point value x to fixed-point mode m,
signed integer value x to fixed-point mode m, or floating-point value x to fixed-
point mode m. When overflows or underflows happen, the results are saturated
to the maximum or the minimum.

(unsigned_fract_convert:m x)
Represents the result of converting fixed-point value x to integer mode m re-
garded as unsigned, or unsigned integer value x to fixed-point mode m. When
overflows or underflows happen, the results are undefined.

(unsigned_sat_fract:m x)
Represents the result of converting unsigned integer value x to fixed-point mode
m. When overflows or underflows happen, the results are saturated to the
maximum or the minimum.

10.14 Declarations

Declaration expression codes do not represent arithmetic operations but rather state asser-
tions about their operands.

(strict_low_part (subreg:m (reg:n r) 0))
This expression code is used in only one context: as the destination operand
of a set expression. In addition, the operand of this expression must be a
non-paradoxical subreg expression.

The presence of strict_low_part says that the part of the register which is
meaningful in mode n, but is not part of mode m, is not to be altered. Normally,
an assignment to such a subreg is allowed to have undefined effects on the rest
of the register when m is less than a word.

10.15 Side Effect Expressions

The expression codes described so far represent values, not actions. But machine instruc-
tions never produce values; they are meaningful only for their side effects on the state of
the machine. Special expression codes are used to represent side effects.

The body of an instruction is always one of these side effect codes; the codes described
above, which represent values, appear only as the operands of these.

Chapter 10: RTL Representation 181

(set lval x)
Represents the action of storing the value of x into the place represented by
lval. lval must be an expression representing a place that can be stored in: reg
(or subreg, strict_low_part or zero_extract), mem, pc, parallel, or cc0.
If lval is a reg, subreg or mem, it has a machine mode; then x must be valid
for that mode.
If lval is a reg whose machine mode is less than the full width of the register,
then it means that the part of the register specified by the machine mode is
given the specified value and the rest of the register receives an undefined value.
Likewise, if lval is a subreg whose machine mode is narrower than the mode of
the register, the rest of the register can be changed in an undefined way.
If lval is a strict_low_part of a subreg, then the part of the register specified
by the machine mode of the subreg is given the value x and the rest of the
register is not changed.
If lval is a zero_extract, then the referenced part of the bit-field (a memory or
register reference) specified by the zero_extract is given the value x and the
rest of the bit-field is not changed. Note that sign_extract can not appear in
lval.
If lval is (cc0), it has no machine mode, and x may be either a compare
expression or a value that may have any mode. The latter case represents
a “test” instruction. The expression (set (cc0) (reg:m n)) is equivalent to
(set (cc0) (compare (reg:m n) (const_int 0))). Use the former expres-
sion to save space during the compilation.
If lval is a parallel, it is used to represent the case of a function returning a
structure in multiple registers. Each element of the parallel is an expr_list
whose first operand is a reg and whose second operand is a const_int repre-
senting the offset (in bytes) into the structure at which the data in that register
corresponds. The first element may be null to indicate that the structure is also
passed partly in memory.
If lval is (pc), we have a jump instruction, and the possibilities for x are very
limited. It may be a label_ref expression (unconditional jump). It may be an
if_then_else (conditional jump), in which case either the second or the third
operand must be (pc) (for the case which does not jump) and the other of the
two must be a label_ref (for the case which does jump). x may also be a mem
or (plus:SI (pc) y), where y may be a reg or a mem; these unusual patterns
are used to represent jumps through branch tables.
If lval is neither (cc0) nor (pc), the mode of lval must not be VOIDmode and
the mode of x must be valid for the mode of lval.
lval is customarily accessed with the SET_DEST macro and x with the SET_SRC
macro.

(return) As the sole expression in a pattern, represents a return from the current func-
tion, on machines where this can be done with one instruction, such as VAXen.
On machines where a multi-instruction “epilogue” must be executed in order
to return from the function, returning is done by jumping to a label which
precedes the epilogue, and the return expression code is never used.

182 GNU Compiler Collection (GCC) Internals

Inside an if_then_else expression, represents the value to be placed in pc to
return to the caller.
Note that an insn pattern of (return) is logically equivalent to (set (pc)
(return)), but the latter form is never used.

(call function nargs)
Represents a function call. function is a mem expression whose address is the
address of the function to be called. nargs is an expression which can be used
for two purposes: on some machines it represents the number of bytes of stack
argument; on others, it represents the number of argument registers.
Each machine has a standard machine mode which function must have. The
machine description defines macro FUNCTION_MODE to expand into the requisite
mode name. The purpose of this mode is to specify what kind of addressing
is allowed, on machines where the allowed kinds of addressing depend on the
machine mode being addressed.

(clobber x)
Represents the storing or possible storing of an unpredictable, undescribed value
into x, which must be a reg, scratch, parallel or mem expression.
One place this is used is in string instructions that store standard values into
particular hard registers. It may not be worth the trouble to describe the values
that are stored, but it is essential to inform the compiler that the registers will
be altered, lest it attempt to keep data in them across the string instruction.
If x is (mem:BLK (const_int 0)) or (mem:BLK (scratch)), it means that all
memory locations must be presumed clobbered. If x is a parallel, it has the
same meaning as a parallel in a set expression.
Note that the machine description classifies certain hard registers as “call-
clobbered”. All function call instructions are assumed by default to clobber
these registers, so there is no need to use clobber expressions to indicate this
fact. Also, each function call is assumed to have the potential to alter any
memory location, unless the function is declared const.
If the last group of expressions in a parallel are each a clobber expression
whose arguments are reg or match_scratch (see Section 16.4 [RTL Template],
page 271) expressions, the combiner phase can add the appropriate clobber
expressions to an insn it has constructed when doing so will cause a pattern to
be matched.
This feature can be used, for example, on a machine that whose multiply and
add instructions don’t use an MQ register but which has an add-accumulate
instruction that does clobber the MQ register. Similarly, a combined instruction
might require a temporary register while the constituent instructions might not.
When a clobber expression for a register appears inside a parallel with other
side effects, the register allocator guarantees that the register is unoccupied
both before and after that insn if it is a hard register clobber. For pseudo-
register clobber, the register allocator and the reload pass do not assign the
same hard register to the clobber and the input operands if there is an insn al-
ternative containing the ‘&’ constraint (see Section 16.8.4 [Modifiers], page 287)

Chapter 10: RTL Representation 183

for the clobber and the hard register is in register classes of the clobber in the
alternative. You can clobber either a specific hard register, a pseudo register, or
a scratch expression; in the latter two cases, GCC will allocate a hard register
that is available there for use as a temporary.
For instructions that require a temporary register, you should use scratch
instead of a pseudo-register because this will allow the combiner phase to add
the clobber when required. You do this by coding (clobber (match_scratch
. . .)). If you do clobber a pseudo register, use one which appears nowhere
else—generate a new one each time. Otherwise, you may confuse CSE.
There is one other known use for clobbering a pseudo register in a parallel:
when one of the input operands of the insn is also clobbered by the insn. In
this case, using the same pseudo register in the clobber and elsewhere in the
insn produces the expected results.

(use x) Represents the use of the value of x. It indicates that the value in x at this
point in the program is needed, even though it may not be apparent why this
is so. Therefore, the compiler will not attempt to delete previous instructions
whose only effect is to store a value in x. x must be a reg expression.
In some situations, it may be tempting to add a use of a register in a parallel
to describe a situation where the value of a special register will modify the
behavior of the instruction. An hypothetical example might be a pattern for
an addition that can either wrap around or use saturating addition depending
on the value of a special control register:

(parallel [(set (reg:SI 2) (unspec:SI [(reg:SI 3)

(reg:SI 4)] 0))

(use (reg:SI 1))])

This will not work, several of the optimizers only look at expressions locally; it
is very likely that if you have multiple insns with identical inputs to the unspec,
they will be optimized away even if register 1 changes in between.
This means that use can only be used to describe that the register is live. You
should think twice before adding use statements, more often you will want to
use unspec instead. The use RTX is most commonly useful to describe that
a fixed register is implicitly used in an insn. It is also safe to use in patterns
where the compiler knows for other reasons that the result of the whole pattern
is variable, such as ‘movmemm ’ or ‘call’ patterns.
During the reload phase, an insn that has a use as pattern can carry a reg equal
note. These use insns will be deleted before the reload phase exits.
During the delayed branch scheduling phase, x may be an insn. This indicates
that x previously was located at this place in the code and its data dependencies
need to be taken into account. These use insns will be deleted before the delayed
branch scheduling phase exits.

(parallel [x0 x1 ...])
Represents several side effects performed in parallel. The square brackets stand
for a vector; the operand of parallel is a vector of expressions. x0, x1 and so
on are individual side effect expressions—expressions of code set, call, return,
clobber or use.

184 GNU Compiler Collection (GCC) Internals

“In parallel” means that first all the values used in the individual side-effects are
computed, and second all the actual side-effects are performed. For example,

(parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))

(set (mem:SI (reg:SI 1)) (reg:SI 1))])

says unambiguously that the values of hard register 1 and the memory location
addressed by it are interchanged. In both places where (reg:SI 1) appears as
a memory address it refers to the value in register 1 before the execution of the
insn.
It follows that it is incorrect to use parallel and expect the result of one set
to be available for the next one. For example, people sometimes attempt to
represent a jump-if-zero instruction this way:

(parallel [(set (cc0) (reg:SI 34))

(set (pc) (if_then_else

(eq (cc0) (const_int 0))

(label_ref ...)

(pc)))])

But this is incorrect, because it says that the jump condition depends on the
condition code value before this instruction, not on the new value that is set by
this instruction.
Peephole optimization, which takes place together with final assembly code
output, can produce insns whose patterns consist of a parallel whose elements
are the operands needed to output the resulting assembler code—often reg, mem
or constant expressions. This would not be well-formed RTL at any other stage
in compilation, but it is ok then because no further optimization remains to be
done. However, the definition of the macro NOTICE_UPDATE_CC, if any, must
deal with such insns if you define any peephole optimizations.

(cond_exec [cond expr])
Represents a conditionally executed expression. The expr is executed only if
the cond is nonzero. The cond expression must not have side-effects, but the
expr may very well have side-effects.

(sequence [insns ...])
Represents a sequence of insns. Each of the insns that appears in the vector is
suitable for appearing in the chain of insns, so it must be an insn, jump_insn,
call_insn, code_label, barrier or note.
A sequence RTX is never placed in an actual insn during RTL generation. It
represents the sequence of insns that result from a define_expand before those
insns are passed to emit_insn to insert them in the chain of insns. When
actually inserted, the individual sub-insns are separated out and the sequence
is forgotten.
After delay-slot scheduling is completed, an insn and all the insns that reside
in its delay slots are grouped together into a sequence. The insn requiring the
delay slot is the first insn in the vector; subsequent insns are to be placed in
the delay slot.
INSN_ANNULLED_BRANCH_P is set on an insn in a delay slot to indicate that a
branch insn should be used that will conditionally annul the effect of the insns

Chapter 10: RTL Representation 185

in the delay slots. In such a case, INSN_FROM_TARGET_P indicates that the insn
is from the target of the branch and should be executed only if the branch is
taken; otherwise the insn should be executed only if the branch is not taken.
See Section 16.19.7 [Delay Slots], page 357.

These expression codes appear in place of a side effect, as the body of an insn, though
strictly speaking they do not always describe side effects as such:

(asm_input s)
Represents literal assembler code as described by the string s.

(unspec [operands ...] index)
(unspec_volatile [operands ...] index)

Represents a machine-specific operation on operands. index selects between
multiple machine-specific operations. unspec_volatile is used for volatile op-
erations and operations that may trap; unspec is used for other operations.
These codes may appear inside a pattern of an insn, inside a parallel, or
inside an expression.

(addr_vec:m [lr0 lr1 ...])
Represents a table of jump addresses. The vector elements lr0, etc., are label_
ref expressions. The mode m specifies how much space is given to each address;
normally m would be Pmode.

(addr_diff_vec:m base [lr0 lr1 ...] min max flags)
Represents a table of jump addresses expressed as offsets from base. The vector
elements lr0, etc., are label_ref expressions and so is base. The mode m
specifies how much space is given to each address-difference. min and max are
set up by branch shortening and hold a label with a minimum and a maximum
address, respectively. flags indicates the relative position of base, min and max
to the containing insn and of min and max to base. See rtl.def for details.

(prefetch:m addr rw locality)
Represents prefetch of memory at address addr. Operand rw is 1 if the
prefetch is for data to be written, 0 otherwise; targets that do not support
write prefetches should treat this as a normal prefetch. Operand locality
specifies the amount of temporal locality; 0 if there is none or 1, 2, or 3 for
increasing levels of temporal locality; targets that do not support locality hints
should ignore this.
This insn is used to minimize cache-miss latency by moving data into a cache
before it is accessed. It should use only non-faulting data prefetch instructions.

10.16 Embedded Side-Effects on Addresses

Six special side-effect expression codes appear as memory addresses.

(pre_dec:m x)
Represents the side effect of decrementing x by a standard amount and repre-
sents also the value that x has after being decremented. x must be a reg or
mem, but most machines allow only a reg. m must be the machine mode for
pointers on the machine in use. The amount x is decremented by is the length

186 GNU Compiler Collection (GCC) Internals

in bytes of the machine mode of the containing memory reference of which this
expression serves as the address. Here is an example of its use:

(mem:DF (pre_dec:SI (reg:SI 39)))

This says to decrement pseudo register 39 by the length of a DFmode value and
use the result to address a DFmode value.

(pre_inc:m x)
Similar, but specifies incrementing x instead of decrementing it.

(post_dec:m x)
Represents the same side effect as pre_dec but a different value. The value
represented here is the value x has before being decremented.

(post_inc:m x)
Similar, but specifies incrementing x instead of decrementing it.

(post_modify:m x y)
Represents the side effect of setting x to y and represents x before x is modified.
x must be a reg or mem, but most machines allow only a reg. m must be the
machine mode for pointers on the machine in use.

The expression y must be one of three forms: (plus:m x z), (minus:m x z),
or (plus:m x i), where z is an index register and i is a constant.

Here is an example of its use:
(mem:SF (post_modify:SI (reg:SI 42) (plus (reg:SI 42)

(reg:SI 48))))

This says to modify pseudo register 42 by adding the contents of pseudo register
48 to it, after the use of what ever 42 points to.

(pre_modify:m x expr)
Similar except side effects happen before the use.

These embedded side effect expressions must be used with care. Instruction patterns may
not use them. Until the ‘flow’ pass of the compiler, they may occur only to represent pushes
onto the stack. The ‘flow’ pass finds cases where registers are incremented or decremented
in one instruction and used as an address shortly before or after; these cases are then
transformed to use pre- or post-increment or -decrement.

If a register used as the operand of these expressions is used in another address in an
insn, the original value of the register is used. Uses of the register outside of an address are
not permitted within the same insn as a use in an embedded side effect expression because
such insns behave differently on different machines and hence must be treated as ambiguous
and disallowed.

An instruction that can be represented with an embedded side effect could also be rep-
resented using parallel containing an additional set to describe how the address register
is altered. This is not done because machines that allow these operations at all typically
allow them wherever a memory address is called for. Describing them as additional parallel
stores would require doubling the number of entries in the machine description.

Chapter 10: RTL Representation 187

10.17 Assembler Instructions as Expressions

The RTX code asm_operands represents a value produced by a user-specified assembler
instruction. It is used to represent an asm statement with arguments. An asm statement
with a single output operand, like this:

asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z));

is represented using a single asm_operands RTX which represents the value that is stored
in outputvar:

(set rtx-for-outputvar

(asm_operands "foo %1,%2,%0" "a" 0

[rtx-for-addition-result rtx-for-*z]

[(asm_input:m1 "g")

(asm_input:m2 "di")]))

Here the operands of the asm_operands RTX are the assembler template string, the output-
operand’s constraint, the index-number of the output operand among the output operands
specified, a vector of input operand RTX’s, and a vector of input-operand modes and
constraints. The mode m1 is the mode of the sum x+y; m2 is that of *z.

When an asm statement has multiple output values, its insn has several such set RTX’s
inside of a parallel. Each set contains a asm_operands; all of these share the same
assembler template and vectors, but each contains the constraint for the respective output
operand. They are also distinguished by the output-operand index number, which is 0, 1,
. . . for successive output operands.

10.18 Insns

The RTL representation of the code for a function is a doubly-linked chain of objects called
insns. Insns are expressions with special codes that are used for no other purpose. Some
insns are actual instructions; others represent dispatch tables for switch statements; others
represent labels to jump to or various sorts of declarative information.

In addition to its own specific data, each insn must have a unique id-number that dis-
tinguishes it from all other insns in the current function (after delayed branch scheduling,
copies of an insn with the same id-number may be present in multiple places in a function,
but these copies will always be identical and will only appear inside a sequence), and chain
pointers to the preceding and following insns. These three fields occupy the same position
in every insn, independent of the expression code of the insn. They could be accessed with
XEXP and XINT, but instead three special macros are always used:

INSN_UID (i)
Accesses the unique id of insn i.

PREV_INSN (i)
Accesses the chain pointer to the insn preceding i. If i is the first insn, this is
a null pointer.

NEXT_INSN (i)
Accesses the chain pointer to the insn following i. If i is the last insn, this is a
null pointer.

The first insn in the chain is obtained by calling get_insns; the last insn is the result
of calling get_last_insn. Within the chain delimited by these insns, the NEXT_INSN and
PREV_INSN pointers must always correspond: if insn is not the first insn,

188 GNU Compiler Collection (GCC) Internals

NEXT_INSN (PREV_INSN (insn)) == insn

is always true and if insn is not the last insn,
PREV_INSN (NEXT_INSN (insn)) == insn

is always true.
After delay slot scheduling, some of the insns in the chain might be sequence expressions,

which contain a vector of insns. The value of NEXT_INSN in all but the last of these insns
is the next insn in the vector; the value of NEXT_INSN of the last insn in the vector is the
same as the value of NEXT_INSN for the sequence in which it is contained. Similar rules
apply for PREV_INSN.

This means that the above invariants are not necessarily true for insns inside sequence
expressions. Specifically, if insn is the first insn in a sequence, NEXT_INSN (PREV_INSN
(insn)) is the insn containing the sequence expression, as is the value of PREV_INSN
(NEXT_INSN (insn)) if insn is the last insn in the sequence expression. You can use these
expressions to find the containing sequence expression.

Every insn has one of the following six expression codes:

insn The expression code insn is used for instructions that do not jump and do not
do function calls. sequence expressions are always contained in insns with code
insn even if one of those insns should jump or do function calls.
Insns with code insn have four additional fields beyond the three mandatory
ones listed above. These four are described in a table below.

jump_insn
The expression code jump_insn is used for instructions that may jump (or,
more generally, may contain label_ref expressions to which pc can be set in
that instruction). If there is an instruction to return from the current function,
it is recorded as a jump_insn.
jump_insn insns have the same extra fields as insn insns, accessed in the same
way and in addition contain a field JUMP_LABEL which is defined once jump
optimization has completed.
For simple conditional and unconditional jumps, this field contains the code_
label to which this insn will (possibly conditionally) branch. In a more complex
jump, JUMP_LABEL records one of the labels that the insn refers to; other jump
target labels are recorded as REG_LABEL_TARGET notes. The exception is addr_
vec and addr_diff_vec, where JUMP_LABEL is NULL_RTX and the only way to
find the labels is to scan the entire body of the insn.
Return insns count as jumps, but since they do not refer to any labels, their
JUMP_LABEL is NULL_RTX.

call_insn
The expression code call_insn is used for instructions that may do function
calls. It is important to distinguish these instructions because they imply that
certain registers and memory locations may be altered unpredictably.
call_insn insns have the same extra fields as insn insns, accessed in the same
way and in addition contain a field CALL_INSN_FUNCTION_USAGE, which contains
a list (chain of expr_list expressions) containing use and clobber expressions
that denote hard registers and MEMs used or clobbered by the called function.

Chapter 10: RTL Representation 189

A MEM generally points to a stack slots in which arguments passed to the
libcall by reference (see Section 17.10.7 [Register Arguments], page 424) are
stored. If the argument is caller-copied (see Section 17.10.7 [Register Argu-
ments], page 424), the stack slot will be mentioned in CLOBBER and USE entries;
if it’s callee-copied, only a USE will appear, and the MEM may point to addresses
that are not stack slots.
CLOBBERed registers in this list augment registers specified in CALL_USED_
REGISTERS (see Section 17.7.1 [Register Basics], page 394).

code_label
A code_label insn represents a label that a jump insn can jump to. It con-
tains two special fields of data in addition to the three standard ones. CODE_
LABEL_NUMBER is used to hold the label number, a number that identifies this
label uniquely among all the labels in the compilation (not just in the current
function). Ultimately, the label is represented in the assembler output as an
assembler label, usually of the form ‘Ln ’ where n is the label number.
When a code_label appears in an RTL expression, it normally appears within
a label_ref which represents the address of the label, as a number.
Besides as a code_label, a label can also be represented as a note of type
NOTE_INSN_DELETED_LABEL.
The field LABEL_NUSES is only defined once the jump optimization phase is
completed. It contains the number of times this label is referenced in the
current function.
The field LABEL_KIND differentiates four different types of labels: LABEL_
NORMAL, LABEL_STATIC_ENTRY, LABEL_GLOBAL_ENTRY, and LABEL_WEAK_ENTRY.
The only labels that do not have type LABEL_NORMAL are alternate entry points
to the current function. These may be static (visible only in the containing
translation unit), global (exposed to all translation units), or weak (global,
but can be overridden by another symbol with the same name).
Much of the compiler treats all four kinds of label identically. Some of it needs
to know whether or not a label is an alternate entry point; for this purpose,
the macro LABEL_ALT_ENTRY_P is provided. It is equivalent to testing whether
‘LABEL_KIND (label) == LABEL_NORMAL’. The only place that cares about the
distinction between static, global, and weak alternate entry points, besides the
front-end code that creates them, is the function output_alternate_entry_
point, in ‘final.c’.
To set the kind of a label, use the SET_LABEL_KIND macro.

barrier Barriers are placed in the instruction stream when control cannot flow past
them. They are placed after unconditional jump instructions to indicate that
the jumps are unconditional and after calls to volatile functions, which do
not return (e.g., exit). They contain no information beyond the three standard
fields.

note note insns are used to represent additional debugging and declarative informa-
tion. They contain two nonstandard fields, an integer which is accessed with
the macro NOTE_LINE_NUMBER and a string accessed with NOTE_SOURCE_FILE.

190 GNU Compiler Collection (GCC) Internals

If NOTE_LINE_NUMBER is positive, the note represents the position of a source
line and NOTE_SOURCE_FILE is the source file name that the line came from.
These notes control generation of line number data in the assembler output.
Otherwise, NOTE_LINE_NUMBER is not really a line number but a code with one
of the following values (and NOTE_SOURCE_FILE must contain a null pointer):

NOTE_INSN_DELETED
Such a note is completely ignorable. Some passes of the compiler
delete insns by altering them into notes of this kind.

NOTE_INSN_DELETED_LABEL
This marks what used to be a code_label, but was not used for
other purposes than taking its address and was transformed to mark
that no code jumps to it.

NOTE_INSN_BLOCK_BEG
NOTE_INSN_BLOCK_END

These types of notes indicate the position of the beginning and end
of a level of scoping of variable names. They control the output of
debugging information.

NOTE_INSN_EH_REGION_BEG
NOTE_INSN_EH_REGION_END

These types of notes indicate the position of the beginning and end
of a level of scoping for exception handling. NOTE_BLOCK_NUMBER
identifies which CODE_LABEL or note of type NOTE_INSN_DELETED_
LABEL is associated with the given region.

NOTE_INSN_LOOP_BEG
NOTE_INSN_LOOP_END

These types of notes indicate the position of the beginning and end
of a while or for loop. They enable the loop optimizer to find
loops quickly.

NOTE_INSN_LOOP_CONT
Appears at the place in a loop that continue statements jump to.

NOTE_INSN_LOOP_VTOP
This note indicates the place in a loop where the exit test begins
for those loops in which the exit test has been duplicated. This
position becomes another virtual start of the loop when considering
loop invariants.

NOTE_INSN_FUNCTION_BEG
Appears at the start of the function body, after the function pro-
logue.

These codes are printed symbolically when they appear in debugging dumps.

The machine mode of an insn is normally VOIDmode, but some phases use the mode for
various purposes.

The common subexpression elimination pass sets the mode of an insn to QImode when it
is the first insn in a block that has already been processed.

Chapter 10: RTL Representation 191

The second Haifa scheduling pass, for targets that can multiple issue, sets the mode of
an insn to TImode when it is believed that the instruction begins an issue group. That is,
when the instruction cannot issue simultaneously with the previous. This may be relied on
by later passes, in particular machine-dependent reorg.

Here is a table of the extra fields of insn, jump_insn and call_insn insns:

PATTERN (i)
An expression for the side effect performed by this insn. This must be one of the
following codes: set, call, use, clobber, return, asm_input, asm_output,
addr_vec, addr_diff_vec, trap_if, unspec, unspec_volatile, parallel,
cond_exec, or sequence. If it is a parallel, each element of the parallel
must be one these codes, except that parallel expressions cannot be nested
and addr_vec and addr_diff_vec are not permitted inside a parallel expres-
sion.

INSN_CODE (i)
An integer that says which pattern in the machine description matches this
insn, or −1 if the matching has not yet been attempted.
Such matching is never attempted and this field remains −1 on an insn whose
pattern consists of a single use, clobber, asm_input, addr_vec or addr_diff_
vec expression.
Matching is also never attempted on insns that result from an asm state-
ment. These contain at least one asm_operands expression. The function
asm_noperands returns a non-negative value for such insns.
In the debugging output, this field is printed as a number followed by a symbolic
representation that locates the pattern in the ‘md’ file as some small positive or
negative offset from a named pattern.

LOG_LINKS (i)
A list (chain of insn_list expressions) giving information about dependencies
between instructions within a basic block. Neither a jump nor a label may
come between the related insns. These are only used by the schedulers and by
combine. This is a deprecated data structure. Def-use and use-def chains are
now preferred.

REG_NOTES (i)
A list (chain of expr_list and insn_list expressions) giving miscellaneous
information about the insn. It is often information pertaining to the registers
used in this insn.

The LOG_LINKS field of an insn is a chain of insn_list expressions. Each of these has two
operands: the first is an insn, and the second is another insn_list expression (the next one
in the chain). The last insn_list in the chain has a null pointer as second operand. The
significant thing about the chain is which insns appear in it (as first operands of insn_list
expressions). Their order is not significant.

This list is originally set up by the flow analysis pass; it is a null pointer until then. Flow
only adds links for those data dependencies which can be used for instruction combination.
For each insn, the flow analysis pass adds a link to insns which store into registers values
that are used for the first time in this insn.

192 GNU Compiler Collection (GCC) Internals

The REG_NOTES field of an insn is a chain similar to the LOG_LINKS field but it includes
expr_list expressions in addition to insn_list expressions. There are several kinds of
register notes, which are distinguished by the machine mode, which in a register note is
really understood as being an enum reg_note. The first operand op of the note is data
whose meaning depends on the kind of note.

The macro REG_NOTE_KIND (x) returns the kind of register note. Its counterpart, the
macro PUT_REG_NOTE_KIND (x, newkind) sets the register note type of x to be newkind.

Register notes are of three classes: They may say something about an input to an insn,
they may say something about an output of an insn, or they may create a linkage between
two insns. There are also a set of values that are only used in LOG_LINKS.

These register notes annotate inputs to an insn:

REG_DEAD The value in op dies in this insn; that is to say, altering the value immediately
after this insn would not affect the future behavior of the program.
It does not follow that the register op has no useful value after this insn since
op is not necessarily modified by this insn. Rather, no subsequent instruction
uses the contents of op.

REG_UNUSED
The register op being set by this insn will not be used in a subsequent insn.
This differs from a REG_DEAD note, which indicates that the value in an input
will not be used subsequently. These two notes are independent; both may be
present for the same register.

REG_INC The register op is incremented (or decremented; at this level there is no dis-
tinction) by an embedded side effect inside this insn. This means it appears in
a post_inc, pre_inc, post_dec or pre_dec expression.

REG_NONNEG
The register op is known to have a nonnegative value when this insn is reached.
This is used so that decrement and branch until zero instructions, such as the
m68k dbra, can be matched.
The REG_NONNEG note is added to insns only if the machine description has a
‘decrement_and_branch_until_zero’ pattern.

REG_LABEL_OPERAND
This insn uses op, a code_label or a note of type NOTE_INSN_DELETED_LABEL,
but is not a jump_insn, or it is a jump_insn that refers to the operand as an
ordinary operand. The label may still eventually be a jump target, but if so in
an indirect jump in a subsequent insn. The presence of this note allows jump
optimization to be aware that op is, in fact, being used, and flow optimization
to build an accurate flow graph.

REG_LABEL_TARGET
This insn is a jump_insn but not a addr_vec or addr_diff_vec. It uses op,
a code_label as a direct or indirect jump target. Its purpose is similar to
that of REG_LABEL_OPERAND. This note is only present if the insn has multiple
targets; the last label in the insn (in the highest numbered insn-field) goes
into the JUMP_LABEL field and does not have a REG_LABEL_TARGET note. See
Section 10.18 [Insns], page 187.

Chapter 10: RTL Representation 193

REG_CROSSING_JUMP
This insn is an branching instruction (either an unconditional jump or an indi-
rect jump) which crosses between hot and cold sections, which could potentially
be very far apart in the executable. The presence of this note indicates to other
optimizations that this branching instruction should not be “collapsed” into a
simpler branching construct. It is used when the optimization to partition basic
blocks into hot and cold sections is turned on.

REG_SETJMP
Appears attached to each CALL_INSN to setjmp or a related function.

The following notes describe attributes of outputs of an insn:

REG_EQUIV
REG_EQUAL

This note is only valid on an insn that sets only one register and indicates that
that register will be equal to op at run time; the scope of this equivalence differs
between the two types of notes. The value which the insn explicitly copies into
the register may look different from op, but they will be equal at run time. If
the output of the single set is a strict_low_part expression, the note refers
to the register that is contained in SUBREG_REG of the subreg expression.
For REG_EQUIV, the register is equivalent to op throughout the entire function,
and could validly be replaced in all its occurrences by op. (“Validly” here refers
to the data flow of the program; simple replacement may make some insns
invalid.) For example, when a constant is loaded into a register that is never
assigned any other value, this kind of note is used.
When a parameter is copied into a pseudo-register at entry to a function, a note
of this kind records that the register is equivalent to the stack slot where the
parameter was passed. Although in this case the register may be set by other
insns, it is still valid to replace the register by the stack slot throughout the
function.
A REG_EQUIV note is also used on an instruction which copies a register param-
eter into a pseudo-register at entry to a function, if there is a stack slot where
that parameter could be stored. Although other insns may set the pseudo-
register, it is valid for the compiler to replace the pseudo-register by stack slot
throughout the function, provided the compiler ensures that the stack slot is
properly initialized by making the replacement in the initial copy instruction as
well. This is used on machines for which the calling convention allocates stack
space for register parameters. See REG_PARM_STACK_SPACE in Section 17.10.6
[Stack Arguments], page 422.
In the case of REG_EQUAL, the register that is set by this insn will be equal
to op at run time at the end of this insn but not necessarily elsewhere in the
function. In this case, op is typically an arithmetic expression. For example,
when a sequence of insns such as a library call is used to perform an arithmetic
operation, this kind of note is attached to the insn that produces or copies the
final value.
These two notes are used in different ways by the compiler passes. REG_EQUAL
is used by passes prior to register allocation (such as common subexpression

194 GNU Compiler Collection (GCC) Internals

elimination and loop optimization) to tell them how to think of that value.
REG_EQUIV notes are used by register allocation to indicate that there is an
available substitute expression (either a constant or a mem expression for the
location of a parameter on the stack) that may be used in place of a register if
insufficient registers are available.

Except for stack homes for parameters, which are indicated by a REG_EQUIV note
and are not useful to the early optimization passes and pseudo registers that
are equivalent to a memory location throughout their entire life, which is not
detected until later in the compilation, all equivalences are initially indicated
by an attached REG_EQUAL note. In the early stages of register allocation, a
REG_EQUAL note is changed into a REG_EQUIV note if op is a constant and the
insn represents the only set of its destination register.

Thus, compiler passes prior to register allocation need only check for REG_
EQUAL notes and passes subsequent to register allocation need only check for
REG_EQUIV notes.

These notes describe linkages between insns. They occur in pairs: one insn has one of a
pair of notes that points to a second insn, which has the inverse note pointing back to the
first insn.

REG_CC_SETTER
REG_CC_USER

On machines that use cc0, the insns which set and use cc0 set and use cc0 are
adjacent. However, when branch delay slot filling is done, this may no longer
be true. In this case a REG_CC_USER note will be placed on the insn setting cc0
to point to the insn using cc0 and a REG_CC_SETTER note will be placed on the
insn using cc0 to point to the insn setting cc0.

These values are only used in the LOG_LINKS field, and indicate the type of dependency
that each link represents. Links which indicate a data dependence (a read after write
dependence) do not use any code, they simply have mode VOIDmode, and are printed without
any descriptive text.

REG_DEP_TRUE
This indicates a true dependence (a read after write dependence).

REG_DEP_OUTPUT
This indicates an output dependence (a write after write dependence).

REG_DEP_ANTI
This indicates an anti dependence (a write after read dependence).

These notes describe information gathered from gcov profile data. They are stored in the
REG_NOTES field of an insn as an expr_list.

REG_BR_PROB
This is used to specify the ratio of branches to non-branches of a branch insn
according to the profile data. The value is stored as a value between 0 and
REG BR PROB BASE; larger values indicate a higher probability that the
branch will be taken.

Chapter 10: RTL Representation 195

REG_BR_PRED
These notes are found in JUMP insns after delayed branch scheduling has taken
place. They indicate both the direction and the likelihood of the JUMP. The
format is a bitmask of ATTR FLAG * values.

REG_FRAME_RELATED_EXPR
This is used on an RTX FRAME RELATED P insn wherein the attached ex-
pression is used in place of the actual insn pattern. This is done in cases where
the pattern is either complex or misleading.

For convenience, the machine mode in an insn_list or expr_list is printed using these
symbolic codes in debugging dumps.

The only difference between the expression codes insn_list and expr_list is that the
first operand of an insn_list is assumed to be an insn and is printed in debugging dumps
as the insn’s unique id; the first operand of an expr_list is printed in the ordinary way as
an expression.

10.19 RTL Representation of Function-Call Insns

Insns that call subroutines have the RTL expression code call_insn. These insns must
satisfy special rules, and their bodies must use a special RTL expression code, call.

A call expression has two operands, as follows:
(call (mem:fm addr) nbytes)

Here nbytes is an operand that represents the number of bytes of argument data being
passed to the subroutine, fm is a machine mode (which must equal as the definition of the
FUNCTION_MODE macro in the machine description) and addr represents the address of the
subroutine.

For a subroutine that returns no value, the call expression as shown above is the entire
body of the insn, except that the insn might also contain use or clobber expressions.

For a subroutine that returns a value whose mode is not BLKmode, the value is returned
in a hard register. If this register’s number is r, then the body of the call insn looks like
this:

(set (reg:m r)

(call (mem:fm addr) nbytes))

This RTL expression makes it clear (to the optimizer passes) that the appropriate register
receives a useful value in this insn.

When a subroutine returns a BLKmode value, it is handled by passing to the subroutine
the address of a place to store the value. So the call insn itself does not “return” any value,
and it has the same RTL form as a call that returns nothing.

On some machines, the call instruction itself clobbers some register, for example to contain
the return address. call_insn insns on these machines should have a body which is a
parallel that contains both the call expression and clobber expressions that indicate
which registers are destroyed. Similarly, if the call instruction requires some register other
than the stack pointer that is not explicitly mentioned in its RTL, a use subexpression
should mention that register.

196 GNU Compiler Collection (GCC) Internals

Functions that are called are assumed to modify all registers listed in the configuration
macro CALL_USED_REGISTERS (see Section 17.7.1 [Register Basics], page 394) and, with the
exception of const functions and library calls, to modify all of memory.

Insns containing just use expressions directly precede the call_insn insn to indicate
which registers contain inputs to the function. Similarly, if registers other than those
in CALL_USED_REGISTERS are clobbered by the called function, insns containing a single
clobber follow immediately after the call to indicate which registers.

10.20 Structure Sharing Assumptions

The compiler assumes that certain kinds of RTL expressions are unique; there do not exist
two distinct objects representing the same value. In other cases, it makes an opposite
assumption: that no RTL expression object of a certain kind appears in more than one
place in the containing structure.

These assumptions refer to a single function; except for the RTL objects that describe
global variables and external functions, and a few standard objects such as small integer
constants, no RTL objects are common to two functions.
• Each pseudo-register has only a single reg object to represent it, and therefore only a

single machine mode.
• For any symbolic label, there is only one symbol_ref object referring to it.
• All const_int expressions with equal values are shared.
• There is only one pc expression.
• There is only one cc0 expression.
• There is only one const_double expression with value 0 for each floating point mode.

Likewise for values 1 and 2.
• There is only one const_vector expression with value 0 for each vector mode, be it

an integer or a double constant vector.
• No label_ref or scratch appears in more than one place in the RTL structure; in

other words, it is safe to do a tree-walk of all the insns in the function and assume that
each time a label_ref or scratch is seen it is distinct from all others that are seen.

• Only one mem object is normally created for each static variable or stack slot, so these
objects are frequently shared in all the places they appear. However, separate but equal
objects for these variables are occasionally made.

• When a single asm statement has multiple output operands, a distinct asm_operands
expression is made for each output operand. However, these all share the vector which
contains the sequence of input operands. This sharing is used later on to test whether
two asm_operands expressions come from the same statement, so all optimizations
must carefully preserve the sharing if they copy the vector at all.

• No RTL object appears in more than one place in the RTL structure except as described
above. Many passes of the compiler rely on this by assuming that they can modify
RTL objects in place without unwanted side-effects on other insns.

• During initial RTL generation, shared structure is freely introduced. After all the RTL
for a function has been generated, all shared structure is copied by unshare_all_rtl
in ‘emit-rtl.c’, after which the above rules are guaranteed to be followed.

Chapter 10: RTL Representation 197

• During the combiner pass, shared structure within an insn can exist temporarily. How-
ever, the shared structure is copied before the combiner is finished with the insn. This
is done by calling copy_rtx_if_shared, which is a subroutine of unshare_all_rtl.

10.21 Reading RTL

To read an RTL object from a file, call read_rtx. It takes one argument, a stdio stream,
and returns a single RTL object. This routine is defined in ‘read-rtl.c’. It is not available
in the compiler itself, only the various programs that generate the compiler back end from
the machine description.

People frequently have the idea of using RTL stored as text in a file as an interface
between a language front end and the bulk of GCC. This idea is not feasible.

GCC was designed to use RTL internally only. Correct RTL for a given program is
very dependent on the particular target machine. And the RTL does not contain all the
information about the program.

The proper way to interface GCC to a new language front end is with the “tree” data
structure, described in the files ‘tree.h’ and ‘tree.def’. The documentation for this struc-
ture (see Chapter 9 [Trees], page 107) is incomplete.

Chapter 11: GENERIC 199

11 GENERIC

The purpose of GENERIC is simply to provide a language-independent way of representing
an entire function in trees. To this end, it was necessary to add a few new tree codes to the
back end, but most everything was already there. If you can express it with the codes in
gcc/tree.def, it’s GENERIC.

Early on, there was a great deal of debate about how to think about statements in a
tree IL. In GENERIC, a statement is defined as any expression whose value, if any, is
ignored. A statement will always have TREE_SIDE_EFFECTS set (or it will be discarded),
but a non-statement expression may also have side effects. A CALL_EXPR, for instance.

It would be possible for some local optimizations to work on the GENERIC form of a
function; indeed, the adapted tree inliner works fine on GENERIC, but the current compiler
performs inlining after lowering to GIMPLE (a restricted form described in the next section).
Indeed, currently the frontends perform this lowering before handing off to tree_rest_of_
compilation, but this seems inelegant.

If necessary, a front end can use some language-dependent tree codes in its GENERIC
representation, so long as it provides a hook for converting them to GIMPLE and doesn’t
expect them to work with any (hypothetical) optimizers that run before the conversion to
GIMPLE. The intermediate representation used while parsing C and C++ looks very little
like GENERIC, but the C and C++ gimplifier hooks are perfectly happy to take it as input
and spit out GIMPLE.

11.1 Statements

Most statements in GIMPLE are assignment statements, represented by GIMPLE_ASSIGN.
No other C expressions can appear at statement level; a reference to a volatile object is
converted into a GIMPLE_ASSIGN.

There are also several varieties of complex statements.

11.1.1 Blocks

Block scopes and the variables they declare in GENERIC are expressed using the BIND_EXPR
code, which in previous versions of GCC was primarily used for the C statement-expression
extension.

Variables in a block are collected into BIND_EXPR_VARS in declaration order. Any runtime
initialization is moved out of DECL_INITIAL and into a statement in the controlled block.
When gimplifying from C or C++, this initialization replaces the DECL_STMT.

Variable-length arrays (VLAs) complicate this process, as their size often refers to vari-
ables initialized earlier in the block. To handle this, we currently split the block at that
point, and move the VLA into a new, inner BIND_EXPR. This strategy may change in the
future.

A C++ program will usually contain more BIND_EXPRs than there are syntactic blocks in
the source code, since several C++ constructs have implicit scopes associated with them.
On the other hand, although the C++ front end uses pseudo-scopes to handle cleanups for
objects with destructors, these don’t translate into the GIMPLE form; multiple declarations
at the same level use the same BIND_EXPR.

200 GNU Compiler Collection (GCC) Internals

11.1.2 Statement Sequences

Multiple statements at the same nesting level are collected into a STATEMENT_LIST. State-
ment lists are modified and traversed using the interface in ‘tree-iterator.h’.

11.1.3 Empty Statements

Whenever possible, statements with no effect are discarded. But if they are nested within
another construct which cannot be discarded for some reason, they are instead replaced
with an empty statement, generated by build_empty_stmt. Initially, all empty statements
were shared, after the pattern of the Java front end, but this caused a lot of trouble in
practice.

An empty statement is represented as (void)0.

11.1.4 Jumps

Other jumps are expressed by either GOTO_EXPR or RETURN_EXPR.
The operand of a GOTO_EXPR must be either a label or a variable containing the address

to jump to.
The operand of a RETURN_EXPR is either NULL_TREE, RESULT_DECL, or a MODIFY_EXPR

which sets the return value. It would be nice to move the MODIFY_EXPR into a separate
statement, but the special return semantics in expand_return make that difficult. It may
still happen in the future, perhaps by moving most of that logic into expand_assignment.

11.1.5 Cleanups

Destructors for local C++ objects and similar dynamic cleanups are represented in GIM-
PLE by a TRY_FINALLY_EXPR. TRY_FINALLY_EXPR has two operands, both of which are a
sequence of statements to execute. The first sequence is executed. When it completes the
second sequence is executed.

The first sequence may complete in the following ways:
1. Execute the last statement in the sequence and fall off the end.
2. Execute a goto statement (GOTO_EXPR) to an ordinary label outside the sequence.
3. Execute a return statement (RETURN_EXPR).
4. Throw an exception. This is currently not explicitly represented in GIMPLE.

The second sequence is not executed if the first sequence completes by calling setjmp or
exit or any other function that does not return. The second sequence is also not executed
if the first sequence completes via a non-local goto or a computed goto (in general the
compiler does not know whether such a goto statement exits the first sequence or not, so
we assume that it doesn’t).

After the second sequence is executed, if it completes normally by falling off the end,
execution continues wherever the first sequence would have continued, by falling off the
end, or doing a goto, etc.
TRY_FINALLY_EXPR complicates the flow graph, since the cleanup needs to appear on

every edge out of the controlled block; this reduces the freedom to move code across these
edges. Therefore, the EH lowering pass which runs before most of the optimization passes
eliminates these expressions by explicitly adding the cleanup to each edge. Rethrowing the
exception is represented using RESX_EXPR.

Chapter 12: GIMPLE 201

12 GIMPLE

GIMPLE is a three-address representation derived from GENERIC by breaking down
GENERIC expressions into tuples of no more than 3 operands (with some exceptions like
function calls). GIMPLE was heavily influenced by the SIMPLE IL used by the McCAT
compiler project at McGill University, though we have made some different choices. For
one thing, SIMPLE doesn’t support goto.

Temporaries are introduced to hold intermediate values needed to compute complex ex-
pressions. Additionally, all the control structures used in GENERIC are lowered into con-
ditional jumps, lexical scopes are removed and exception regions are converted into an on
the side exception region tree.

The compiler pass which converts GENERIC into GIMPLE is referred to as the
‘gimplifier’. The gimplifier works recursively, generating GIMPLE tuples out of the
original GENERIC expressions.

One of the early implementation strategies used for the GIMPLE representation was to
use the same internal data structures used by front ends to represent parse trees. This
simplified implementation because we could leverage existing functionality and interfaces.
However, GIMPLE is a much more restrictive representation than abstract syntax trees
(AST), therefore it does not require the full structural complexity provided by the main
tree data structure.

The GENERIC representation of a function is stored in the DECL_SAVED_TREE field of the
associated FUNCTION_DECL tree node. It is converted to GIMPLE by a call to gimplify_
function_tree.

If a front end wants to include language-specific tree codes in the tree representation
which it provides to the back end, it must provide a definition of LANG_HOOKS_GIMPLIFY_
EXPR which knows how to convert the front end trees to GIMPLE. Usually such a hook will
involve much of the same code for expanding front end trees to RTL. This function can
return fully lowered GIMPLE, or it can return GENERIC trees and let the main gimplifier
lower them the rest of the way; this is often simpler. GIMPLE that is not fully lowered is
known as “High GIMPLE” and consists of the IL before the pass pass_lower_cf. High
GIMPLE contains some container statements like lexical scopes (represented by GIMPLE_
BIND) and nested expressions (e.g., GIMPLE_TRY), while “Low GIMPLE” exposes all of the
implicit jumps for control and exception expressions directly in the IL and EH region trees.

The C and C++ front ends currently convert directly from front end trees to GIMPLE, and
hand that off to the back end rather than first converting to GENERIC. Their gimplifier
hooks know about all the _STMT nodes and how to convert them to GENERIC forms. There
was some work done on a genericization pass which would run first, but the existence of
STMT_EXPR meant that in order to convert all of the C statements into GENERIC equivalents
would involve walking the entire tree anyway, so it was simpler to lower all the way. This
might change in the future if someone writes an optimization pass which would work better
with higher-level trees, but currently the optimizers all expect GIMPLE.

You can request to dump a C-like representation of the GIMPLE form with the flag
‘-fdump-tree-gimple’.

202 GNU Compiler Collection (GCC) Internals

12.1 Tuple representation

GIMPLE instructions are tuples of variable size divided in two groups: a header describing
the instruction and its locations, and a variable length body with all the operands. Tuples
are organized into a hierarchy with 3 main classes of tuples.

12.1.1 gimple_statement_base (gsbase)

This is the root of the hierarchy, it holds basic information needed by most GIMPLE
statements. There are some fields that may not be relevant to every GIMPLE statement,
but those were moved into the base structure to take advantage of holes left by other fields
(thus making the structure more compact). The structure takes 4 words (32 bytes) on 64
bit hosts:

Field Size (bits)
code 8
subcode 16
no_warning 1
visited 1
nontemporal_move 1
plf 2
modified 1
has_volatile_ops 1
references_memory_p 1
uid 32
location 32
num_ops 32
bb 64
block 63
Total size 32 bytes

• code Main identifier for a GIMPLE instruction.

• subcode Used to distinguish different variants of the same basic instruction or provide
flags applicable to a given code. The subcode flags field has different uses depending on
the code of the instruction, but mostly it distinguishes instructions of the same family.
The most prominent use of this field is in assignments, where subcode indicates the
operation done on the RHS of the assignment. For example, a = b + c is encoded as
GIMPLE_ASSIGN <PLUS_EXPR, a, b, c>.

• no_warning Bitflag to indicate whether a warning has already been issued on this
statement.

• visited General purpose “visited” marker. Set and cleared by each pass when needed.

• nontemporal_move Bitflag used in assignments that represent non-temporal moves.
Although this bitflag is only used in assignments, it was moved into the base to take
advantage of the bit holes left by the previous fields.

• plf Pass Local Flags. This 2-bit mask can be used as general purpose markers by any
pass. Passes are responsible for clearing and setting these two flags accordingly.

• modified Bitflag to indicate whether the statement has been modified. Used mainly
by the operand scanner to determine when to re-scan a statement for operands.

Chapter 12: GIMPLE 203

• has_volatile_ops Bitflag to indicate whether this statement contains operands that
have been marked volatile.

• references_memory_p Bitflag to indicate whether this statement contains memory ref-
erences (i.e., its operands are either global variables, or pointer dereferences or anything
that must reside in memory).

• uid This is an unsigned integer used by passes that want to assign IDs to every state-
ment. These IDs must be assigned and used by each pass.

• location This is a location_t identifier to specify source code location for this state-
ment. It is inherited from the front end.

• num_ops Number of operands that this statement has. This specifies the size of the
operand vector embedded in the tuple. Only used in some tuples, but it is declared in
the base tuple to take advantage of the 32-bit hole left by the previous fields.

• bb Basic block holding the instruction.

• block Lexical block holding this statement. Also used for debug information genera-
tion.

12.1.2 gimple_statement_with_ops

This tuple is actually split in two: gimple_statement_with_ops_base and gimple_
statement_with_ops. This is needed to accommodate the way the operand vector is
allocated. The operand vector is defined to be an array of 1 element. So, to allocate a
dynamic number of operands, the memory allocator (gimple_alloc) simply allocates
enough memory to hold the structure itself plus N - 1 operands which run “off the end” of
the structure. For example, to allocate space for a tuple with 3 operands, gimple_alloc
reserves sizeof (struct gimple_statement_with_ops) + 2 * sizeof (tree) bytes.

On the other hand, several fields in this tuple need to be shared with the
gimple_statement_with_memory_ops tuple. So, these common fields are placed in
gimple_statement_with_ops_base which is then inherited from the other two tuples.

gsbase 256
addresses_taken 64
def_ops 64
use_ops 64
op num_ops * 64
Total size 56 + 8 * num_ops bytes

• gsbase Inherited from struct gimple_statement_base.

• addresses_taken Bitmap holding the UIDs of all the VAR_DECLs whose addresses are
taken by this statement. For example, a statement of the form p = &b will have the
UID for symbol b in this set.

• def_ops Array of pointers into the operand array indicating all the slots that contain
a variable written-to by the statement. This array is also used for immediate use
chaining. Note that it would be possible to not rely on this array, but the changes
required to implement this are pretty invasive.

• use_ops Similar to def_ops but for variables read by the statement.

• op Array of trees with num_ops slots.

204 GNU Compiler Collection (GCC) Internals

12.1.3 gimple_statement_with_memory_ops

This tuple is essentially identical to gimple_statement_with_ops, except that it contains
4 additional fields to hold vectors related memory stores and loads. Similar to the pre-
vious case, the structure is split in two to accommodate for the operand vector (gimple_
statement_with_memory_ops_base and gimple_statement_with_memory_ops).
Field Size (bits)
gsbase 256
addresses_taken 64
def_ops 64
use_ops 64
vdef_ops 64
vuse_ops 64
stores 64
loads 64
op num_ops * 64
Total size 88 + 8 * num_ops bytes
• vdef_ops Similar to def_ops but for VDEF operators. There is one entry per memory

symbol written by this statement. This is used to maintain the memory SSA use-def
and def-def chains.

• vuse_ops Similar to use_ops but for VUSE operators. There is one entry per memory
symbol loaded by this statement. This is used to maintain the memory SSA use-def
chains.

• stores Bitset with all the UIDs for the symbols written-to by the statement. This is
different than vdef_ops in that all the affected symbols are mentioned in this set. If
memory partitioning is enabled, the vdef_ops vector will refer to memory partitions.
Furthermore, no SSA information is stored in this set.

• loads Similar to stores, but for memory loads. (Note that there is some amount
of redundancy here, it should be possible to reduce memory utilization further by
removing these sets).

All the other tuples are defined in terms of these three basic ones. Each tuple will add
some fields. The main gimple type is defined to be the union of all these structures (GTY
markers elided for clarity):

union gimple_statement_d

{

struct gimple_statement_base gsbase;

struct gimple_statement_with_ops gsops;

struct gimple_statement_with_memory_ops gsmem;

struct gimple_statement_omp omp;

struct gimple_statement_bind gimple_bind;

struct gimple_statement_catch gimple_catch;

struct gimple_statement_eh_filter gimple_eh_filter;

struct gimple_statement_phi gimple_phi;

struct gimple_statement_resx gimple_resx;

struct gimple_statement_try gimple_try;

struct gimple_statement_wce gimple_wce;

struct gimple_statement_asm gimple_asm;

struct gimple_statement_omp_critical gimple_omp_critical;

struct gimple_statement_omp_for gimple_omp_for;

Chapter 12: GIMPLE 205

struct gimple_statement_omp_parallel gimple_omp_parallel;

struct gimple_statement_omp_task gimple_omp_task;

struct gimple_statement_omp_sections gimple_omp_sections;

struct gimple_statement_omp_single gimple_omp_single;

struct gimple_statement_omp_continue gimple_omp_continue;

struct gimple_statement_omp_atomic_load gimple_omp_atomic_load;

struct gimple_statement_omp_atomic_store gimple_omp_atomic_store;

};

12.2 GIMPLE instruction set

The following table briefly describes the GIMPLE instruction set.

Instruction High GIMPLE Low GIMPLE
GIMPLE_ASM x x
GIMPLE_ASSIGN x x
GIMPLE_BIND x
GIMPLE_CALL x x
GIMPLE_CATCH x
GIMPLE_CHANGE_DYNAMIC_TYPE x x
GIMPLE_COND x x
GIMPLE_EH_FILTER x
GIMPLE_GOTO x x
GIMPLE_LABEL x x
GIMPLE_NOP x x
GIMPLE_OMP_ATOMIC_LOAD x x
GIMPLE_OMP_ATOMIC_STORE x x
GIMPLE_OMP_CONTINUE x x
GIMPLE_OMP_CRITICAL x x
GIMPLE_OMP_FOR x x
GIMPLE_OMP_MASTER x x
GIMPLE_OMP_ORDERED x x
GIMPLE_OMP_PARALLEL x x
GIMPLE_OMP_RETURN x x
GIMPLE_OMP_SECTION x x
GIMPLE_OMP_SECTIONS x x
GIMPLE_OMP_SECTIONS_SWITCH x x
GIMPLE_OMP_SINGLE x x
GIMPLE_PHI x
GIMPLE_RESX x
GIMPLE_RETURN x x
GIMPLE_SWITCH x x
GIMPLE_TRY x

12.3 Exception Handling

Other exception handling constructs are represented using GIMPLE_TRY_CATCH. GIMPLE_
TRY_CATCH has two operands. The first operand is a sequence of statements to execute. If
executing these statements does not throw an exception, then the second operand is ignored.

206 GNU Compiler Collection (GCC) Internals

Otherwise, if an exception is thrown, then the second operand of the GIMPLE_TRY_CATCH is
checked. The second operand may have the following forms:
1. A sequence of statements to execute. When an exception occurs, these statements are

executed, and then the exception is rethrown.
2. A sequence of GIMPLE_CATCH statements. Each GIMPLE_CATCH has a list of applicable

exception types and handler code. If the thrown exception matches one of the caught
types, the associated handler code is executed. If the handler code falls off the bottom,
execution continues after the original GIMPLE_TRY_CATCH.

3. An GIMPLE_EH_FILTER statement. This has a list of permitted exception types, and
code to handle a match failure. If the thrown exception does not match one of the
allowed types, the associated match failure code is executed. If the thrown exception
does match, it continues unwinding the stack looking for the next handler.

Currently throwing an exception is not directly represented in GIMPLE, since it is im-
plemented by calling a function. At some point in the future we will want to add some way
to express that the call will throw an exception of a known type.

Just before running the optimizers, the compiler lowers the high-level EH constructs
above into a set of ‘goto’s, magic labels, and EH regions. Continuing to unwind at the end
of a cleanup is represented with a GIMPLE_RESX.

12.4 Temporaries

When gimplification encounters a subexpression that is too complex, it creates a new tem-
porary variable to hold the value of the subexpression, and adds a new statement to initial-
ize it before the current statement. These special temporaries are known as ‘expression
temporaries’, and are allocated using get_formal_tmp_var. The compiler tries to always
evaluate identical expressions into the same temporary, to simplify elimination of redundant
calculations.

We can only use expression temporaries when we know that it will not be reevaluated
before its value is used, and that it will not be otherwise modified1. Other temporaries can
be allocated using get_initialized_tmp_var or create_tmp_var.

Currently, an expression like a = b + 5 is not reduced any further. We tried converting it
to something like

T1 = b + 5;

a = T1;

but this bloated the representation for minimal benefit. However, a variable which must
live in memory cannot appear in an expression; its value is explicitly loaded into a temporary
first. Similarly, storing the value of an expression to a memory variable goes through a
temporary.

12.5 Operands

In general, expressions in GIMPLE consist of an operation and the appropriate number of
simple operands; these operands must either be a GIMPLE rvalue (is_gimple_val), i.e. a
constant or a register variable. More complex operands are factored out into temporaries,
so that
1 These restrictions are derived from those in Morgan 4.8.

Chapter 12: GIMPLE 207

a = b + c + d

becomes
T1 = b + c;

a = T1 + d;

The same rule holds for arguments to a GIMPLE_CALL.
The target of an assignment is usually a variable, but can also be an INDIRECT_REF or a

compound lvalue as described below.

12.5.1 Compound Expressions

The left-hand side of a C comma expression is simply moved into a separate statement.

12.5.2 Compound Lvalues

Currently compound lvalues involving array and structure field references are not broken
down; an expression like a.b[2] = 42 is not reduced any further (though complex array
subscripts are). This restriction is a workaround for limitations in later optimizers; if we
were to convert this to

T1 = &a.b;

T1[2] = 42;

alias analysis would not remember that the reference to T1[2] came by way of a.b, so
it would think that the assignment could alias another member of a; this broke struct-
alias-1.c. Future optimizer improvements may make this limitation unnecessary.

12.5.3 Conditional Expressions

A C ?: expression is converted into an if statement with each branch assigning to the same
temporary. So,

a = b ? c : d;

becomes
if (b == 1)

T1 = c;

else

T1 = d;

a = T1;

The GIMPLE level if-conversion pass re-introduces ?: expression, if appropriate. It is
used to vectorize loops with conditions using vector conditional operations.

Note that in GIMPLE, if statements are represented using GIMPLE_COND, as described
below.

12.5.4 Logical Operators

Except when they appear in the condition operand of a GIMPLE_COND, logical ‘and’ and ‘or’
operators are simplified as follows: a = b && c becomes

T1 = (bool)b;

if (T1 == true)

T1 = (bool)c;

a = T1;

Note that T1 in this example cannot be an expression temporary, because it has two
different assignments.

208 GNU Compiler Collection (GCC) Internals

12.5.5 Manipulating operands

All gimple operands are of type tree. But only certain types of trees are allowed to be
used as operand tuples. Basic validation is controlled by the function get_gimple_rhs_
class, which given a tree code, returns an enum with the following values of type enum
gimple_rhs_class

• GIMPLE_INVALID_RHS The tree cannot be used as a GIMPLE operand.
• GIMPLE_BINARY_RHS The tree is a valid GIMPLE binary operation.
• GIMPLE_UNARY_RHS The tree is a valid GIMPLE unary operation.
• GIMPLE_SINGLE_RHS The tree is a single object, that cannot be split into simpler

operands (for instance, SSA_NAME, VAR_DECL, COMPONENT_REF, etc).
This operand class also acts as an escape hatch for tree nodes that may be flattened
out into the operand vector, but would need more than two slots on the RHS. For
instance, a COND_EXPR expression of the form (a op b) ? x : y could be flattened out
on the operand vector using 4 slots, but it would also require additional processing to
distinguish c = a op b from c = a op b ? x : y. Something similar occurs with ASSERT_
EXPR. In time, these special case tree expressions should be flattened into the operand
vector.

For tree nodes in the categories GIMPLE_BINARY_RHS and GIMPLE_UNARY_RHS, they cannot
be stored inside tuples directly. They first need to be flattened and separated into individual
components. For instance, given the GENERIC expression

a = b + c

its tree representation is:
MODIFY_EXPR <VAR_DECL <a>, PLUS_EXPR <VAR_DECL , VAR_DECL <c>>>

In this case, the GIMPLE form for this statement is logically identical to its GENERIC
form but in GIMPLE, the PLUS_EXPR on the RHS of the assignment is not represented as a
tree, instead the two operands are taken out of the PLUS_EXPR sub-tree and flattened into
the GIMPLE tuple as follows:

GIMPLE_ASSIGN <PLUS_EXPR, VAR_DECL <a>, VAR_DECL , VAR_DECL <c>>

12.5.6 Operand vector allocation

The operand vector is stored at the bottom of the three tuple structures that accept
operands. This means, that depending on the code of a given statement, its operand vector
will be at different offsets from the base of the structure. To access tuple operands use the
following accessors

[GIMPLE function]unsigned gimple_num_ops (gimple g)
Returns the number of operands in statement G.

[GIMPLE function]tree gimple_op (gimple g, unsigned i)
Returns operand I from statement G.

[GIMPLE function]tree *gimple_ops (gimple g)
Returns a pointer into the operand vector for statement G. This is computed using
an internal table called gimple_ops_offset_[]. This table is indexed by the gimple
code of G.

Chapter 12: GIMPLE 209

When the compiler is built, this table is filled-in using the sizes of the structures used
by each statement code defined in gimple.def. Since the operand vector is at the
bottom of the structure, for a gimple code C the offset is computed as sizeof (struct-of
C) - sizeof (tree).
This mechanism adds one memory indirection to every access when using gimple_
op(), if this becomes a bottleneck, a pass can choose to memoize the result from
gimple_ops() and use that to access the operands.

12.5.7 Operand validation

When adding a new operand to a gimple statement, the operand will be validated according
to what each tuple accepts in its operand vector. These predicates are called by the gimple_
<name>_set_...(). Each tuple will use one of the following predicates (Note, this list is
not exhaustive):

[GIMPLE function]is_gimple_operand (tree t)
This is the most permissive of the predicates. It essentially checks whether t has a
gimple_rhs_class of GIMPLE_SINGLE_RHS.

[GIMPLE function]is_gimple_val (tree t)
Returns true if t is a "GIMPLE value", which are all the non-addressable stack
variables (variables for which is_gimple_reg returns true) and constants (expressions
for which is_gimple_min_invariant returns true).

[GIMPLE function]is_gimple_addressable (tree t)
Returns true if t is a symbol or memory reference whose address can be taken.

[GIMPLE function]is_gimple_asm_val (tree t)
Similar to is_gimple_val but it also accepts hard registers.

[GIMPLE function]is_gimple_call_addr (tree t)
Return true if t is a valid expression to use as the function called by a GIMPLE_CALL.

[GIMPLE function]is_gimple_constant (tree t)
Return true if t is a valid gimple constant.

[GIMPLE function]is_gimple_min_invariant (tree t)
Return true if t is a valid minimal invariant. This is different from constants, in that
the specific value of t may not be known at compile time, but it is known that it
doesn’t change (e.g., the address of a function local variable).

[GIMPLE function]is_gimple_min_invariant_address (tree t)
Return true if t is an ADDR_EXPR that does not change once the program is running.

12.5.8 Statement validation

[GIMPLE function]is_gimple_assign (gimple g)
Return true if the code of g is GIMPLE_ASSIGN.

[GIMPLE function]is_gimple_call (gimple g)
Return true if the code of g is GIMPLE_CALL

210 GNU Compiler Collection (GCC) Internals

[GIMPLE function]gimple_assign_cast_p (gimple g)
Return true if g is a GIMPLE_ASSIGN that performs a type cast operation

12.6 Manipulating GIMPLE statements

This section documents all the functions available to handle each of the GIMPLE instruc-
tions.

12.6.1 Common accessors

The following are common accessors for gimple statements.

[GIMPLE function]enum gimple_code gimple code (gimple g)
Return the code for statement G.

[GIMPLE function]basic_block gimple_bb (gimple g)
Return the basic block to which statement G belongs to.

[GIMPLE function]tree gimple_block (gimple g)
Return the lexical scope block holding statement G.

[GIMPLE function]tree gimple_expr_type (gimple stmt)
Return the type of the main expression computed by STMT. Return void_type_node
if STMT computes nothing. This will only return something meaningful for GIMPLE_
ASSIGN, GIMPLE_COND and GIMPLE_CALL. For all other tuple codes, it will return
void_type_node.

[GIMPLE function]enum tree_code gimple expr code (gimple stmt)
Return the tree code for the expression computed by STMT. This is only meaningful
for GIMPLE_CALL, GIMPLE_ASSIGN and GIMPLE_COND. If STMT is GIMPLE_CALL, it will
return CALL_EXPR. For GIMPLE_COND, it returns the code of the comparison predicate.
For GIMPLE_ASSIGN it returns the code of the operation performed by the RHS of the
assignment.

[GIMPLE function]void gimple_set_block (gimple g, tree block)
Set the lexical scope block of G to BLOCK.

[GIMPLE function]location_t gimple_locus (gimple g)
Return locus information for statement G.

[GIMPLE function]void gimple_set_locus (gimple g, location t locus)
Set locus information for statement G.

[GIMPLE function]bool gimple_locus_empty_p (gimple g)
Return true if G does not have locus information.

[GIMPLE function]bool gimple_no_warning_p (gimple stmt)
Return true if no warnings should be emitted for statement STMT.

[GIMPLE function]void gimple_set_visited (gimple stmt, bool visited p)
Set the visited status on statement STMT to VISITED_P.

Chapter 12: GIMPLE 211

[GIMPLE function]bool gimple_visited_p (gimple stmt)
Return the visited status on statement STMT.

[GIMPLE function]void gimple_set_plf (gimple stmt, enum plf mask plf, bool
val p)

Set pass local flag PLF on statement STMT to VAL_P.

[GIMPLE function]unsigned int gimple plf (gimple stmt, enum plf mask plf)
Return the value of pass local flag PLF on statement STMT.

[GIMPLE function]bool gimple_has_ops (gimple g)
Return true if statement G has register or memory operands.

[GIMPLE function]bool gimple_has_mem_ops (gimple g)
Return true if statement G has memory operands.

[GIMPLE function]unsigned gimple_num_ops (gimple g)
Return the number of operands for statement G.

[GIMPLE function]tree *gimple_ops (gimple g)
Return the array of operands for statement G.

[GIMPLE function]tree gimple_op (gimple g, unsigned i)
Return operand I for statement G.

[GIMPLE function]tree *gimple_op_ptr (gimple g, unsigned i)
Return a pointer to operand I for statement G.

[GIMPLE function]void gimple_set_op (gimple g, unsigned i, tree op)
Set operand I of statement G to OP.

[GIMPLE function]bitmap gimple_addresses_taken (gimple stmt)
Return the set of symbols that have had their address taken by STMT.

[GIMPLE function]struct def_optype_d *gimple def ops (gimple g)
Return the set of DEF operands for statement G.

[GIMPLE function]void gimple_set_def_ops (gimple g, struct def optype d
*def)

Set DEF to be the set of DEF operands for statement G.

[GIMPLE function]struct use_optype_d *gimple use ops (gimple g)
Return the set of USE operands for statement G.

[GIMPLE function]void gimple_set_use_ops (gimple g, struct use optype d
*use)

Set USE to be the set of USE operands for statement G.

[GIMPLE function]struct voptype_d *gimple vuse ops (gimple g)
Return the set of VUSE operands for statement G.

[GIMPLE function]void gimple_set_vuse_ops (gimple g, struct voptype d *ops)
Set OPS to be the set of VUSE operands for statement G.

212 GNU Compiler Collection (GCC) Internals

[GIMPLE function]struct voptype_d *gimple vdef ops (gimple g)
Return the set of VDEF operands for statement G.

[GIMPLE function]void gimple_set_vdef_ops (gimple g, struct voptype d *ops)
Set OPS to be the set of VDEF operands for statement G.

[GIMPLE function]bitmap gimple_loaded_syms (gimple g)
Return the set of symbols loaded by statement G. Each element of the set is the
DECL_UID of the corresponding symbol.

[GIMPLE function]bitmap gimple_stored_syms (gimple g)
Return the set of symbols stored by statement G. Each element of the set is the
DECL_UID of the corresponding symbol.

[GIMPLE function]bool gimple_modified_p (gimple g)
Return true if statement G has operands and the modified field has been set.

[GIMPLE function]bool gimple_has_volatile_ops (gimple stmt)
Return true if statement STMT contains volatile operands.

[GIMPLE function]void gimple_set_has_volatile_ops (gimple stmt, bool
volatilep)

Return true if statement STMT contains volatile operands.

[GIMPLE function]void update_stmt (gimple s)
Mark statement S as modified, and update it.

[GIMPLE function]void update_stmt_if_modified (gimple s)
Update statement S if it has been marked modified.

[GIMPLE function]gimple gimple_copy (gimple stmt)
Return a deep copy of statement STMT.

12.7 Tuple specific accessors

12.7.1 GIMPLE_ASM

[GIMPLE function]gimple gimple_build_asm (const char *string, ninputs,
noutputs, nclobbers, ...)

Build a GIMPLE_ASM statement. This statement is used for building in-line assembly
constructs. STRING is the assembly code. NINPUT is the number of register inputs.
NOUTPUT is the number of register outputs. NCLOBBERS is the number of clobbered
registers. The rest of the arguments trees for each input, output, and clobbered
registers.

[GIMPLE function]gimple gimple_build_asm_vec (const char *, VEC(tree,gc) *,
VEC(tree,gc) *, VEC(tree,gc) *)

Identical to gimple build asm, but the arguments are passed in VECs.

[GIMPLE function]gimple_asm_ninputs (gimple g)
Return the number of input operands for GIMPLE_ASM G.

Chapter 12: GIMPLE 213

[GIMPLE function]gimple_asm_noutputs (gimple g)
Return the number of output operands for GIMPLE_ASM G.

[GIMPLE function]gimple_asm_nclobbers (gimple g)
Return the number of clobber operands for GIMPLE_ASM G.

[GIMPLE function]tree gimple_asm_input_op (gimple g, unsigned index)
Return input operand INDEX of GIMPLE_ASM G.

[GIMPLE function]void gimple_asm_set_input_op (gimple g, unsigned index,
tree in op)

Set IN_OP to be input operand INDEX in GIMPLE_ASM G.

[GIMPLE function]tree gimple_asm_output_op (gimple g, unsigned index)
Return output operand INDEX of GIMPLE_ASM G.

[GIMPLE function]void gimple_asm_set_output_op (gimple g, unsigned index,
tree out op)

Set OUT_OP to be output operand INDEX in GIMPLE_ASM G.

[GIMPLE function]tree gimple_asm_clobber_op (gimple g, unsigned index)
Return clobber operand INDEX of GIMPLE_ASM G.

[GIMPLE function]void gimple_asm_set_clobber_op (gimple g, unsigned index,
tree clobber op)

Set CLOBBER_OP to be clobber operand INDEX in GIMPLE_ASM G.

[GIMPLE function]const char *gimple asm string (gimple g)
Return the string representing the assembly instruction in GIMPLE_ASM G.

[GIMPLE function]bool gimple_asm_volatile_p (gimple g)
Return true if G is an asm statement marked volatile.

[GIMPLE function]void gimple_asm_set_volatile (gimple g)
Mark asm statement G as volatile.

[GIMPLE function]void gimple_asm_clear_volatile (gimple g)
Remove volatile marker from asm statement G.

12.7.2 GIMPLE_ASSIGN

[GIMPLE function]gimple gimple_build_assign (tree lhs, tree rhs)
Build a GIMPLE_ASSIGN statement. The left-hand side is an lvalue passed in lhs. The
right-hand side can be either a unary or binary tree expression. The expression tree
rhs will be flattened and its operands assigned to the corresponding operand slots in
the new statement. This function is useful when you already have a tree expression
that you want to convert into a tuple. However, try to avoid building expression
trees for the sole purpose of calling this function. If you already have the operands
in separate trees, it is better to use gimple_build_assign_with_ops.

214 GNU Compiler Collection (GCC) Internals

[GIMPLE function]gimple gimplify_assign (tree dst, tree src, gimple seq
*seq p)

Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.

DST/SRC are the destination and source respectively. You can pass ungimplified trees in
DST or SRC, in which case they will be converted to a gimple operand if necessary.

This function returns the newly created GIMPLE_ASSIGN tuple.

[GIMPLE function]gimple gimple_build_assign_with_ops (enum tree code
subcode, tree lhs, tree op1, tree op2)

This function is similar to gimple_build_assign, but is used to build a GIMPLE_
ASSIGN statement when the operands of the right-hand side of the assignment are
already split into different operands.
The left-hand side is an lvalue passed in lhs. Subcode is the tree_code for the right-
hand side of the assignment. Op1 and op2 are the operands. If op2 is null, subcode
must be a tree_code for a unary expression.

[GIMPLE function]enum tree_code gimple assign rhs code (gimple g)
Return the code of the expression computed on the RHS of assignment statement G.

[GIMPLE function]enum gimple_rhs_class gimple assign rhs class (gimple g)
Return the gimple rhs class of the code for the expression computed on the rhs of
assignment statement G. This will never return GIMPLE_INVALID_RHS.

[GIMPLE function]tree gimple_assign_lhs (gimple g)
Return the LHS of assignment statement G.

[GIMPLE function]tree *gimple_assign_lhs_ptr (gimple g)
Return a pointer to the LHS of assignment statement G.

[GIMPLE function]tree gimple_assign_rhs1 (gimple g)
Return the first operand on the RHS of assignment statement G.

[GIMPLE function]tree *gimple_assign_rhs1_ptr (gimple g)
Return the address of the first operand on the RHS of assignment statement G.

[GIMPLE function]tree gimple_assign_rhs2 (gimple g)
Return the second operand on the RHS of assignment statement G.

[GIMPLE function]tree *gimple_assign_rhs2_ptr (gimple g)
Return the address of the second operand on the RHS of assignment statement G.

[GIMPLE function]void gimple_assign_set_lhs (gimple g, tree lhs)
Set LHS to be the LHS operand of assignment statement G.

[GIMPLE function]void gimple_assign_set_rhs1 (gimple g, tree rhs)
Set RHS to be the first operand on the RHS of assignment statement G.

[GIMPLE function]tree gimple_assign_rhs2 (gimple g)
Return the second operand on the RHS of assignment statement G.

Chapter 12: GIMPLE 215

[GIMPLE function]tree *gimple_assign_rhs2_ptr (gimple g)
Return a pointer to the second operand on the RHS of assignment statement G.

[GIMPLE function]void gimple_assign_set_rhs2 (gimple g, tree rhs)
Set RHS to be the second operand on the RHS of assignment statement G.

[GIMPLE function]bool gimple_assign_cast_p (gimple s)
Return true if S is an type-cast assignment.

12.7.3 GIMPLE_BIND

[GIMPLE function]gimple gimple_build_bind (tree vars, gimple seq body)
Build a GIMPLE_BIND statement with a list of variables in VARS and a body of state-
ments in sequence BODY.

[GIMPLE function]tree gimple_bind_vars (gimple g)
Return the variables declared in the GIMPLE_BIND statement G.

[GIMPLE function]void gimple_bind_set_vars (gimple g, tree vars)
Set VARS to be the set of variables declared in the GIMPLE_BIND statement G.

[GIMPLE function]void gimple_bind_append_vars (gimple g, tree vars)
Append VARS to the set of variables declared in the GIMPLE_BIND statement G.

[GIMPLE function]gimple_seq gimple_bind_body (gimple g)
Return the GIMPLE sequence contained in the GIMPLE_BIND statement G.

[GIMPLE function]void gimple_bind_set_body (gimple g, gimple seq seq)
Set SEQ to be sequence contained in the GIMPLE_BIND statement G.

[GIMPLE function]void gimple_bind_add_stmt (gimple gs, gimple stmt)
Append a statement to the end of a GIMPLE_BIND’s body.

[GIMPLE function]void gimple_bind_add_seq (gimple gs, gimple seq seq)
Append a sequence of statements to the end of a GIMPLE_BIND’s body.

[GIMPLE function]tree gimple_bind_block (gimple g)
Return the TREE_BLOCK node associated with GIMPLE_BIND statement G. This is
analogous to the BIND_EXPR_BLOCK field in trees.

[GIMPLE function]void gimple_bind_set_block (gimple g, tree block)
Set BLOCK to be the TREE_BLOCK node associated with GIMPLE_BIND statement G.

12.7.4 GIMPLE_CALL

[GIMPLE function]gimple gimple_build_call (tree fn, unsigned nargs, ...)
Build a GIMPLE_CALL statement to function FN. The argument FN must be either
a FUNCTION_DECL or a gimple call address as determined by is_gimple_call_addr.
NARGS are the number of arguments. The rest of the arguments follow the argument
NARGS, and must be trees that are valid as rvalues in gimple (i.e., each operand is
validated with is_gimple_operand).

216 GNU Compiler Collection (GCC) Internals

[GIMPLE function]gimple gimple_build_call_from_tree (tree call expr)
Build a GIMPLE_CALL from a CALL_EXPR node. The arguments and the function are
taken from the expression directly. This routine assumes that call_expr is already
in GIMPLE form. That is, its operands are GIMPLE values and the function call
needs no further simplification. All the call flags in call_expr are copied over to the
new GIMPLE_CALL.

[GIMPLE function]gimple gimple_build_call_vec (tree fn, VEC(tree, heap)
*args)

Identical to gimple_build_call but the arguments are stored in a VEC().

[GIMPLE function]tree gimple_call_lhs (gimple g)
Return the LHS of call statement G.

[GIMPLE function]tree *gimple_call_lhs_ptr (gimple g)
Return a pointer to the LHS of call statement G.

[GIMPLE function]void gimple_call_set_lhs (gimple g, tree lhs)
Set LHS to be the LHS operand of call statement G.

[GIMPLE function]tree gimple_call_fn (gimple g)
Return the tree node representing the function called by call statement G.

[GIMPLE function]void gimple_call_set_fn (gimple g, tree fn)
Set FN to be the function called by call statement G. This has to be a gimple value
specifying the address of the called function.

[GIMPLE function]tree gimple_call_fndecl (gimple g)
If a given GIMPLE_CALL’s callee is a FUNCTION_DECL, return it. Otherwise return NULL.
This function is analogous to get_callee_fndecl in GENERIC.

[GIMPLE function]tree gimple_call_set_fndecl (gimple g, tree fndecl)
Set the called function to FNDECL.

[GIMPLE function]tree gimple_call_return_type (gimple g)
Return the type returned by call statement G.

[GIMPLE function]tree gimple_call_chain (gimple g)
Return the static chain for call statement G.

[GIMPLE function]void gimple_call_set_chain (gimple g, tree chain)
Set CHAIN to be the static chain for call statement G.

[GIMPLE function]gimple_call_num_args (gimple g)
Return the number of arguments used by call statement G.

[GIMPLE function]tree gimple_call_arg (gimple g, unsigned index)
Return the argument at position INDEX for call statement G. The first argument is 0.

[GIMPLE function]tree *gimple_call_arg_ptr (gimple g, unsigned index)
Return a pointer to the argument at position INDEX for call statement G.

Chapter 12: GIMPLE 217

[GIMPLE function]void gimple_call_set_arg (gimple g, unsigned index, tree
arg)

Set ARG to be the argument at position INDEX for call statement G.

[GIMPLE function]void gimple_call_set_tail (gimple s)
Mark call statement S as being a tail call (i.e., a call just before the exit of a function).
These calls are candidate for tail call optimization.

[GIMPLE function]bool gimple_call_tail_p (gimple s)
Return true if GIMPLE_CALL S is marked as a tail call.

[GIMPLE function]void gimple_call_mark_uninlinable (gimple s)
Mark GIMPLE_CALL S as being uninlinable.

[GIMPLE function]bool gimple_call_cannot_inline_p (gimple s)
Return true if GIMPLE_CALL S cannot be inlined.

[GIMPLE function]bool gimple_call_noreturn_p (gimple s)
Return true if S is a noreturn call.

[GIMPLE function]gimple gimple_call_copy_skip_args (gimple stmt, bitmap
args to skip)

Build a GIMPLE_CALL identical to STMT but skipping the arguments in the positions
marked by the set ARGS_TO_SKIP.

12.7.5 GIMPLE_CATCH

[GIMPLE function]gimple gimple_build_catch (tree types, gimple seq handler)
Build a GIMPLE_CATCH statement. TYPES are the tree types this catch handles.
HANDLER is a sequence of statements with the code for the handler.

[GIMPLE function]tree gimple_catch_types (gimple g)
Return the types handled by GIMPLE_CATCH statement G.

[GIMPLE function]tree *gimple_catch_types_ptr (gimple g)
Return a pointer to the types handled by GIMPLE_CATCH statement G.

[GIMPLE function]gimple_seq gimple_catch_handler (gimple g)
Return the GIMPLE sequence representing the body of the handler of GIMPLE_CATCH
statement G.

[GIMPLE function]void gimple_catch_set_types (gimple g, tree t)
Set T to be the set of types handled by GIMPLE_CATCH G.

[GIMPLE function]void gimple_catch_set_handler (gimple g, gimple seq
handler)

Set HANDLER to be the body of GIMPLE_CATCH G.

218 GNU Compiler Collection (GCC) Internals

12.7.6 GIMPLE_CHANGE_DYNAMIC_TYPE

[GIMPLE function]gimple gimple_build_cdt (tree type, tree ptr)
Build a GIMPLE_CHANGE_DYNAMIC_TYPE statement. TYPE is the new type for the lo-
cation PTR.

[GIMPLE function]tree gimple_cdt_new_type (gimple g)
Return the new type set by GIMPLE_CHANGE_DYNAMIC_TYPE statement G.

[GIMPLE function]tree *gimple_cdt_new_type_ptr (gimple g)
Return a pointer to the new type set by GIMPLE_CHANGE_DYNAMIC_TYPE statement G.

[GIMPLE function]void gimple_cdt_set_new_type (gimple g, tree new type)
Set NEW_TYPE to be the type returned by GIMPLE_CHANGE_DYNAMIC_TYPE statement
G.

[GIMPLE function]tree gimple_cdt_location (gimple g)
Return the location affected by GIMPLE_CHANGE_DYNAMIC_TYPE statement G.

[GIMPLE function]tree *gimple_cdt_location_ptr (gimple g)
Return a pointer to the location affected by GIMPLE_CHANGE_DYNAMIC_TYPE statement
G.

[GIMPLE function]void gimple_cdt_set_location (gimple g, tree ptr)
Set PTR to be the location affected by GIMPLE_CHANGE_DYNAMIC_TYPE statement G.

12.7.7 GIMPLE_COND

[GIMPLE function]gimple gimple_build_cond (enum tree code pred code, tree
lhs, tree rhs, tree t label, tree f label)

Build a GIMPLE_COND statement. A GIMPLE_COND statement compares LHS and RHS
and if the condition in PRED_CODE is true, jump to the label in t_label, otherwise
jump to the label in f_label. PRED_CODE are relational operator tree codes like
EQ_EXPR, LT_EXPR, LE_EXPR, NE_EXPR, etc.

[GIMPLE function]gimple gimple_build_cond_from_tree (tree cond, tree
t label, tree f label)

Build a GIMPLE_COND statement from the conditional expression tree COND. T_LABEL
and F_LABEL are as in gimple_build_cond.

[GIMPLE function]enum tree_code gimple cond code (gimple g)
Return the code of the predicate computed by conditional statement G.

[GIMPLE function]void gimple_cond_set_code (gimple g, enum tree code code)
Set CODE to be the predicate code for the conditional statement G.

[GIMPLE function]tree gimple_cond_lhs (gimple g)
Return the LHS of the predicate computed by conditional statement G.

[GIMPLE function]void gimple_cond_set_lhs (gimple g, tree lhs)
Set LHS to be the LHS operand of the predicate computed by conditional statement G.

Chapter 12: GIMPLE 219

[GIMPLE function]tree gimple_cond_rhs (gimple g)
Return the RHS operand of the predicate computed by conditional G.

[GIMPLE function]void gimple_cond_set_rhs (gimple g, tree rhs)
Set RHS to be the RHS operand of the predicate computed by conditional statement G.

[GIMPLE function]tree gimple_cond_true_label (gimple g)
Return the label used by conditional statement G when its predicate evaluates to true.

[GIMPLE function]void gimple_cond_set_true_label (gimple g, tree label)
Set LABEL to be the label used by conditional statement G when its predicate evaluates
to true.

[GIMPLE function]void gimple_cond_set_false_label (gimple g, tree label)
Set LABEL to be the label used by conditional statement G when its predicate evaluates
to false.

[GIMPLE function]tree gimple_cond_false_label (gimple g)
Return the label used by conditional statement G when its predicate evaluates to false.

[GIMPLE function]void gimple_cond_make_false (gimple g)
Set the conditional COND_STMT to be of the form ’if (1 == 0)’.

[GIMPLE function]void gimple_cond_make_true (gimple g)
Set the conditional COND_STMT to be of the form ’if (1 == 1)’.

12.7.8 GIMPLE_EH_FILTER

[GIMPLE function]gimple gimple_build_eh_filter (tree types, gimple seq
failure)

Build a GIMPLE_EH_FILTER statement. TYPES are the filter’s types. FAILURE is a
sequence with the filter’s failure action.

[GIMPLE function]tree gimple_eh_filter_types (gimple g)
Return the types handled by GIMPLE_EH_FILTER statement G.

[GIMPLE function]tree *gimple_eh_filter_types_ptr (gimple g)
Return a pointer to the types handled by GIMPLE_EH_FILTER statement G.

[GIMPLE function]gimple_seq gimple_eh_filter_failure (gimple g)
Return the sequence of statement to execute when GIMPLE_EH_FILTER statement fails.

[GIMPLE function]void gimple_eh_filter_set_types (gimple g, tree types)
Set TYPES to be the set of types handled by GIMPLE_EH_FILTER G.

[GIMPLE function]void gimple_eh_filter_set_failure (gimple g, gimple seq
failure)

Set FAILURE to be the sequence of statements to execute on failure for GIMPLE_EH_
FILTER G.

[GIMPLE function]bool gimple_eh_filter_must_not_throw (gimple g)
Return the EH_FILTER_MUST_NOT_THROW flag.

220 GNU Compiler Collection (GCC) Internals

[GIMPLE function]void gimple_eh_filter_set_must_not_throw (gimple g,
bool mntp)

Set the EH_FILTER_MUST_NOT_THROW flag.

12.7.9 GIMPLE_LABEL

[GIMPLE function]gimple gimple_build_label (tree label)
Build a GIMPLE_LABEL statement with corresponding to the tree label, LABEL.

[GIMPLE function]tree gimple_label_label (gimple g)
Return the LABEL_DECL node used by GIMPLE_LABEL statement G.

[GIMPLE function]void gimple_label_set_label (gimple g, tree label)
Set LABEL to be the LABEL_DECL node used by GIMPLE_LABEL statement G.

[GIMPLE function]gimple gimple_build_goto (tree dest)
Build a GIMPLE_GOTO statement to label DEST.

[GIMPLE function]tree gimple_goto_dest (gimple g)
Return the destination of the unconditional jump G.

[GIMPLE function]void gimple_goto_set_dest (gimple g, tree dest)
Set DEST to be the destination of the unconditional jump G.

12.7.10 GIMPLE_NOP

[GIMPLE function]gimple gimple_build_nop (void)
Build a GIMPLE_NOP statement.

[GIMPLE function]bool gimple_nop_p (gimple g)
Returns TRUE if statement G is a GIMPLE_NOP.

12.7.11 GIMPLE_OMP_ATOMIC_LOAD

[GIMPLE function]gimple gimple_build_omp_atomic_load (tree lhs, tree rhs)
Build a GIMPLE_OMP_ATOMIC_LOAD statement. LHS is the left-hand side of the assign-
ment. RHS is the right-hand side of the assignment.

[GIMPLE function]void gimple_omp_atomic_load_set_lhs (gimple g, tree lhs)
Set the LHS of an atomic load.

[GIMPLE function]tree gimple_omp_atomic_load_lhs (gimple g)
Get the LHS of an atomic load.

[GIMPLE function]void gimple_omp_atomic_load_set_rhs (gimple g, tree rhs)
Set the RHS of an atomic set.

[GIMPLE function]tree gimple_omp_atomic_load_rhs (gimple g)
Get the RHS of an atomic set.

Chapter 12: GIMPLE 221

12.7.12 GIMPLE_OMP_ATOMIC_STORE

[GIMPLE function]gimple gimple_build_omp_atomic_store (tree val)
Build a GIMPLE_OMP_ATOMIC_STORE statement. VAL is the value to be stored.

[GIMPLE function]void gimple_omp_atomic_store_set_val (gimple g, tree
val)

Set the value being stored in an atomic store.

[GIMPLE function]tree gimple_omp_atomic_store_val (gimple g)
Return the value being stored in an atomic store.

12.7.13 GIMPLE_OMP_CONTINUE

[GIMPLE function]gimple gimple_build_omp_continue (tree control def, tree
control use)

Build a GIMPLE_OMP_CONTINUE statement. CONTROL_DEF is the definition of the con-
trol variable. CONTROL_USE is the use of the control variable.

[GIMPLE function]tree gimple_omp_continue_control_def (gimple s)
Return the definition of the control variable on a GIMPLE_OMP_CONTINUE in S.

[GIMPLE function]tree gimple_omp_continue_control_def_ptr (gimple s)
Same as above, but return the pointer.

[GIMPLE function]tree gimple_omp_continue_set_control_def (gimple s)
Set the control variable definition for a GIMPLE_OMP_CONTINUE statement in S.

[GIMPLE function]tree gimple_omp_continue_control_use (gimple s)
Return the use of the control variable on a GIMPLE_OMP_CONTINUE in S.

[GIMPLE function]tree gimple_omp_continue_control_use_ptr (gimple s)
Same as above, but return the pointer.

[GIMPLE function]tree gimple_omp_continue_set_control_use (gimple s)
Set the control variable use for a GIMPLE_OMP_CONTINUE statement in S.

12.7.14 GIMPLE_OMP_CRITICAL

[GIMPLE function]gimple gimple_build_omp_critical (gimple seq body, tree
name)

Build a GIMPLE_OMP_CRITICAL statement. BODY is the sequence of statements for
which only one thread can execute. NAME is an optional identifier for this critical
block.

[GIMPLE function]tree gimple_omp_critical_name (gimple g)
Return the name associated with OMP_CRITICAL statement G.

[GIMPLE function]tree *gimple_omp_critical_name_ptr (gimple g)
Return a pointer to the name associated with OMP critical statement G.

[GIMPLE function]void gimple_omp_critical_set_name (gimple g, tree name)
Set NAME to be the name associated with OMP critical statement G.

222 GNU Compiler Collection (GCC) Internals

12.7.15 GIMPLE_OMP_FOR

[GIMPLE function]gimple gimple_build_omp_for (gimple seq body, tree clauses,
tree index, tree initial, tree final, tree incr, gimple seq pre body, enum
tree code omp for cond)

Build a GIMPLE_OMP_FOR statement. BODY is sequence of statements inside the for
loop. CLAUSES, are any of the OMP loop construct’s clauses: private, firstprivate,
lastprivate, reductions, ordered, schedule, and nowait. PRE_BODY is the sequence of
statements that are loop invariant. INDEX is the index variable. INITIAL is the initial
value of INDEX. FINAL is final value of INDEX. OMP FOR COND is the predicate
used to compare INDEX and FINAL. INCR is the increment expression.

[GIMPLE function]tree gimple_omp_for_clauses (gimple g)
Return the clauses associated with OMP_FOR G.

[GIMPLE function]tree *gimple_omp_for_clauses_ptr (gimple g)
Return a pointer to the OMP_FOR G.

[GIMPLE function]void gimple_omp_for_set_clauses (gimple g, tree clauses)
Set CLAUSES to be the list of clauses associated with OMP_FOR G.

[GIMPLE function]tree gimple_omp_for_index (gimple g)
Return the index variable for OMP_FOR G.

[GIMPLE function]tree *gimple_omp_for_index_ptr (gimple g)
Return a pointer to the index variable for OMP_FOR G.

[GIMPLE function]void gimple_omp_for_set_index (gimple g, tree index)
Set INDEX to be the index variable for OMP_FOR G.

[GIMPLE function]tree gimple_omp_for_initial (gimple g)
Return the initial value for OMP_FOR G.

[GIMPLE function]tree *gimple_omp_for_initial_ptr (gimple g)
Return a pointer to the initial value for OMP_FOR G.

[GIMPLE function]void gimple_omp_for_set_initial (gimple g, tree initial)
Set INITIAL to be the initial value for OMP_FOR G.

[GIMPLE function]tree gimple_omp_for_final (gimple g)
Return the final value for OMP_FOR G.

[GIMPLE function]tree *gimple_omp_for_final_ptr (gimple g)
turn a pointer to the final value for OMP_FOR G.

[GIMPLE function]void gimple_omp_for_set_final (gimple g, tree final)
Set FINAL to be the final value for OMP_FOR G.

[GIMPLE function]tree gimple_omp_for_incr (gimple g)
Return the increment value for OMP_FOR G.

Chapter 12: GIMPLE 223

[GIMPLE function]tree *gimple_omp_for_incr_ptr (gimple g)
Return a pointer to the increment value for OMP_FOR G.

[GIMPLE function]void gimple_omp_for_set_incr (gimple g, tree incr)
Set INCR to be the increment value for OMP_FOR G.

[GIMPLE function]gimple_seq gimple_omp_for_pre_body (gimple g)
Return the sequence of statements to execute before the OMP_FOR statement G starts.

[GIMPLE function]void gimple_omp_for_set_pre_body (gimple g, gimple seq
pre body)

Set PRE_BODY to be the sequence of statements to execute before the OMP_FOR state-
ment G starts.

[GIMPLE function]void gimple_omp_for_set_cond (gimple g, enum tree code
cond)

Set COND to be the condition code for OMP_FOR G.

[GIMPLE function]enum tree_code gimple omp for cond (gimple g)
Return the condition code associated with OMP_FOR G.

12.7.16 GIMPLE_OMP_MASTER

[GIMPLE function]gimple gimple_build_omp_master (gimple seq body)
Build a GIMPLE_OMP_MASTER statement. BODY is the sequence of statements to be
executed by just the master.

12.7.17 GIMPLE_OMP_ORDERED

[GIMPLE function]gimple gimple_build_omp_ordered (gimple seq body)
Build a GIMPLE_OMP_ORDERED statement.

BODY is the sequence of statements inside a loop that will executed in sequence.

12.7.18 GIMPLE_OMP_PARALLEL

[GIMPLE function]gimple gimple_build_omp_parallel (gimple seq body, tree
clauses, tree child fn, tree data arg)

Build a GIMPLE_OMP_PARALLEL statement.

BODY is sequence of statements which are executed in parallel. CLAUSES, are the OMP
parallel construct’s clauses. CHILD_FN is the function created for the parallel threads to
execute. DATA_ARG are the shared data argument(s).

[GIMPLE function]bool gimple_omp_parallel_combined_p (gimple g)
Return true if OMP parallel statement G has the GF_OMP_PARALLEL_COMBINED flag set.

[GIMPLE function]void gimple_omp_parallel_set_combined_p (gimple g)
Set the GF_OMP_PARALLEL_COMBINED field in OMP parallel statement G.

[GIMPLE function]gimple_seq gimple_omp_body (gimple g)
Return the body for the OMP statement G.

224 GNU Compiler Collection (GCC) Internals

[GIMPLE function]void gimple_omp_set_body (gimple g, gimple seq body)
Set BODY to be the body for the OMP statement G.

[GIMPLE function]tree gimple_omp_parallel_clauses (gimple g)
Return the clauses associated with OMP_PARALLEL G.

[GIMPLE function]tree *gimple_omp_parallel_clauses_ptr (gimple g)
Return a pointer to the clauses associated with OMP_PARALLEL G.

[GIMPLE function]void gimple_omp_parallel_set_clauses (gimple g, tree
clauses)

Set CLAUSES to be the list of clauses associated with OMP_PARALLEL G.

[GIMPLE function]tree gimple_omp_parallel_child_fn (gimple g)
Return the child function used to hold the body of OMP_PARALLEL G.

[GIMPLE function]tree *gimple_omp_parallel_child_fn_ptr (gimple g)
Return a pointer to the child function used to hold the body of OMP_PARALLEL G.

[GIMPLE function]void gimple_omp_parallel_set_child_fn (gimple g, tree
child fn)

Set CHILD_FN to be the child function for OMP_PARALLEL G.

[GIMPLE function]tree gimple_omp_parallel_data_arg (gimple g)
Return the artificial argument used to send variables and values from the parent to
the children threads in OMP_PARALLEL G.

[GIMPLE function]tree *gimple_omp_parallel_data_arg_ptr (gimple g)
Return a pointer to the data argument for OMP_PARALLEL G.

[GIMPLE function]void gimple_omp_parallel_set_data_arg (gimple g, tree
data arg)

Set DATA_ARG to be the data argument for OMP_PARALLEL G.

[GIMPLE function]bool is_gimple_omp (gimple stmt)
Returns true when the gimple statement STMT is any of the OpenMP types.

12.7.19 GIMPLE_OMP_RETURN

[GIMPLE function]gimple gimple_build_omp_return (bool wait p)
Build a GIMPLE_OMP_RETURN statement. WAIT_P is true if this is a non-waiting return.

[GIMPLE function]void gimple_omp_return_set_nowait (gimple s)
Set the nowait flag on GIMPLE_OMP_RETURN statement S.

[GIMPLE function]bool gimple_omp_return_nowait_p (gimple g)
Return true if OMP return statement G has the GF_OMP_RETURN_NOWAIT flag set.

Chapter 12: GIMPLE 225

12.7.20 GIMPLE_OMP_SECTION

[GIMPLE function]gimple gimple_build_omp_section (gimple seq body)
Build a GIMPLE_OMP_SECTION statement for a sections statement.

BODY is the sequence of statements in the section.

[GIMPLE function]bool gimple_omp_section_last_p (gimple g)
Return true if OMP section statement G has the GF_OMP_SECTION_LAST flag set.

[GIMPLE function]void gimple_omp_section_set_last (gimple g)
Set the GF_OMP_SECTION_LAST flag on G.

12.7.21 GIMPLE_OMP_SECTIONS

[GIMPLE function]gimple gimple_build_omp_sections (gimple seq body, tree
clauses)

Build a GIMPLE_OMP_SECTIONS statement. BODY is a sequence of section statements.
CLAUSES are any of the OMP sections construct’s clauses: private, firstprivate, lastpri-
vate, reduction, and nowait.

[GIMPLE function]gimple gimple_build_omp_sections_switch (void)
Build a GIMPLE_OMP_SECTIONS_SWITCH statement.

[GIMPLE function]tree gimple_omp_sections_control (gimple g)
Return the control variable associated with the GIMPLE_OMP_SECTIONS in G.

[GIMPLE function]tree *gimple_omp_sections_control_ptr (gimple g)
Return a pointer to the clauses associated with the GIMPLE_OMP_SECTIONS in G.

[GIMPLE function]void gimple_omp_sections_set_control (gimple g, tree
control)

Set CONTROL to be the set of clauses associated with the GIMPLE_OMP_SECTIONS in G.

[GIMPLE function]tree gimple_omp_sections_clauses (gimple g)
Return the clauses associated with OMP_SECTIONS G.

[GIMPLE function]tree *gimple_omp_sections_clauses_ptr (gimple g)
Return a pointer to the clauses associated with OMP_SECTIONS G.

[GIMPLE function]void gimple_omp_sections_set_clauses (gimple g, tree
clauses)

Set CLAUSES to be the set of clauses associated with OMP_SECTIONS G.

12.7.22 GIMPLE_OMP_SINGLE

[GIMPLE function]gimple gimple_build_omp_single (gimple seq body, tree
clauses)

Build a GIMPLE_OMP_SINGLE statement. BODY is the sequence of statements that will
be executed once. CLAUSES are any of the OMP single construct’s clauses: private,
firstprivate, copyprivate, nowait.

226 GNU Compiler Collection (GCC) Internals

[GIMPLE function]tree gimple_omp_single_clauses (gimple g)
Return the clauses associated with OMP_SINGLE G.

[GIMPLE function]tree *gimple_omp_single_clauses_ptr (gimple g)
Return a pointer to the clauses associated with OMP_SINGLE G.

[GIMPLE function]void gimple_omp_single_set_clauses (gimple g, tree
clauses)

Set CLAUSES to be the clauses associated with OMP_SINGLE G.

12.7.23 GIMPLE_PHI

[GIMPLE function]gimple make_phi_node (tree var, int len)
Build a PHI node with len argument slots for variable var.

[GIMPLE function]unsigned gimple_phi_capacity (gimple g)
Return the maximum number of arguments supported by GIMPLE_PHI G.

[GIMPLE function]unsigned gimple_phi_num_args (gimple g)
Return the number of arguments in GIMPLE_PHI G. This must always be exactly the
number of incoming edges for the basic block holding G.

[GIMPLE function]tree gimple_phi_result (gimple g)
Return the SSA name created by GIMPLE_PHI G.

[GIMPLE function]tree *gimple_phi_result_ptr (gimple g)
Return a pointer to the SSA name created by GIMPLE_PHI G.

[GIMPLE function]void gimple_phi_set_result (gimple g, tree result)
Set RESULT to be the SSA name created by GIMPLE_PHI G.

[GIMPLE function]struct phi_arg_d *gimple phi arg (gimple g, index)
Return the PHI argument corresponding to incoming edge INDEX for GIMPLE_PHI G.

[GIMPLE function]void gimple_phi_set_arg (gimple g, index, struct phi arg d *
phiarg)

Set PHIARG to be the argument corresponding to incoming edge INDEX for GIMPLE_PHI
G.

12.7.24 GIMPLE_RESX

[GIMPLE function]gimple gimple_build_resx (int region)
Build a GIMPLE_RESX statement which is a statement. This statement is a placeholder
for Unwind Resume before we know if a function call or a branch is needed. REGION
is the exception region from which control is flowing.

[GIMPLE function]int gimple_resx_region (gimple g)
Return the region number for GIMPLE_RESX G.

[GIMPLE function]void gimple_resx_set_region (gimple g, int region)
Set REGION to be the region number for GIMPLE_RESX G.

Chapter 12: GIMPLE 227

12.7.25 GIMPLE_RETURN

[GIMPLE function]gimple gimple_build_return (tree retval)
Build a GIMPLE_RETURN statement whose return value is retval.

[GIMPLE function]tree gimple_return_retval (gimple g)
Return the return value for GIMPLE_RETURN G.

[GIMPLE function]void gimple_return_set_retval (gimple g, tree retval)
Set RETVAL to be the return value for GIMPLE_RETURN G.

12.7.26 GIMPLE_SWITCH

[GIMPLE function]gimple gimple_build_switch (nlabels, tree index, tree
default label, ...)

Build a GIMPLE_SWITCH statement. NLABELS are the number of labels excluding the
default label. The default label is passed in DEFAULT_LABEL. The rest of the argu-
ments are trees representing the labels. Each label is a tree of code CASE_LABEL_EXPR.

[GIMPLE function]gimple gimple_build_switch_vec (tree index, tree
default label, VEC(tree,heap) *args)

This function is an alternate way of building GIMPLE_SWITCH statements. INDEX and
DEFAULT_LABEL are as in gimple build switch. ARGS is a vector of CASE_LABEL_EXPR
trees that contain the labels.

[GIMPLE function]unsigned gimple_switch_num_labels (gimple g)
Return the number of labels associated with the switch statement G.

[GIMPLE function]void gimple_switch_set_num_labels (gimple g, unsigned
nlabels)

Set NLABELS to be the number of labels for the switch statement G.

[GIMPLE function]tree gimple_switch_index (gimple g)
Return the index variable used by the switch statement G.

[GIMPLE function]void gimple_switch_set_index (gimple g, tree index)
Set INDEX to be the index variable for switch statement G.

[GIMPLE function]tree gimple_switch_label (gimple g, unsigned index)
Return the label numbered INDEX. The default label is 0, followed by any labels in a
switch statement.

[GIMPLE function]void gimple_switch_set_label (gimple g, unsigned index,
tree label)

Set the label number INDEX to LABEL. 0 is always the default label.

[GIMPLE function]tree gimple_switch_default_label (gimple g)
Return the default label for a switch statement.

[GIMPLE function]void gimple_switch_set_default_label (gimple g, tree
label)

Set the default label for a switch statement.

228 GNU Compiler Collection (GCC) Internals

12.7.27 GIMPLE_TRY

[GIMPLE function]gimple gimple_build_try (gimple seq eval, gimple seq
cleanup, unsigned int kind)

Build a GIMPLE_TRY statement. EVAL is a sequence with the expression to evaluate.
CLEANUP is a sequence of statements to run at clean-up time. KIND is the enumeration
value GIMPLE_TRY_CATCH if this statement denotes a try/catch construct or GIMPLE_
TRY_FINALLY if this statement denotes a try/finally construct.

[GIMPLE function]enum gimple_try_flags gimple try kind (gimple g)
Return the kind of try block represented by GIMPLE_TRY G. This is either GIMPLE_
TRY_CATCH or GIMPLE_TRY_FINALLY.

[GIMPLE function]bool gimple_try_catch_is_cleanup (gimple g)
Return the GIMPLE_TRY_CATCH_IS_CLEANUP flag.

[GIMPLE function]gimple_seq gimple_try_eval (gimple g)
Return the sequence of statements used as the body for GIMPLE_TRY G.

[GIMPLE function]gimple_seq gimple_try_cleanup (gimple g)
Return the sequence of statements used as the cleanup body for GIMPLE_TRY G.

[GIMPLE function]void gimple_try_set_catch_is_cleanup (gimple g, bool
catch is cleanup)

Set the GIMPLE_TRY_CATCH_IS_CLEANUP flag.

[GIMPLE function]void gimple_try_set_eval (gimple g, gimple seq eval)
Set EVAL to be the sequence of statements to use as the body for GIMPLE_TRY G.

[GIMPLE function]void gimple_try_set_cleanup (gimple g, gimple seq cleanup)
Set CLEANUP to be the sequence of statements to use as the cleanup body for GIMPLE_
TRY G.

12.7.28 GIMPLE_WITH_CLEANUP_EXPR

[GIMPLE function]gimple gimple_build_wce (gimple seq cleanup)
Build a GIMPLE_WITH_CLEANUP_EXPR statement. CLEANUP is the clean-up expression.

[GIMPLE function]gimple_seq gimple_wce_cleanup (gimple g)
Return the cleanup sequence for cleanup statement G.

[GIMPLE function]void gimple_wce_set_cleanup (gimple g, gimple seq cleanup)
Set CLEANUP to be the cleanup sequence for G.

[GIMPLE function]bool gimple_wce_cleanup_eh_only (gimple g)
Return the CLEANUP_EH_ONLY flag for a WCE tuple.

[GIMPLE function]void gimple_wce_set_cleanup_eh_only (gimple g, bool
eh only p)

Set the CLEANUP_EH_ONLY flag for a WCE tuple.

Chapter 12: GIMPLE 229

12.8 GIMPLE sequences

GIMPLE sequences are the tuple equivalent of STATEMENT_LIST’s used in GENERIC. They
are used to chain statements together, and when used in conjunction with sequence iterators,
provide a framework for iterating through statements.

GIMPLE sequences are of type struct gimple_sequence, but are more commonly passed
by reference to functions dealing with sequences. The type for a sequence pointer is gimple_
seq which is the same as struct gimple_sequence *. When declaring a local sequence, you
can define a local variable of type struct gimple_sequence. When declaring a sequence
allocated on the garbage collected heap, use the function gimple_seq_alloc documented
below.

There are convenience functions for iterating through sequences in the section entitled
Sequence Iterators.

Below is a list of functions to manipulate and query sequences.

[GIMPLE function]void gimple_seq_add_stmt (gimple seq *seq, gimple g)
Link a gimple statement to the end of the sequence *SEQ if G is not NULL. If *SEQ is
NULL, allocate a sequence before linking.

[GIMPLE function]void gimple_seq_add_seq (gimple seq *dest, gimple seq src)
Append sequence SRC to the end of sequence *DEST if SRC is not NULL. If *DEST is
NULL, allocate a new sequence before appending.

[GIMPLE function]gimple_seq gimple_seq_deep_copy (gimple seq src)
Perform a deep copy of sequence SRC and return the result.

[GIMPLE function]gimple_seq gimple_seq_reverse (gimple seq seq)
Reverse the order of the statements in the sequence SEQ. Return SEQ.

[GIMPLE function]gimple gimple_seq_first (gimple seq s)
Return the first statement in sequence S.

[GIMPLE function]gimple gimple_seq_last (gimple seq s)
Return the last statement in sequence S.

[GIMPLE function]void gimple_seq_set_last (gimple seq s, gimple last)
Set the last statement in sequence S to the statement in LAST.

[GIMPLE function]void gimple_seq_set_first (gimple seq s, gimple first)
Set the first statement in sequence S to the statement in FIRST.

[GIMPLE function]void gimple_seq_init (gimple seq s)
Initialize sequence S to an empty sequence.

[GIMPLE function]gimple_seq gimple_seq_alloc (void)
Allocate a new sequence in the garbage collected store and return it.

[GIMPLE function]void gimple_seq_copy (gimple seq dest, gimple seq src)
Copy the sequence SRC into the sequence DEST.

230 GNU Compiler Collection (GCC) Internals

[GIMPLE function]bool gimple_seq_empty_p (gimple seq s)
Return true if the sequence S is empty.

[GIMPLE function]gimple_seq bb_seq (basic block bb)
Returns the sequence of statements in BB.

[GIMPLE function]void set_bb_seq (basic block bb, gimple seq seq)
Sets the sequence of statements in BB to SEQ.

[GIMPLE function]bool gimple_seq_singleton_p (gimple seq seq)
Determine whether SEQ contains exactly one statement.

12.9 Sequence iterators

Sequence iterators are convenience constructs for iterating through statements in a sequence.
Given a sequence SEQ, here is a typical use of gimple sequence iterators:

gimple_stmt_iterator gsi;

for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))

{

gimple g = gsi_stmt (gsi);

/* Do something with gimple statement G. */

}

Backward iterations are possible:
for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi))

Forward and backward iterations on basic blocks are possible with gsi_start_bb and
gsi_last_bb.

In the documentation below we sometimes refer to enum gsi_iterator_update. The
valid options for this enumeration are:
• GSI_NEW_STMT Only valid when a single statement is added. Move the iterator to it.
• GSI_SAME_STMT Leave the iterator at the same statement.
• GSI_CONTINUE_LINKING Move iterator to whatever position is suitable for linking other

statements in the same direction.

Below is a list of the functions used to manipulate and use statement iterators.

[GIMPLE function]gimple_stmt_iterator gsi_start (gimple seq seq)
Return a new iterator pointing to the sequence SEQ’s first statement. If SEQ is empty,
the iterator’s basic block is NULL. Use gsi_start_bb instead when the iterator needs
to always have the correct basic block set.

[GIMPLE function]gimple_stmt_iterator gsi_start_bb (basic block bb)
Return a new iterator pointing to the first statement in basic block BB.

[GIMPLE function]gimple_stmt_iterator gsi_last (gimple seq seq)
Return a new iterator initially pointing to the last statement of sequence SEQ. If
SEQ is empty, the iterator’s basic block is NULL. Use gsi_last_bb instead when the
iterator needs to always have the correct basic block set.

[GIMPLE function]gimple_stmt_iterator gsi_last_bb (basic block bb)
Return a new iterator pointing to the last statement in basic block BB.

Chapter 12: GIMPLE 231

[GIMPLE function]bool gsi_end_p (gimple stmt iterator i)
Return TRUE if at the end of I.

[GIMPLE function]bool gsi_one_before_end_p (gimple stmt iterator i)
Return TRUE if we’re one statement before the end of I.

[GIMPLE function]void gsi_next (gimple stmt iterator *i)
Advance the iterator to the next gimple statement.

[GIMPLE function]void gsi_prev (gimple stmt iterator *i)
Advance the iterator to the previous gimple statement.

[GIMPLE function]gimple gsi_stmt (gimple stmt iterator i)
Return the current stmt.

[GIMPLE function]gimple_stmt_iterator gsi_after_labels (basic block bb)
Return a block statement iterator that points to the first non-label statement in block
BB.

[GIMPLE function]gimple *gsi_stmt_ptr (gimple stmt iterator *i)
Return a pointer to the current stmt.

[GIMPLE function]basic_block gsi_bb (gimple stmt iterator i)
Return the basic block associated with this iterator.

[GIMPLE function]gimple_seq gsi_seq (gimple stmt iterator i)
Return the sequence associated with this iterator.

[GIMPLE function]void gsi_remove (gimple stmt iterator *i, bool remove eh info)
Remove the current stmt from the sequence. The iterator is updated to point to the
next statement. When REMOVE_EH_INFO is true we remove the statement pointed to
by iterator I from the EH tables. Otherwise we do not modify the EH tables. Generally,
REMOVE_EH_INFO should be true when the statement is going to be removed from the
IL and not reinserted elsewhere.

[GIMPLE function]void gsi_link_seq_before (gimple stmt iterator *i,
gimple seq seq, enum gsi iterator update mode)

Links the sequence of statements SEQ before the statement pointed by iterator I. MODE
indicates what to do with the iterator after insertion (see enum gsi_iterator_update
above).

[GIMPLE function]void gsi_link_before (gimple stmt iterator *i, gimple g,
enum gsi iterator update mode)

Links statement G before the statement pointed-to by iterator I. Updates iterator I
according to MODE.

[GIMPLE function]void gsi_link_seq_after (gimple stmt iterator *i,
gimple seq seq, enum gsi iterator update mode)

Links sequence SEQ after the statement pointed-to by iterator I. MODE is as in gsi_
insert_after.

232 GNU Compiler Collection (GCC) Internals

[GIMPLE function]void gsi_link_after (gimple stmt iterator *i, gimple g, enum
gsi iterator update mode)

Links statement G after the statement pointed-to by iterator I. MODE is as in gsi_
insert_after.

[GIMPLE function]gimple_seq gsi_split_seq_after (gimple stmt iterator i)
Move all statements in the sequence after I to a new sequence. Return this new
sequence.

[GIMPLE function]gimple_seq gsi_split_seq_before (gimple stmt iterator *i)
Move all statements in the sequence before I to a new sequence. Return this new
sequence.

[GIMPLE function]void gsi_replace (gimple stmt iterator *i, gimple stmt, bool
update eh info)

Replace the statement pointed-to by I to STMT. If UPDATE_EH_INFO is true, the excep-
tion handling information of the original statement is moved to the new statement.

[GIMPLE function]void gsi_insert_before (gimple stmt iterator *i, gimple
stmt, enum gsi iterator update mode)

Insert statement STMT before the statement pointed-to by iterator I, update STMT’s
basic block and scan it for new operands. MODE specifies how to update iterator I
after insertion (see enum gsi_iterator_update).

[GIMPLE function]void gsi_insert_seq_before (gimple stmt iterator *i,
gimple seq seq, enum gsi iterator update mode)

Like gsi_insert_before, but for all the statements in SEQ.

[GIMPLE function]void gsi_insert_after (gimple stmt iterator *i, gimple stmt,
enum gsi iterator update mode)

Insert statement STMT after the statement pointed-to by iterator I, update STMT’s
basic block and scan it for new operands. MODE specifies how to update iterator I
after insertion (see enum gsi_iterator_update).

[GIMPLE function]void gsi_insert_seq_after (gimple stmt iterator *i,
gimple seq seq, enum gsi iterator update mode)

Like gsi_insert_after, but for all the statements in SEQ.

[GIMPLE function]gimple_stmt_iterator gsi_for_stmt (gimple stmt)
Finds iterator for STMT.

[GIMPLE function]void gsi_move_after (gimple stmt iterator *from,
gimple stmt iterator *to)

Move the statement at FROM so it comes right after the statement at TO.

[GIMPLE function]void gsi_move_before (gimple stmt iterator *from,
gimple stmt iterator *to)

Move the statement at FROM so it comes right before the statement at TO.

[GIMPLE function]void gsi_move_to_bb_end (gimple stmt iterator *from,
basic block bb)

Move the statement at FROM to the end of basic block BB.

Chapter 12: GIMPLE 233

[GIMPLE function]void gsi_insert_on_edge (edge e, gimple stmt)
Add STMT to the pending list of edge E. No actual insertion is made until a call to
gsi_commit_edge_inserts() is made.

[GIMPLE function]void gsi_insert_seq_on_edge (edge e, gimple seq seq)
Add the sequence of statements in SEQ to the pending list of edge E. No actual
insertion is made until a call to gsi_commit_edge_inserts() is made.

[GIMPLE function]basic_block gsi_insert_on_edge_immediate (edge e,
gimple stmt)

Similar to gsi_insert_on_edge+gsi_commit_edge_inserts. If a new block has to
be created, it is returned.

[GIMPLE function]void gsi_commit_one_edge_insert (edge e, basic block
*new bb)

Commit insertions pending at edge E. If a new block is created, set NEW_BB to this
block, otherwise set it to NULL.

[GIMPLE function]void gsi_commit_edge_inserts (void)
This routine will commit all pending edge insertions, creating any new basic blocks
which are necessary.

12.10 Adding a new GIMPLE statement code

The first step in adding a new GIMPLE statement code, is modifying the file gimple.def,
which contains all the GIMPLE codes. Then you must add a corresponding structure, and
an entry in union gimple_statement_d, both of which are located in gimple.h. This in
turn, will require you to add a corresponding GTY tag in gsstruct.def, and code to handle
this tag in gss_for_code which is located in gimple.c.

In order for the garbage collector to know the size of the structure you created in
gimple.h, you need to add a case to handle your new GIMPLE statement in gimple_size
which is located in gimple.c.

You will probably want to create a function to build the new gimple statement in
gimple.c. The function should be called gimple_build_<NEW_TUPLE_NAME>, and should
return the new tuple of type gimple.

If your new statement requires accessors for any members or operands it may have,
put simple inline accessors in gimple.h and any non-trivial accessors in gimple.c with a
corresponding prototype in gimple.h.

12.11 Statement and operand traversals

There are two functions available for walking statements and sequences: walk_gimple_
stmt and walk_gimple_seq, accordingly, and a third function for walking the operands in
a statement: walk_gimple_op.

[GIMPLE function]tree walk_gimple_stmt (gimple stmt iterator *gsi,
walk stmt fn callback stmt, walk tree fn callback op, struct walk stmt info
*wi)

This function is used to walk the current statement in GSI, optionally using traversal
state stored in WI. If WI is NULL, no state is kept during the traversal.

234 GNU Compiler Collection (GCC) Internals

The callback CALLBACK_STMT is called. If CALLBACK_STMT returns true, it means that
the callback function has handled all the operands of the statement and it is not
necessary to walk its operands.
If CALLBACK_STMT is NULL or it returns false, CALLBACK_OP is called on each operand
of the statement via walk_gimple_op. If walk_gimple_op returns non-NULL for any
operand, the remaining operands are not scanned.
The return value is that returned by the last call to walk_gimple_op, or NULL_TREE
if no CALLBACK_OP is specified.

[GIMPLE function]tree walk_gimple_op (gimple stmt, walk tree fn callback op,
struct walk stmt info *wi)

Use this function to walk the operands of statement STMT. Every operand is walked
via walk_tree with optional state information in WI.
CALLBACK_OP is called on each operand of STMT via walk_tree. Additional parameters
to walk_tree must be stored in WI. For each operand OP, walk_tree is called as:

walk_tree (&OP, CALLBACK_OP, WI, WI- PSET)

If CALLBACK_OP returns non-NULL for an operand, the remaining operands are not
scanned. The return value is that returned by the last call to walk_tree, or NULL_
TREE if no CALLBACK_OP is specified.

[GIMPLE function]tree walk_gimple_seq (gimple seq seq, walk stmt fn
callback stmt, walk tree fn callback op, struct walk stmt info *wi)

This function walks all the statements in the sequence SEQ calling walk_gimple_stmt
on each one. WI is as in walk_gimple_stmt. If walk_gimple_stmt returns non-NULL,
the walk is stopped and the value returned. Otherwise, all the statements are walked
and NULL_TREE returned.

Chapter 13: Analysis and Optimization of GIMPLE tuples 235

13 Analysis and Optimization of GIMPLE tuples

GCC uses three main intermediate languages to represent the program during compilation:
GENERIC, GIMPLE and RTL. GENERIC is a language-independent representation gener-
ated by each front end. It is used to serve as an interface between the parser and optimizer.
GENERIC is a common representation that is able to represent programs written in all the
languages supported by GCC.

GIMPLE and RTL are used to optimize the program. GIMPLE is used for target and lan-
guage independent optimizations (e.g., inlining, constant propagation, tail call elimination,
redundancy elimination, etc). Much like GENERIC, GIMPLE is a language independent,
tree based representation. However, it differs from GENERIC in that the GIMPLE gram-
mar is more restrictive: expressions contain no more than 3 operands (except function calls),
it has no control flow structures and expressions with side-effects are only allowed on the
right hand side of assignments. See the chapter describing GENERIC and GIMPLE for
more details.

This chapter describes the data structures and functions used in the GIMPLE optimiz-
ers (also known as “tree optimizers” or “middle end”). In particular, it focuses on all
the macros, data structures, functions and programming constructs needed to implement
optimization passes for GIMPLE.

13.1 Annotations

The optimizers need to associate attributes with variables during the optimization process.
For instance, we need to know whether a variable has aliases. All these attributes are stored
in data structures called annotations which are then linked to the field ann in struct tree_
common.

Presently, we define annotations for variables (var_ann_t). Annotations are defined and
documented in ‘tree-flow.h’.

13.2 SSA Operands

Almost every GIMPLE statement will contain a reference to a variable or memory location.
Since statements come in different shapes and sizes, their operands are going to be located
at various spots inside the statement’s tree. To facilitate access to the statement’s operands,
they are organized into lists associated inside each statement’s annotation. Each element
in an operand list is a pointer to a VAR_DECL, PARM_DECL or SSA_NAME tree node. This
provides a very convenient way of examining and replacing operands.

Data flow analysis and optimization is done on all tree nodes representing variables.
Any node for which SSA_VAR_P returns nonzero is considered when scanning statement
operands. However, not all SSA_VAR_P variables are processed in the same way. For the
purposes of optimization, we need to distinguish between references to local scalar variables
and references to globals, statics, structures, arrays, aliased variables, etc. The reason is
simple, the compiler can gather complete data flow information for a local scalar. On the
other hand, a global variable may be modified by a function call, it may not be possible to
keep track of all the elements of an array or the fields of a structure, etc.

The operand scanner gathers two kinds of operands: real and virtual. An operand for
which is_gimple_reg returns true is considered real, otherwise it is a virtual operand. We

236 GNU Compiler Collection (GCC) Internals

also distinguish between uses and definitions. An operand is used if its value is loaded by
the statement (e.g., the operand at the RHS of an assignment). If the statement assigns a
new value to the operand, the operand is considered a definition (e.g., the operand at the
LHS of an assignment).

Virtual and real operands also have very different data flow properties. Real operands
are unambiguous references to the full object that they represent. For instance, given

{

int a, b;

a = b

}

Since a and b are non-aliased locals, the statement a = b will have one real definition and
one real use because variable b is completely modified with the contents of variable a. Real
definition are also known as killing definitions. Similarly, the use of a reads all its bits.

In contrast, virtual operands are used with variables that can have a partial or ambiguous
reference. This includes structures, arrays, globals, and aliased variables. In these cases, we
have two types of definitions. For globals, structures, and arrays, we can determine from
a statement whether a variable of these types has a killing definition. If the variable does,
then the statement is marked as having a must definition of that variable. However, if a
statement is only defining a part of the variable (i.e. a field in a structure), or if we know
that a statement might define the variable but we cannot say for sure, then we mark that
statement as having a may definition. For instance, given

{

int a, b, *p;

if (...)

p = &a;

else

p = &b;

*p = 5;

return *p;

}

The assignment *p = 5 may be a definition of a or b. If we cannot determine statically
where p is pointing to at the time of the store operation, we create virtual definitions to
mark that statement as a potential definition site for a and b. Memory loads are similarly
marked with virtual use operands. Virtual operands are shown in tree dumps right before
the statement that contains them. To request a tree dump with virtual operands, use the
‘-vops’ option to ‘-fdump-tree’:

{

int a, b, *p;

if (...)

p = &a;

else

p = &b;

a = VDEF <a>

b = VDEF

*p = 5;

VUSE <a>

VUSE

return *p;

Chapter 13: Analysis and Optimization of GIMPLE tuples 237

}

Notice that VDEF operands have two copies of the referenced variable. This indicates that
this is not a killing definition of that variable. In this case we refer to it as a may definition
or aliased store. The presence of the second copy of the variable in the VDEF operand will
become important when the function is converted into SSA form. This will be used to link
all the non-killing definitions to prevent optimizations from making incorrect assumptions
about them.

Operands are updated as soon as the statement is finished via a call to update_stmt.
If statement elements are changed via SET_USE or SET_DEF, then no further action is re-
quired (i.e., those macros take care of updating the statement). If changes are made by
manipulating the statement’s tree directly, then a call must be made to update_stmt when
complete. Calling one of the bsi_insert routines or bsi_replace performs an implicit call
to update_stmt.

13.2.1 Operand Iterators And Access Routines

Operands are collected by ‘tree-ssa-operands.c’. They are stored inside each statement’s
annotation and can be accessed through either the operand iterators or an access routine.

The following access routines are available for examining operands:
1. SINGLE_SSA_{USE,DEF,TREE}_OPERAND: These accessors will return NULL unless

there is exactly one operand matching the specified flags. If there is exactly one
operand, the operand is returned as either a tree, def_operand_p, or use_operand_p.

tree t = SINGLE_SSA_TREE_OPERAND (stmt, flags);

use_operand_p u = SINGLE_SSA_USE_OPERAND (stmt, SSA_ALL_VIRTUAL_USES);

def_operand_p d = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_ALL_DEFS);

2. ZERO_SSA_OPERANDS: This macro returns true if there are no operands matching the
specified flags.

if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))

return;

3. NUM_SSA_OPERANDS: This macro Returns the number of operands matching ’flags’. This
actually executes a loop to perform the count, so only use this if it is really needed.

int count = NUM_SSA_OPERANDS (stmt, flags)

If you wish to iterate over some or all operands, use the FOR_EACH_SSA_{USE,DEF,TREE}_
OPERAND iterator. For example, to print all the operands for a statement:

void

print_ops (tree stmt)

{

ssa_op_iter;

tree var;

FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_OPERANDS)

print_generic_expr (stderr, var, TDF_SLIM);

}

How to choose the appropriate iterator:
1. Determine whether you are need to see the operand pointers, or just the trees, and

choose the appropriate macro:
Need Macro:

---- -------

238 GNU Compiler Collection (GCC) Internals

use_operand_p FOR_EACH_SSA_USE_OPERAND

def_operand_p FOR_EACH_SSA_DEF_OPERAND

tree FOR_EACH_SSA_TREE_OPERAND

2. You need to declare a variable of the type you are interested in, and an ssa op iter
structure which serves as the loop controlling variable.

3. Determine which operands you wish to use, and specify the flags of those you are
interested in. They are documented in ‘tree-ssa-operands.h’:

#define SSA_OP_USE 0x01 /* Real USE operands. */

#define SSA_OP_DEF 0x02 /* Real DEF operands. */

#define SSA_OP_VUSE 0x04 /* VUSE operands. */

#define SSA_OP_VMAYUSE 0x08 /* USE portion of VDEFS. */

#define SSA_OP_VDEF 0x10 /* DEF portion of VDEFS. */

/* These are commonly grouped operand flags. */

#define SSA_OP_VIRTUAL_USES (SSA_OP_VUSE | SSA_OP_VMAYUSE)

#define SSA_OP_VIRTUAL_DEFS (SSA_OP_VDEF)

#define SSA_OP_ALL_USES (SSA_OP_VIRTUAL_USES | SSA_OP_USE)

#define SSA_OP_ALL_DEFS (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF)

#define SSA_OP_ALL_OPERANDS (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS)

So if you want to look at the use pointers for all the USE and VUSE operands, you would
do something like:

use_operand_p use_p;

ssa_op_iter iter;

FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, (SSA_OP_USE | SSA_OP_VUSE))

{

process_use_ptr (use_p);

}

The TREE macro is basically the same as the USE and DEF macros, only with the use or
def dereferenced via USE_FROM_PTR (use_p) and DEF_FROM_PTR (def_p). Since we aren’t
using operand pointers, use and defs flags can be mixed.

tree var;

ssa_op_iter iter;

FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_VUSE)

{

print_generic_expr (stderr, var, TDF_SLIM);

}

VDEFs are broken into two flags, one for the DEF portion (SSA_OP_VDEF) and one for the
USE portion (SSA_OP_VMAYUSE). If all you want to look at are the VDEFs together, there is
a fourth iterator macro for this, which returns both a def operand p and a use operand p
for each VDEF in the statement. Note that you don’t need any flags for this one.

use_operand_p use_p;

def_operand_p def_p;

ssa_op_iter iter;

FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, stmt, iter)

{

my_code;

}

There are many examples in the code as well, as well as the documentation in
‘tree-ssa-operands.h’.

Chapter 13: Analysis and Optimization of GIMPLE tuples 239

There are also a couple of variants on the stmt iterators regarding PHI nodes.
FOR_EACH_PHI_ARG Works exactly like FOR_EACH_SSA_USE_OPERAND, except it works over

PHI arguments instead of statement operands.
/* Look at every virtual PHI use. */

FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_VIRTUAL_USES)

{

my_code;

}

/* Look at every real PHI use. */

FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_USES)

my_code;

/* Look at every PHI use. */

FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_ALL_USES)

my_code;

FOR_EACH_PHI_OR_STMT_{USE,DEF} works exactly like FOR_EACH_SSA_{USE,DEF}_
OPERAND, except it will function on either a statement or a PHI node. These should be used
when it is appropriate but they are not quite as efficient as the individual FOR_EACH_PHI
and FOR_EACH_SSA routines.

FOR_EACH_PHI_OR_STMT_USE (use_operand_p, stmt, iter, flags)

{

my_code;

}

FOR_EACH_PHI_OR_STMT_DEF (def_operand_p, phi, iter, flags)

{

my_code;

}

13.2.2 Immediate Uses

Immediate use information is now always available. Using the immediate use iterators, you
may examine every use of any SSA_NAME. For instance, to change each use of ssa_var to
ssa_var2 and call fold stmt on each stmt after that is done:

use_operand_p imm_use_p;

imm_use_iterator iterator;

tree ssa_var, stmt;

FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)

{

FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)

SET_USE (imm_use_p, ssa_var_2);

fold_stmt (stmt);

}

There are 2 iterators which can be used. FOR_EACH_IMM_USE_FAST is used when the
immediate uses are not changed, i.e., you are looking at the uses, but not setting them.

If they do get changed, then care must be taken that things are not changed under the
iterators, so use the FOR_EACH_IMM_USE_STMT and FOR_EACH_IMM_USE_ON_STMT iterators.
They attempt to preserve the sanity of the use list by moving all the uses for a statement
into a controlled position, and then iterating over those uses. Then the optimization can
manipulate the stmt when all the uses have been processed. This is a little slower than the

240 GNU Compiler Collection (GCC) Internals

FAST version since it adds a placeholder element and must sort through the list a bit for
each statement. This placeholder element must be also be removed if the loop is terminated
early. The macro BREAK_FROM_IMM_USE_SAFE is provided to do this :

FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)

{

if (stmt == last_stmt)

BREAK_FROM_SAFE_IMM_USE (iter);

FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)

SET_USE (imm_use_p, ssa_var_2);

fold_stmt (stmt);

}

There are checks in verify_ssa which verify that the immediate use list is up to date, as
well as checking that an optimization didn’t break from the loop without using this macro.
It is safe to simply ’break’; from a FOR_EACH_IMM_USE_FAST traverse.

Some useful functions and macros:

1. has_zero_uses (ssa_var) : Returns true if there are no uses of ssa_var.

2. has_single_use (ssa_var) : Returns true if there is only a single use of ssa_var.

3. single_imm_use (ssa_var, use_operand_p *ptr, tree *stmt) : Returns true if
there is only a single use of ssa_var, and also returns the use pointer and statement
it occurs in, in the second and third parameters.

4. num_imm_uses (ssa_var) : Returns the number of immediate uses of ssa_var. It is
better not to use this if possible since it simply utilizes a loop to count the uses.

5. PHI_ARG_INDEX_FROM_USE (use_p) : Given a use within a PHI node, return the index
number for the use. An assert is triggered if the use isn’t located in a PHI node.

6. USE_STMT (use_p) : Return the statement a use occurs in.

Note that uses are not put into an immediate use list until their statement is actually
inserted into the instruction stream via a bsi_* routine.

It is also still possible to utilize lazy updating of statements, but this should be used only
when absolutely required. Both alias analysis and the dominator optimizations currently
do this.

When lazy updating is being used, the immediate use information is out of date and
cannot be used reliably. Lazy updating is achieved by simply marking statements modified
via calls to mark_stmt_modified instead of update_stmt. When lazy updating is no longer
required, all the modified statements must have update_stmt called in order to bring them
up to date. This must be done before the optimization is finished, or verify_ssa will
trigger an abort.

This is done with a simple loop over the instruction stream:
block_stmt_iterator bsi;

basic_block bb;

FOR_EACH_BB (bb)

{

for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))

update_stmt_if_modified (bsi_stmt (bsi));

}

Chapter 13: Analysis and Optimization of GIMPLE tuples 241

13.3 Static Single Assignment

Most of the tree optimizers rely on the data flow information provided by the Static Single
Assignment (SSA) form. We implement the SSA form as described in R. Cytron, J. Ferrante,
B. Rosen, M. Wegman, and K. Zadeck. Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph. ACM Transactions on Programming Languages
and Systems, 13(4):451-490, October 1991.

The SSA form is based on the premise that program variables are assigned in exactly one
location in the program. Multiple assignments to the same variable create new versions of
that variable. Naturally, actual programs are seldom in SSA form initially because variables
tend to be assigned multiple times. The compiler modifies the program representation so
that every time a variable is assigned in the code, a new version of the variable is created.
Different versions of the same variable are distinguished by subscripting the variable name
with its version number. Variables used in the right-hand side of expressions are renamed
so that their version number matches that of the most recent assignment.

We represent variable versions using SSA_NAME nodes. The renaming process in
‘tree-ssa.c’ wraps every real and virtual operand with an SSA_NAME node which contains
the version number and the statement that created the SSA_NAME. Only definitions and
virtual definitions may create new SSA_NAME nodes.

Sometimes, flow of control makes it impossible to determine the most recent version of a
variable. In these cases, the compiler inserts an artificial definition for that variable called
PHI function or PHI node. This new definition merges all the incoming versions of the
variable to create a new name for it. For instance,

if (...)

a_1 = 5;

else if (...)

a_2 = 2;

else

a_3 = 13;

a_4 = PHI <a_1, a_2, a_3>

return a_4;

Since it is not possible to determine which of the three branches will be taken at runtime,
we don’t know which of a_1, a_2 or a_3 to use at the return statement. So, the SSA
renamer creates a new version a_4 which is assigned the result of “merging” a_1, a_2 and
a_3. Hence, PHI nodes mean “one of these operands. I don’t know which”.

The following macros can be used to examine PHI nodes

[Macro]PHI_RESULT (phi)
Returns the SSA_NAME created by PHI node phi (i.e., phi’s LHS).

[Macro]PHI_NUM_ARGS (phi)
Returns the number of arguments in phi. This number is exactly the number of
incoming edges to the basic block holding phi.

[Macro]PHI_ARG_ELT (phi, i)
Returns a tuple representing the ith argument of phi. Each element of this tuple
contains an SSA_NAME var and the incoming edge through which var flows.

242 GNU Compiler Collection (GCC) Internals

[Macro]PHI_ARG_EDGE (phi, i)
Returns the incoming edge for the ith argument of phi.

[Macro]PHI_ARG_DEF (phi, i)
Returns the SSA_NAME for the ith argument of phi.

13.3.1 Preserving the SSA form

Some optimization passes make changes to the function that invalidate the SSA property.
This can happen when a pass has added new symbols or changed the program so that vari-
ables that were previously aliased aren’t anymore. Whenever something like this happens,
the affected symbols must be renamed into SSA form again. Transformations that emit
new code or replicate existing statements will also need to update the SSA form.

Since GCC implements two different SSA forms for register and virtual variables, keeping
the SSA form up to date depends on whether you are updating register or virtual names.
In both cases, the general idea behind incremental SSA updates is similar: when new SSA
names are created, they typically are meant to replace other existing names in the program.

For instance, given the following code:
1 L0:

2 x_1 = PHI (0, x_5)

3 if (x_1 < 10)

4 if (x_1 > 7)

5 y_2 = 0

6 else

7 y_3 = x_1 + x_7

8 endif

9 x_5 = x_1 + 1

10 goto L0;

11 endif

Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
1 L0:

2 x_1 = PHI (0, x_5)

3 if (x_1 < 10)

4 x_10 = ...

5 if (x_1 > 7)

6 y_2 = 0

7 else

8 x_11 = ...

9 y_3 = x_1 + x_7

10 endif

11 x_5 = x_1 + 1

12 goto L0;

13 endif

We want to replace all the uses of x_1 with the new definitions of x_10 and x_11. Note
that the only uses that should be replaced are those at lines 5, 9 and 11. Also, the use of x_7
at line 9 should not be replaced (this is why we cannot just mark symbol x for renaming).

Additionally, we may need to insert a PHI node at line 11 because that is a merge point
for x_10 and x_11. So the use of x_1 at line 11 will be replaced with the new PHI node.
The insertion of PHI nodes is optional. They are not strictly necessary to preserve the
SSA form, and depending on what the caller inserted, they may not even be useful for the
optimizers.

Chapter 13: Analysis and Optimization of GIMPLE tuples 243

Updating the SSA form is a two step process. First, the pass has to identify which
names need to be updated and/or which symbols need to be renamed into SSA form for
the first time. When new names are introduced to replace existing names in the program,
the mapping between the old and the new names are registered by calling register_new_
name_mapping (note that if your pass creates new code by duplicating basic blocks, the call
to tree_duplicate_bb will set up the necessary mappings automatically). On the other
hand, if your pass exposes a new symbol that should be put in SSA form for the first time,
the new symbol should be registered with mark_sym_for_renaming.

After the replacement mappings have been registered and new symbols marked for re-
naming, a call to update_ssa makes the registered changes. This can be done with an
explicit call or by creating TODO flags in the tree_opt_pass structure for your pass. There
are several TODO flags that control the behavior of update_ssa:

• TODO_update_ssa. Update the SSA form inserting PHI nodes for newly exposed sym-
bols and virtual names marked for updating. When updating real names, only insert
PHI nodes for a real name O_j in blocks reached by all the new and old definitions for
O_j. If the iterated dominance frontier for O_j is not pruned, we may end up inserting
PHI nodes in blocks that have one or more edges with no incoming definition for O_j.
This would lead to uninitialized warnings for O_j’s symbol.

• TODO_update_ssa_no_phi. Update the SSA form without inserting any new PHI nodes
at all. This is used by passes that have either inserted all the PHI nodes themselves or
passes that need only to patch use-def and def-def chains for virtuals (e.g., DCE).

• TODO_update_ssa_full_phi. Insert PHI nodes everywhere they are needed. No prun-
ing of the IDF is done. This is used by passes that need the PHI nodes for O_j even
if it means that some arguments will come from the default definition of O_j’s symbol
(e.g., pass_linear_transform).

WARNING: If you need to use this flag, chances are that your pass may be doing
something wrong. Inserting PHI nodes for an old name where not all edges carry a
new replacement may lead to silent codegen errors or spurious uninitialized warnings.

• TODO_update_ssa_only_virtuals. Passes that update the SSA form on their own
may want to delegate the updating of virtual names to the generic updater. Since
FUD chains are easier to maintain, this simplifies the work they need to do. NOTE:
If this flag is used, any OLD->NEW mappings for real names are explicitly destroyed
and only the symbols marked for renaming are processed.

13.3.2 Preserving the virtual SSA form

The virtual SSA form is harder to preserve than the non-virtual SSA form mainly because
the set of virtual operands for a statement may change at what some would consider un-
expected times. In general, statement modifications should be bracketed between calls to
push_stmt_changes and pop_stmt_changes. For example,

munge_stmt (tree stmt)

{

push_stmt_changes (&stmt);

... rewrite STMT ...

pop_stmt_changes (&stmt);

}

244 GNU Compiler Collection (GCC) Internals

The call to push_stmt_changes saves the current state of the statement operands and
the call to pop_stmt_changes compares the saved state with the current one and does the
appropriate symbol marking for the SSA renamer.

It is possible to modify several statements at a time, provided that push_stmt_changes
and pop_stmt_changes are called in LIFO order, as when processing a stack of statements.

Additionally, if the pass discovers that it did not need to make changes to the statement
after calling push_stmt_changes, it can simply discard the topmost change buffer by calling
discard_stmt_changes. This will avoid the expensive operand re-scan operation and the
buffer comparison that determines if symbols need to be marked for renaming.

13.3.3 Examining SSA_NAME nodes

The following macros can be used to examine SSA_NAME nodes

[Macro]SSA_NAME_DEF_STMT (var)
Returns the statement s that creates the SSA_NAME var. If s is an empty statement
(i.e., IS_EMPTY_STMT (s) returns true), it means that the first reference to this
variable is a USE or a VUSE.

[Macro]SSA_NAME_VERSION (var)
Returns the version number of the SSA_NAME object var.

13.3.4 Walking use-def chains

[Tree SSA function]void walk_use_def_chains (var, fn, data)
Walks use-def chains starting at the SSA_NAME node var. Calls function fn at each
reaching definition found. Function FN takes three arguments: var, its defining
statement (def stmt) and a generic pointer to whatever state information that fn
may want to maintain (data). Function fn is able to stop the walk by returning true,
otherwise in order to continue the walk, fn should return false.
Note, that if def stmt is a PHI node, the semantics are slightly different. For each
argument arg of the PHI node, this function will:
1. Walk the use-def chains for arg.
2. Call FN (arg, phi, data).

Note how the first argument to fn is no longer the original variable var, but the
PHI argument currently being examined. If fn wants to get at var, it should call
PHI_RESULT (phi).

13.3.5 Walking the dominator tree

[Tree SSA function]void walk_dominator_tree (walk_data, bb)
This function walks the dominator tree for the current CFG calling a set of callback
functions defined in struct dom walk data in ‘domwalk.h’. The call back functions
you need to define give you hooks to execute custom code at various points during
traversal:
1. Once to initialize any local data needed while processing bb and its children.

This local data is pushed into an internal stack which is automatically pushed
and popped as the walker traverses the dominator tree.

Chapter 13: Analysis and Optimization of GIMPLE tuples 245

2. Once before traversing all the statements in the bb.

3. Once for every statement inside bb.

4. Once after traversing all the statements and before recursing into bb’s dominator
children.

5. It then recurses into all the dominator children of bb.

6. After recursing into all the dominator children of bb it can, optionally, traverse
every statement in bb again (i.e., repeating steps 2 and 3).

7. Once after walking the statements in bb and bb’s dominator children. At this
stage, the block local data stack is popped.

13.4 Alias analysis

Alias analysis proceeds in 4 main phases:

1. Structural alias analysis.

This phase walks the types for structure variables, and determines which of the fields
can overlap using offset and size of each field. For each field, a “subvariable” called a
“Structure field tag” (SFT) is created, which represents that field as a separate variable.
All accesses that could possibly overlap with a given field will have virtual operands
for the SFT of that field.

struct foo

{

int a;

int b;

}

struct foo temp;

int bar (void)

{

int tmp1, tmp2, tmp3;

SFT.0_2 = VDEF <SFT.0_1>

temp.a = 5;

SFT.1_4 = VDEF <SFT.1_3>

temp.b = 6;

VUSE <SFT.1_4>

tmp1_5 = temp.b;

VUSE <SFT.0_2>

tmp2_6 = temp.a;

tmp3_7 = tmp1_5 + tmp2_6;

return tmp3_7;

}

If you copy the symbol tag for a variable for some reason, you probably also want to
copy the subvariables for that variable.

2. Points-to and escape analysis.

This phase walks the use-def chains in the SSA web looking for three things:

• Assignments of the form P_i = &VAR

• Assignments of the form P i = malloc()

• Pointers and ADDR EXPR that escape the current function.

246 GNU Compiler Collection (GCC) Internals

The concept of ‘escaping’ is the same one used in the Java world. When a pointer or an
ADDR EXPR escapes, it means that it has been exposed outside of the current func-
tion. So, assignment to global variables, function arguments and returning a pointer
are all escape sites.
This is where we are currently limited. Since not everything is renamed into SSA, we
lose track of escape properties when a pointer is stashed inside a field in a structure,
for instance. In those cases, we are assuming that the pointer does escape.
We use escape analysis to determine whether a variable is call-clobbered. Simply put, if
an ADDR EXPR escapes, then the variable is call-clobbered. If a pointer P i escapes,
then all the variables pointed-to by P i (and its memory tag) also escape.

3. Compute flow-sensitive aliases
We have two classes of memory tags. Memory tags associated with the pointed-to
data type of the pointers in the program. These tags are called “symbol memory tag”
(SMT). The other class are those associated with SSA NAMEs, called “name memory
tag” (NMT). The basic idea is that when adding operands for an INDIRECT REF
*P i, we will first check whether P i has a name tag, if it does we use it, because that
will have more precise aliasing information. Otherwise, we use the standard symbol
tag.
In this phase, we go through all the pointers we found in points-to analysis and create
alias sets for the name memory tags associated with each pointer P i. If P i escapes,
we mark call-clobbered the variables it points to and its tag.

4. Compute flow-insensitive aliases
This pass will compare the alias set of every symbol memory tag and every addressable
variable found in the program. Given a symbol memory tag SMT and an addressable
variable V. If the alias sets of SMT and V conflict (as computed by may alias p), then
V is marked as an alias tag and added to the alias set of SMT.
Every language that wishes to perform language-specific alias analysis should define a
function that computes, given a tree node, an alias set for the node. Nodes in different
alias sets are not allowed to alias. For an example, see the C front-end function c_get_
alias_set.

For instance, consider the following function:
foo (int i)

{

int *p, *q, a, b;

if (i > 10)

p = &a;

else

q = &b;

*p = 3;

*q = 5;

a = b + 2;

return *p;

}

After aliasing analysis has finished, the symbol memory tag for pointer p will have two
aliases, namely variables a and b. Every time pointer p is dereferenced, we want to mark
the operation as a potential reference to a and b.

Chapter 13: Analysis and Optimization of GIMPLE tuples 247

foo (int i)

{

int *p, a, b;

if (i_2 > 10)

p_4 = &a;

else

p_6 = &b;

p_1 = PHI <p_4(1), p_6(2)>;

a_7 = VDEF <a_3>;

b_8 = VDEF <b_5>;

*p_1 = 3;

a_9 = VDEF <a_7>

VUSE <b_8>

a_9 = b_8 + 2;

VUSE <a_9>;

VUSE <b_8>;

return *p_1;

}

In certain cases, the list of may aliases for a pointer may grow too large. This may cause
an explosion in the number of virtual operands inserted in the code. Resulting in increased
memory consumption and compilation time.

When the number of virtual operands needed to represent aliased loads and stores grows
too large (configurable with ‘--param max-aliased-vops’), alias sets are grouped to avoid
severe compile-time slow downs and memory consumption. The alias grouping heuristic
proceeds as follows:

1. Sort the list of pointers in decreasing number of contributed virtual operands.
2. Take the first pointer from the list and reverse the role of the memory tag and its

aliases. Usually, whenever an aliased variable Vi is found to alias with a memory tag
T, we add Vi to the may-aliases set for T. Meaning that after alias analysis, we will
have:

may-aliases(T) = { V1, V2, V3, ..., Vn }

This means that every statement that references T, will get n virtual operands for each
of the Vi tags. But, when alias grouping is enabled, we make T an alias tag and add
it to the alias set of all the Vi variables:

may-aliases(V1) = { T }

may-aliases(V2) = { T }

...

may-aliases(Vn) = { T }

This has two effects: (a) statements referencing T will only get a single virtual operand,
and, (b) all the variables Vi will now appear to alias each other. So, we lose alias
precision to improve compile time. But, in theory, a program with such a high level of
aliasing should not be very optimizable in the first place.

3. Since variables may be in the alias set of more than one memory tag, the grouping
done in step (2) needs to be extended to all the memory tags that have a non-empty
intersection with the may-aliases set of tag T. For instance, if we originally had these
may-aliases sets:

248 GNU Compiler Collection (GCC) Internals

may-aliases(T) = { V1, V2, V3 }

may-aliases(R) = { V2, V4 }

In step (2) we would have reverted the aliases for T as:
may-aliases(V1) = { T }

may-aliases(V2) = { T }

may-aliases(V3) = { T }

But note that now V2 is no longer aliased with R. We could add R to may-aliases(V2),
but we are in the process of grouping aliases to reduce virtual operands so what we do
is add V4 to the grouping to obtain:

may-aliases(V1) = { T }

may-aliases(V2) = { T }

may-aliases(V3) = { T }

may-aliases(V4) = { T }

4. If the total number of virtual operands due to aliasing is still above the threshold set
by max-alias-vops, go back to (2).

Chapter 14: Analysis and Representation of Loops 249

14 Analysis and Representation of Loops

GCC provides extensive infrastructure for work with natural loops, i.e., strongly connected
components of CFG with only one entry block. This chapter describes representation of
loops in GCC, both on GIMPLE and in RTL, as well as the interfaces to loop-related
analyses (induction variable analysis and number of iterations analysis).

14.1 Loop representation

This chapter describes the representation of loops in GCC, and functions that can be used to
build, modify and analyze this representation. Most of the interfaces and data structures are
declared in ‘cfgloop.h’. At the moment, loop structures are analyzed and this information
is updated only by the optimization passes that deal with loops, but some efforts are being
made to make it available throughout most of the optimization passes.

In general, a natural loop has one entry block (header) and possibly several back edges
(latches) leading to the header from the inside of the loop. Loops with several latches may
appear if several loops share a single header, or if there is a branching in the middle of the
loop. The representation of loops in GCC however allows only loops with a single latch.
During loop analysis, headers of such loops are split and forwarder blocks are created in
order to disambiguate their structures. Heuristic based on profile information and structure
of the induction variables in the loops is used to determine whether the latches correspond
to sub-loops or to control flow in a single loop. This means that the analysis sometimes
changes the CFG, and if you run it in the middle of an optimization pass, you must be
able to deal with the new blocks. You may avoid CFG changes by passing LOOPS_MAY_
HAVE_MULTIPLE_LATCHES flag to the loop discovery, note however that most other loop
manipulation functions will not work correctly for loops with multiple latch edges (the
functions that only query membership of blocks to loops and subloop relationships, or
enumerate and test loop exits, can be expected to work).

Body of the loop is the set of blocks that are dominated by its header, and reachable from
its latch against the direction of edges in CFG. The loops are organized in a containment
hierarchy (tree) such that all the loops immediately contained inside loop L are the children
of L in the tree. This tree is represented by the struct loops structure. The root of this
tree is a fake loop that contains all blocks in the function. Each of the loops is represented
in a struct loop structure. Each loop is assigned an index (num field of the struct loop
structure), and the pointer to the loop is stored in the corresponding field of the larray
vector in the loops structure. The indices do not have to be continuous, there may be
empty (NULL) entries in the larray created by deleting loops. Also, there is no guarantee
on the relative order of a loop and its subloops in the numbering. The index of a loop never
changes.

The entries of the larray field should not be accessed directly. The function get_loop
returns the loop description for a loop with the given index. number_of_loops function
returns number of loops in the function. To traverse all loops, use FOR_EACH_LOOP macro.
The flags argument of the macro is used to determine the direction of traversal and the set
of loops visited. Each loop is guaranteed to be visited exactly once, regardless of the changes
to the loop tree, and the loops may be removed during the traversal. The newly created
loops are never traversed, if they need to be visited, this must be done separately after their
creation. The FOR_EACH_LOOP macro allocates temporary variables. If the FOR_EACH_LOOP

250 GNU Compiler Collection (GCC) Internals

loop were ended using break or goto, they would not be released; FOR_EACH_LOOP_BREAK
macro must be used instead.

Each basic block contains the reference to the innermost loop it belongs to (loop_father).
For this reason, it is only possible to have one struct loops structure initialized at the
same time for each CFG. The global variable current_loops contains the struct loops
structure. Many of the loop manipulation functions assume that dominance information is
up-to-date.

The loops are analyzed through loop_optimizer_init function. The argument of this
function is a set of flags represented in an integer bitmask. These flags specify what other
properties of the loop structures should be calculated/enforced and preserved later:

• LOOPS_MAY_HAVE_MULTIPLE_LATCHES: If this flag is set, no changes to CFG will be
performed in the loop analysis, in particular, loops with multiple latch edges will not
be disambiguated. If a loop has multiple latches, its latch block is set to NULL. Most
of the loop manipulation functions will not work for loops in this shape. No other flags
that require CFG changes can be passed to loop optimizer init.

• LOOPS_HAVE_PREHEADERS: Forwarder blocks are created in such a way that each loop
has only one entry edge, and additionally, the source block of this entry edge has only
one successor. This creates a natural place where the code can be moved out of the
loop, and ensures that the entry edge of the loop leads from its immediate super-loop.

• LOOPS_HAVE_SIMPLE_LATCHES: Forwarder blocks are created to force the latch block
of each loop to have only one successor. This ensures that the latch of the loop does
not belong to any of its sub-loops, and makes manipulation with the loops significantly
easier. Most of the loop manipulation functions assume that the loops are in this shape.
Note that with this flag, the “normal” loop without any control flow inside and with
one exit consists of two basic blocks.

• LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS: Basic blocks and edges in the strongly
connected components that are not natural loops (have more than one entry block) are
marked with BB_IRREDUCIBLE_LOOP and EDGE_IRREDUCIBLE_LOOP flags. The flag is
not set for blocks and edges that belong to natural loops that are in such an irreducible
region (but it is set for the entry and exit edges of such a loop, if they lead to/from
this region).

• LOOPS_HAVE_RECORDED_EXITS: The lists of exits are recorded and updated for each
loop. This makes some functions (e.g., get_loop_exit_edges) more efficient. Some
functions (e.g., single_exit) can be used only if the lists of exits are recorded.

These properties may also be computed/enforced later, using functions create_
preheaders, force_single_succ_latches, mark_irreducible_loops and
record_loop_exits.

The memory occupied by the loops structures should be freed with loop_optimizer_
finalize function.

The CFG manipulation functions in general do not update loop structures. Specialized
versions that additionally do so are provided for the most common tasks. On GIMPLE,
cleanup_tree_cfg_loop function can be used to cleanup CFG while updating the loops
structures if current_loops is set.

Chapter 14: Analysis and Representation of Loops 251

14.2 Loop querying

The functions to query the information about loops are declared in ‘cfgloop.h’. Some of
the information can be taken directly from the structures. loop_father field of each basic
block contains the innermost loop to that the block belongs. The most useful fields of loop
structure (that are kept up-to-date at all times) are:

• header, latch: Header and latch basic blocks of the loop.

• num_nodes: Number of basic blocks in the loop (including the basic blocks of the
sub-loops).

• depth: The depth of the loop in the loops tree, i.e., the number of super-loops of the
loop.

• outer, inner, next: The super-loop, the first sub-loop, and the sibling of the loop in
the loops tree.

There are other fields in the loop structures, many of them used only by some of the passes,
or not updated during CFG changes; in general, they should not be accessed directly.

The most important functions to query loop structures are:

• flow_loops_dump: Dumps the information about loops to a file.

• verify_loop_structure: Checks consistency of the loop structures.

• loop_latch_edge: Returns the latch edge of a loop.

• loop_preheader_edge: If loops have preheaders, returns the preheader edge of a loop.

• flow_loop_nested_p: Tests whether loop is a sub-loop of another loop.

• flow_bb_inside_loop_p: Tests whether a basic block belongs to a loop (including its
sub-loops).

• find_common_loop: Finds the common super-loop of two loops.

• superloop_at_depth: Returns the super-loop of a loop with the given depth.

• tree_num_loop_insns, num_loop_insns: Estimates the number of insns in the loop,
on GIMPLE and on RTL.

• loop_exit_edge_p: Tests whether edge is an exit from a loop.

• mark_loop_exit_edges: Marks all exit edges of all loops with EDGE_LOOP_EXIT flag.

• get_loop_body, get_loop_body_in_dom_order, get_loop_body_in_bfs_order:
Enumerates the basic blocks in the loop in depth-first search order in reversed CFG,
ordered by dominance relation, and breath-first search order, respectively.

• single_exit: Returns the single exit edge of the loop, or NULL if the loop has more than
one exit. You can only use this function if LOOPS HAVE MARKED SINGLE EXITS
property is used.

• get_loop_exit_edges: Enumerates the exit edges of a loop.

• just_once_each_iteration_p: Returns true if the basic block is executed exactly
once during each iteration of a loop (that is, it does not belong to a sub-loop, and it
dominates the latch of the loop).

252 GNU Compiler Collection (GCC) Internals

14.3 Loop manipulation

The loops tree can be manipulated using the following functions:
• flow_loop_tree_node_add: Adds a node to the tree.
• flow_loop_tree_node_remove: Removes a node from the tree.
• add_bb_to_loop: Adds a basic block to a loop.
• remove_bb_from_loops: Removes a basic block from loops.

Most low-level CFG functions update loops automatically. The following functions handle
some more complicated cases of CFG manipulations:
• remove_path: Removes an edge and all blocks it dominates.
• split_loop_exit_edge: Splits exit edge of the loop, ensuring that PHI node argu-

ments remain in the loop (this ensures that loop-closed SSA form is preserved). Only
useful on GIMPLE.

Finally, there are some higher-level loop transformations implemented. While some of
them are written so that they should work on non-innermost loops, they are mostly untested
in that case, and at the moment, they are only reliable for the innermost loops:
• create_iv: Creates a new induction variable. Only works on GIMPLE. standard_

iv_increment_position can be used to find a suitable place for the iv increment.
• duplicate_loop_to_header_edge, tree_duplicate_loop_to_header_edge: These

functions (on RTL and on GIMPLE) duplicate the body of the loop prescribed number
of times on one of the edges entering loop header, thus performing either loop unrolling
or loop peeling. can_duplicate_loop_p (can_unroll_loop_p on GIMPLE) must be
true for the duplicated loop.

• loop_version, tree_ssa_loop_version: These function create a copy of a loop, and
a branch before them that selects one of them depending on the prescribed condition.
This is useful for optimizations that need to verify some assumptions in runtime (one
of the copies of the loop is usually left unchanged, while the other one is transformed
in some way).

• tree_unroll_loop: Unrolls the loop, including peeling the extra iterations to make
the number of iterations divisible by unroll factor, updating the exit condition, and
removing the exits that now cannot be taken. Works only on GIMPLE.

14.4 Loop-closed SSA form

Throughout the loop optimizations on tree level, one extra condition is enforced on the
SSA form: No SSA name is used outside of the loop in that it is defined. The SSA form
satisfying this condition is called “loop-closed SSA form” – LCSSA. To enforce LCSSA,
PHI nodes must be created at the exits of the loops for the SSA names that are used outside
of them. Only the real operands (not virtual SSA names) are held in LCSSA, in order to
save memory.

There are various benefits of LCSSA:
• Many optimizations (value range analysis, final value replacement) are interested in

the values that are defined in the loop and used outside of it, i.e., exactly those for that
we create new PHI nodes.

Chapter 14: Analysis and Representation of Loops 253

• In induction variable analysis, it is not necessary to specify the loop in that the analysis
should be performed – the scalar evolution analysis always returns the results with
respect to the loop in that the SSA name is defined.

• It makes updating of SSA form during loop transformations simpler. Without LCSSA,
operations like loop unrolling may force creation of PHI nodes arbitrarily far from
the loop, while in LCSSA, the SSA form can be updated locally. However, since we
only keep real operands in LCSSA, we cannot use this advantage (we could have local
updating of real operands, but it is not much more efficient than to use generic SSA
form updating for it as well; the amount of changes to SSA is the same).

However, it also means LCSSA must be updated. This is usually straightforward, unless
you create a new value in loop and use it outside, or unless you manipulate loop exit
edges (functions are provided to make these manipulations simple). rewrite_into_loop_
closed_ssa is used to rewrite SSA form to LCSSA, and verify_loop_closed_ssa to check
that the invariant of LCSSA is preserved.

14.5 Scalar evolutions

Scalar evolutions (SCEV) are used to represent results of induction variable analysis on
GIMPLE. They enable us to represent variables with complicated behavior in a sim-
ple and consistent way (we only use it to express values of polynomial induction vari-
ables, but it is possible to extend it). The interfaces to SCEV analysis are declared in
‘tree-scalar-evolution.h’. To use scalar evolutions analysis, scev_initialize must be
used. To stop using SCEV, scev_finalize should be used. SCEV analysis caches results
in order to save time and memory. This cache however is made invalid by most of the
loop transformations, including removal of code. If such a transformation is performed,
scev_reset must be called to clean the caches.

Given an SSA name, its behavior in loops can be analyzed using the analyze_scalar_
evolution function. The returned SCEV however does not have to be fully analyzed
and it may contain references to other SSA names defined in the loop. To resolve these
(potentially recursive) references, instantiate_parameters or resolve_mixers functions
must be used. instantiate_parameters is useful when you use the results of SCEV only
for some analysis, and when you work with whole nest of loops at once. It will try replacing
all SSA names by their SCEV in all loops, including the super-loops of the current loop,
thus providing a complete information about the behavior of the variable in the loop nest.
resolve_mixers is useful if you work with only one loop at a time, and if you possibly need
to create code based on the value of the induction variable. It will only resolve the SSA
names defined in the current loop, leaving the SSA names defined outside unchanged, even
if their evolution in the outer loops is known.

The SCEV is a normal tree expression, except for the fact that it may contain several
special tree nodes. One of them is SCEV_NOT_KNOWN, used for SSA names whose value cannot
be expressed. The other one is POLYNOMIAL_CHREC. Polynomial chrec has three arguments –
base, step and loop (both base and step may contain further polynomial chrecs). Type of the
expression and of base and step must be the same. A variable has evolution POLYNOMIAL_
CHREC(base, step, loop) if it is (in the specified loop) equivalent to x_1 in the following
example

while (...)

254 GNU Compiler Collection (GCC) Internals

{

x_1 = phi (base, x_2);

x_2 = x_1 + step;

}

Note that this includes the language restrictions on the operations. For example, if we
compile C code and x has signed type, then the overflow in addition would cause undefined
behavior, and we may assume that this does not happen. Hence, the value with this SCEV
cannot overflow (which restricts the number of iterations of such a loop).

In many cases, one wants to restrict the attention just to affine induction variables.
In this case, the extra expressive power of SCEV is not useful, and may complicate the
optimizations. In this case, simple_iv function may be used to analyze a value – the result
is a loop-invariant base and step.

14.6 IV analysis on RTL

The induction variable on RTL is simple and only allows analysis of affine induction vari-
ables, and only in one loop at once. The interface is declared in ‘cfgloop.h’. Before
analyzing induction variables in a loop L, iv_analysis_loop_init function must be called
on L. After the analysis (possibly calling iv_analysis_loop_init for several loops) is fin-
ished, iv_analysis_done should be called. The following functions can be used to access
the results of the analysis:
• iv_analyze: Analyzes a single register used in the given insn. If no use of the register

in this insn is found, the following insns are scanned, so that this function can be called
on the insn returned by get condition.

• iv_analyze_result: Analyzes result of the assignment in the given insn.
• iv_analyze_expr: Analyzes a more complicated expression. All its operands are ana-

lyzed by iv_analyze, and hence they must be used in the specified insn or one of the
following insns.

The description of the induction variable is provided in struct rtx_iv. In order to
handle subregs, the representation is a bit complicated; if the value of the extend field is
not UNKNOWN, the value of the induction variable in the i-th iteration is

delta + mult * extend_{extend_mode} (subreg_{mode} (base + i * step)),

with the following exception: if first_special is true, then the value in the first iteration
(when i is zero) is delta + mult * base. However, if extend is equal to UNKNOWN, then
first_special must be false, delta 0, mult 1 and the value in the i-th iteration is

subreg_{mode} (base + i * step)

The function get_iv_value can be used to perform these calculations.

14.7 Number of iterations analysis

Both on GIMPLE and on RTL, there are functions available to determine the number of
iterations of a loop, with a similar interface. The number of iterations of a loop in GCC
is defined as the number of executions of the loop latch. In many cases, it is not possible
to determine the number of iterations unconditionally – the determined number is correct
only if some assumptions are satisfied. The analysis tries to verify these conditions using
the information contained in the program; if it fails, the conditions are returned together
with the result. The following information and conditions are provided by the analysis:

Chapter 14: Analysis and Representation of Loops 255

• assumptions: If this condition is false, the rest of the information is invalid.

• noloop_assumptions on RTL, may_be_zero on GIMPLE: If this condition is true, the
loop exits in the first iteration.

• infinite: If this condition is true, the loop is infinite. This condition is only avail-
able on RTL. On GIMPLE, conditions for finiteness of the loop are included in
assumptions.

• niter_expr on RTL, niter on GIMPLE: The expression that gives number of iter-
ations. The number of iterations is defined as the number of executions of the loop
latch.

Both on GIMPLE and on RTL, it necessary for the induction variable analysis framework
to be initialized (SCEV on GIMPLE, loop-iv on RTL). On GIMPLE, the results are stored
to struct tree_niter_desc structure. Number of iterations before the loop is exited
through a given exit can be determined using number_of_iterations_exit function. On
RTL, the results are returned in struct niter_desc structure. The corresponding function
is named check_simple_exit. There are also functions that pass through all the exits of
a loop and try to find one with easy to determine number of iterations – find_loop_niter
on GIMPLE and find_simple_exit on RTL. Finally, there are functions that provide the
same information, but additionally cache it, so that repeated calls to number of iterations
are not so costly – number_of_latch_executions on GIMPLE and get_simple_loop_
desc on RTL.

Note that some of these functions may behave slightly differently than others – some of
them return only the expression for the number of iterations, and fail if there are some
assumptions. The function number_of_latch_executions works only for single-exit loops.
The function number_of_cond_exit_executions can be used to determine number of ex-
ecutions of the exit condition of a single-exit loop (i.e., the number_of_latch_executions
increased by one).

14.8 Data Dependency Analysis

The code for the data dependence analysis can be found in ‘tree-data-ref.c’ and its inter-
face and data structures are described in ‘tree-data-ref.h’. The function that computes
the data dependences for all the array and pointer references for a given loop is compute_
data_dependences_for_loop. This function is currently used by the linear loop transform
and the vectorization passes. Before calling this function, one has to allocate two vectors:
a first vector will contain the set of data references that are contained in the analyzed loop
body, and the second vector will contain the dependence relations between the data refer-
ences. Thus if the vector of data references is of size n, the vector containing the dependence
relations will contain n*n elements. However if the analyzed loop contains side effects, such
as calls that potentially can interfere with the data references in the current analyzed loop,
the analysis stops while scanning the loop body for data references, and inserts a single
chrec_dont_know in the dependence relation array.

The data references are discovered in a particular order during the scanning of the loop
body: the loop body is analyzed in execution order, and the data references of each state-
ment are pushed at the end of the data reference array. Two data references syntactically
occur in the program in the same order as in the array of data references. This syntactic

256 GNU Compiler Collection (GCC) Internals

order is important in some classical data dependence tests, and mapping this order to the
elements of this array avoids costly queries to the loop body representation.

Three types of data references are currently handled: ARRAY REF, INDIRECT REF
and COMPONENT REF. The data structure for the data reference is data_reference,
where data_reference_p is a name of a pointer to the data reference structure. The
structure contains the following elements:

• base_object_info: Provides information about the base object of the data reference
and its access functions. These access functions represent the evolution of the data
reference in the loop relative to its base, in keeping with the classical meaning of the
data reference access function for the support of arrays. For example, for a reference
a.b[i][j], the base object is a.b and the access functions, one for each array subscript,
are: {i_init, + i_step}_1, {j_init, +, j_step}_2.

• first_location_in_loop: Provides information about the first location accessed by
the data reference in the loop and about the access function used to represent evolution
relative to this location. This data is used to support pointers, and is not used for arrays
(for which we have base objects). Pointer accesses are represented as a one-dimensional
access that starts from the first location accessed in the loop. For example:

for1 i

for2 j

*((int *)p + i + j) = a[i][j];

The access function of the pointer access is {0, + 4B}_for2 relative to p + i. The access
functions of the array are {i_init, + i_step}_for1 and {j_init, +, j_step}_for2
relative to a.
Usually, the object the pointer refers to is either unknown, or we can’t prove that the
access is confined to the boundaries of a certain object.
Two data references can be compared only if at least one of these two representations
has all its fields filled for both data references.
The current strategy for data dependence tests is as follows: If both a and b are
represented as arrays, compare a.base_object and b.base_object; if they are equal,
apply dependence tests (use access functions based on base objects). Else if both a and
b are represented as pointers, compare a.first_location and b.first_location; if
they are equal, apply dependence tests (use access functions based on first location).
However, if a and b are represented differently, only try to prove that the bases are
definitely different.

• Aliasing information.
• Alignment information.

The structure describing the relation between two data references is data_dependence_
relation and the shorter name for a pointer to such a structure is ddr_p. This structure
contains:

• a pointer to each data reference,
• a tree node are_dependent that is set to chrec_known if the analysis has proved that

there is no dependence between these two data references, chrec_dont_know if the
analysis was not able to determine any useful result and potentially there could exist
a dependence between these data references, and are_dependent is set to NULL_TREE

Chapter 14: Analysis and Representation of Loops 257

if there exist a dependence relation between the data references, and the description
of this dependence relation is given in the subscripts, dir_vects, and dist_vects
arrays,

• a boolean that determines whether the dependence relation can be represented by a
classical distance vector,

• an array subscripts that contains a description of each subscript of the data references.
Given two array accesses a subscript is the tuple composed of the access functions for
a given dimension. For example, given A[f1][f2][f3] and B[g1][g2][g3], there are
three subscripts: (f1, g1), (f2, g2), (f3, g3).

• two arrays dir_vects and dist_vects that contain classical representations of the
data dependences under the form of direction and distance dependence vectors,

• an array of loops loop_nest that contains the loops to which the distance and direction
vectors refer to.

Several functions for pretty printing the information extracted by the data dependence
analysis are available: dump_ddrs prints with a maximum verbosity the details of a data
dependence relations array, dump_dist_dir_vectors prints only the classical distance and
direction vectors for a data dependence relations array, and dump_data_references prints
the details of the data references contained in a data reference array.

14.9 Linear loop transformations framework

Lambda is a framework that allows transformations of loops using non-singular matrix
based transformations of the iteration space and loop bounds. This allows compositions of
skewing, scaling, interchange, and reversal transformations. These transformations are often
used to improve cache behavior or remove inner loop dependencies to allow parallelization
and vectorization to take place.

To perform these transformations, Lambda requires that the loopnest be converted into
a internal form that can be matrix transformed easily. To do this conversion, the function
gcc_loopnest_to_lambda_loopnest is provided. If the loop cannot be transformed using
lambda, this function will return NULL.

Once a lambda_loopnest is obtained from the conversion function, it can be transformed
by using lambda_loopnest_transform, which takes a transformation matrix to apply. Note
that it is up to the caller to verify that the transformation matrix is legal to apply to the
loop (dependence respecting, etc). Lambda simply applies whatever matrix it is told to
provide. It can be extended to make legal matrices out of any non-singular matrix, but
this is not currently implemented. Legality of a matrix for a given loopnest can be verified
using lambda_transform_legal_p.

Given a transformed loopnest, conversion back into gcc IR is done by lambda_loopnest_
to_gcc_loopnest. This function will modify the loops so that they match the transformed
loopnest.

14.10 Omega a solver for linear programming problems

The data dependence analysis contains several solvers triggered sequentially from the less
complex ones to the more sophisticated. For ensuring the consistency of the results of these
solvers, a data dependence check pass has been implemented based on two different solvers.

258 GNU Compiler Collection (GCC) Internals

The second method that has been integrated to GCC is based on the Omega dependence
solver, written in the 1990’s by William Pugh and David Wonnacott. Data dependence
tests can be formulated using a subset of the Presburger arithmetics that can be translated
to linear constraint systems. These linear constraint systems can then be solved using the
Omega solver.

The Omega solver is using Fourier-Motzkin’s algorithm for variable elimination: a linear
constraint system containing n variables is reduced to a linear constraint system with n-
1 variables. The Omega solver can also be used for solving other problems that can be
expressed under the form of a system of linear equalities and inequalities. The Omega
solver is known to have an exponential worst case, also known under the name of “omega
nightmare” in the literature, but in practice, the omega test is known to be efficient for the
common data dependence tests.

The interface used by the Omega solver for describing the linear programming problems
is described in ‘omega.h’, and the solver is omega_solve_problem.

Chapter 15: Control Flow Graph 259

15 Control Flow Graph

A control flow graph (CFG) is a data structure built on top of the intermediate code
representation (the RTL or tree instruction stream) abstracting the control flow behavior
of a function that is being compiled. The CFG is a directed graph where the vertices
represent basic blocks and edges represent possible transfer of control flow from one basic
block to another. The data structures used to represent the control flow graph are defined
in ‘basic-block.h’.

15.1 Basic Blocks

A basic block is a straight-line sequence of code with only one entry point and only one
exit. In GCC, basic blocks are represented using the basic_block data type.

Two pointer members of the basic_block structure are the pointers next_bb and prev_
bb. These are used to keep doubly linked chain of basic blocks in the same order as the
underlying instruction stream. The chain of basic blocks is updated transparently by the
provided API for manipulating the CFG. The macro FOR_EACH_BB can be used to visit
all the basic blocks in lexicographical order. Dominator traversals are also possible using
walk_dominator_tree. Given two basic blocks A and B, block A dominates block B if A
is always executed before B.

The BASIC_BLOCK array contains all basic blocks in an unspecified order. Each basic_
block structure has a field that holds a unique integer identifier index that is the index of
the block in the BASIC_BLOCK array. The total number of basic blocks in the function is
n_basic_blocks. Both the basic block indices and the total number of basic blocks may
vary during the compilation process, as passes reorder, create, duplicate, and destroy basic
blocks. The index for any block should never be greater than last_basic_block.

Special basic blocks represent possible entry and exit points of a function. These blocks
are called ENTRY_BLOCK_PTR and EXIT_BLOCK_PTR. These blocks do not contain any code,
and are not elements of the BASIC_BLOCK array. Therefore they have been assigned unique,
negative index numbers.

Each basic_block also contains pointers to the first instruction (the head) and the last
instruction (the tail) or end of the instruction stream contained in a basic block. In fact,
since the basic_block data type is used to represent blocks in both major intermediate
representations of GCC (tree and RTL), there are pointers to the head and end of a basic
block for both representations.

For RTL, these pointers are rtx head, end. In the RTL function representation, the head
pointer always points either to a NOTE_INSN_BASIC_BLOCK or to a CODE_LABEL, if present.
In the RTL representation of a function, the instruction stream contains not only the “real”
instructions, but also notes. Any function that moves or duplicates the basic blocks needs to
take care of updating of these notes. Many of these notes expect that the instruction stream
consists of linear regions, making such updates difficult. The NOTE_INSN_BASIC_BLOCK note
is the only kind of note that may appear in the instruction stream contained in a basic block.
The instruction stream of a basic block always follows a NOTE_INSN_BASIC_BLOCK, but zero
or more CODE_LABEL nodes can precede the block note. A basic block ends by control flow
instruction or last instruction before following CODE_LABEL or NOTE_INSN_BASIC_BLOCK. A
CODE_LABEL cannot appear in the instruction stream of a basic block.

260 GNU Compiler Collection (GCC) Internals

In addition to notes, the jump table vectors are also represented as “pseudo-instructions”
inside the insn stream. These vectors never appear in the basic block and should always be
placed just after the table jump instructions referencing them. After removing the table-
jump it is often difficult to eliminate the code computing the address and referencing the
vector, so cleaning up these vectors is postponed until after liveness analysis. Thus the
jump table vectors may appear in the insn stream unreferenced and without any purpose.
Before any edge is made fall-thru, the existence of such construct in the way needs to be
checked by calling can_fallthru function.

For the tree representation, the head and end of the basic block are being pointed to by
the stmt_list field, but this special tree should never be referenced directly. Instead, at
the tree level abstract containers and iterators are used to access statements and expressions
in basic blocks. These iterators are called block statement iterators (BSIs). Grep for ^bsi
in the various ‘tree-*’ files. The following snippet will pretty-print all the statements of
the program in the GIMPLE representation.

FOR_EACH_BB (bb)

{

block_stmt_iterator si;

for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))

{

tree stmt = bsi_stmt (si);

print_generic_stmt (stderr, stmt, 0);

}

}

15.2 Edges

Edges represent possible control flow transfers from the end of some basic block A to the
head of another basic block B. We say that A is a predecessor of B, and B is a successor
of A. Edges are represented in GCC with the edge data type. Each edge acts as a link
between two basic blocks: the src member of an edge points to the predecessor basic block
of the dest basic block. The members preds and succs of the basic_block data type
point to type-safe vectors of edges to the predecessors and successors of the block.

When walking the edges in an edge vector, edge iterators should be used. Edge iterators
are constructed using the edge_iterator data structure and several methods are available
to operate on them:

ei_start This function initializes an edge_iterator that points to the first edge in a
vector of edges.

ei_last This function initializes an edge_iterator that points to the last edge in a
vector of edges.

ei_end_p This predicate is true if an edge_iterator represents the last edge in an edge
vector.

ei_one_before_end_p
This predicate is true if an edge_iterator represents the second last edge in
an edge vector.

ei_next This function takes a pointer to an edge_iterator and makes it point to the
next edge in the sequence.

Chapter 15: Control Flow Graph 261

ei_prev This function takes a pointer to an edge_iterator and makes it point to the
previous edge in the sequence.

ei_edge This function returns the edge currently pointed to by an edge_iterator.

ei_safe_safe
This function returns the edge currently pointed to by an edge_iterator,
but returns NULL if the iterator is pointing at the end of the sequence. This
function has been provided for existing code makes the assumption that a NULL
edge indicates the end of the sequence.

The convenience macro FOR_EACH_EDGE can be used to visit all of the edges in a sequence
of predecessor or successor edges. It must not be used when an element might be removed
during the traversal, otherwise elements will be missed. Here is an example of how to use
the macro:

edge e;

edge_iterator ei;

FOR_EACH_EDGE (e, ei, bb->succs)

{

if (e->flags & EDGE_FALLTHRU)

break;

}

There are various reasons why control flow may transfer from one block to another. One
possibility is that some instruction, for example a CODE_LABEL, in a linearized instruction
stream just always starts a new basic block. In this case a fall-thru edge links the basic
block to the first following basic block. But there are several other reasons why edges may
be created. The flags field of the edge data type is used to store information about the
type of edge we are dealing with. Each edge is of one of the following types:

jump No type flags are set for edges corresponding to jump instructions. These edges
are used for unconditional or conditional jumps and in RTL also for table jumps.
They are the easiest to manipulate as they may be freely redirected when the
flow graph is not in SSA form.

fall-thru Fall-thru edges are present in case where the basic block may continue exe-
cution to the following one without branching. These edges have the EDGE_
FALLTHRU flag set. Unlike other types of edges, these edges must come into
the basic block immediately following in the instruction stream. The function
force_nonfallthru is available to insert an unconditional jump in the case
that redirection is needed. Note that this may require creation of a new basic
block.

exception handling
Exception handling edges represent possible control transfers from a trapping
instruction to an exception handler. The definition of “trapping” varies. In C++,
only function calls can throw, but for Java, exceptions like division by zero or
segmentation fault are defined and thus each instruction possibly throwing this
kind of exception needs to be handled as control flow instruction. Exception
edges have the EDGE_ABNORMAL and EDGE_EH flags set.

262 GNU Compiler Collection (GCC) Internals

When updating the instruction stream it is easy to change possibly trapping
instruction to non-trapping, by simply removing the exception edge. The op-
posite conversion is difficult, but should not happen anyway. The edges can be
eliminated via purge_dead_edges call.
In the RTL representation, the destination of an exception edge is specified
by REG_EH_REGION note attached to the insn. In case of a trapping call the
EDGE_ABNORMAL_CALL flag is set too. In the tree representation, this extra flag
is not set.
In the RTL representation, the predicate may_trap_p may be used to check
whether instruction still may trap or not. For the tree representation, the
tree_could_trap_p predicate is available, but this predicate only checks for
possible memory traps, as in dereferencing an invalid pointer location.

sibling calls
Sibling calls or tail calls terminate the function in a non-standard way and thus
an edge to the exit must be present. EDGE_SIBCALL and EDGE_ABNORMAL are
set in such case. These edges only exist in the RTL representation.

computed jumps
Computed jumps contain edges to all labels in the function referenced from
the code. All those edges have EDGE_ABNORMAL flag set. The edges used to
represent computed jumps often cause compile time performance problems,
since functions consisting of many taken labels and many computed jumps may
have very dense flow graphs, so these edges need to be handled with special
care. During the earlier stages of the compilation process, GCC tries to avoid
such dense flow graphs by factoring computed jumps. For example, given the
following series of jumps,

goto *x;

[...]

goto *x;

[...]

goto *x;

[...]

factoring the computed jumps results in the following code sequence which has
a much simpler flow graph:

goto y;

[...]

goto y;

[...]

goto y;

[...]

y:

goto *x;

However, the classic problem with this transformation is that it has a runtime
cost in there resulting code: An extra jump. Therefore, the computed jumps
are un-factored in the later passes of the compiler. Be aware of that when

Chapter 15: Control Flow Graph 263

you work on passes in that area. There have been numerous examples already
where the compile time for code with unfactored computed jumps caused some
serious headaches.

nonlocal goto handlers
GCC allows nested functions to return into caller using a goto to a label passed
to as an argument to the callee. The labels passed to nested functions contain
special code to cleanup after function call. Such sections of code are referred to
as “nonlocal goto receivers”. If a function contains such nonlocal goto receivers,
an edge from the call to the label is created with the EDGE_ABNORMAL and EDGE_
ABNORMAL_CALL flags set.

function entry points
By definition, execution of function starts at basic block 0, so there is always
an edge from the ENTRY_BLOCK_PTR to basic block 0. There is no tree repre-
sentation for alternate entry points at this moment. In RTL, alternate entry
points are specified by CODE_LABEL with LABEL_ALTERNATE_NAME defined. This
feature is currently used for multiple entry point prologues and is limited to
post-reload passes only. This can be used by back-ends to emit alternate pro-
logues for functions called from different contexts. In future full support for
multiple entry functions defined by Fortran 90 needs to be implemented.

function exits
In the pre-reload representation a function terminates after the last instruction
in the insn chain and no explicit return instructions are used. This corresponds
to the fall-thru edge into exit block. After reload, optimal RTL epilogues are
used that use explicit (conditional) return instructions that are represented by
edges with no flags set.

15.3 Profile information

In many cases a compiler must make a choice whether to trade speed in one part of code
for speed in another, or to trade code size for code speed. In such cases it is useful to know
information about how often some given block will be executed. That is the purpose for
maintaining profile within the flow graph. GCC can handle profile information obtained
through profile feedback, but it can also estimate branch probabilities based on statics and
heuristics.

The feedback based profile is produced by compiling the program with instrumentation,
executing it on a train run and reading the numbers of executions of basic blocks and edges
back to the compiler while re-compiling the program to produce the final executable. This
method provides very accurate information about where a program spends most of its time
on the train run. Whether it matches the average run of course depends on the choice
of train data set, but several studies have shown that the behavior of a program usually
changes just marginally over different data sets.

When profile feedback is not available, the compiler may be asked to attempt to predict
the behavior of each branch in the program using a set of heuristics (see ‘predict.def’
for details) and compute estimated frequencies of each basic block by propagating the
probabilities over the graph.

264 GNU Compiler Collection (GCC) Internals

Each basic_block contains two integer fields to represent profile information: frequency
and count. The frequency is an estimation how often is basic block executed within a
function. It is represented as an integer scaled in the range from 0 to BB_FREQ_BASE. The
most frequently executed basic block in function is initially set to BB_FREQ_BASE and the
rest of frequencies are scaled accordingly. During optimization, the frequency of the most
frequent basic block can both decrease (for instance by loop unrolling) or grow (for instance
by cross-jumping optimization), so scaling sometimes has to be performed multiple times.

The count contains hard-counted numbers of execution measured during training runs
and is nonzero only when profile feedback is available. This value is represented as the
host’s widest integer (typically a 64 bit integer) of the special type gcov_type.

Most optimization passes can use only the frequency information of a basic block, but a
few passes may want to know hard execution counts. The frequencies should always match
the counts after scaling, however during updating of the profile information numerical error
may accumulate into quite large errors.

Each edge also contains a branch probability field: an integer in the range from 0 to
REG_BR_PROB_BASE. It represents probability of passing control from the end of the src
basic block to the dest basic block, i.e. the probability that control will flow along this
edge. The EDGE_FREQUENCY macro is available to compute how frequently a given edge is
taken. There is a count field for each edge as well, representing same information as for a
basic block.

The basic block frequencies are not represented in the instruction stream, but in the RTL
representation the edge frequencies are represented for conditional jumps (via the REG_BR_
PROB macro) since they are used when instructions are output to the assembly file and the
flow graph is no longer maintained.

The probability that control flow arrives via a given edge to its destination basic block
is called reverse probability and is not directly represented, but it may be easily computed
from frequencies of basic blocks.

Updating profile information is a delicate task that can unfortunately not be easily in-
tegrated with the CFG manipulation API. Many of the functions and hooks to modify
the CFG, such as redirect_edge_and_branch, do not have enough information to easily
update the profile, so updating it is in the majority of cases left up to the caller. It is
difficult to uncover bugs in the profile updating code, because they manifest themselves
only by producing worse code, and checking profile consistency is not possible because of
numeric error accumulation. Hence special attention needs to be given to this issue in each
pass that modifies the CFG.

It is important to point out that REG_BR_PROB_BASE and BB_FREQ_BASE are both set low
enough to be possible to compute second power of any frequency or probability in the flow
graph, it is not possible to even square the count field, as modern CPUs are fast enough to
execute 2^32 operations quickly.

15.4 Maintaining the CFG

An important task of each compiler pass is to keep both the control flow graph and all profile
information up-to-date. Reconstruction of the control flow graph after each pass is not an
option, since it may be very expensive and lost profile information cannot be reconstructed
at all.

Chapter 15: Control Flow Graph 265

GCC has two major intermediate representations, and both use the basic_block and
edge data types to represent control flow. Both representations share as much of the CFG
maintenance code as possible. For each representation, a set of hooks is defined so that
each representation can provide its own implementation of CFG manipulation routines when
necessary. These hooks are defined in ‘cfghooks.h’. There are hooks for almost all common
CFG manipulations, including block splitting and merging, edge redirection and creating
and deleting basic blocks. These hooks should provide everything you need to maintain and
manipulate the CFG in both the RTL and tree representation.

At the moment, the basic block boundaries are maintained transparently when modifying
instructions, so there rarely is a need to move them manually (such as in case someone
wants to output instruction outside basic block explicitly). Often the CFG may be better
viewed as integral part of instruction chain, than structure built on the top of it. However,
in principle the control flow graph for the tree representation is not an integral part of
the representation, in that a function tree may be expanded without first building a flow
graph for the tree representation at all. This happens when compiling without any tree
optimization enabled. When the tree optimizations are enabled and the instruction stream
is rewritten in SSA form, the CFG is very tightly coupled with the instruction stream. In
particular, statement insertion and removal has to be done with care. In fact, the whole
tree representation can not be easily used or maintained without proper maintenance of
the CFG simultaneously.

In the RTL representation, each instruction has a BLOCK_FOR_INSN value that represents
pointer to the basic block that contains the instruction. In the tree representation, the
function bb_for_stmt returns a pointer to the basic block containing the queried statement.

When changes need to be applied to a function in its tree representation, block statement
iterators should be used. These iterators provide an integrated abstraction of the flow graph
and the instruction stream. Block statement iterators are constructed using the block_
stmt_iterator data structure and several modifier are available, including the following:

bsi_start
This function initializes a block_stmt_iterator that points to the first non-
empty statement in a basic block.

bsi_last This function initializes a block_stmt_iterator that points to the last state-
ment in a basic block.

bsi_end_p
This predicate is true if a block_stmt_iterator represents the end of a basic
block.

bsi_next This function takes a block_stmt_iterator and makes it point to its successor.

bsi_prev This function takes a block_stmt_iterator and makes it point to its prede-
cessor.

bsi_insert_after
This function inserts a statement after the block_stmt_iterator passed in.
The final parameter determines whether the statement iterator is updated to
point to the newly inserted statement, or left pointing to the original statement.

266 GNU Compiler Collection (GCC) Internals

bsi_insert_before
This function inserts a statement before the block_stmt_iterator passed in.
The final parameter determines whether the statement iterator is updated to
point to the newly inserted statement, or left pointing to the original statement.

bsi_remove
This function removes the block_stmt_iterator passed in and rechains the
remaining statements in a basic block, if any.

In the RTL representation, the macros BB_HEAD and BB_END may be used to get the
head and end rtx of a basic block. No abstract iterators are defined for traversing the
insn chain, but you can just use NEXT_INSN and PREV_INSN instead. See See Section 10.18
[Insns], page 187.

Usually a code manipulating pass simplifies the instruction stream and the flow of control,
possibly eliminating some edges. This may for example happen when a conditional jump is
replaced with an unconditional jump, but also when simplifying possibly trapping instruc-
tion to non-trapping while compiling Java. Updating of edges is not transparent and each
optimization pass is required to do so manually. However only few cases occur in practice.
The pass may call purge_dead_edges on a given basic block to remove superfluous edges,
if any.

Another common scenario is redirection of branch instructions, but this is best modeled as
redirection of edges in the control flow graph and thus use of redirect_edge_and_branch is
preferred over more low level functions, such as redirect_jump that operate on RTL chain
only. The CFG hooks defined in ‘cfghooks.h’ should provide the complete API required
for manipulating and maintaining the CFG.

It is also possible that a pass has to insert control flow instruction into the middle of a
basic block, thus creating an entry point in the middle of the basic block, which is impossible
by definition: The block must be split to make sure it only has one entry point, i.e. the
head of the basic block. The CFG hook split_block may be used when an instruction in
the middle of a basic block has to become the target of a jump or branch instruction.

For a global optimizer, a common operation is to split edges in the flow graph and insert
instructions on them. In the RTL representation, this can be easily done using the insert_
insn_on_edge function that emits an instruction “on the edge”, caching it for a later
commit_edge_insertions call that will take care of moving the inserted instructions off
the edge into the instruction stream contained in a basic block. This includes the creation
of new basic blocks where needed. In the tree representation, the equivalent functions
are bsi_insert_on_edge which inserts a block statement iterator on an edge, and bsi_
commit_edge_inserts which flushes the instruction to actual instruction stream.

While debugging the optimization pass, an verify_flow_info function may be useful to
find bugs in the control flow graph updating code.

Note that at present, the representation of control flow in the tree representation is
discarded before expanding to RTL. Long term the CFG should be maintained and “ex-
panded” to the RTL representation along with the function tree itself.

15.5 Liveness information

Liveness information is useful to determine whether some register is “live” at given point
of program, i.e. that it contains a value that may be used at a later point in the program.

Chapter 15: Control Flow Graph 267

This information is used, for instance, during register allocation, as the pseudo registers
only need to be assigned to a unique hard register or to a stack slot if they are live. The
hard registers and stack slots may be freely reused for other values when a register is dead.

Liveness information is available in the back end starting with pass_df_initialize and
ending with pass_df_finish. Three flavors of live analysis are available: With LR, it is
possible to determine at any point P in the function if the register may be used on some
path from P to the end of the function. With UR, it is possible to determine if there is a path
from the beginning of the function to P that defines the variable. LIVE is the intersection
of the LR and UR and a variable is live at P if there is both an assignment that reaches it
from the beginning of the function and a uses that can be reached on some path from P to
the end of the function.

In general LIVE is the most useful of the three. The macros DF_[LR,UR,LIVE]_[IN,OUT]
can be used to access this information. The macros take a basic block number and return a
bitmap that is indexed by the register number. This information is only guaranteed to be
up to date after calls are made to df_analyze. See the file df-core.c for details on using
the dataflow.

The liveness information is stored partly in the RTL instruction stream and partly in the
flow graph. Local information is stored in the instruction stream: Each instruction may
contain REG_DEAD notes representing that the value of a given register is no longer needed,
or REG_UNUSED notes representing that the value computed by the instruction is never used.
The second is useful for instructions computing multiple values at once.

Chapter 16: Machine Descriptions 269

16 Machine Descriptions

A machine description has two parts: a file of instruction patterns (‘.md’ file) and a C
header file of macro definitions.

The ‘.md’ file for a target machine contains a pattern for each instruction that the target
machine supports (or at least each instruction that is worth telling the compiler about).
It may also contain comments. A semicolon causes the rest of the line to be a comment,
unless the semicolon is inside a quoted string.

See the next chapter for information on the C header file.

16.1 Overview of How the Machine Description is Used

There are three main conversions that happen in the compiler:
1. The front end reads the source code and builds a parse tree.
2. The parse tree is used to generate an RTL insn list based on named instruction patterns.
3. The insn list is matched against the RTL templates to produce assembler code.

For the generate pass, only the names of the insns matter, from either a named define_
insn or a define_expand. The compiler will choose the pattern with the right name and
apply the operands according to the documentation later in this chapter, without regard
for the RTL template or operand constraints. Note that the names the compiler looks for
are hard-coded in the compiler—it will ignore unnamed patterns and patterns with names
it doesn’t know about, but if you don’t provide a named pattern it needs, it will abort.

If a define_insn is used, the template given is inserted into the insn list. If a define_
expand is used, one of three things happens, based on the condition logic. The condition
logic may manually create new insns for the insn list, say via emit_insn(), and invoke DONE.
For certain named patterns, it may invoke FAIL to tell the compiler to use an alternate way
of performing that task. If it invokes neither DONE nor FAIL, the template given in the
pattern is inserted, as if the define_expand were a define_insn.

Once the insn list is generated, various optimization passes convert, replace, and rearrange
the insns in the insn list. This is where the define_split and define_peephole patterns
get used, for example.

Finally, the insn list’s RTL is matched up with the RTL templates in the define_insn
patterns, and those patterns are used to emit the final assembly code. For this purpose,
each named define_insn acts like it’s unnamed, since the names are ignored.

16.2 Everything about Instruction Patterns

Each instruction pattern contains an incomplete RTL expression, with pieces to be filled in
later, operand constraints that restrict how the pieces can be filled in, and an output pattern
or C code to generate the assembler output, all wrapped up in a define_insn expression.

A define_insn is an RTL expression containing four or five operands:
1. An optional name. The presence of a name indicate that this instruction pattern can

perform a certain standard job for the RTL-generation pass of the compiler. This pass
knows certain names and will use the instruction patterns with those names, if the
names are defined in the machine description.

270 GNU Compiler Collection (GCC) Internals

The absence of a name is indicated by writing an empty string where the name should
go. Nameless instruction patterns are never used for generating RTL code, but they
may permit several simpler insns to be combined later on.
Names that are not thus known and used in RTL-generation have no effect; they are
equivalent to no name at all.
For the purpose of debugging the compiler, you may also specify a name beginning
with the ‘*’ character. Such a name is used only for identifying the instruction in RTL
dumps; it is entirely equivalent to having a nameless pattern for all other purposes.

2. The RTL template (see Section 16.4 [RTL Template], page 271) is a vector of incomplete
RTL expressions which show what the instruction should look like. It is incomplete
because it may contain match_operand, match_operator, and match_dup expressions
that stand for operands of the instruction.
If the vector has only one element, that element is the template for the instruction
pattern. If the vector has multiple elements, then the instruction pattern is a parallel
expression containing the elements described.

3. A condition. This is a string which contains a C expression that is the final test to
decide whether an insn body matches this pattern.
For a named pattern, the condition (if present) may not depend on the data in the insn
being matched, but only the target-machine-type flags. The compiler needs to test these
conditions during initialization in order to learn exactly which named instructions are
available in a particular run.
For nameless patterns, the condition is applied only when matching an individual insn,
and only after the insn has matched the pattern’s recognition template. The insn’s
operands may be found in the vector operands. For an insn where the condition has
once matched, it can’t be used to control register allocation, for example by excluding
certain hard registers or hard register combinations.

4. The output template: a string that says how to output matching insns as assembler
code. ‘%’ in this string specifies where to substitute the value of an operand. See
Section 16.5 [Output Template], page 275.
When simple substitution isn’t general enough, you can specify a piece of C code to
compute the output. See Section 16.6 [Output Statement], page 276.

5. Optionally, a vector containing the values of attributes for insns matching this pattern.
See Section 16.19 [Insn Attributes], page 350.

16.3 Example of define_insn

Here is an actual example of an instruction pattern, for the 68000/68020.
(define_insn "tstsi"

[(set (cc0)

(match_operand:SI 0 "general_operand" "rm"))]

""

"*

{

if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))

return \"tstl %0\";

return \"cmpl #0,%0\";

}")

Chapter 16: Machine Descriptions 271

This can also be written using braced strings:
(define_insn "tstsi"

[(set (cc0)

(match_operand:SI 0 "general_operand" "rm"))]

""

{

if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))

return "tstl %0";

return "cmpl #0,%0";

})

This is an instruction that sets the condition codes based on the value of a general
operand. It has no condition, so any insn whose RTL description has the form shown may
be handled according to this pattern. The name ‘tstsi’ means “test a SImode value” and
tells the RTL generation pass that, when it is necessary to test such a value, an insn to do
so can be constructed using this pattern.

The output control string is a piece of C code which chooses which output template to
return based on the kind of operand and the specific type of CPU for which code is being
generated.

‘"rm"’ is an operand constraint. Its meaning is explained below.

16.4 RTL Template

The RTL template is used to define which insns match the particular pattern and how to
find their operands. For named patterns, the RTL template also says how to construct an
insn from specified operands.

Construction involves substituting specified operands into a copy of the template. Match-
ing involves determining the values that serve as the operands in the insn being matched.
Both of these activities are controlled by special expression types that direct matching and
substitution of the operands.

(match_operand:m n predicate constraint)
This expression is a placeholder for operand number n of the insn. When
constructing an insn, operand number n will be substituted at this point. When
matching an insn, whatever appears at this position in the insn will be taken
as operand number n; but it must satisfy predicate or this instruction pattern
will not match at all.
Operand numbers must be chosen consecutively counting from zero in each
instruction pattern. There may be only one match_operand expression in the
pattern for each operand number. Usually operands are numbered in the order
of appearance in match_operand expressions. In the case of a define_expand,
any operand numbers used only in match_dup expressions have higher values
than all other operand numbers.
predicate is a string that is the name of a function that accepts two arguments,
an expression and a machine mode. See Section 16.7 [Predicates], page 277.
During matching, the function will be called with the putative operand as the
expression and m as the mode argument (if m is not specified, VOIDmode will be
used, which normally causes predicate to accept any mode). If it returns zero,
this instruction pattern fails to match. predicate may be an empty string; then

272 GNU Compiler Collection (GCC) Internals

it means no test is to be done on the operand, so anything which occurs in this
position is valid.
Most of the time, predicate will reject modes other than m—but not always.
For example, the predicate address_operand uses m as the mode of memory
ref that the address should be valid for. Many predicates accept const_int
nodes even though their mode is VOIDmode.
constraint controls reloading and the choice of the best register class to use for
a value, as explained later (see Section 16.8 [Constraints], page 282). If the
constraint would be an empty string, it can be omitted.
People are often unclear on the difference between the constraint and the predi-
cate. The predicate helps decide whether a given insn matches the pattern. The
constraint plays no role in this decision; instead, it controls various decisions in
the case of an insn which does match.

(match_scratch:m n constraint)
This expression is also a placeholder for operand number n and indicates that
operand must be a scratch or reg expression.
When matching patterns, this is equivalent to

(match_operand:m n "scratch_operand" pred)

but, when generating RTL, it produces a (scratch:m) expression.
If the last few expressions in a parallel are clobber expressions whose
operands are either a hard register or match_scratch, the combiner can add
or delete them when necessary. See Section 10.15 [Side Effects], page 180.

(match_dup n)
This expression is also a placeholder for operand number n. It is used when the
operand needs to appear more than once in the insn.
In construction, match_dup acts just like match_operand: the operand is sub-
stituted into the insn being constructed. But in matching, match_dup behaves
differently. It assumes that operand number n has already been determined by
a match_operand appearing earlier in the recognition template, and it matches
only an identical-looking expression.
Note that match_dup should not be used to tell the compiler that a particular
register is being used for two operands (example: add that adds one register to
another; the second register is both an input operand and the output operand).
Use a matching constraint (see Section 16.8.1 [Simple Constraints], page 282)
for those. match_dup is for the cases where one operand is used in two places
in the template, such as an instruction that computes both a quotient and a
remainder, where the opcode takes two input operands but the RTL template
has to refer to each of those twice; once for the quotient pattern and once for
the remainder pattern.

(match_operator:m n predicate [operands...])
This pattern is a kind of placeholder for a variable RTL expression code.
When constructing an insn, it stands for an RTL expression whose expression
code is taken from that of operand n, and whose operands are constructed from
the patterns operands.

Chapter 16: Machine Descriptions 273

When matching an expression, it matches an expression if the function predi-
cate returns nonzero on that expression and the patterns operands match the
operands of the expression.
Suppose that the function commutative_operator is defined as follows, to
match any expression whose operator is one of the commutative arithmetic
operators of RTL and whose mode is mode:

int

commutative_integer_operator (x, mode)

rtx x;

enum machine_mode mode;

{

enum rtx_code code = GET_CODE (x);

if (GET_MODE (x) != mode)

return 0;

return (GET_RTX_CLASS (code) == RTX_COMM_ARITH

|| code == EQ || code == NE);

}

Then the following pattern will match any RTL expression consisting of a com-
mutative operator applied to two general operands:

(match_operator:SI 3 "commutative_operator"

[(match_operand:SI 1 "general_operand" "g")

(match_operand:SI 2 "general_operand" "g")])

Here the vector [operands...] contains two patterns because the expressions
to be matched all contain two operands.
When this pattern does match, the two operands of the commutative operator
are recorded as operands 1 and 2 of the insn. (This is done by the two instances
of match_operand.) Operand 3 of the insn will be the entire commutative
expression: use GET_CODE (operands[3]) to see which commutative operator
was used.
The machine mode m of match_operator works like that of match_operand: it
is passed as the second argument to the predicate function, and that function
is solely responsible for deciding whether the expression to be matched “has”
that mode.
When constructing an insn, argument 3 of the gen-function will specify the
operation (i.e. the expression code) for the expression to be made. It should
be an RTL expression, whose expression code is copied into a new expression
whose operands are arguments 1 and 2 of the gen-function. The subexpressions
of argument 3 are not used; only its expression code matters.
When match_operator is used in a pattern for matching an insn, it usually best
if the operand number of the match_operator is higher than that of the actual
operands of the insn. This improves register allocation because the register
allocator often looks at operands 1 and 2 of insns to see if it can do register
tying.
There is no way to specify constraints in match_operator. The operand of
the insn which corresponds to the match_operator never has any constraints
because it is never reloaded as a whole. However, if parts of its operands are
matched by match_operand patterns, those parts may have constraints of their
own.

274 GNU Compiler Collection (GCC) Internals

(match_op_dup:m n[operands...])
Like match_dup, except that it applies to operators instead of operands. When
constructing an insn, operand number n will be substituted at this point. But in
matching, match_op_dup behaves differently. It assumes that operand number
n has already been determined by a match_operator appearing earlier in the
recognition template, and it matches only an identical-looking expression.

(match_parallel n predicate [subpat...])
This pattern is a placeholder for an insn that consists of a parallel expression
with a variable number of elements. This expression should only appear at the
top level of an insn pattern.

When constructing an insn, operand number n will be substituted at this point.
When matching an insn, it matches if the body of the insn is a parallel
expression with at least as many elements as the vector of subpat expressions
in the match_parallel, if each subpat matches the corresponding element of
the parallel, and the function predicate returns nonzero on the parallel
that is the body of the insn. It is the responsibility of the predicate to validate
elements of the parallel beyond those listed in the match_parallel.

A typical use of match_parallel is to match load and store multiple expres-
sions, which can contain a variable number of elements in a parallel. For
example,

(define_insn ""

[(match_parallel 0 "load_multiple_operation"

[(set (match_operand:SI 1 "gpc_reg_operand" "=r")

(match_operand:SI 2 "memory_operand" "m"))

(use (reg:SI 179))

(clobber (reg:SI 179))])]

""

"loadm 0,0,%1,%2")

This example comes from ‘a29k.md’. The function load_multiple_operation
is defined in ‘a29k.c’ and checks that subsequent elements in the parallel are
the same as the set in the pattern, except that they are referencing subsequent
registers and memory locations.

An insn that matches this pattern might look like:

(parallel

[(set (reg:SI 20) (mem:SI (reg:SI 100)))

(use (reg:SI 179))

(clobber (reg:SI 179))

(set (reg:SI 21)

(mem:SI (plus:SI (reg:SI 100)

(const_int 4))))

(set (reg:SI 22)

(mem:SI (plus:SI (reg:SI 100)

(const_int 8))))])

(match_par_dup n [subpat...])
Like match_op_dup, but for match_parallel instead of match_operator.

Chapter 16: Machine Descriptions 275

16.5 Output Templates and Operand Substitution

The output template is a string which specifies how to output the assembler code for an
instruction pattern. Most of the template is a fixed string which is output literally. The
character ‘%’ is used to specify where to substitute an operand; it can also be used to identify
places where different variants of the assembler require different syntax.

In the simplest case, a ‘%’ followed by a digit n says to output operand n at that point in
the string.

‘%’ followed by a letter and a digit says to output an operand in an alternate fashion.
Four letters have standard, built-in meanings described below. The machine description
macro PRINT_OPERAND can define additional letters with nonstandard meanings.

‘%cdigit ’ can be used to substitute an operand that is a constant value without the
syntax that normally indicates an immediate operand.

‘%ndigit ’ is like ‘%cdigit ’ except that the value of the constant is negated before print-
ing.

‘%adigit ’ can be used to substitute an operand as if it were a memory reference, with
the actual operand treated as the address. This may be useful when outputting a “load
address” instruction, because often the assembler syntax for such an instruction requires
you to write the operand as if it were a memory reference.

‘%ldigit ’ is used to substitute a label_ref into a jump instruction.
‘%=’ outputs a number which is unique to each instruction in the entire compilation. This

is useful for making local labels to be referred to more than once in a single template that
generates multiple assembler instructions.

‘%’ followed by a punctuation character specifies a substitution that does not use an
operand. Only one case is standard: ‘%%’ outputs a ‘%’ into the assembler code. Other
nonstandard cases can be defined in the PRINT_OPERAND macro. You must also define
which punctuation characters are valid with the PRINT_OPERAND_PUNCT_VALID_P macro.

The template may generate multiple assembler instructions. Write the text for the in-
structions, with ‘\;’ between them.

When the RTL contains two operands which are required by constraint to match each
other, the output template must refer only to the lower-numbered operand. Matching
operands are not always identical, and the rest of the compiler arranges to put the proper
RTL expression for printing into the lower-numbered operand.

One use of nonstandard letters or punctuation following ‘%’ is to distinguish between
different assembler languages for the same machine; for example, Motorola syntax versus
MIT syntax for the 68000. Motorola syntax requires periods in most opcode names, while
MIT syntax does not. For example, the opcode ‘movel’ in MIT syntax is ‘move.l’ in
Motorola syntax. The same file of patterns is used for both kinds of output syntax, but
the character sequence ‘%.’ is used in each place where Motorola syntax wants a period.
The PRINT_OPERAND macro for Motorola syntax defines the sequence to output a period;
the macro for MIT syntax defines it to do nothing.

As a special case, a template consisting of the single character # instructs the compiler
to first split the insn, and then output the resulting instructions separately. This helps
eliminate redundancy in the output templates. If you have a define_insn that needs
to emit multiple assembler instructions, and there is an matching define_split already

276 GNU Compiler Collection (GCC) Internals

defined, then you can simply use # as the output template instead of writing an output
template that emits the multiple assembler instructions.

If the macro ASSEMBLER_DIALECT is defined, you can use construct of the form
‘{option0|option1|option2}’ in the templates. These describe multiple variants of
assembler language syntax. See Section 17.21.7 [Instruction Output], page 485.

16.6 C Statements for Assembler Output

Often a single fixed template string cannot produce correct and efficient assembler code for
all the cases that are recognized by a single instruction pattern. For example, the opcodes
may depend on the kinds of operands; or some unfortunate combinations of operands may
require extra machine instructions.

If the output control string starts with a ‘@’, then it is actually a series of templates, each
on a separate line. (Blank lines and leading spaces and tabs are ignored.) The templates
correspond to the pattern’s constraint alternatives (see Section 16.8.2 [Multi-Alternative],
page 286). For example, if a target machine has a two-address add instruction ‘addr’ to
add into a register and another ‘addm’ to add a register to memory, you might write this
pattern:

(define_insn "addsi3"

[(set (match_operand:SI 0 "general_operand" "=r,m")

(plus:SI (match_operand:SI 1 "general_operand" "0,0")

(match_operand:SI 2 "general_operand" "g,r")))]

""

"@

addr %2,%0

addm %2,%0")

If the output control string starts with a ‘*’, then it is not an output template but rather a
piece of C program that should compute a template. It should execute a return statement
to return the template-string you want. Most such templates use C string literals, which
require doublequote characters to delimit them. To include these doublequote characters in
the string, prefix each one with ‘\’.

If the output control string is written as a brace block instead of a double-quoted string,
it is automatically assumed to be C code. In that case, it is not necessary to put in a leading
asterisk, or to escape the doublequotes surrounding C string literals.

The operands may be found in the array operands, whose C data type is rtx [].
It is very common to select different ways of generating assembler code based on whether

an immediate operand is within a certain range. Be careful when doing this, because the
result of INTVAL is an integer on the host machine. If the host machine has more bits in an
int than the target machine has in the mode in which the constant will be used, then some
of the bits you get from INTVAL will be superfluous. For proper results, you must carefully
disregard the values of those bits.

It is possible to output an assembler instruction and then go on to output or compute
more of them, using the subroutine output_asm_insn. This receives two arguments: a
template-string and a vector of operands. The vector may be operands, or it may be
another array of rtx that you declare locally and initialize yourself.

When an insn pattern has multiple alternatives in its constraints, often the appearance
of the assembler code is determined mostly by which alternative was matched. When this

Chapter 16: Machine Descriptions 277

is so, the C code can test the variable which_alternative, which is the ordinal number of
the alternative that was actually satisfied (0 for the first, 1 for the second alternative, etc.).

For example, suppose there are two opcodes for storing zero, ‘clrreg’ for registers and
‘clrmem’ for memory locations. Here is how a pattern could use which_alternative to
choose between them:

(define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r,m")

(const_int 0))]

""

{

return (which_alternative == 0

? "clrreg %0" : "clrmem %0");

})

The example above, where the assembler code to generate was solely determined by the
alternative, could also have been specified as follows, having the output control string start
with a ‘@’:

(define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r,m")

(const_int 0))]

""

"@

clrreg %0

clrmem %0")

16.7 Predicates

A predicate determines whether a match_operand or match_operator expression matches,
and therefore whether the surrounding instruction pattern will be used for that combination
of operands. GCC has a number of machine-independent predicates, and you can define
machine-specific predicates as needed. By convention, predicates used with match_operand
have names that end in ‘_operand’, and those used with match_operator have names that
end in ‘_operator’.

All predicates are Boolean functions (in the mathematical sense) of two arguments: the
RTL expression that is being considered at that position in the instruction pattern, and
the machine mode that the match_operand or match_operator specifies. In this section,
the first argument is called op and the second argument mode. Predicates can be called
from C as ordinary two-argument functions; this can be useful in output templates or other
machine-specific code.

Operand predicates can allow operands that are not actually acceptable to the hard-
ware, as long as the constraints give reload the ability to fix them up (see Section 16.8
[Constraints], page 282). However, GCC will usually generate better code if the predicates
specify the requirements of the machine instructions as closely as possible. Reload cannot
fix up operands that must be constants (“immediate operands”); you must use a predicate
that allows only constants, or else enforce the requirement in the extra condition.

Most predicates handle their mode argument in a uniform manner. If mode is VOIDmode
(unspecified), then op can have any mode. If mode is anything else, then op must have the
same mode, unless op is a CONST_INT or integer CONST_DOUBLE. These RTL expressions
always have VOIDmode, so it would be counterproductive to check that their mode matches.

278 GNU Compiler Collection (GCC) Internals

Instead, predicates that accept CONST_INT and/or integer CONST_DOUBLE check that the
value stored in the constant will fit in the requested mode.

Predicates with this behavior are called normal. genrecog can optimize the instruction
recognizer based on knowledge of how normal predicates treat modes. It can also diagnose
certain kinds of common errors in the use of normal predicates; for instance, it is almost
always an error to use a normal predicate without specifying a mode.

Predicates that do something different with their mode argument are called special. The
generic predicates address_operand and pmode_register_operand are special predicates.
genrecog does not do any optimizations or diagnosis when special predicates are used.

16.7.1 Machine-Independent Predicates

These are the generic predicates available to all back ends. They are defined in ‘recog.c’.
The first category of predicates allow only constant, or immediate, operands.

[Function]immediate_operand
This predicate allows any sort of constant that fits in mode. It is an appropriate
choice for instructions that take operands that must be constant.

[Function]const_int_operand
This predicate allows any CONST_INT expression that fits in mode. It is an appropriate
choice for an immediate operand that does not allow a symbol or label.

[Function]const_double_operand
This predicate accepts any CONST_DOUBLE expression that has exactly mode. If mode
is VOIDmode, it will also accept CONST_INT. It is intended for immediate floating point
constants.

The second category of predicates allow only some kind of machine register.

[Function]register_operand
This predicate allows any REG or SUBREG expression that is valid for mode. It is often
suitable for arithmetic instruction operands on a RISC machine.

[Function]pmode_register_operand
This is a slight variant on register_operand which works around a limitation in the
machine-description reader.

(match_operand n "pmode_register_operand" constraint)

means exactly what
(match_operand:P n "register_operand" constraint)

would mean, if the machine-description reader accepted ‘:P’ mode suffixes. Unfor-
tunately, it cannot, because Pmode is an alias for some other mode, and might vary
with machine-specific options. See Section 17.30 [Misc], page 508.

[Function]scratch_operand
This predicate allows hard registers and SCRATCH expressions, but not pseudo-
registers. It is used internally by match_scratch; it should not be used
directly.

The third category of predicates allow only some kind of memory reference.

Chapter 16: Machine Descriptions 279

[Function]memory_operand
This predicate allows any valid reference to a quantity of mode mode in memory,
as determined by the weak form of GO_IF_LEGITIMATE_ADDRESS (see Section 17.14
[Addressing Modes], page 443).

[Function]address_operand
This predicate is a little unusual; it allows any operand that is a valid expression
for the address of a quantity of mode mode, again determined by the weak form of
GO_IF_LEGITIMATE_ADDRESS. To first order, if ‘(mem:mode (exp))’ is acceptable to
memory_operand, then exp is acceptable to address_operand. Note that exp does
not necessarily have the mode mode.

[Function]indirect_operand
This is a stricter form of memory_operand which allows only memory references with
a general_operand as the address expression. New uses of this predicate are dis-
couraged, because general_operand is very permissive, so it’s hard to tell what an
indirect_operand does or does not allow. If a target has different requirements
for memory operands for different instructions, it is better to define target-specific
predicates which enforce the hardware’s requirements explicitly.

[Function]push_operand
This predicate allows a memory reference suitable for pushing a value onto the stack.
This will be a MEM which refers to stack_pointer_rtx, with a side-effect in its address
expression (see Section 10.16 [Incdec], page 185); which one is determined by the
STACK_PUSH_CODE macro (see Section 17.10.1 [Frame Layout], page 411).

[Function]pop_operand
This predicate allows a memory reference suitable for popping a value off the stack.
Again, this will be a MEM referring to stack_pointer_rtx, with a side-effect in its
address expression. However, this time STACK_POP_CODE is expected.

The fourth category of predicates allow some combination of the above operands.

[Function]nonmemory_operand
This predicate allows any immediate or register operand valid for mode.

[Function]nonimmediate_operand
This predicate allows any register or memory operand valid for mode.

[Function]general_operand
This predicate allows any immediate, register, or memory operand valid for mode.

Finally, there is one generic operator predicate.

[Function]comparison_operator
This predicate matches any expression which performs an arithmetic comparison in
mode; that is, COMPARISON_P is true for the expression code.

280 GNU Compiler Collection (GCC) Internals

16.7.2 Defining Machine-Specific Predicates

Many machines have requirements for their operands that cannot be expressed precisely
using the generic predicates. You can define additional predicates using define_predicate
and define_special_predicate expressions. These expressions have three operands:

• The name of the predicate, as it will be referred to in match_operand or match_
operator expressions.

• An RTL expression which evaluates to true if the predicate allows the operand op, false
if it does not. This expression can only use the following RTL codes:

MATCH_OPERAND
When written inside a predicate expression, a MATCH_OPERAND expression
evaluates to true if the predicate it names would allow op. The operand
number and constraint are ignored. Due to limitations in genrecog, you
can only refer to generic predicates and predicates that have already been
defined.

MATCH_CODE
This expression evaluates to true if op or a specified subexpression of op
has one of a given list of RTX codes.

The first operand of this expression is a string constant containing a
comma-separated list of RTX code names (in lower case). These are the
codes for which the MATCH_CODE will be true.

The second operand is a string constant which indicates what subexpres-
sion of op to examine. If it is absent or the empty string, op itself is
examined. Otherwise, the string constant must be a sequence of digits
and/or lowercase letters. Each character indicates a subexpression to ex-
tract from the current expression; for the first character this is op, for the
second and subsequent characters it is the result of the previous character.
A digit n extracts ‘XEXP (e, n)’; a letter l extracts ‘XVECEXP (e, 0, n)’
where n is the alphabetic ordinal of l (0 for ‘a’, 1 for ’b’, and so on). The
MATCH_CODE then examines the RTX code of the subexpression extracted
by the complete string. It is not possible to extract components of an
rtvec that is not at position 0 within its RTX object.

MATCH_TEST
This expression has one operand, a string constant containing a C expres-
sion. The predicate’s arguments, op and mode, are available with those
names in the C expression. The MATCH_TEST evaluates to true if the C
expression evaluates to a nonzero value. MATCH_TEST expressions must not
have side effects.

AND
IOR
NOT
IF_THEN_ELSE

The basic ‘MATCH_’ expressions can be combined using these logical opera-
tors, which have the semantics of the C operators ‘&&’, ‘||’, ‘!’, and ‘? :’

Chapter 16: Machine Descriptions 281

respectively. As in Common Lisp, you may give an AND or IOR expres-
sion an arbitrary number of arguments; this has exactly the same effect as
writing a chain of two-argument AND or IOR expressions.

• An optional block of C code, which should execute ‘return true’ if the predicate is
found to match and ‘return false’ if it does not. It must not have any side effects.
The predicate arguments, op and mode, are available with those names.

If a code block is present in a predicate definition, then the RTL expression must
evaluate to true and the code block must execute ‘return true’ for the predicate to
allow the operand. The RTL expression is evaluated first; do not re-check anything in
the code block that was checked in the RTL expression.

The program genrecog scans define_predicate and define_special_predicate ex-
pressions to determine which RTX codes are possibly allowed. You should always make this
explicit in the RTL predicate expression, using MATCH_OPERAND and MATCH_CODE.

Here is an example of a simple predicate definition, from the IA64 machine description:

;; True if op is a SYMBOL_REF which refers to the sdata section.
(define_predicate "small_addr_symbolic_operand"

(and (match_code "symbol_ref")

(match_test "SYMBOL_REF_SMALL_ADDR_P (op)")))

And here is another, showing the use of the C block.

;; True if op is a register operand that is (or could be) a GR reg.
(define_predicate "gr_register_operand"

(match_operand 0 "register_operand")

{

unsigned int regno;

if (GET_CODE (op) == SUBREG)

op = SUBREG_REG (op);

regno = REGNO (op);

return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno));

})

Predicates written with define_predicate automatically include a test that mode is
VOIDmode, or op has the same mode as mode, or op is a CONST_INT or CONST_DOUBLE. They
do not check specifically for integer CONST_DOUBLE, nor do they test that the value of either
kind of constant fits in the requested mode. This is because target-specific predicates that
take constants usually have to do more stringent value checks anyway. If you need the
exact same treatment of CONST_INT or CONST_DOUBLE that the generic predicates provide,
use a MATCH_OPERAND subexpression to call const_int_operand, const_double_operand,
or immediate_operand.

Predicates written with define_special_predicate do not get any automatic mode
checks, and are treated as having special mode handling by genrecog.

The program genpreds is responsible for generating code to test predicates. It also writes
a header file containing function declarations for all machine-specific predicates. It is not
necessary to declare these predicates in ‘cpu-protos.h’.

282 GNU Compiler Collection (GCC) Internals

16.8 Operand Constraints

Each match_operand in an instruction pattern can specify constraints for the operands
allowed. The constraints allow you to fine-tune matching within the set of operands allowed
by the predicate.

Constraints can say whether an operand may be in a register, and which kinds of register;
whether the operand can be a memory reference, and which kinds of address; whether the
operand may be an immediate constant, and which possible values it may have. Constraints
can also require two operands to match.

16.8.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one kind
of operand that is permitted. Here are the letters that are allowed:

whitespace
Whitespace characters are ignored and can be inserted at any position except
the first. This enables each alternative for different operands to be visually
aligned in the machine description even if they have different number of con-
straints and modifiers.

‘m’ A memory operand is allowed, with any kind of address that the machine sup-
ports in general. Note that the letter used for the general memory constraint
can be re-defined by a back end using the TARGET_MEM_CONSTRAINT macro.

‘o’ A memory operand is allowed, but only if the address is offsettable. This
means that adding a small integer (actually, the width in bytes of the operand,
as determined by its machine mode) may be added to the address and the result
is also a valid memory address.

For example, an address which is constant is offsettable; so is an address that
is the sum of a register and a constant (as long as a slightly larger constant
is also within the range of address-offsets supported by the machine); but an
autoincrement or autodecrement address is not offsettable. More complicated
indirect/indexed addresses may or may not be offsettable depending on the
other addressing modes that the machine supports.

Note that in an output operand which can be matched by another operand,
the constraint letter ‘o’ is valid only when accompanied by both ‘<’ (if the
target machine has predecrement addressing) and ‘>’ (if the target machine has
preincrement addressing).

‘V’ A memory operand that is not offsettable. In other words, anything that would
fit the ‘m’ constraint but not the ‘o’ constraint.

‘<’ A memory operand with autodecrement addressing (either predecrement or
postdecrement) is allowed.

‘>’ A memory operand with autoincrement addressing (either preincrement or
postincrement) is allowed.

‘r’ A register operand is allowed provided that it is in a general register.

Chapter 16: Machine Descriptions 283

‘i’ An immediate integer operand (one with constant value) is allowed. This in-
cludes symbolic constants whose values will be known only at assembly time or
later.

‘n’ An immediate integer operand with a known numeric value is allowed. Many
systems cannot support assembly-time constants for operands less than a word
wide. Constraints for these operands should use ‘n’ rather than ‘i’.

‘I’, ‘J’, ‘K’, . . . ‘P’
Other letters in the range ‘I’ through ‘P’ may be defined in a machine-dependent
fashion to permit immediate integer operands with explicit integer values in
specified ranges. For example, on the 68000, ‘I’ is defined to stand for the
range of values 1 to 8. This is the range permitted as a shift count in the shift
instructions.

‘E’ An immediate floating operand (expression code const_double) is allowed, but
only if the target floating point format is the same as that of the host machine
(on which the compiler is running).

‘F’ An immediate floating operand (expression code const_double or
const_vector) is allowed.

‘G’, ‘H’ ‘G’ and ‘H’ may be defined in a machine-dependent fashion to permit immediate
floating operands in particular ranges of values.

‘s’ An immediate integer operand whose value is not an explicit integer is allowed.
This might appear strange; if an insn allows a constant operand with a value
not known at compile time, it certainly must allow any known value. So why
use ‘s’ instead of ‘i’? Sometimes it allows better code to be generated.
For example, on the 68000 in a fullword instruction it is possible to use an
immediate operand; but if the immediate value is between −128 and 127, better
code results from loading the value into a register and using the register. This
is because the load into the register can be done with a ‘moveq’ instruction. We
arrange for this to happen by defining the letter ‘K’ to mean “any integer outside
the range −128 to 127”, and then specifying ‘Ks’ in the operand constraints.

‘g’ Any register, memory or immediate integer operand is allowed, except for reg-
isters that are not general registers.

‘X’ Any operand whatsoever is allowed, even if it does not satisfy general_
operand. This is normally used in the constraint of a match_scratch when
certain alternatives will not actually require a scratch register.

‘0’, ‘1’, ‘2’, . . . ‘9’
An operand that matches the specified operand number is allowed. If a digit
is used together with letters within the same alternative, the digit should come
last.
This number is allowed to be more than a single digit. If multiple digits are en-
countered consecutively, they are interpreted as a single decimal integer. There
is scant chance for ambiguity, since to-date it has never been desirable that
‘10’ be interpreted as matching either operand 1 or operand 0. Should this be
desired, one can use multiple alternatives instead.

284 GNU Compiler Collection (GCC) Internals

This is called a matching constraint and what it really means is that the as-
sembler has only a single operand that fills two roles considered separate in the
RTL insn. For example, an add insn has two input operands and one output
operand in the RTL, but on most CISC machines an add instruction really has
only two operands, one of them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More precisely, the two
operands that match must include one input-only operand and one output-only
operand. Moreover, the digit must be a smaller number than the number of
the operand that uses it in the constraint.
For operands to match in a particular case usually means that they are identical-
looking RTL expressions. But in a few special cases specific kinds of dissimi-
larity are allowed. For example, *x as an input operand will match *x++ as an
output operand. For proper results in such cases, the output template should
always use the output-operand’s number when printing the operand.

‘p’ An operand that is a valid memory address is allowed. This is for “load address”
and “push address” instructions.
‘p’ in the constraint must be accompanied by address_operand as the predicate
in the match_operand. This predicate interprets the mode specified in the
match_operand as the mode of the memory reference for which the address
would be valid.

other-letters
Other letters can be defined in machine-dependent fashion to stand for par-
ticular classes of registers or other arbitrary operand types. ‘d’, ‘a’ and ‘f’
are defined on the 68000/68020 to stand for data, address and floating point
registers.

In order to have valid assembler code, each operand must satisfy its constraint. But a
failure to do so does not prevent the pattern from applying to an insn. Instead, it directs
the compiler to modify the code so that the constraint will be satisfied. Usually this is done
by copying an operand into a register.

Contrast, therefore, the two instruction patterns that follow:
(define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_dup 0)

(match_operand:SI 1 "general_operand" "r")))]

""

"...")

which has two operands, one of which must appear in two places, and
(define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_operand:SI 1 "general_operand" "0")

(match_operand:SI 2 "general_operand" "r")))]

""

"...")

which has three operands, two of which are required by a constraint to be identical. If we
are considering an insn of the form

Chapter 16: Machine Descriptions 285

(insn n prev next

(set (reg:SI 3)

(plus:SI (reg:SI 6) (reg:SI 109)))

...)

the first pattern would not apply at all, because this insn does not contain two identical
subexpressions in the right place. The pattern would say, “That does not look like an
add instruction; try other patterns”. The second pattern would say, “Yes, that’s an add
instruction, but there is something wrong with it”. It would direct the reload pass of the
compiler to generate additional insns to make the constraint true. The results might look
like this:

(insn n2 prev n

(set (reg:SI 3) (reg:SI 6))

...)

(insn n n2 next

(set (reg:SI 3)

(plus:SI (reg:SI 3) (reg:SI 109)))

...)

It is up to you to make sure that each operand, in each pattern, has constraints that
can handle any RTL expression that could be present for that operand. (When multiple
alternatives are in use, each pattern must, for each possible combination of operand expres-
sions, have at least one alternative which can handle that combination of operands.) The
constraints don’t need to allow any possible operand—when this is the case, they do not
constrain—but they must at least point the way to reloading any possible operand so that
it will fit.

• If the constraint accepts whatever operands the predicate permits, there is no problem:
reloading is never necessary for this operand.

For example, an operand whose constraints permit everything except registers is safe
provided its predicate rejects registers.

An operand whose predicate accepts only constant values is safe provided its constraints
include the letter ‘i’. If any possible constant value is accepted, then nothing less than
‘i’ will do; if the predicate is more selective, then the constraints may also be more
selective.

• Any operand expression can be reloaded by copying it into a register. So if an operand’s
constraints allow some kind of register, it is certain to be safe. It need not permit all
classes of registers; the compiler knows how to copy a register into another register of
the proper class in order to make an instruction valid.

• A nonoffsettable memory reference can be reloaded by copying the address into a
register. So if the constraint uses the letter ‘o’, all memory references are taken care
of.

• A constant operand can be reloaded by allocating space in memory to hold it as preini-
tialized data. Then the memory reference can be used in place of the constant. So if
the constraint uses the letters ‘o’ or ‘m’, constant operands are not a problem.

• If the constraint permits a constant and a pseudo register used in an insn was not
allocated to a hard register and is equivalent to a constant, the register will be replaced
with the constant. If the predicate does not permit a constant and the insn is re-

286 GNU Compiler Collection (GCC) Internals

recognized for some reason, the compiler will crash. Thus the predicate must always
recognize any objects allowed by the constraint.

If the operand’s predicate can recognize registers, but the constraint does not permit
them, it can make the compiler crash. When this operand happens to be a register, the
reload pass will be stymied, because it does not know how to copy a register temporarily
into memory.

If the predicate accepts a unary operator, the constraint applies to the operand. For
example, the MIPS processor at ISA level 3 supports an instruction which adds two registers
in SImode to produce a DImode result, but only if the registers are correctly sign extended.
This predicate for the input operands accepts a sign_extend of an SImode register. Write
the constraint to indicate the type of register that is required for the operand of the sign_
extend.

16.8.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For ex-
ample, on the 68000, a logical-or instruction can combine register or an immediate value
into memory, or it can combine any kind of operand into a register; but it cannot combine
one memory location into another.

These constraints are represented as multiple alternatives. An alternative can be de-
scribed by a series of letters for each operand. The overall constraint for an operand is
made from the letters for this operand from the first alternative, a comma, the letters for
this operand from the second alternative, a comma, and so on until the last alternative.
Here is how it is done for fullword logical-or on the 68000:

(define_insn "iorsi3"

[(set (match_operand:SI 0 "general_operand" "=m,d")

(ior:SI (match_operand:SI 1 "general_operand" "%0,0")

(match_operand:SI 2 "general_operand" "dKs,dmKs")))]

...)

The first alternative has ‘m’ (memory) for operand 0, ‘0’ for operand 1 (meaning it must
match operand 0), and ‘dKs’ for operand 2. The second alternative has ‘d’ (data register)
for operand 0, ‘0’ for operand 1, and ‘dmKs’ for operand 2. The ‘=’ and ‘%’ in the constraints
apply to all the alternatives; their meaning is explained in the next section (see Section 16.8.3
[Class Preferences], page 287).

If all the operands fit any one alternative, the instruction is valid. Otherwise, for each
alternative, the compiler counts how many instructions must be added to copy the operands
so that that alternative applies. The alternative requiring the least copying is chosen. If
two alternatives need the same amount of copying, the one that comes first is chosen. These
choices can be altered with the ‘?’ and ‘!’ characters:

? Disparage slightly the alternative that the ‘?’ appears in, as a choice when no
alternative applies exactly. The compiler regards this alternative as one unit
more costly for each ‘?’ that appears in it.

! Disparage severely the alternative that the ‘!’ appears in. This alternative can
still be used if it fits without reloading, but if reloading is needed, some other
alternative will be used.

Chapter 16: Machine Descriptions 287

When an insn pattern has multiple alternatives in its constraints, often the appearance
of the assembler code is determined mostly by which alternative was matched. When this
is so, the C code for writing the assembler code can use the variable which_alternative,
which is the ordinal number of the alternative that was actually satisfied (0 for the first, 1
for the second alternative, etc.). See Section 16.6 [Output Statement], page 276.

16.8.3 Register Class Preferences

The operand constraints have another function: they enable the compiler to decide which
kind of hardware register a pseudo register is best allocated to. The compiler examines the
constraints that apply to the insns that use the pseudo register, looking for the machine-
dependent letters such as ‘d’ and ‘a’ that specify classes of registers. The pseudo register
is put in whichever class gets the most “votes”. The constraint letters ‘g’ and ‘r’ also vote:
they vote in favor of a general register. The machine description says which registers are
considered general.

Of course, on some machines all registers are equivalent, and no register classes are
defined. Then none of this complexity is relevant.

16.8.4 Constraint Modifier Characters

Here are constraint modifier characters.

‘=’ Means that this operand is write-only for this instruction: the previous value
is discarded and replaced by output data.

‘+’ Means that this operand is both read and written by the instruction.
When the compiler fixes up the operands to satisfy the constraints, it needs
to know which operands are inputs to the instruction and which are outputs
from it. ‘=’ identifies an output; ‘+’ identifies an operand that is both input and
output; all other operands are assumed to be input only.
If you specify ‘=’ or ‘+’ in a constraint, you put it in the first character of the
constraint string.

‘&’ Means (in a particular alternative) that this operand is an earlyclobber operand,
which is modified before the instruction is finished using the input operands.
Therefore, this operand may not lie in a register that is used as an input operand
or as part of any memory address.
‘&’ applies only to the alternative in which it is written. In constraints with
multiple alternatives, sometimes one alternative requires ‘&’ while others do
not. See, for example, the ‘movdf’ insn of the 68000.
An input operand can be tied to an earlyclobber operand if its only use as an
input occurs before the early result is written. Adding alternatives of this form
often allows GCC to produce better code when only some of the inputs can be
affected by the earlyclobber. See, for example, the ‘mulsi3’ insn of the ARM.
‘&’ does not obviate the need to write ‘=’.

‘%’ Declares the instruction to be commutative for this operand and the following
operand. This means that the compiler may interchange the two operands if
that is the cheapest way to make all operands fit the constraints. This is often

288 GNU Compiler Collection (GCC) Internals

used in patterns for addition instructions that really have only two operands:
the result must go in one of the arguments. Here for example, is how the 68000
halfword-add instruction is defined:

(define_insn "addhi3"

[(set (match_operand:HI 0 "general_operand" "=m,r")

(plus:HI (match_operand:HI 1 "general_operand" "%0,0")

(match_operand:HI 2 "general_operand" "di,g")))]

...)

GCC can only handle one commutative pair in an asm; if you use more, the
compiler may fail. Note that you need not use the modifier if the two alterna-
tives are strictly identical; this would only waste time in the reload pass. The
modifier is not operational after register allocation, so the result of define_
peephole2 and define_splits performed after reload cannot rely on ‘%’ to
make the intended insn match.

‘#’ Says that all following characters, up to the next comma, are to be ignored as
a constraint. They are significant only for choosing register preferences.

‘*’ Says that the following character should be ignored when choosing register
preferences. ‘*’ has no effect on the meaning of the constraint as a constraint,
and no effect on reloading.
Here is an example: the 68000 has an instruction to sign-extend a halfword
in a data register, and can also sign-extend a value by copying it into an ad-
dress register. While either kind of register is acceptable, the constraints on
an address-register destination are less strict, so it is best if register allocation
makes an address register its goal. Therefore, ‘*’ is used so that the ‘d’ con-
straint letter (for data register) is ignored when computing register preferences.

(define_insn "extendhisi2"

[(set (match_operand:SI 0 "general_operand" "=*d,a")

(sign_extend:SI

(match_operand:HI 1 "general_operand" "0,g")))]

...)

16.8.5 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint letters in asm arguments,
since they will convey meaning more readily to people reading your code. Failing that, use
the constraint letters that usually have very similar meanings across architectures. The
most commonly used constraints are ‘m’ and ‘r’ (for memory and general-purpose registers
respectively; see Section 16.8.1 [Simple Constraints], page 282), and ‘I’, usually the letter
indicating the most common immediate-constant format.

Each architecture defines additional constraints. These constraints are used by the com-
piler itself for instruction generation, as well as for asm statements; therefore, some of the
constraints are not particularly useful for asm. Here is a summary of some of the machine-
dependent constraints available on some particular machines; it includes both constraints
that are useful for asm and constraints that aren’t. The compiler source file mentioned in
the table heading for each architecture is the definitive reference for the meanings of that
architecture’s constraints.

ARM family—‘config/arm/arm.h’
f Floating-point register

Chapter 16: Machine Descriptions 289

w VFP floating-point register

F One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 or
10.0

G Floating-point constant that would satisfy the constraint ‘F’ if it
were negated

I Integer that is valid as an immediate operand in a data processing
instruction. That is, an integer in the range 0 to 255 rotated by a
multiple of 2

J Integer in the range −4095 to 4095

K Integer that satisfies constraint ‘I’ when inverted (ones comple-
ment)

L Integer that satisfies constraint ‘I’ when negated (twos comple-
ment)

M Integer in the range 0 to 32

Q A memory reference where the exact address is in a single register
(“m’’ is preferable for asm statements)

R An item in the constant pool

S A symbol in the text segment of the current file

Uv A memory reference suitable for VFP load/store insns
(reg+constant offset)

Uy A memory reference suitable for iWMMXt load/store instructions.

Uq A memory reference suitable for the ARMv4 ldrsb instruction.

AVR family—‘config/avr/constraints.md’
l Registers from r0 to r15

a Registers from r16 to r23

d Registers from r16 to r31

w Registers from r24 to r31. These registers can be used in ‘adiw’
command

e Pointer register (r26–r31)

b Base pointer register (r28–r31)

q Stack pointer register (SPH:SPL)

t Temporary register r0

x Register pair X (r27:r26)

y Register pair Y (r29:r28)

z Register pair Z (r31:r30)

I Constant greater than −1, less than 64

290 GNU Compiler Collection (GCC) Internals

J Constant greater than −64, less than 1

K Constant integer 2

L Constant integer 0

M Constant that fits in 8 bits

N Constant integer −1

O Constant integer 8, 16, or 24

P Constant integer 1

G A floating point constant 0.0

R Integer constant in the range -6 . . . 5.

Q A memory address based on Y or Z pointer with displacement.

CRX Architecture—‘config/crx/crx.h’
b Registers from r0 to r14 (registers without stack pointer)

l Register r16 (64-bit accumulator lo register)

h Register r17 (64-bit accumulator hi register)

k Register pair r16-r17. (64-bit accumulator lo-hi pair)

I Constant that fits in 3 bits

J Constant that fits in 4 bits

K Constant that fits in 5 bits

L Constant that is one of -1, 4, -4, 7, 8, 12, 16, 20, 32, 48

G Floating point constant that is legal for store immediate

Hewlett-Packard PA-RISC—‘config/pa/pa.h’
a General register 1

f Floating point register

q Shift amount register

x Floating point register (deprecated)

y Upper floating point register (32-bit), floating point register (64-
bit)

Z Any register

I Signed 11-bit integer constant

J Signed 14-bit integer constant

K Integer constant that can be deposited with a zdepi instruction

L Signed 5-bit integer constant

M Integer constant 0

Chapter 16: Machine Descriptions 291

N Integer constant that can be loaded with a ldil instruction

O Integer constant whose value plus one is a power of 2

P Integer constant that can be used for and operations in depi and
extru instructions

S Integer constant 31

U Integer constant 63

G Floating-point constant 0.0

A A lo_sum data-linkage-table memory operand

Q A memory operand that can be used as the destination operand of
an integer store instruction

R A scaled or unscaled indexed memory operand

T A memory operand for floating-point loads and stores

W A register indirect memory operand

picoChip family—‘picochip.h’
k Stack register.

f Pointer register. A register which can be used to access memory
without supplying an offset. Any other register can be used to
access memory, but will need a constant offset. In the case of the
offset being zero, it is more efficient to use a pointer register, since
this reduces code size.

t A twin register. A register which may be paired with an adjacent
register to create a 32-bit register.

a Any absolute memory address (e.g., symbolic constant, symbolic
constant + offset).

I 4-bit signed integer.

J 4-bit unsigned integer.

K 8-bit signed integer.

M Any constant whose absolute value is no greater than 4-bits.

N 10-bit signed integer

O 16-bit signed integer.

PowerPC and IBM RS6000—‘config/rs6000/rs6000.h’
b Address base register

f Floating point register

v Vector register

h ‘MQ’, ‘CTR’, or ‘LINK’ register

292 GNU Compiler Collection (GCC) Internals

q ‘MQ’ register

c ‘CTR’ register

l ‘LINK’ register

x ‘CR’ register (condition register) number 0

y ‘CR’ register (condition register)

z ‘FPMEM’ stack memory for FPR-GPR transfers

I Signed 16-bit constant

J Unsigned 16-bit constant shifted left 16 bits (use ‘L’ instead for
SImode constants)

K Unsigned 16-bit constant

L Signed 16-bit constant shifted left 16 bits

M Constant larger than 31

N Exact power of 2

O Zero

P Constant whose negation is a signed 16-bit constant

G Floating point constant that can be loaded into a register with one
instruction per word

H Integer/Floating point constant that can be loaded into a register
using three instructions

Q Memory operand that is an offset from a register (‘m’ is preferable
for asm statements)

Z Memory operand that is an indexed or indirect from a register (‘m’
is preferable for asm statements)

R AIX TOC entry

a Address operand that is an indexed or indirect from a register (‘p’
is preferable for asm statements)

S Constant suitable as a 64-bit mask operand

T Constant suitable as a 32-bit mask operand

U System V Release 4 small data area reference

t AND masks that can be performed by two rldic{l, r} instructions

W Vector constant that does not require memory

Intel 386—‘config/i386/constraints.md’
R Legacy register—the eight integer registers available on all i386

processors (a, b, c, d, si, di, bp, sp).

q Any register accessible as rl. In 32-bit mode, a, b, c, and d; in
64-bit mode, any integer register.

Chapter 16: Machine Descriptions 293

Q Any register accessible as rh: a, b, c, and d.

l Any register that can be used as the index in a base+index memory
access: that is, any general register except the stack pointer.

a The a register.

b The b register.

c The c register.

d The d register.

S The si register.

D The di register.

A The a and d registers, as a pair (for instructions that return half
the result in one and half in the other).

f Any 80387 floating-point (stack) register.

t Top of 80387 floating-point stack (%st(0)).

u Second from top of 80387 floating-point stack (%st(1)).

y Any MMX register.

x Any SSE register.

Yz First SSE register (%xmm0).

Y2 Any SSE register, when SSE2 is enabled.

Yi Any SSE register, when SSE2 and inter-unit moves are enabled.

Ym Any MMX register, when inter-unit moves are enabled.

I Integer constant in the range 0 . . . 31, for 32-bit shifts.

J Integer constant in the range 0 . . . 63, for 64-bit shifts.

K Signed 8-bit integer constant.

L 0xFF or 0xFFFF, for andsi as a zero-extending move.

M 0, 1, 2, or 3 (shifts for the lea instruction).

N Unsigned 8-bit integer constant (for in and out instructions).

O Integer constant in the range 0 . . . 127, for 128-bit shifts.

G Standard 80387 floating point constant.

C Standard SSE floating point constant.

e 32-bit signed integer constant, or a symbolic reference known to
fit that range (for immediate operands in sign-extending x86-64
instructions).

Z 32-bit unsigned integer constant, or a symbolic reference known to
fit that range (for immediate operands in zero-extending x86-64
instructions).

294 GNU Compiler Collection (GCC) Internals

Intel IA-64—‘config/ia64/ia64.h’
a General register r0 to r3 for addl instruction

b Branch register

c Predicate register (‘c’ as in “conditional”)

d Application register residing in M-unit

e Application register residing in I-unit

f Floating-point register

m Memory operand. Remember that ‘m’ allows postincrement and
postdecrement which require printing with ‘%Pn’ on IA-64. Use ‘S’
to disallow postincrement and postdecrement.

G Floating-point constant 0.0 or 1.0

I 14-bit signed integer constant

J 22-bit signed integer constant

K 8-bit signed integer constant for logical instructions

L 8-bit adjusted signed integer constant for compare pseudo-ops

M 6-bit unsigned integer constant for shift counts

N 9-bit signed integer constant for load and store postincrements

O The constant zero

P 0 or −1 for dep instruction

Q Non-volatile memory for floating-point loads and stores

R Integer constant in the range 1 to 4 for shladd instruction

S Memory operand except postincrement and postdecrement

FRV—‘config/frv/frv.h’
a Register in the class ACC_REGS (acc0 to acc7).

b Register in the class EVEN_ACC_REGS (acc0 to acc7).

c Register in the class CC_REGS (fcc0 to fcc3 and icc0 to icc3).

d Register in the class GPR_REGS (gr0 to gr63).

e Register in the class EVEN_REGS (gr0 to gr63). Odd registers are
excluded not in the class but through the use of a machine mode
larger than 4 bytes.

f Register in the class FPR_REGS (fr0 to fr63).

h Register in the class FEVEN_REGS (fr0 to fr63). Odd registers are
excluded not in the class but through the use of a machine mode
larger than 4 bytes.

l Register in the class LR_REG (the lr register).

Chapter 16: Machine Descriptions 295

q Register in the class QUAD_REGS (gr2 to gr63). Register numbers
not divisible by 4 are excluded not in the class but through the use
of a machine mode larger than 8 bytes.

t Register in the class ICC_REGS (icc0 to icc3).

u Register in the class FCC_REGS (fcc0 to fcc3).

v Register in the class ICR_REGS (cc4 to cc7).

w Register in the class FCR_REGS (cc0 to cc3).

x Register in the class QUAD_FPR_REGS (fr0 to fr63). Register num-
bers not divisible by 4 are excluded not in the class but through
the use of a machine mode larger than 8 bytes.

z Register in the class SPR_REGS (lcr and lr).

A Register in the class QUAD_ACC_REGS (acc0 to acc7).

B Register in the class ACCG_REGS (accg0 to accg7).

C Register in the class CR_REGS (cc0 to cc7).

G Floating point constant zero

I 6-bit signed integer constant

J 10-bit signed integer constant

L 16-bit signed integer constant

M 16-bit unsigned integer constant

N 12-bit signed integer constant that is negative—i.e. in the range of
−2048 to −1

O Constant zero

P 12-bit signed integer constant that is greater than zero—i.e. in the
range of 1 to 2047.

Blackfin family—‘config/bfin/constraints.md’
a P register

d D register

z A call clobbered P register.

qn A single register. If n is in the range 0 to 7, the corresponding D
register. If it is A, then the register P0.

D Even-numbered D register

W Odd-numbered D register

e Accumulator register.

A Even-numbered accumulator register.

B Odd-numbered accumulator register.

296 GNU Compiler Collection (GCC) Internals

b I register

v B register

f M register

c Registers used for circular buffering, i.e. I, B, or L registers.

C The CC register.

t LT0 or LT1.

k LC0 or LC1.

u LB0 or LB1.

x Any D, P, B, M, I or L register.

y Additional registers typically used only in prologues and epilogues:
RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.

w Any register except accumulators or CC.

Ksh Signed 16 bit integer (in the range -32768 to 32767)

Kuh Unsigned 16 bit integer (in the range 0 to 65535)

Ks7 Signed 7 bit integer (in the range -64 to 63)

Ku7 Unsigned 7 bit integer (in the range 0 to 127)

Ku5 Unsigned 5 bit integer (in the range 0 to 31)

Ks4 Signed 4 bit integer (in the range -8 to 7)

Ks3 Signed 3 bit integer (in the range -3 to 4)

Ku3 Unsigned 3 bit integer (in the range 0 to 7)

Pn Constant n, where n is a single-digit constant in the range 0 to 4.

PA An integer equal to one of the MACFLAG XXX constants that is
suitable for use with either accumulator.

PB An integer equal to one of the MACFLAG XXX constants that is
suitable for use only with accumulator A1.

M1 Constant 255.

M2 Constant 65535.

J An integer constant with exactly a single bit set.

L An integer constant with all bits set except exactly one.

H

Q Any SYMBOL REF.

M32C—‘config/m32c/m32c.c’
Rsp
Rfb
Rsb ‘$sp’, ‘$fb’, ‘$sb’.

Chapter 16: Machine Descriptions 297

Rcr Any control register, when they’re 16 bits wide (nothing if control
registers are 24 bits wide)

Rcl Any control register, when they’re 24 bits wide.

R0w
R1w
R2w
R3w $r0, $r1, $r2, $r3.

R02 $r0 or $r2, or $r2r0 for 32 bit values.

R13 $r1 or $r3, or $r3r1 for 32 bit values.

Rdi A register that can hold a 64 bit value.

Rhl $r0 or $r1 (registers with addressable high/low bytes)

R23 $r2 or $r3

Raa Address registers

Raw Address registers when they’re 16 bits wide.

Ral Address registers when they’re 24 bits wide.

Rqi Registers that can hold QI values.

Rad Registers that can be used with displacements ($a0, $a1, $sb).

Rsi Registers that can hold 32 bit values.

Rhi Registers that can hold 16 bit values.

Rhc Registers chat can hold 16 bit values, including all control registers.

Rra $r0 through R1, plus $a0 and $a1.

Rfl The flags register.

Rmm The memory-based pseudo-registers $mem0 through $mem15.

Rpi Registers that can hold pointers (16 bit registers for r8c, m16c; 24
bit registers for m32cm, m32c).

Rpa Matches multiple registers in a PARALLEL to form a larger regis-
ter. Used to match function return values.

Is3 -8 . . . 7

IS1 -128 . . . 127

IS2 -32768 . . . 32767

IU2 0 . . . 65535

In4 -8 . . . -1 or 1 . . . 8

In5 -16 . . . -1 or 1 . . . 16

In6 -32 . . . -1 or 1 . . . 32

IM2 -65536 . . . -1

298 GNU Compiler Collection (GCC) Internals

Ilb An 8 bit value with exactly one bit set.

Ilw A 16 bit value with exactly one bit set.

Sd The common src/dest memory addressing modes.

Sa Memory addressed using $a0 or $a1.

Si Memory addressed with immediate addresses.

Ss Memory addressed using the stack pointer ($sp).

Sf Memory addressed using the frame base register ($fb).

Ss Memory addressed using the small base register ($sb).

S1 $r1h

MIPS—‘config/mips/constraints.md’
d An address register. This is equivalent to r unless generating

MIPS16 code.

f A floating-point register (if available).

h Formerly the hi register. This constraint is no longer supported.

l The lo register. Use this register to store values that are no bigger
than a word.

x The concatenated hi and lo registers. Use this register to store
doubleword values.

c A register suitable for use in an indirect jump. This will always be
$25 for ‘-mabicalls’.

v Register $3. Do not use this constraint in new code; it is retained
only for compatibility with glibc.

y Equivalent to r; retained for backwards compatibility.

z A floating-point condition code register.

I A signed 16-bit constant (for arithmetic instructions).

J Integer zero.

K An unsigned 16-bit constant (for logic instructions).

L A signed 32-bit constant in which the lower 16 bits are zero. Such
constants can be loaded using lui.

M A constant that cannot be loaded using lui, addiu or ori.

N A constant in the range -65535 to -1 (inclusive).

O A signed 15-bit constant.

P A constant in the range 1 to 65535 (inclusive).

G Floating-point zero.

R An address that can be used in a non-macro load or store.

Chapter 16: Machine Descriptions 299

Motorola 680x0—‘config/m68k/constraints.md’
a Address register

d Data register

f 68881 floating-point register, if available

I Integer in the range 1 to 8

J 16-bit signed number

K Signed number whose magnitude is greater than 0x80

L Integer in the range −8 to −1

M Signed number whose magnitude is greater than 0x100

N Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate

O 16 (for rotate using swap)

P Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate

R Numbers that mov3q can handle

G Floating point constant that is not a 68881 constant

S Operands that satisfy ’m’ when -mpcrel is in effect

T Operands that satisfy ’s’ when -mpcrel is not in effect

Q Address register indirect addressing mode

U Register offset addressing

W const call operand

Cs symbol ref or const

Ci const int

C0 const int 0

Cj Range of signed numbers that don’t fit in 16 bits

Cmvq Integers valid for mvq

Capsw Integers valid for a moveq followed by a swap

Cmvz Integers valid for mvz

Cmvs Integers valid for mvs

Ap push operand

Ac Non-register operands allowed in clr

Motorola 68HC11 & 68HC12 families—‘config/m68hc11/m68hc11.h’
a Register ‘a’

b Register ‘b’

d Register ‘d’

300 GNU Compiler Collection (GCC) Internals

q An 8-bit register

t Temporary soft register .tmp

u A soft register .d1 to .d31

w Stack pointer register

x Register ‘x’

y Register ‘y’

z Pseudo register ‘z’ (replaced by ‘x’ or ‘y’ at the end)

A An address register: x, y or z

B An address register: x or y

D Register pair (x:d) to form a 32-bit value

L Constants in the range −65536 to 65535

M Constants whose 16-bit low part is zero

N Constant integer 1 or −1

O Constant integer 16

P Constants in the range −8 to 2

SPARC—‘config/sparc/sparc.h’
f Floating-point register on the SPARC-V8 architecture and lower

floating-point register on the SPARC-V9 architecture.

e Floating-point register. It is equivalent to ‘f’ on the SPARC-V8
architecture and contains both lower and upper floating-point reg-
isters on the SPARC-V9 architecture.

c Floating-point condition code register.

d Lower floating-point register. It is only valid on the SPARC-V9
architecture when the Visual Instruction Set is available.

b Floating-point register. It is only valid on the SPARC-V9 architec-
ture when the Visual Instruction Set is available.

h 64-bit global or out register for the SPARC-V8+ architecture.

D A vector constant

I Signed 13-bit constant

J Zero

K 32-bit constant with the low 12 bits clear (a constant that can be
loaded with the sethi instruction)

L A constant in the range supported by movcc instructions

M A constant in the range supported by movrcc instructions

Chapter 16: Machine Descriptions 301

N Same as ‘K’, except that it verifies that bits that are not in the
lower 32-bit range are all zero. Must be used instead of ‘K’ for
modes wider than SImode

O The constant 4096

G Floating-point zero

H Signed 13-bit constant, sign-extended to 32 or 64 bits

Q Floating-point constant whose integral representation can be moved
into an integer register using a single sethi instruction

R Floating-point constant whose integral representation can be moved
into an integer register using a single mov instruction

S Floating-point constant whose integral representation can be moved
into an integer register using a high/lo sum instruction sequence

T Memory address aligned to an 8-byte boundary

U Even register

W Memory address for ‘e’ constraint registers

Y Vector zero

SPU—‘config/spu/spu.h’
a An immediate which can be loaded with the il/ila/ilh/ilhu instruc-

tions. const int is treated as a 64 bit value.

c An immediate for and/xor/or instructions. const int is treated as
a 64 bit value.

d An immediate for the iohl instruction. const int is treated as a 64
bit value.

f An immediate which can be loaded with fsmbi.

A An immediate which can be loaded with the il/ila/ilh/ilhu instruc-
tions. const int is treated as a 32 bit value.

B An immediate for most arithmetic instructions. const int is treated
as a 32 bit value.

C An immediate for and/xor/or instructions. const int is treated as
a 32 bit value.

D An immediate for the iohl instruction. const int is treated as a 32
bit value.

I A constant in the range [-64, 63] for shift/rotate instructions.

J An unsigned 7-bit constant for conversion/nop/channel instruc-
tions.

K A signed 10-bit constant for most arithmetic instructions.

M A signed 16 bit immediate for stop.

302 GNU Compiler Collection (GCC) Internals

N An unsigned 16-bit constant for iohl and fsmbi.

O An unsigned 7-bit constant whose 3 least significant bits are 0.

P An unsigned 3-bit constant for 16-byte rotates and shifts

R Call operand, reg, for indirect calls

S Call operand, symbol, for relative calls.

T Call operand, const int, for absolute calls.

U An immediate which can be loaded with the il/ila/ilh/ilhu instruc-
tions. const int is sign extended to 128 bit.

W An immediate for shift and rotate instructions. const int is treated
as a 32 bit value.

Y An immediate for and/xor/or instructions. const int is sign ex-
tended as a 128 bit.

Z An immediate for the iohl instruction. const int is sign extended
to 128 bit.

S/390 and zSeries—‘config/s390/s390.h’
a Address register (general purpose register except r0)

c Condition code register

d Data register (arbitrary general purpose register)

f Floating-point register

I Unsigned 8-bit constant (0–255)

J Unsigned 12-bit constant (0–4095)

K Signed 16-bit constant (−32768–32767)

L Value appropriate as displacement.

(0..4095)
for short displacement

(-524288..524287)
for long displacement

M Constant integer with a value of 0x7fffffff.

N Multiple letter constraint followed by 4 parameter letters.

0..9: number of the part counting from most to least signif-
icant

H,Q: mode of the part

D,S,H: mode of the containing operand

0,F: value of the other parts (F—all bits set)

The constraint matches if the specified part of a constant has a
value different from its other parts.

Chapter 16: Machine Descriptions 303

Q Memory reference without index register and with short displace-
ment.

R Memory reference with index register and short displacement.

S Memory reference without index register but with long displace-
ment.

T Memory reference with index register and long displacement.

U Pointer with short displacement.

W Pointer with long displacement.

Y Shift count operand.

Score family—‘config/score/score.h’
d Registers from r0 to r32.

e Registers from r0 to r16.

t r8—r11 or r22—r27 registers.

h hi register.

l lo register.

x hi + lo register.

q cnt register.

y lcb register.

z scb register.

a cnt + lcb + scb register.

c cr0—cr15 register.

b cp1 registers.

f cp2 registers.

i cp3 registers.

j cp1 + cp2 + cp3 registers.

I High 16-bit constant (32-bit constant with 16 LSBs zero).

J Unsigned 5 bit integer (in the range 0 to 31).

K Unsigned 16 bit integer (in the range 0 to 65535).

L Signed 16 bit integer (in the range −32768 to 32767).

M Unsigned 14 bit integer (in the range 0 to 16383).

N Signed 14 bit integer (in the range −8192 to 8191).

Z Any SYMBOL REF.

Xstormy16—‘config/stormy16/stormy16.h’
a Register r0.

304 GNU Compiler Collection (GCC) Internals

b Register r1.

c Register r2.

d Register r8.

e Registers r0 through r7.

t Registers r0 and r1.

y The carry register.

z Registers r8 and r9.

I A constant between 0 and 3 inclusive.

J A constant that has exactly one bit set.

K A constant that has exactly one bit clear.

L A constant between 0 and 255 inclusive.

M A constant between −255 and 0 inclusive.

N A constant between −3 and 0 inclusive.

O A constant between 1 and 4 inclusive.

P A constant between −4 and −1 inclusive.

Q A memory reference that is a stack push.

R A memory reference that is a stack pop.

S A memory reference that refers to a constant address of known
value.

T The register indicated by Rx (not implemented yet).

U A constant that is not between 2 and 15 inclusive.

Z The constant 0.

Xtensa—‘config/xtensa/constraints.md’

a General-purpose 32-bit register

b One-bit boolean register

A MAC16 40-bit accumulator register

I Signed 12-bit integer constant, for use in MOVI instructions

J Signed 8-bit integer constant, for use in ADDI instructions

K Integer constant valid for BccI instructions

L Unsigned constant valid for BccUI instructions

Chapter 16: Machine Descriptions 305

16.8.6 Disable insn alternatives using the enabled attribute

The enabled insn attribute may be used to disable certain insn alternatives for machine-
specific reasons. This is useful when adding new instructions to an existing pattern which
are only available for certain cpu architecture levels as specified with the -march= option.

If an insn alternative is disabled, then it will never be used. The compiler treats the
constraints for the disabled alternative as unsatisfiable.

In order to make use of the enabled attribute a back end has to add in the machine
description files:
1. A definition of the enabled insn attribute. The attribute is defined as usual using

the define_attr command. This definition should be based on other insn attributes
and/or target flags. The enabled attribute is a numeric attribute and should evaluate
to (const_int 1) for an enabled alternative and to (const_int 0) otherwise.

2. A definition of another insn attribute used to describe for what reason an insn alter-
native might be available or not. E.g. cpu_facility as in the example below.

3. An assignment for the second attribute to each insn definition combining instructions
which are not all available under the same circumstances. (Note: It obviously only
makes sense for definitions with more than one alternative. Otherwise the insn pattern
should be disabled or enabled using the insn condition.)

E.g. the following two patterns could easily be merged using the enabled attribute:

(define_insn "*movdi_old"

[(set (match_operand:DI 0 "register_operand" "=d")

(match_operand:DI 1 "register_operand" " d"))]

"!TARGET_NEW"

"lgr %0,%1")

(define_insn "*movdi_new"

[(set (match_operand:DI 0 "register_operand" "=d,f,d")

(match_operand:DI 1 "register_operand" " d,d,f"))]

"TARGET_NEW"

"@

lgr %0,%1

ldgr %0,%1

lgdr %0,%1")

to:

(define_insn "*movdi_combined"

[(set (match_operand:DI 0 "register_operand" "=d,f,d")

(match_operand:DI 1 "register_operand" " d,d,f"))]

""

"@

lgr %0,%1

ldgr %0,%1

lgdr %0,%1"

[(set_attr "cpu_facility" "*,new,new")])

with the enabled attribute defined like this:

(define_attr "cpu_facility" "standard,new" (const_string "standard"))

306 GNU Compiler Collection (GCC) Internals

(define_attr "enabled" ""

(cond [(eq_attr "cpu_facility" "standard") (const_int 1)

(and (eq_attr "cpu_facility" "new")

(ne (symbol_ref "TARGET_NEW") (const_int 0)))

(const_int 1)]

(const_int 0)))

16.8.7 Defining Machine-Specific Constraints

Machine-specific constraints fall into two categories: register and non-register constraints.
Within the latter category, constraints which allow subsets of all possible memory or address
operands should be specially marked, to give reload more information.

Machine-specific constraints can be given names of arbitrary length, but they must be
entirely composed of letters, digits, underscores (‘_’), and angle brackets (‘< >’). Like C
identifiers, they must begin with a letter or underscore.

In order to avoid ambiguity in operand constraint strings, no constraint can have a name
that begins with any other constraint’s name. For example, if x is defined as a constraint
name, xy may not be, and vice versa. As a consequence of this rule, no constraint may
begin with one of the generic constraint letters: ‘E F V X g i m n o p r s’.

Register constraints correspond directly to register classes. See Section 17.8 [Register
Classes], page 400. There is thus not much flexibility in their definitions.

[MD Expression]define_register_constraint name regclass docstring
All three arguments are string constants. name is the name of the constraint, as it
will appear in match_operand expressions. If name is a multi-letter constraint its
length shall be the same for all constraints starting with the same letter. regclass
can be either the name of the corresponding register class (see Section 17.8 [Register
Classes], page 400), or a C expression which evaluates to the appropriate register
class. If it is an expression, it must have no side effects, and it cannot look at the
operand. The usual use of expressions is to map some register constraints to NO_REGS
when the register class is not available on a given subarchitecture.
docstring is a sentence documenting the meaning of the constraint. Docstrings are
explained further below.

Non-register constraints are more like predicates: the constraint definition gives a Boolean
expression which indicates whether the constraint matches.

[MD Expression]define_constraint name docstring exp
The name and docstring arguments are the same as for define_register_
constraint, but note that the docstring comes immediately after the name for
these expressions. exp is an RTL expression, obeying the same rules as the RTL
expressions in predicate definitions. See Section 16.7.2 [Defining Predicates],
page 280, for details. If it evaluates true, the constraint matches; if it evaluates false,
it doesn’t. Constraint expressions should indicate which RTL codes they might
match, just like predicate expressions.
match_test C expressions have access to the following variables:

op The RTL object defining the operand.

Chapter 16: Machine Descriptions 307

mode The machine mode of op.

ival ‘INTVAL (op)’, if op is a const_int.

hval ‘CONST_DOUBLE_HIGH (op)’, if op is an integer const_double.

lval ‘CONST_DOUBLE_LOW (op)’, if op is an integer const_double.

rval ‘CONST_DOUBLE_REAL_VALUE (op)’, if op is a floating-point
const_double.

The *val variables should only be used once another piece of the expression has verified
that op is the appropriate kind of RTL object.

Most non-register constraints should be defined with define_constraint. The remain-
ing two definition expressions are only appropriate for constraints that should be handled
specially by reload if they fail to match.

[MD Expression]define_memory_constraint name docstring exp
Use this expression for constraints that match a subset of all memory operands:
that is, reload can make them match by converting the operand to the form
‘(mem (reg X))’, where X is a base register (from the register class specified by
BASE_REG_CLASS, see Section 17.8 [Register Classes], page 400).

For example, on the S/390, some instructions do not accept arbitrary memory ref-
erences, but only those that do not make use of an index register. The constraint
letter ‘Q’ is defined to represent a memory address of this type. If ‘Q’ is defined
with define_memory_constraint, a ‘Q’ constraint can handle any memory operand,
because reload knows it can simply copy the memory address into a base register
if required. This is analogous to the way a ‘o’ constraint can handle any memory
operand.

The syntax and semantics are otherwise identical to define_constraint.

[MD Expression]define_address_constraint name docstring exp
Use this expression for constraints that match a subset of all address operands: that
is, reload can make the constraint match by converting the operand to the form
‘(reg X)’, again with X a base register.

Constraints defined with define_address_constraint can only be used with the
address_operand predicate, or machine-specific predicates that work the same way.
They are treated analogously to the generic ‘p’ constraint.

The syntax and semantics are otherwise identical to define_constraint.

For historical reasons, names beginning with the letters ‘G H’ are reserved for constraints
that match only const_doubles, and names beginning with the letters ‘I J K L M N O P’ are
reserved for constraints that match only const_ints. This may change in the future. For
the time being, constraints with these names must be written in a stylized form, so that
genpreds can tell you did it correctly:

(define_constraint "[GHIJKLMNOP]..."

"doc..."

(and (match_code "const_int") ; const_double for G/H
condition...)) ; usually a match_test

308 GNU Compiler Collection (GCC) Internals

It is fine to use names beginning with other letters for constraints that match const_
doubles or const_ints.

Each docstring in a constraint definition should be one or more complete sentences,
marked up in Texinfo format. They are currently unused. In the future they will be copied
into the GCC manual, in Section 16.8.5 [Machine Constraints], page 288, replacing the
hand-maintained tables currently found in that section. Also, in the future the compiler
may use this to give more helpful diagnostics when poor choice of asm constraints causes a
reload failure.

If you put the pseudo-Texinfo directive ‘@internal’ at the beginning of a docstring, then
(in the future) it will appear only in the internals manual’s version of the machine-specific
constraint tables. Use this for constraints that should not appear in asm statements.

16.8.8 Testing constraints from C

It is occasionally useful to test a constraint from C code rather than implicitly via the
constraint string in a match_operand. The generated file ‘tm_p.h’ declares a few interfaces
for working with machine-specific constraints. None of these interfaces work with the generic
constraints described in Section 16.8.1 [Simple Constraints], page 282. This may change in
the future.

Warning: ‘tm_p.h’ may declare other functions that operate on constraints, besides the
ones documented here. Do not use those functions from machine-dependent code. They
exist to implement the old constraint interface that machine-independent components of
the compiler still expect. They will change or disappear in the future.

Some valid constraint names are not valid C identifiers, so there is a mangling scheme
for referring to them from C. Constraint names that do not contain angle brackets or
underscores are left unchanged. Underscores are doubled, each ‘<’ is replaced with ‘_l’, and
each ‘>’ with ‘_g’. Here are some examples:

Original Mangled
x x
P42x P42x
P4_x P4__x
P4>x P4_gx
P4>> P4_g_g
P4_g> P4__g_g

Throughout this section, the variable c is either a constraint in the abstract sense, or a
constant from enum constraint_num; the variable m is a mangled constraint name (usually
as part of a larger identifier).

[Enum]constraint_num
For each machine-specific constraint, there is a corresponding enumeration constant:
‘CONSTRAINT_’ plus the mangled name of the constraint. Functions that take an enum
constraint_num as an argument expect one of these constants.

Machine-independent constraints do not have associated constants. This may change
in the future.

Chapter 16: Machine Descriptions 309

[Function]inline bool satisfies_constraint_m (rtx exp)
For each machine-specific, non-register constraint m, there is one of these functions; it
returns true if exp satisfies the constraint. These functions are only visible if ‘rtl.h’
was included before ‘tm_p.h’.

[Function]bool constraint_satisfied_p (rtx exp, enum constraint num c)
Like the satisfies_constraint_m functions, but the constraint to test is given as
an argument, c. If c specifies a register constraint, this function will always return
false.

[Function]enum reg_class regclass_for_constraint (enum constraint num c)
Returns the register class associated with c. If c is not a register constraint, or those
registers are not available for the currently selected subtarget, returns NO_REGS.

Here is an example use of satisfies_constraint_m . In peephole optimizations (see
Section 16.18 [Peephole Definitions], page 346), operand constraint strings are ignored, so if
there are relevant constraints, they must be tested in the C condition. In the example, the
optimization is applied if operand 2 does not satisfy the ‘K’ constraint. (This is a simplified
version of a peephole definition from the i386 machine description.)

(define_peephole2

[(match_scratch:SI 3 "r")

(set (match_operand:SI 0 "register_operand" "")

(mult:SI (match_operand:SI 1 "memory_operand" "")

(match_operand:SI 2 "immediate_operand" "")))]

"!satisfies_constraint_K (operands[2])"

[(set (match_dup 3) (match_dup 1))

(set (match_dup 0) (mult:SI (match_dup 3) (match_dup 2)))]

"")

16.9 Standard Pattern Names For Generation

Here is a table of the instruction names that are meaningful in the RTL generation pass of
the compiler. Giving one of these names to an instruction pattern tells the RTL generation
pass that it can use the pattern to accomplish a certain task.

‘movm ’ Here m stands for a two-letter machine mode name, in lowercase. This instruc-
tion pattern moves data with that machine mode from operand 1 to operand
0. For example, ‘movsi’ moves full-word data.
If operand 0 is a subreg with mode m of a register whose own mode is wider
than m, the effect of this instruction is to store the specified value in the part
of the register that corresponds to mode m. Bits outside of m, but which
are within the same target word as the subreg are undefined. Bits which are
outside the target word are left unchanged.
This class of patterns is special in several ways. First of all, each of these names
up to and including full word size must be defined, because there is no other
way to copy a datum from one place to another. If there are patterns accepting
operands in larger modes, ‘movm ’ must be defined for integer modes of those
sizes.

310 GNU Compiler Collection (GCC) Internals

Second, these patterns are not used solely in the RTL generation pass. Even
the reload pass can generate move insns to copy values from stack slots into
temporary registers. When it does so, one of the operands is a hard register
and the other is an operand that can need to be reloaded into a register.
Therefore, when given such a pair of operands, the pattern must generate RTL
which needs no reloading and needs no temporary registers—no registers other
than the operands. For example, if you support the pattern with a define_
expand, then in such a case the define_expand mustn’t call force_reg or any
other such function which might generate new pseudo registers.
This requirement exists even for subword modes on a RISC machine where
fetching those modes from memory normally requires several insns and some
temporary registers.
During reload a memory reference with an invalid address may be passed as
an operand. Such an address will be replaced with a valid address later in the
reload pass. In this case, nothing may be done with the address except to use
it as it stands. If it is copied, it will not be replaced with a valid address. No
attempt should be made to make such an address into a valid address and no
routine (such as change_address) that will do so may be called. Note that
general_operand will fail when applied to such an address.
The global variable reload_in_progress (which must be explicitly declared if
required) can be used to determine whether such special handling is required.
The variety of operands that have reloads depends on the rest of the machine
description, but typically on a RISC machine these can only be pseudo regis-
ters that did not get hard registers, while on other machines explicit memory
references will get optional reloads.
If a scratch register is required to move an object to or from memory, it can be
allocated using gen_reg_rtx prior to life analysis.
If there are cases which need scratch registers during or after reload, you must
provide an appropriate secondary reload target hook.
The macro can_create_pseudo_p can be used to determine if it is unsafe to
create new pseudo registers. If this variable is nonzero, then it is unsafe to call
gen_reg_rtx to allocate a new pseudo.
The constraints on a ‘movm ’ must permit moving any hard register to any other
hard register provided that HARD_REGNO_MODE_OK permits mode m in both reg-
isters and REGISTER_MOVE_COST applied to their classes returns a value of 2.
It is obligatory to support floating point ‘movm ’ instructions into and out of any
registers that can hold fixed point values, because unions and structures (which
have modes SImode or DImode) can be in those registers and they may have
floating point members.
There may also be a need to support fixed point ‘movm ’ instructions in and out
of floating point registers. Unfortunately, I have forgotten why this was so, and
I don’t know whether it is still true. If HARD_REGNO_MODE_OK rejects fixed point
values in floating point registers, then the constraints of the fixed point ‘movm ’
instructions must be designed to avoid ever trying to reload into a floating point
register.

Chapter 16: Machine Descriptions 311

‘reload_inm ’
‘reload_outm ’

These named patterns have been obsoleted by the target hook secondary_
reload.
Like ‘movm ’, but used when a scratch register is required to move between
operand 0 and operand 1. Operand 2 describes the scratch register. See the
discussion of the SECONDARY_RELOAD_CLASS macro in see Section 17.8 [Register
Classes], page 400.
There are special restrictions on the form of the match_operands used in these
patterns. First, only the predicate for the reload operand is examined, i.e.,
reload_in examines operand 1, but not the predicates for operand 0 or 2.
Second, there may be only one alternative in the constraints. Third, only a
single register class letter may be used for the constraint; subsequent constraint
letters are ignored. As a special exception, an empty constraint string matches
the ALL_REGS register class. This may relieve ports of the burden of defining
an ALL_REGS constraint letter just for these patterns.

‘movstrictm ’
Like ‘movm ’ except that if operand 0 is a subreg with mode m of a register
whose natural mode is wider, the ‘movstrictm ’ instruction is guaranteed not
to alter any of the register except the part which belongs to mode m.

‘movmisalignm ’
This variant of a move pattern is designed to load or store a value from a
memory address that is not naturally aligned for its mode. For a store, the
memory will be in operand 0; for a load, the memory will be in operand 1.
The other operand is guaranteed not to be a memory, so that it’s easy to tell
whether this is a load or store.
This pattern is used by the autovectorizer, and when expanding a MISALIGNED_
INDIRECT_REF expression.

‘load_multiple’
Load several consecutive memory locations into consecutive registers. Operand
0 is the first of the consecutive registers, operand 1 is the first memory location,
and operand 2 is a constant: the number of consecutive registers.
Define this only if the target machine really has such an instruction; do not
define this if the most efficient way of loading consecutive registers from memory
is to do them one at a time.
On some machines, there are restrictions as to which consecutive registers can
be stored into memory, such as particular starting or ending register numbers
or only a range of valid counts. For those machines, use a define_expand (see
Section 16.15 [Expander Definitions], page 339) and make the pattern fail if the
restrictions are not met.
Write the generated insn as a parallel with elements being a set of one register
from the appropriate memory location (you may also need use or clobber
elements). Use a match_parallel (see Section 16.4 [RTL Template], page 271)
to recognize the insn. See ‘rs6000.md’ for examples of the use of this insn
pattern.

312 GNU Compiler Collection (GCC) Internals

‘store_multiple’
Similar to ‘load_multiple’, but store several consecutive registers into con-
secutive memory locations. Operand 0 is the first of the consecutive memory
locations, operand 1 is the first register, and operand 2 is a constant: the
number of consecutive registers.

‘vec_setm ’
Set given field in the vector value. Operand 0 is the vector to modify, operand
1 is new value of field and operand 2 specify the field index.

‘vec_extractm ’
Extract given field from the vector value. Operand 1 is the vector, operand 2
specify field index and operand 0 place to store value into.

‘vec_extract_evenm ’
Extract even elements from the input vectors (operand 1 and operand 2). The
even elements of operand 2 are concatenated to the even elements of operand
1 in their original order. The result is stored in operand 0. The output and
input vectors should have the same modes.

‘vec_extract_oddm ’
Extract odd elements from the input vectors (operand 1 and operand 2). The
odd elements of operand 2 are concatenated to the odd elements of operand 1
in their original order. The result is stored in operand 0. The output and input
vectors should have the same modes.

‘vec_interleave_highm ’
Merge high elements of the two input vectors into the output vector. The
output and input vectors should have the same modes (N elements). The high
N/2 elements of the first input vector are interleaved with the high N/2 elements
of the second input vector.

‘vec_interleave_lowm ’
Merge low elements of the two input vectors into the output vector. The output
and input vectors should have the same modes (N elements). The low N/2
elements of the first input vector are interleaved with the low N/2 elements of
the second input vector.

‘vec_initm ’
Initialize the vector to given values. Operand 0 is the vector to initialize and
operand 1 is parallel containing values for individual fields.

‘pushm1’ Output a push instruction. Operand 0 is value to push. Used only when PUSH_
ROUNDING is defined. For historical reason, this pattern may be missing and in
such case an mov expander is used instead, with a MEM expression forming the
push operation. The mov expander method is deprecated.

‘addm3’ Add operand 2 and operand 1, storing the result in operand 0. All operands
must have mode m. This can be used even on two-address machines, by means
of constraints requiring operands 1 and 0 to be the same location.

Chapter 16: Machine Descriptions 313

‘ssaddm3’, ‘usaddm3’
‘subm3’, ‘sssubm3’, ‘ussubm3’
‘mulm3’, ‘ssmulm3’, ‘usmulm3’
‘divm3’, ‘ssdivm3’
‘udivm3’, ‘usdivm3’
‘modm3’, ‘umodm3’
‘uminm3’, ‘umaxm3’
‘andm3’, ‘iorm3’, ‘xorm3’

Similar, for other arithmetic operations.

‘sminm3’, ‘smaxm3’
Signed minimum and maximum operations. When used with floating point, if
both operands are zeros, or if either operand is NaN, then it is unspecified which
of the two operands is returned as the result.

‘reduc_smin_m ’, ‘reduc_smax_m ’
Find the signed minimum/maximum of the elements of a vector. The vector is
operand 1, and the scalar result is stored in the least significant bits of operand
0 (also a vector). The output and input vector should have the same modes.

‘reduc_umin_m ’, ‘reduc_umax_m ’
Find the unsigned minimum/maximum of the elements of a vector. The vector
is operand 1, and the scalar result is stored in the least significant bits of operand
0 (also a vector). The output and input vector should have the same modes.

‘reduc_splus_m ’
Compute the sum of the signed elements of a vector. The vector is operand 1,
and the scalar result is stored in the least significant bits of operand 0 (also a
vector). The output and input vector should have the same modes.

‘reduc_uplus_m ’
Compute the sum of the unsigned elements of a vector. The vector is operand
1, and the scalar result is stored in the least significant bits of operand 0 (also
a vector). The output and input vector should have the same modes.

‘sdot_prodm ’
‘udot_prodm ’

Compute the sum of the products of two signed/unsigned elements. Operand 1
and operand 2 are of the same mode. Their product, which is of a wider mode,
is computed and added to operand 3. Operand 3 is of a mode equal or wider
than the mode of the product. The result is placed in operand 0, which is of
the same mode as operand 3.

‘ssum_widenm3 ’
‘usum_widenm3 ’

Operands 0 and 2 are of the same mode, which is wider than the mode of
operand 1. Add operand 1 to operand 2 and place the widened result in operand
0. (This is used express accumulation of elements into an accumulator of a wider
mode.)

314 GNU Compiler Collection (GCC) Internals

‘vec_shl_m ’, ‘vec_shr_m ’
Whole vector left/right shift in bits. Operand 1 is a vector to be shifted.
Operand 2 is an integer shift amount in bits. Operand 0 is where the resulting
shifted vector is stored. The output and input vectors should have the same
modes.

‘vec_pack_trunc_m ’
Narrow (demote) and merge the elements of two vectors. Operands 1 and 2
are vectors of the same mode having N integral or floating point elements of
size S. Operand 0 is the resulting vector in which 2*N elements of size N/2 are
concatenated after narrowing them down using truncation.

‘vec_pack_ssat_m ’, ‘vec_pack_usat_m ’
Narrow (demote) and merge the elements of two vectors. Operands 1 and 2 are
vectors of the same mode having N integral elements of size S. Operand 0 is the
resulting vector in which the elements of the two input vectors are concatenated
after narrowing them down using signed/unsigned saturating arithmetic.

‘vec_pack_sfix_trunc_m ’, ‘vec_pack_ufix_trunc_m ’
Narrow, convert to signed/unsigned integral type and merge the elements of two
vectors. Operands 1 and 2 are vectors of the same mode having N floating point
elements of size S. Operand 0 is the resulting vector in which 2*N elements of
size N/2 are concatenated.

‘vec_unpacks_hi_m ’, ‘vec_unpacks_lo_m ’
Extract and widen (promote) the high/low part of a vector of signed integral or
floating point elements. The input vector (operand 1) has N elements of size S.
Widen (promote) the high/low elements of the vector using signed or floating
point extension and place the resulting N/2 values of size 2*S in the output
vector (operand 0).

‘vec_unpacku_hi_m ’, ‘vec_unpacku_lo_m ’
Extract and widen (promote) the high/low part of a vector of unsigned inte-
gral elements. The input vector (operand 1) has N elements of size S. Widen
(promote) the high/low elements of the vector using zero extension and place
the resulting N/2 values of size 2*S in the output vector (operand 0).

‘vec_unpacks_float_hi_m ’, ‘vec_unpacks_float_lo_m ’
‘vec_unpacku_float_hi_m ’, ‘vec_unpacku_float_lo_m ’

Extract, convert to floating point type and widen the high/low part of a vector
of signed/unsigned integral elements. The input vector (operand 1) has N
elements of size S. Convert the high/low elements of the vector using floating
point conversion and place the resulting N/2 values of size 2*S in the output
vector (operand 0).

‘vec_widen_umult_hi_m ’, ‘vec_widen_umult_lo_m ’
‘vec_widen_smult_hi_m ’, ‘vec_widen_smult_lo_m ’

Signed/Unsigned widening multiplication. The two inputs (operands 1 and 2)
are vectors with N signed/unsigned elements of size S. Multiply the high/low
elements of the two vectors, and put the N/2 products of size 2*S in the output
vector (operand 0).

Chapter 16: Machine Descriptions 315

‘mulhisi3’
Multiply operands 1 and 2, which have mode HImode, and store a SImode
product in operand 0.

‘mulqihi3’, ‘mulsidi3’
Similar widening-multiplication instructions of other widths.

‘umulqihi3’, ‘umulhisi3’, ‘umulsidi3’
Similar widening-multiplication instructions that do unsigned multiplication.

‘usmulqihi3’, ‘usmulhisi3’, ‘usmulsidi3’
Similar widening-multiplication instructions that interpret the first operand as
unsigned and the second operand as signed, then do a signed multiplication.

‘smulm3_highpart’
Perform a signed multiplication of operands 1 and 2, which have mode m, and
store the most significant half of the product in operand 0. The least significant
half of the product is discarded.

‘umulm3_highpart’
Similar, but the multiplication is unsigned.

‘maddmn4’ Multiply operands 1 and 2, sign-extend them to mode n, add operand 3, and
store the result in operand 0. Operands 1 and 2 have mode m and operands 0
and 3 have mode n. Both modes must be integer or fixed-point modes and n
must be twice the size of m.
In other words, maddmn4 is like mulmn3 except that it also adds operand 3.
These instructions are not allowed to FAIL.

‘umaddmn4’
Like maddmn4, but zero-extend the multiplication operands instead of sign-
extending them.

‘ssmaddmn4’
Like maddmn4, but all involved operations must be signed-saturating.

‘usmaddmn4’
Like umaddmn4, but all involved operations must be unsigned-saturating.

‘msubmn4’ Multiply operands 1 and 2, sign-extend them to mode n, subtract the result
from operand 3, and store the result in operand 0. Operands 1 and 2 have
mode m and operands 0 and 3 have mode n. Both modes must be integer or
fixed-point modes and n must be twice the size of m.
In other words, msubmn4 is like mulmn3 except that it also subtracts the result
from operand 3.
These instructions are not allowed to FAIL.

‘umsubmn4’
Like msubmn4, but zero-extend the multiplication operands instead of sign-
extending them.

‘ssmsubmn4’
Like msubmn4, but all involved operations must be signed-saturating.

316 GNU Compiler Collection (GCC) Internals

‘usmsubmn4’
Like umsubmn4, but all involved operations must be unsigned-saturating.

‘divmodm4’
Signed division that produces both a quotient and a remainder. Operand 1 is
divided by operand 2 to produce a quotient stored in operand 0 and a remainder
stored in operand 3.
For machines with an instruction that produces both a quotient and a remain-
der, provide a pattern for ‘divmodm4’ but do not provide patterns for ‘divm3’
and ‘modm3’. This allows optimization in the relatively common case when both
the quotient and remainder are computed.
If an instruction that just produces a quotient or just a remainder exists and is
more efficient than the instruction that produces both, write the output routine
of ‘divmodm4’ to call find_reg_note and look for a REG_UNUSED note on the
quotient or remainder and generate the appropriate instruction.

‘udivmodm4’
Similar, but does unsigned division.

‘ashlm3’, ‘ssashlm3’, ‘usashlm3’
Arithmetic-shift operand 1 left by a number of bits specified by operand 2, and
store the result in operand 0. Here m is the mode of operand 0 and operand 1;
operand 2’s mode is specified by the instruction pattern, and the compiler will
convert the operand to that mode before generating the instruction. The mean-
ing of out-of-range shift counts can optionally be specified by TARGET_SHIFT_
TRUNCATION_MASK. See [TARGET SHIFT TRUNCATION MASK], page 510.
Operand 2 is always a scalar type.

‘ashrm3’, ‘lshrm3’, ‘rotlm3’, ‘rotrm3’
Other shift and rotate instructions, analogous to the ashlm3 instructions.
Operand 2 is always a scalar type.

‘vashlm3’, ‘vashrm3’, ‘vlshrm3’, ‘vrotlm3’, ‘vrotrm3’
Vector shift and rotate instructions that take vectors as operand 2 instead of a
scalar type.

‘negm2’, ‘ssnegm2’, ‘usnegm2’
Negate operand 1 and store the result in operand 0.

‘absm2’ Store the absolute value of operand 1 into operand 0.

‘sqrtm2’ Store the square root of operand 1 into operand 0.
The sqrt built-in function of C always uses the mode which corresponds to
the C data type double and the sqrtf built-in function uses the mode which
corresponds to the C data type float.

‘fmodm3’ Store the remainder of dividing operand 1 by operand 2 into operand 0, rounded
towards zero to an integer.
The fmod built-in function of C always uses the mode which corresponds to
the C data type double and the fmodf built-in function uses the mode which
corresponds to the C data type float.

Chapter 16: Machine Descriptions 317

‘remainderm3’
Store the remainder of dividing operand 1 by operand 2 into operand 0, rounded
to the nearest integer.
The remainder built-in function of C always uses the mode which corresponds
to the C data type double and the remainderf built-in function uses the mode
which corresponds to the C data type float.

‘cosm2’ Store the cosine of operand 1 into operand 0.
The cos built-in function of C always uses the mode which corresponds to
the C data type double and the cosf built-in function uses the mode which
corresponds to the C data type float.

‘sinm2’ Store the sine of operand 1 into operand 0.
The sin built-in function of C always uses the mode which corresponds to
the C data type double and the sinf built-in function uses the mode which
corresponds to the C data type float.

‘expm2’ Store the exponential of operand 1 into operand 0.
The exp built-in function of C always uses the mode which corresponds to
the C data type double and the expf built-in function uses the mode which
corresponds to the C data type float.

‘logm2’ Store the natural logarithm of operand 1 into operand 0.
The log built-in function of C always uses the mode which corresponds to
the C data type double and the logf built-in function uses the mode which
corresponds to the C data type float.

‘powm3’ Store the value of operand 1 raised to the exponent operand 2 into operand 0.
The pow built-in function of C always uses the mode which corresponds to
the C data type double and the powf built-in function uses the mode which
corresponds to the C data type float.

‘atan2m3’ Store the arc tangent (inverse tangent) of operand 1 divided by operand 2 into
operand 0, using the signs of both arguments to determine the quadrant of the
result.
The atan2 built-in function of C always uses the mode which corresponds to
the C data type double and the atan2f built-in function uses the mode which
corresponds to the C data type float.

‘floorm2’ Store the largest integral value not greater than argument.
The floor built-in function of C always uses the mode which corresponds to
the C data type double and the floorf built-in function uses the mode which
corresponds to the C data type float.

‘btruncm2’
Store the argument rounded to integer towards zero.
The trunc built-in function of C always uses the mode which corresponds to
the C data type double and the truncf built-in function uses the mode which
corresponds to the C data type float.

318 GNU Compiler Collection (GCC) Internals

‘roundm2’ Store the argument rounded to integer away from zero.
The round built-in function of C always uses the mode which corresponds to
the C data type double and the roundf built-in function uses the mode which
corresponds to the C data type float.

‘ceilm2’ Store the argument rounded to integer away from zero.
The ceil built-in function of C always uses the mode which corresponds to
the C data type double and the ceilf built-in function uses the mode which
corresponds to the C data type float.

‘nearbyintm2’
Store the argument rounded according to the default rounding mode
The nearbyint built-in function of C always uses the mode which corresponds
to the C data type double and the nearbyintf built-in function uses the mode
which corresponds to the C data type float.

‘rintm2’ Store the argument rounded according to the default rounding mode and raise
the inexact exception when the result differs in value from the argument
The rint built-in function of C always uses the mode which corresponds to
the C data type double and the rintf built-in function uses the mode which
corresponds to the C data type float.

‘lrintmn2’
Convert operand 1 (valid for floating point mode m) to fixed point mode n as
a signed number according to the current rounding mode and store in operand
0 (which has mode n).

‘lroundm2’
Convert operand 1 (valid for floating point mode m) to fixed point mode n as
a signed number rounding to nearest and away from zero and store in operand
0 (which has mode n).

‘lfloorm2’
Convert operand 1 (valid for floating point mode m) to fixed point mode n as
a signed number rounding down and store in operand 0 (which has mode n).

‘lceilm2’ Convert operand 1 (valid for floating point mode m) to fixed point mode n as
a signed number rounding up and store in operand 0 (which has mode n).

‘copysignm3’
Store a value with the magnitude of operand 1 and the sign of operand 2 into
operand 0.
The copysign built-in function of C always uses the mode which corresponds
to the C data type double and the copysignf built-in function uses the mode
which corresponds to the C data type float.

‘ffsm2’ Store into operand 0 one plus the index of the least significant 1-bit of operand
1. If operand 1 is zero, store zero. m is the mode of operand 0; operand 1’s
mode is specified by the instruction pattern, and the compiler will convert the
operand to that mode before generating the instruction.
The ffs built-in function of C always uses the mode which corresponds to the
C data type int.

Chapter 16: Machine Descriptions 319

‘clzm2’ Store into operand 0 the number of leading 0-bits in x, starting at the most
significant bit position. If x is 0, the CLZ_DEFINED_VALUE_AT_ZERO (see
Section 17.30 [Misc], page 508) macro defines if the result is undefined or has a
useful value. m is the mode of operand 0; operand 1’s mode is specified by the
instruction pattern, and the compiler will convert the operand to that mode
before generating the instruction.

‘ctzm2’ Store into operand 0 the number of trailing 0-bits in x, starting at the least
significant bit position. If x is 0, the CTZ_DEFINED_VALUE_AT_ZERO (see
Section 17.30 [Misc], page 508) macro defines if the result is undefined or has a
useful value. m is the mode of operand 0; operand 1’s mode is specified by the
instruction pattern, and the compiler will convert the operand to that mode
before generating the instruction.

‘popcountm2’
Store into operand 0 the number of 1-bits in x. m is the mode of operand 0;
operand 1’s mode is specified by the instruction pattern, and the compiler will
convert the operand to that mode before generating the instruction.

‘paritym2’
Store into operand 0 the parity of x, i.e. the number of 1-bits in x modulo 2. m is
the mode of operand 0; operand 1’s mode is specified by the instruction pattern,
and the compiler will convert the operand to that mode before generating the
instruction.

‘one_cmplm2’
Store the bitwise-complement of operand 1 into operand 0.

‘cmpm ’ Compare operand 0 and operand 1, and set the condition codes. The RTL
pattern should look like this:

(set (cc0) (compare (match_operand:m 0 ...)

(match_operand:m 1 ...)))

‘tstm ’ Compare operand 0 against zero, and set the condition codes. The RTL pattern
should look like this:

(set (cc0) (match_operand:m 0 ...))

‘tstm ’ patterns should not be defined for machines that do not use (cc0).
Doing so would confuse the optimizer since it would no longer be clear which
set operations were comparisons. The ‘cmpm ’ patterns should be used instead.

‘movmemm ’ Block move instruction. The destination and source blocks of memory are the
first two operands, and both are mem:BLKs with an address in mode Pmode.
The number of bytes to move is the third operand, in mode m. Usually, you
specify word_mode for m. However, if you can generate better code knowing
the range of valid lengths is smaller than those representable in a full word, you
should provide a pattern with a mode corresponding to the range of values you
can handle efficiently (e.g., QImode for values in the range 0–127; note we avoid
numbers that appear negative) and also a pattern with word_mode.
The fourth operand is the known shared alignment of the source and destination,
in the form of a const_int rtx. Thus, if the compiler knows that both source
and destination are word-aligned, it may provide the value 4 for this operand.

320 GNU Compiler Collection (GCC) Internals

Optional operands 5 and 6 specify expected alignment and size of block respec-
tively. The expected alignment differs from alignment in operand 4 in a way
that the blocks are not required to be aligned according to it in all cases. This
expected alignment is also in bytes, just like operand 4. Expected size, when
unknown, is set to (const_int -1).

Descriptions of multiple movmemm patterns can only be beneficial if the pat-
terns for smaller modes have fewer restrictions on their first, second and fourth
operands. Note that the mode m in movmemm does not impose any restriction
on the mode of individually moved data units in the block.

These patterns need not give special consideration to the possibility that the
source and destination strings might overlap.

‘movstr’ String copy instruction, with stpcpy semantics. Operand 0 is an output
operand in mode Pmode. The addresses of the destination and source strings
are operands 1 and 2, and both are mem:BLKs with addresses in mode Pmode.
The execution of the expansion of this pattern should store in operand 0 the
address in which the NUL terminator was stored in the destination string.

‘setmemm ’ Block set instruction. The destination string is the first operand, given as a
mem:BLK whose address is in mode Pmode. The number of bytes to set is the
second operand, in mode m. The value to initialize the memory with is the
third operand. Targets that only support the clearing of memory should reject
any value that is not the constant 0. See ‘movmemm ’ for a discussion of the choice
of mode.

The fourth operand is the known alignment of the destination, in the form of
a const_int rtx. Thus, if the compiler knows that the destination is word-
aligned, it may provide the value 4 for this operand.

Optional operands 5 and 6 specify expected alignment and size of block respec-
tively. The expected alignment differs from alignment in operand 4 in a way
that the blocks are not required to be aligned according to it in all cases. This
expected alignment is also in bytes, just like operand 4. Expected size, when
unknown, is set to (const_int -1).

The use for multiple setmemm is as for movmemm .

‘cmpstrnm ’
String compare instruction, with five operands. Operand 0 is the output; it
has mode m. The remaining four operands are like the operands of ‘movmemm ’.
The two memory blocks specified are compared byte by byte in lexicographic
order starting at the beginning of each string. The instruction is not allowed to
prefetch more than one byte at a time since either string may end in the first
byte and reading past that may access an invalid page or segment and cause a
fault. The effect of the instruction is to store a value in operand 0 whose sign
indicates the result of the comparison.

‘cmpstrm ’ String compare instruction, without known maximum length. Operand 0 is the
output; it has mode m. The second and third operand are the blocks of memory
to be compared; both are mem:BLK with an address in mode Pmode.

Chapter 16: Machine Descriptions 321

The fourth operand is the known shared alignment of the source and destination,
in the form of a const_int rtx. Thus, if the compiler knows that both source
and destination are word-aligned, it may provide the value 4 for this operand.
The two memory blocks specified are compared byte by byte in lexicographic
order starting at the beginning of each string. The instruction is not allowed to
prefetch more than one byte at a time since either string may end in the first
byte and reading past that may access an invalid page or segment and cause a
fault. The effect of the instruction is to store a value in operand 0 whose sign
indicates the result of the comparison.

‘cmpmemm ’ Block compare instruction, with five operands like the operands of ‘cmpstrm ’.
The two memory blocks specified are compared byte by byte in lexicographic
order starting at the beginning of each block. Unlike ‘cmpstrm ’ the instruction
can prefetch any bytes in the two memory blocks. The effect of the instruction is
to store a value in operand 0 whose sign indicates the result of the comparison.

‘strlenm ’ Compute the length of a string, with three operands. Operand 0 is the result
(of mode m), operand 1 is a mem referring to the first character of the string,
operand 2 is the character to search for (normally zero), and operand 3 is a
constant describing the known alignment of the beginning of the string.

‘floatmn2’
Convert signed integer operand 1 (valid for fixed point mode m) to floating
point mode n and store in operand 0 (which has mode n).

‘floatunsmn2’
Convert unsigned integer operand 1 (valid for fixed point mode m) to floating
point mode n and store in operand 0 (which has mode n).

‘fixmn2’ Convert operand 1 (valid for floating point mode m) to fixed point mode n as a
signed number and store in operand 0 (which has mode n). This instruction’s
result is defined only when the value of operand 1 is an integer.
If the machine description defines this pattern, it also needs to define the ftrunc
pattern.

‘fixunsmn2’
Convert operand 1 (valid for floating point mode m) to fixed point mode n as an
unsigned number and store in operand 0 (which has mode n). This instruction’s
result is defined only when the value of operand 1 is an integer.

‘ftruncm2’
Convert operand 1 (valid for floating point mode m) to an integer value, still
represented in floating point mode m, and store it in operand 0 (valid for floating
point mode m).

‘fix_truncmn2’
Like ‘fixmn2’ but works for any floating point value of mode m by converting
the value to an integer.

‘fixuns_truncmn2’
Like ‘fixunsmn2’ but works for any floating point value of mode m by convert-
ing the value to an integer.

322 GNU Compiler Collection (GCC) Internals

‘truncmn2’
Truncate operand 1 (valid for mode m) to mode n and store in operand 0 (which
has mode n). Both modes must be fixed point or both floating point.

‘extendmn2’
Sign-extend operand 1 (valid for mode m) to mode n and store in operand 0
(which has mode n). Both modes must be fixed point or both floating point.

‘zero_extendmn2’
Zero-extend operand 1 (valid for mode m) to mode n and store in operand 0
(which has mode n). Both modes must be fixed point.

‘fractmn2’
Convert operand 1 of mode m to mode n and store in operand 0 (which has mode
n). Mode m and mode n could be fixed-point to fixed-point, signed integer to
fixed-point, fixed-point to signed integer, floating-point to fixed-point, or fixed-
point to floating-point. When overflows or underflows happen, the results are
undefined.

‘satfractmn2’
Convert operand 1 of mode m to mode n and store in operand 0 (which has
mode n). Mode m and mode n could be fixed-point to fixed-point, signed integer
to fixed-point, or floating-point to fixed-point. When overflows or underflows
happen, the instruction saturates the results to the maximum or the minimum.

‘fractunsmn2’
Convert operand 1 of mode m to mode n and store in operand 0 (which has
mode n). Mode m and mode n could be unsigned integer to fixed-point, or
fixed-point to unsigned integer. When overflows or underflows happen, the
results are undefined.

‘satfractunsmn2’
Convert unsigned integer operand 1 of mode m to fixed-point mode n and store
in operand 0 (which has mode n). When overflows or underflows happen, the
instruction saturates the results to the maximum or the minimum.

‘extv’ Extract a bit-field from operand 1 (a register or memory operand), where
operand 2 specifies the width in bits and operand 3 the starting bit, and store
it in operand 0. Operand 0 must have mode word_mode. Operand 1 may have
mode byte_mode or word_mode; often word_mode is allowed only for registers.
Operands 2 and 3 must be valid for word_mode.
The RTL generation pass generates this instruction only with constants for
operands 2 and 3 and the constant is never zero for operand 2.
The bit-field value is sign-extended to a full word integer before it is stored in
operand 0.

‘extzv’ Like ‘extv’ except that the bit-field value is zero-extended.

‘insv’ Store operand 3 (which must be valid for word_mode) into a bit-field in operand
0, where operand 1 specifies the width in bits and operand 2 the starting bit.
Operand 0 may have mode byte_mode or word_mode; often word_mode is al-
lowed only for registers. Operands 1 and 2 must be valid for word_mode.

Chapter 16: Machine Descriptions 323

The RTL generation pass generates this instruction only with constants for
operands 1 and 2 and the constant is never zero for operand 1.

‘movmodecc’
Conditionally move operand 2 or operand 3 into operand 0 according to the
comparison in operand 1. If the comparison is true, operand 2 is moved into
operand 0, otherwise operand 3 is moved.
The mode of the operands being compared need not be the same as the operands
being moved. Some machines, sparc64 for example, have instructions that
conditionally move an integer value based on the floating point condition codes
and vice versa.
If the machine does not have conditional move instructions, do not define these
patterns.

‘addmodecc’
Similar to ‘movmodecc’ but for conditional addition. Conditionally move
operand 2 or (operands 2 + operand 3) into operand 0 according to the
comparison in operand 1. If the comparison is true, operand 2 is moved into
operand 0, otherwise (operand 2 + operand 3) is moved.

‘scond ’ Store zero or nonzero in the operand according to the condition codes. Value
stored is nonzero iff the condition cond is true. cond is the name of a comparison
operation expression code, such as eq, lt or leu.
You specify the mode that the operand must have when you write the match_
operand expression. The compiler automatically sees which mode you have
used and supplies an operand of that mode.
The value stored for a true condition must have 1 as its low bit, or else must
be negative. Otherwise the instruction is not suitable and you should omit it
from the machine description. You describe to the compiler exactly which value
is stored by defining the macro STORE_FLAG_VALUE (see Section 17.30 [Misc],
page 508). If a description cannot be found that can be used for all the ‘scond ’
patterns, you should omit those operations from the machine description.
These operations may fail, but should do so only in relatively uncommon cases;
if they would fail for common cases involving integer comparisons, it is best to
omit these patterns.
If these operations are omitted, the compiler will usually generate code that
copies the constant one to the target and branches around an assignment of
zero to the target. If this code is more efficient than the potential instructions
used for the ‘scond ’ pattern followed by those required to convert the result
into a 1 or a zero in SImode, you should omit the ‘scond ’ operations from the
machine description.

‘bcond ’ Conditional branch instruction. Operand 0 is a label_ref that refers to the
label to jump to. Jump if the condition codes meet condition cond.
Some machines do not follow the model assumed here where a comparison in-
struction is followed by a conditional branch instruction. In that case, the
‘cmpm ’ (and ‘tstm ’) patterns should simply store the operands away and gen-
erate all the required insns in a define_expand (see Section 16.15 [Expander

324 GNU Compiler Collection (GCC) Internals

Definitions], page 339) for the conditional branch operations. All calls to ex-
pand ‘bcond ’ patterns are immediately preceded by calls to expand either a
‘cmpm ’ pattern or a ‘tstm ’ pattern.

Machines that use a pseudo register for the condition code value, or where the
mode used for the comparison depends on the condition being tested, should
also use the above mechanism. See Section 16.12 [Jump Patterns], page 334.

The above discussion also applies to the ‘movmodecc’ and ‘scond ’ patterns.

‘cbranchmode4’
Conditional branch instruction combined with a compare instruction. Operand
0 is a comparison operator. Operand 1 and operand 2 are the first and second
operands of the comparison, respectively. Operand 3 is a label_ref that refers
to the label to jump to.

‘jump’ A jump inside a function; an unconditional branch. Operand 0 is the label_ref
of the label to jump to. This pattern name is mandatory on all machines.

‘call’ Subroutine call instruction returning no value. Operand 0 is the function to
call; operand 1 is the number of bytes of arguments pushed as a const_int;
operand 2 is the number of registers used as operands.

On most machines, operand 2 is not actually stored into the RTL pattern. It is
supplied for the sake of some RISC machines which need to put this information
into the assembler code; they can put it in the RTL instead of operand 1.

Operand 0 should be a mem RTX whose address is the address of the function.
Note, however, that this address can be a symbol_ref expression even if it
would not be a legitimate memory address on the target machine. If it is also
not a valid argument for a call instruction, the pattern for this operation should
be a define_expand (see Section 16.15 [Expander Definitions], page 339) that
places the address into a register and uses that register in the call instruction.

‘call_value’
Subroutine call instruction returning a value. Operand 0 is the hard register in
which the value is returned. There are three more operands, the same as the
three operands of the ‘call’ instruction (but with numbers increased by one).

Subroutines that return BLKmode objects use the ‘call’ insn.

‘call_pop’, ‘call_value_pop’
Similar to ‘call’ and ‘call_value’, except used if defined and if RETURN_POPS_
ARGS is nonzero. They should emit a parallel that contains both the function
call and a set to indicate the adjustment made to the frame pointer.

For machines where RETURN_POPS_ARGS can be nonzero, the use of these pat-
terns increases the number of functions for which the frame pointer can be
eliminated, if desired.

‘untyped_call’
Subroutine call instruction returning a value of any type. Operand 0 is the
function to call; operand 1 is a memory location where the result of calling the
function is to be stored; operand 2 is a parallel expression where each element

Chapter 16: Machine Descriptions 325

is a set expression that indicates the saving of a function return value into the
result block.
This instruction pattern should be defined to support __builtin_apply on
machines where special instructions are needed to call a subroutine with ar-
bitrary arguments or to save the value returned. This instruction pattern is
required on machines that have multiple registers that can hold a return value
(i.e. FUNCTION_VALUE_REGNO_P is true for more than one register).

‘return’ Subroutine return instruction. This instruction pattern name should be defined
only if a single instruction can do all the work of returning from a function.
Like the ‘movm ’ patterns, this pattern is also used after the RTL generation
phase. In this case it is to support machines where multiple instructions are
usually needed to return from a function, but some class of functions only re-
quires one instruction to implement a return. Normally, the applicable functions
are those which do not need to save any registers or allocate stack space.
For such machines, the condition specified in this pattern should only be true
when reload_completed is nonzero and the function’s epilogue would only be
a single instruction. For machines with register windows, the routine leaf_
function_p may be used to determine if a register window push is required.
Machines that have conditional return instructions should define patterns such
as

(define_insn ""

[(set (pc)

(if_then_else (match_operator

0 "comparison_operator"

[(cc0) (const_int 0)])

(return)

(pc)))]

"condition"

"...")

where condition would normally be the same condition specified on the named
‘return’ pattern.

‘untyped_return’
Untyped subroutine return instruction. This instruction pattern should be
defined to support __builtin_return on machines where special instructions
are needed to return a value of any type.
Operand 0 is a memory location where the result of calling a function with
__builtin_apply is stored; operand 1 is a parallel expression where each
element is a set expression that indicates the restoring of a function return
value from the result block.

‘nop’ No-op instruction. This instruction pattern name should always be defined to
output a no-op in assembler code. (const_int 0) will do as an RTL pattern.

‘indirect_jump’
An instruction to jump to an address which is operand zero. This pattern name
is mandatory on all machines.

‘casesi’ Instruction to jump through a dispatch table, including bounds checking. This
instruction takes five operands:

326 GNU Compiler Collection (GCC) Internals

1. The index to dispatch on, which has mode SImode.
2. The lower bound for indices in the table, an integer constant.
3. The total range of indices in the table—the largest index minus the smallest

one (both inclusive).
4. A label that precedes the table itself.
5. A label to jump to if the index has a value outside the bounds.

The table is a addr_vec or addr_diff_vec inside of a jump_insn. The number
of elements in the table is one plus the difference between the upper bound and
the lower bound.

‘tablejump’
Instruction to jump to a variable address. This is a low-level capability which
can be used to implement a dispatch table when there is no ‘casesi’ pattern.
This pattern requires two operands: the address or offset, and a label which
should immediately precede the jump table. If the macro CASE_VECTOR_PC_
RELATIVE evaluates to a nonzero value then the first operand is an offset which
counts from the address of the table; otherwise, it is an absolute address to
jump to. In either case, the first operand has mode Pmode.
The ‘tablejump’ insn is always the last insn before the jump table it uses. Its
assembler code normally has no need to use the second operand, but you should
incorporate it in the RTL pattern so that the jump optimizer will not delete
the table as unreachable code.

‘decrement_and_branch_until_zero’
Conditional branch instruction that decrements a register and jumps if the
register is nonzero. Operand 0 is the register to decrement and test; operand
1 is the label to jump to if the register is nonzero. See Section 16.13 [Looping
Patterns], page 336.
This optional instruction pattern is only used by the combiner, typically for
loops reversed by the loop optimizer when strength reduction is enabled.

‘doloop_end’
Conditional branch instruction that decrements a register and jumps if the
register is nonzero. This instruction takes five operands: Operand 0 is the
register to decrement and test; operand 1 is the number of loop iterations as a
const_int or const0_rtx if this cannot be determined until run-time; operand
2 is the actual or estimated maximum number of iterations as a const_int;
operand 3 is the number of enclosed loops as a const_int (an innermost loop
has a value of 1); operand 4 is the label to jump to if the register is nonzero.
See Section 16.13 [Looping Patterns], page 336.
This optional instruction pattern should be defined for machines with low-
overhead looping instructions as the loop optimizer will try to modify suit-
able loops to utilize it. If nested low-overhead looping is not supported, use a
define_expand (see Section 16.15 [Expander Definitions], page 339) and make
the pattern fail if operand 3 is not const1_rtx. Similarly, if the actual or esti-
mated maximum number of iterations is too large for this instruction, make it
fail.

Chapter 16: Machine Descriptions 327

‘doloop_begin’
Companion instruction to doloop_end required for machines that need to per-
form some initialization, such as loading special registers used by a low-overhead
looping instruction. If initialization insns do not always need to be emitted, use
a define_expand (see Section 16.15 [Expander Definitions], page 339) and make
it fail.

‘canonicalize_funcptr_for_compare’
Canonicalize the function pointer in operand 1 and store the result into operand
0.
Operand 0 is always a reg and has mode Pmode; operand 1 may be a reg, mem,
symbol_ref, const_int, etc and also has mode Pmode.
Canonicalization of a function pointer usually involves computing the address
of the function which would be called if the function pointer were used in an
indirect call.
Only define this pattern if function pointers on the target machine can have
different values but still call the same function when used in an indirect call.

‘save_stack_block’
‘save_stack_function’
‘save_stack_nonlocal’
‘restore_stack_block’
‘restore_stack_function’
‘restore_stack_nonlocal’

Most machines save and restore the stack pointer by copying it to or from an
object of mode Pmode. Do not define these patterns on such machines.
Some machines require special handling for stack pointer saves and restores. On
those machines, define the patterns corresponding to the non-standard cases by
using a define_expand (see Section 16.15 [Expander Definitions], page 339)
that produces the required insns. The three types of saves and restores are:
1. ‘save_stack_block’ saves the stack pointer at the start of a block that

allocates a variable-sized object, and ‘restore_stack_block’ restores the
stack pointer when the block is exited.

2. ‘save_stack_function’ and ‘restore_stack_function’ do a similar job
for the outermost block of a function and are used when the function al-
locates variable-sized objects or calls alloca. Only the epilogue uses the
restored stack pointer, allowing a simpler save or restore sequence on some
machines.

3. ‘save_stack_nonlocal’ is used in functions that contain labels branched to
by nested functions. It saves the stack pointer in such a way that the inner
function can use ‘restore_stack_nonlocal’ to restore the stack pointer.
The compiler generates code to restore the frame and argument pointer
registers, but some machines require saving and restoring additional data
such as register window information or stack backchains. Place insns in
these patterns to save and restore any such required data.

When saving the stack pointer, operand 0 is the save area and operand 1 is the
stack pointer. The mode used to allocate the save area defaults to Pmode but

328 GNU Compiler Collection (GCC) Internals

you can override that choice by defining the STACK_SAVEAREA_MODE macro (see
Section 17.5 [Storage Layout], page 381). You must specify an integral mode, or
VOIDmode if no save area is needed for a particular type of save (either because
no save is needed or because a machine-specific save area can be used). Operand
0 is the stack pointer and operand 1 is the save area for restore operations. If
‘save_stack_block’ is defined, operand 0 must not be VOIDmode since these
saves can be arbitrarily nested.

A save area is a mem that is at a constant offset from virtual_stack_vars_rtx
when the stack pointer is saved for use by nonlocal gotos and a reg in the other
two cases.

‘allocate_stack’
Subtract (or add if STACK_GROWS_DOWNWARD is undefined) operand 1 from the
stack pointer to create space for dynamically allocated data.

Store the resultant pointer to this space into operand 0. If you are allocating
space from the main stack, do this by emitting a move insn to copy virtual_
stack_dynamic_rtx to operand 0. If you are allocating the space elsewhere,
generate code to copy the location of the space to operand 0. In the latter
case, you must ensure this space gets freed when the corresponding space on
the main stack is free.

Do not define this pattern if all that must be done is the subtraction. Some
machines require other operations such as stack probes or maintaining the back
chain. Define this pattern to emit those operations in addition to updating the
stack pointer.

‘check_stack’
If stack checking cannot be done on your system by probing the stack with
a load or store instruction (see Section 17.10.3 [Stack Checking], page 417),
define this pattern to perform the needed check and signaling an error if the
stack has overflowed. The single operand is the location in the stack furthest
from the current stack pointer that you need to validate. Normally, on machines
where this pattern is needed, you would obtain the stack limit from a global or
thread-specific variable or register.

‘nonlocal_goto’
Emit code to generate a non-local goto, e.g., a jump from one function to a
label in an outer function. This pattern has four arguments, each representing
a value to be used in the jump. The first argument is to be loaded into the
frame pointer, the second is the address to branch to (code to dispatch to the
actual label), the third is the address of a location where the stack is saved, and
the last is the address of the label, to be placed in the location for the incoming
static chain.

On most machines you need not define this pattern, since GCC will already
generate the correct code, which is to load the frame pointer and static chain,
restore the stack (using the ‘restore_stack_nonlocal’ pattern, if defined),
and jump indirectly to the dispatcher. You need only define this pattern if this
code will not work on your machine.

Chapter 16: Machine Descriptions 329

‘nonlocal_goto_receiver’
This pattern, if defined, contains code needed at the target of a nonlocal goto
after the code already generated by GCC. You will not normally need to define
this pattern. A typical reason why you might need this pattern is if some value,
such as a pointer to a global table, must be restored when the frame pointer
is restored. Note that a nonlocal goto only occurs within a unit-of-translation,
so a global table pointer that is shared by all functions of a given module need
not be restored. There are no arguments.

‘exception_receiver’
This pattern, if defined, contains code needed at the site of an exception handler
that isn’t needed at the site of a nonlocal goto. You will not normally need
to define this pattern. A typical reason why you might need this pattern is if
some value, such as a pointer to a global table, must be restored after control
flow is branched to the handler of an exception. There are no arguments.

‘builtin_setjmp_setup’
This pattern, if defined, contains additional code needed to initialize the jmp_
buf. You will not normally need to define this pattern. A typical reason why
you might need this pattern is if some value, such as a pointer to a global table,
must be restored. Though it is preferred that the pointer value be recalculated
if possible (given the address of a label for instance). The single argument is
a pointer to the jmp_buf. Note that the buffer is five words long and that the
first three are normally used by the generic mechanism.

‘builtin_setjmp_receiver’
This pattern, if defined, contains code needed at the site of an built-in setjmp
that isn’t needed at the site of a nonlocal goto. You will not normally need
to define this pattern. A typical reason why you might need this pattern is if
some value, such as a pointer to a global table, must be restored. It takes one
argument, which is the label to which builtin longjmp transfered control; this
pattern may be emitted at a small offset from that label.

‘builtin_longjmp’
This pattern, if defined, performs the entire action of the longjmp. You will not
normally need to define this pattern unless you also define builtin_setjmp_
setup. The single argument is a pointer to the jmp_buf.

‘eh_return’
This pattern, if defined, affects the way __builtin_eh_return, and thence the
call frame exception handling library routines, are built. It is intended to handle
non-trivial actions needed along the abnormal return path.
The address of the exception handler to which the function should return is
passed as operand to this pattern. It will normally need to copied by the
pattern to some special register or memory location. If the pattern needs to
determine the location of the target call frame in order to do so, it may use
EH_RETURN_STACKADJ_RTX, if defined; it will have already been assigned.
If this pattern is not defined, the default action will be to simply copy the return
address to EH_RETURN_HANDLER_RTX. Either that macro or this pattern needs
to be defined if call frame exception handling is to be used.

330 GNU Compiler Collection (GCC) Internals

‘prologue’
This pattern, if defined, emits RTL for entry to a function. The function entry is
responsible for setting up the stack frame, initializing the frame pointer register,
saving callee saved registers, etc.
Using a prologue pattern is generally preferred over defining TARGET_ASM_
FUNCTION_PROLOGUE to emit assembly code for the prologue.
The prologue pattern is particularly useful for targets which perform instruc-
tion scheduling.

‘epilogue’
This pattern emits RTL for exit from a function. The function exit is responsible
for deallocating the stack frame, restoring callee saved registers and emitting
the return instruction.
Using an epilogue pattern is generally preferred over defining TARGET_ASM_
FUNCTION_EPILOGUE to emit assembly code for the epilogue.
The epilogue pattern is particularly useful for targets which perform instruc-
tion scheduling or which have delay slots for their return instruction.

‘sibcall_epilogue’
This pattern, if defined, emits RTL for exit from a function without the final
branch back to the calling function. This pattern will be emitted before any
sibling call (aka tail call) sites.
The sibcall_epilogue pattern must not clobber any arguments used for pa-
rameter passing or any stack slots for arguments passed to the current function.

‘trap’ This pattern, if defined, signals an error, typically by causing some kind of
signal to be raised. Among other places, it is used by the Java front end to
signal ‘invalid array index’ exceptions.

‘conditional_trap’
Conditional trap instruction. Operand 0 is a piece of RTL which performs a
comparison. Operand 1 is the trap code, an integer.
A typical conditional_trap pattern looks like

(define_insn "conditional_trap"

[(trap_if (match_operator 0 "trap_operator"

[(cc0) (const_int 0)])

(match_operand 1 "const_int_operand" "i"))]

""

"...")

‘prefetch’
This pattern, if defined, emits code for a non-faulting data prefetch instruction.
Operand 0 is the address of the memory to prefetch. Operand 1 is a constant
1 if the prefetch is preparing for a write to the memory address, or a constant
0 otherwise. Operand 2 is the expected degree of temporal locality of the data
and is a value between 0 and 3, inclusive; 0 means that the data has no temporal
locality, so it need not be left in the cache after the access; 3 means that the
data has a high degree of temporal locality and should be left in all levels of
cache possible; 1 and 2 mean, respectively, a low or moderate degree of temporal
locality.

Chapter 16: Machine Descriptions 331

Targets that do not support write prefetches or locality hints can ignore the
values of operands 1 and 2.

‘blockage’
This pattern defines a pseudo insn that prevents the instruction scheduler from
moving instructions across the boundary defined by the blockage insn. Normally
an UNSPEC VOLATILE pattern.

‘memory_barrier’
If the target memory model is not fully synchronous, then this pattern should be
defined to an instruction that orders both loads and stores before the instruction
with respect to loads and stores after the instruction. This pattern has no
operands.

‘sync_compare_and_swapmode ’
This pattern, if defined, emits code for an atomic compare-and-swap operation.
Operand 1 is the memory on which the atomic operation is performed. Operand
2 is the “old” value to be compared against the current contents of the memory
location. Operand 3 is the “new” value to store in the memory if the compare
succeeds. Operand 0 is the result of the operation; it should contain the contents
of the memory before the operation. If the compare succeeds, this should
obviously be a copy of operand 2.

This pattern must show that both operand 0 and operand 1 are modified.

This pattern must issue any memory barrier instructions such that all memory
operations before the atomic operation occur before the atomic operation and all
memory operations after the atomic operation occur after the atomic operation.

‘sync_compare_and_swap_ccmode ’
This pattern is just like sync_compare_and_swapmode , except it should act as if
compare part of the compare-and-swap were issued via cmpm . This comparison
will only be used with EQ and NE branches and setcc operations.

Some targets do expose the success or failure of the compare-and-swap operation
via the status flags. Ideally we wouldn’t need a separate named pattern in order
to take advantage of this, but the combine pass does not handle patterns with
multiple sets, which is required by definition for sync_compare_and_swapmode .

‘sync_addmode ’, ‘sync_submode ’
‘sync_iormode ’, ‘sync_andmode ’
‘sync_xormode ’, ‘sync_nandmode ’

These patterns emit code for an atomic operation on memory. Operand 0 is the
memory on which the atomic operation is performed. Operand 1 is the second
operand to the binary operator.

This pattern must issue any memory barrier instructions such that all memory
operations before the atomic operation occur before the atomic operation and all
memory operations after the atomic operation occur after the atomic operation.

If these patterns are not defined, the operation will be constructed from a
compare-and-swap operation, if defined.

332 GNU Compiler Collection (GCC) Internals

‘sync_old_addmode ’, ‘sync_old_submode ’
‘sync_old_iormode ’, ‘sync_old_andmode ’
‘sync_old_xormode ’, ‘sync_old_nandmode ’

These patterns are emit code for an atomic operation on memory, and return the
value that the memory contained before the operation. Operand 0 is the result
value, operand 1 is the memory on which the atomic operation is performed,
and operand 2 is the second operand to the binary operator.

This pattern must issue any memory barrier instructions such that all memory
operations before the atomic operation occur before the atomic operation and all
memory operations after the atomic operation occur after the atomic operation.

If these patterns are not defined, the operation will be constructed from a
compare-and-swap operation, if defined.

‘sync_new_addmode ’, ‘sync_new_submode ’
‘sync_new_iormode ’, ‘sync_new_andmode ’
‘sync_new_xormode ’, ‘sync_new_nandmode ’

These patterns are like their sync_old_op counterparts, except that they return
the value that exists in the memory location after the operation, rather than
before the operation.

‘sync_lock_test_and_setmode ’
This pattern takes two forms, based on the capabilities of the target. In either
case, operand 0 is the result of the operand, operand 1 is the memory on which
the atomic operation is performed, and operand 2 is the value to set in the lock.

In the ideal case, this operation is an atomic exchange operation, in which the
previous value in memory operand is copied into the result operand, and the
value operand is stored in the memory operand.

For less capable targets, any value operand that is not the constant 1 should
be rejected with FAIL. In this case the target may use an atomic test-and-set
bit operation. The result operand should contain 1 if the bit was previously set
and 0 if the bit was previously clear. The true contents of the memory operand
are implementation defined.

This pattern must issue any memory barrier instructions such that the pattern
as a whole acts as an acquire barrier, that is all memory operations after the
pattern do not occur until the lock is acquired.

If this pattern is not defined, the operation will be constructed from a compare-
and-swap operation, if defined.

‘sync_lock_releasemode ’
This pattern, if defined, releases a lock set by sync_lock_test_and_setmode .
Operand 0 is the memory that contains the lock; operand 1 is the value to store
in the lock.

If the target doesn’t implement full semantics for sync_lock_test_and_
setmode , any value operand which is not the constant 0 should be rejected
with FAIL, and the true contents of the memory operand are implementation
defined.

Chapter 16: Machine Descriptions 333

This pattern must issue any memory barrier instructions such that the pattern
as a whole acts as a release barrier, that is the lock is released only after all
previous memory operations have completed.
If this pattern is not defined, then a memory_barrier pattern will be emitted,
followed by a store of the value to the memory operand.

‘stack_protect_set’
This pattern, if defined, moves a Pmode value from the memory in operand 1
to the memory in operand 0 without leaving the value in a register afterward.
This is to avoid leaking the value some place that an attacker might use to
rewrite the stack guard slot after having clobbered it.
If this pattern is not defined, then a plain move pattern is generated.

‘stack_protect_test’
This pattern, if defined, compares a Pmode value from the memory in operand 1
with the memory in operand 0 without leaving the value in a register afterward
and branches to operand 2 if the values weren’t equal.
If this pattern is not defined, then a plain compare pattern and conditional
branch pattern is used.

‘clear_cache’
This pattern, if defined, flushes the instruction cache for a region of memory.
The region is bounded to by the Pmode pointers in operand 0 inclusive and
operand 1 exclusive.
If this pattern is not defined, a call to the library function __clear_cache is
used.

16.10 When the Order of Patterns Matters

Sometimes an insn can match more than one instruction pattern. Then the pattern that
appears first in the machine description is the one used. Therefore, more specific patterns
(patterns that will match fewer things) and faster instructions (those that will produce
better code when they do match) should usually go first in the description.

In some cases the effect of ordering the patterns can be used to hide a pattern when it is
not valid. For example, the 68000 has an instruction for converting a fullword to floating
point and another for converting a byte to floating point. An instruction converting an
integer to floating point could match either one. We put the pattern to convert the fullword
first to make sure that one will be used rather than the other. (Otherwise a large integer
might be generated as a single-byte immediate quantity, which would not work.) Instead
of using this pattern ordering it would be possible to make the pattern for convert-a-byte
smart enough to deal properly with any constant value.

16.11 Interdependence of Patterns

Every machine description must have a named pattern for each of the conditional branch
names ‘bcond ’. The recognition template must always have the form

(set (pc)

(if_then_else (cond (cc0) (const_int 0))

(label_ref (match_operand 0 "" ""))

334 GNU Compiler Collection (GCC) Internals

(pc)))

In addition, every machine description must have an anonymous pattern for each of the
possible reverse-conditional branches. Their templates look like

(set (pc)

(if_then_else (cond (cc0) (const_int 0))

(pc)

(label_ref (match_operand 0 "" ""))))

They are necessary because jump optimization can turn direct-conditional branches into
reverse-conditional branches.

It is often convenient to use the match_operator construct to reduce the number of
patterns that must be specified for branches. For example,

(define_insn ""

[(set (pc)

(if_then_else (match_operator 0 "comparison_operator"

[(cc0) (const_int 0)])

(pc)

(label_ref (match_operand 1 "" ""))))]

"condition"

"...")

In some cases machines support instructions identical except for the machine mode of
one or more operands. For example, there may be “sign-extend halfword” and “sign-extend
byte” instructions whose patterns are

(set (match_operand:SI 0 ...)

(extend:SI (match_operand:HI 1 ...)))

(set (match_operand:SI 0 ...)

(extend:SI (match_operand:QI 1 ...)))

Constant integers do not specify a machine mode, so an instruction to extend a constant
value could match either pattern. The pattern it actually will match is the one that appears
first in the file. For correct results, this must be the one for the widest possible mode
(HImode, here). If the pattern matches the QImode instruction, the results will be incorrect
if the constant value does not actually fit that mode.

Such instructions to extend constants are rarely generated because they are optimized
away, but they do occasionally happen in nonoptimized compilations.

If a constraint in a pattern allows a constant, the reload pass may replace a register with
a constant permitted by the constraint in some cases. Similarly for memory references.
Because of this substitution, you should not provide separate patterns for increment and
decrement instructions. Instead, they should be generated from the same pattern that sup-
ports register-register add insns by examining the operands and generating the appropriate
machine instruction.

16.12 Defining Jump Instruction Patterns

For most machines, GCC assumes that the machine has a condition code. A comparison
insn sets the condition code, recording the results of both signed and unsigned comparison
of the given operands. A separate branch insn tests the condition code and branches or not
according its value. The branch insns come in distinct signed and unsigned flavors. Many
common machines, such as the VAX, the 68000 and the 32000, work this way.

Chapter 16: Machine Descriptions 335

Some machines have distinct signed and unsigned compare instructions, and only one set
of conditional branch instructions. The easiest way to handle these machines is to treat
them just like the others until the final stage where assembly code is written. At this time,
when outputting code for the compare instruction, peek ahead at the following branch using
next_cc0_user (insn). (The variable insn refers to the insn being output, in the output-
writing code in an instruction pattern.) If the RTL says that is an unsigned branch, output
an unsigned compare; otherwise output a signed compare. When the branch itself is output,
you can treat signed and unsigned branches identically.

The reason you can do this is that GCC always generates a pair of consecutive RTL insns,
possibly separated by note insns, one to set the condition code and one to test it, and keeps
the pair inviolate until the end.

To go with this technique, you must define the machine-description macro NOTICE_
UPDATE_CC to do CC_STATUS_INIT; in other words, no compare instruction is superfluous.

Some machines have compare-and-branch instructions and no condition code. A similar
technique works for them. When it is time to “output” a compare instruction, record its
operands in two static variables. When outputting the branch-on-condition-code instruction
that follows, actually output a compare-and-branch instruction that uses the remembered
operands.

It also works to define patterns for compare-and-branch instructions. In optimizing com-
pilation, the pair of compare and branch instructions will be combined according to these
patterns. But this does not happen if optimization is not requested. So you must use one
of the solutions above in addition to any special patterns you define.

In many RISC machines, most instructions do not affect the condition code and there
may not even be a separate condition code register. On these machines, the restriction
that the definition and use of the condition code be adjacent insns is not necessary and can
prevent important optimizations. For example, on the IBM RS/6000, there is a delay for
taken branches unless the condition code register is set three instructions earlier than the
conditional branch. The instruction scheduler cannot perform this optimization if it is not
permitted to separate the definition and use of the condition code register.

On these machines, do not use (cc0), but instead use a register to represent the condition
code. If there is a specific condition code register in the machine, use a hard register. If
the condition code or comparison result can be placed in any general register, or if there
are multiple condition registers, use a pseudo register.

On some machines, the type of branch instruction generated may depend on the way the
condition code was produced; for example, on the 68k and SPARC, setting the condition
code directly from an add or subtract instruction does not clear the overflow bit the way that
a test instruction does, so a different branch instruction must be used for some conditional
branches. For machines that use (cc0), the set and use of the condition code must be
adjacent (separated only by note insns) allowing flags in cc_status to be used. (See
Section 17.16 [Condition Code], page 449.) Also, the comparison and branch insns can be
located from each other by using the functions prev_cc0_setter and next_cc0_user.

However, this is not true on machines that do not use (cc0). On those machines, no
assumptions can be made about the adjacency of the compare and branch insns and the
above methods cannot be used. Instead, we use the machine mode of the condition code
register to record different formats of the condition code register.

336 GNU Compiler Collection (GCC) Internals

Registers used to store the condition code value should have a mode that is in class MODE_
CC. Normally, it will be CCmode. If additional modes are required (as for the add example
mentioned above in the SPARC), define them in ‘machine-modes.def’ (see Section 17.16
[Condition Code], page 449). Also define SELECT_CC_MODE to choose a mode given an
operand of a compare.

If it is known during RTL generation that a different mode will be required (for example,
if the machine has separate compare instructions for signed and unsigned quantities, like
most IBM processors), they can be specified at that time.

If the cases that require different modes would be made by instruction combination, the
macro SELECT_CC_MODE determines which machine mode should be used for the comparison
result. The patterns should be written using that mode. To support the case of the add on
the SPARC discussed above, we have the pattern

(define_insn ""

[(set (reg:CC_NOOV 0)

(compare:CC_NOOV

(plus:SI (match_operand:SI 0 "register_operand" "%r")

(match_operand:SI 1 "arith_operand" "rI"))

(const_int 0)))]

""

"...")

The SELECT_CC_MODE macro on the SPARC returns CC_NOOVmode for comparisons whose
argument is a plus.

16.13 Defining Looping Instruction Patterns

Some machines have special jump instructions that can be utilized to make loops more
efficient. A common example is the 68000 ‘dbra’ instruction which performs a decrement
of a register and a branch if the result was greater than zero. Other machines, in particular
digital signal processors (DSPs), have special block repeat instructions to provide low-
overhead loop support. For example, the TI TMS320C3x/C4x DSPs have a block repeat
instruction that loads special registers to mark the top and end of a loop and to count the
number of loop iterations. This avoids the need for fetching and executing a ‘dbra’-like
instruction and avoids pipeline stalls associated with the jump.

GCC has three special named patterns to support low overhead looping. They are
‘decrement_and_branch_until_zero’, ‘doloop_begin’, and ‘doloop_end’. The first pat-
tern, ‘decrement_and_branch_until_zero’, is not emitted during RTL generation but may
be emitted during the instruction combination phase. This requires the assistance of the
loop optimizer, using information collected during strength reduction, to reverse a loop to
count down to zero. Some targets also require the loop optimizer to add a REG_NONNEG
note to indicate that the iteration count is always positive. This is needed if the target
performs a signed loop termination test. For example, the 68000 uses a pattern similar to
the following for its dbra instruction:

Chapter 16: Machine Descriptions 337

(define_insn "decrement_and_branch_until_zero"

[(set (pc)

(if_then_else

(ge (plus:SI (match_operand:SI 0 "general_operand" "+d*am")

(const_int -1))

(const_int 0))

(label_ref (match_operand 1 "" ""))

(pc)))

(set (match_dup 0)

(plus:SI (match_dup 0)

(const_int -1)))]

"find_reg_note (insn, REG_NONNEG, 0)"

"...")

Note that since the insn is both a jump insn and has an output, it must deal with its
own reloads, hence the ‘m’ constraints. Also note that since this insn is generated by
the instruction combination phase combining two sequential insns together into an implicit
parallel insn, the iteration counter needs to be biased by the same amount as the decrement
operation, in this case −1. Note that the following similar pattern will not be matched by
the combiner.

(define_insn "decrement_and_branch_until_zero"

[(set (pc)

(if_then_else

(ge (match_operand:SI 0 "general_operand" "+d*am")

(const_int 1))

(label_ref (match_operand 1 "" ""))

(pc)))

(set (match_dup 0)

(plus:SI (match_dup 0)

(const_int -1)))]

"find_reg_note (insn, REG_NONNEG, 0)"

"...")

The other two special looping patterns, ‘doloop_begin’ and ‘doloop_end’, are emitted
by the loop optimizer for certain well-behaved loops with a finite number of loop iterations
using information collected during strength reduction.

The ‘doloop_end’ pattern describes the actual looping instruction (or the implicit looping
operation) and the ‘doloop_begin’ pattern is an optional companion pattern that can be
used for initialization needed for some low-overhead looping instructions.

Note that some machines require the actual looping instruction to be emitted at the
top of the loop (e.g., the TMS320C3x/C4x DSPs). Emitting the true RTL for a looping
instruction at the top of the loop can cause problems with flow analysis. So instead, a
dummy doloop insn is emitted at the end of the loop. The machine dependent reorg pass
checks for the presence of this doloop insn and then searches back to the top of the loop,
where it inserts the true looping insn (provided there are no instructions in the loop which
would cause problems). Any additional labels can be emitted at this point. In addition,
if the desired special iteration counter register was not allocated, this machine dependent
reorg pass could emit a traditional compare and jump instruction pair.

The essential difference between the ‘decrement_and_branch_until_zero’ and the
‘doloop_end’ patterns is that the loop optimizer allocates an additional pseudo register
for the latter as an iteration counter. This pseudo register cannot be used within the loop
(i.e., general induction variables cannot be derived from it), however, in many cases the
loop induction variable may become redundant and removed by the flow pass.

338 GNU Compiler Collection (GCC) Internals

16.14 Canonicalization of Instructions

There are often cases where multiple RTL expressions could represent an operation per-
formed by a single machine instruction. This situation is most commonly encountered with
logical, branch, and multiply-accumulate instructions. In such cases, the compiler attempts
to convert these multiple RTL expressions into a single canonical form to reduce the number
of insn patterns required.

In addition to algebraic simplifications, following canonicalizations are performed:
• For commutative and comparison operators, a constant is always made the second

operand. If a machine only supports a constant as the second operand, only patterns
that match a constant in the second operand need be supplied.

• For associative operators, a sequence of operators will always chain to the left; for
instance, only the left operand of an integer plus can itself be a plus. and, ior, xor,
plus, mult, smin, smax, umin, and umax are associative when applied to integers, and
sometimes to floating-point.

• For these operators, if only one operand is a neg, not, mult, plus, or minus expression,
it will be the first operand.

• In combinations of neg, mult, plus, and minus, the neg operations (if any) will be
moved inside the operations as far as possible. For instance, (neg (mult A B)) is
canonicalized as (mult (neg A) B), but (plus (mult (neg A) B) C) is canonicalized
as (minus A (mult B C)).

• For the compare operator, a constant is always the second operand on machines where
cc0 is used (see Section 16.12 [Jump Patterns], page 334). On other machines, there are
rare cases where the compiler might want to construct a compare with a constant as the
first operand. However, these cases are not common enough for it to be worthwhile to
provide a pattern matching a constant as the first operand unless the machine actually
has such an instruction.
An operand of neg, not, mult, plus, or minus is made the first operand under the
same conditions as above.

• (ltu (plus a b) b) is converted to (ltu (plus a b) a). Likewise with geu instead
of ltu.

• (minus x (const_int n)) is converted to (plus x (const_int -n)).
• Within address computations (i.e., inside mem), a left shift is converted into the appro-

priate multiplication by a power of two.
• De Morgan’s Law is used to move bitwise negation inside a bitwise logical-and or

logical-or operation. If this results in only one operand being a not expression, it will
be the first one.
A machine that has an instruction that performs a bitwise logical-and of one operand
with the bitwise negation of the other should specify the pattern for that instruction
as

(define_insn ""

[(set (match_operand:m 0 ...)

(and:m (not:m (match_operand:m 1 ...))

(match_operand:m 2 ...)))]

"..."

"...")

Chapter 16: Machine Descriptions 339

Similarly, a pattern for a “NAND” instruction should be written
(define_insn ""

[(set (match_operand:m 0 ...)

(ior:m (not:m (match_operand:m 1 ...))

(not:m (match_operand:m 2 ...))))]

"..."

"...")

In both cases, it is not necessary to include patterns for the many logically equivalent
RTL expressions.

• The only possible RTL expressions involving both bitwise exclusive-or and bitwise
negation are (xor:m x y) and (not:m (xor:m x y)).

• The sum of three items, one of which is a constant, will only appear in the form
(plus:m (plus:m x y) constant)

• On machines that do not use cc0, (compare x (const_int 0)) will be converted to x.
• Equality comparisons of a group of bits (usually a single bit) with zero will be written

using zero_extract rather than the equivalent and or sign_extract operations.

Further canonicalization rules are defined in the function commutative_operand_
precedence in ‘gcc/rtlanal.c’.

16.15 Defining RTL Sequences for Code Generation

On some target machines, some standard pattern names for RTL generation cannot be
handled with single insn, but a sequence of RTL insns can represent them. For these target
machines, you can write a define_expand to specify how to generate the sequence of RTL.

A define_expand is an RTL expression that looks almost like a define_insn; but, unlike
the latter, a define_expand is used only for RTL generation and it can produce more than
one RTL insn.

A define_expand RTX has four operands:
• The name. Each define_expand must have a name, since the only use for it is to refer

to it by name.
• The RTL template. This is a vector of RTL expressions representing a sequence of

separate instructions. Unlike define_insn, there is no implicit surrounding PARALLEL.
• The condition, a string containing a C expression. This expression is used to express

how the availability of this pattern depends on subclasses of target machine, selected
by command-line options when GCC is run. This is just like the condition of a define_
insn that has a standard name. Therefore, the condition (if present) may not depend
on the data in the insn being matched, but only the target-machine-type flags. The
compiler needs to test these conditions during initialization in order to learn exactly
which named instructions are available in a particular run.

• The preparation statements, a string containing zero or more C statements which are
to be executed before RTL code is generated from the RTL template.
Usually these statements prepare temporary registers for use as internal operands in
the RTL template, but they can also generate RTL insns directly by calling routines
such as emit_insn, etc. Any such insns precede the ones that come from the RTL
template.

340 GNU Compiler Collection (GCC) Internals

Every RTL insn emitted by a define_expand must match some define_insn in the
machine description. Otherwise, the compiler will crash when trying to generate code for
the insn or trying to optimize it.

The RTL template, in addition to controlling generation of RTL insns, also describes
the operands that need to be specified when this pattern is used. In particular, it gives a
predicate for each operand.

A true operand, which needs to be specified in order to generate RTL from the pattern,
should be described with a match_operand in its first occurrence in the RTL template.
This enters information on the operand’s predicate into the tables that record such things.
GCC uses the information to preload the operand into a register if that is required for valid
RTL code. If the operand is referred to more than once, subsequent references should use
match_dup.

The RTL template may also refer to internal “operands” which are temporary registers
or labels used only within the sequence made by the define_expand. Internal operands are
substituted into the RTL template with match_dup, never with match_operand. The values
of the internal operands are not passed in as arguments by the compiler when it requests
use of this pattern. Instead, they are computed within the pattern, in the preparation
statements. These statements compute the values and store them into the appropriate
elements of operands so that match_dup can find them.

There are two special macros defined for use in the preparation statements: DONE and
FAIL. Use them with a following semicolon, as a statement.

DONE Use the DONE macro to end RTL generation for the pattern. The only RTL
insns resulting from the pattern on this occasion will be those already emitted
by explicit calls to emit_insn within the preparation statements; the RTL
template will not be generated.

FAIL Make the pattern fail on this occasion. When a pattern fails, it means that the
pattern was not truly available. The calling routines in the compiler will try
other strategies for code generation using other patterns.
Failure is currently supported only for binary (addition, multiplication, shifting,
etc.) and bit-field (extv, extzv, and insv) operations.

If the preparation falls through (invokes neither DONE nor FAIL), then the define_expand
acts like a define_insn in that the RTL template is used to generate the insn.

The RTL template is not used for matching, only for generating the initial insn list. If
the preparation statement always invokes DONE or FAIL, the RTL template may be reduced
to a simple list of operands, such as this example:

(define_expand "addsi3"

[(match_operand:SI 0 "register_operand" "")

(match_operand:SI 1 "register_operand" "")

(match_operand:SI 2 "register_operand" "")]

""

"

{

handle_add (operands[0], operands[1], operands[2]);

DONE;

}")

Here is an example, the definition of left-shift for the SPUR chip:

Chapter 16: Machine Descriptions 341

(define_expand "ashlsi3"

[(set (match_operand:SI 0 "register_operand" "")

(ashift:SI

(match_operand:SI 1 "register_operand" "")

(match_operand:SI 2 "nonmemory_operand" "")))]

""

"

{

if (GET_CODE (operands[2]) != CONST_INT

|| (unsigned) INTVAL (operands[2]) > 3)

FAIL;

}")

This example uses define_expand so that it can generate an RTL insn for shifting when the
shift-count is in the supported range of 0 to 3 but fail in other cases where machine insns
aren’t available. When it fails, the compiler tries another strategy using different patterns
(such as, a library call).

If the compiler were able to handle nontrivial condition-strings in patterns with names,
then it would be possible to use a define_insn in that case. Here is another case (zero-
extension on the 68000) which makes more use of the power of define_expand:

(define_expand "zero_extendhisi2"

[(set (match_operand:SI 0 "general_operand" "")

(const_int 0))

(set (strict_low_part

(subreg:HI

(match_dup 0)

0))

(match_operand:HI 1 "general_operand" ""))]

""

"operands[1] = make_safe_from (operands[1], operands[0]);")

Here two RTL insns are generated, one to clear the entire output operand and the other to
copy the input operand into its low half. This sequence is incorrect if the input operand
refers to [the old value of] the output operand, so the preparation statement makes sure this
isn’t so. The function make_safe_from copies the operands[1] into a temporary register
if it refers to operands[0]. It does this by emitting another RTL insn.

Finally, a third example shows the use of an internal operand. Zero-extension on the
SPUR chip is done by and-ing the result against a halfword mask. But this mask cannot
be represented by a const_int because the constant value is too large to be legitimate on
this machine. So it must be copied into a register with force_reg and then the register
used in the and.

(define_expand "zero_extendhisi2"

[(set (match_operand:SI 0 "register_operand" "")

(and:SI (subreg:SI

(match_operand:HI 1 "register_operand" "")

0)

(match_dup 2)))]

""

"operands[2]

= force_reg (SImode, GEN_INT (65535)); ")

Note: If the define_expand is used to serve a standard binary or unary arithmetic
operation or a bit-field operation, then the last insn it generates must not be a code_label,
barrier or note. It must be an insn, jump_insn or call_insn. If you don’t need a real

342 GNU Compiler Collection (GCC) Internals

insn at the end, emit an insn to copy the result of the operation into itself. Such an insn
will generate no code, but it can avoid problems in the compiler.

16.16 Defining How to Split Instructions

There are two cases where you should specify how to split a pattern into multiple insns.
On machines that have instructions requiring delay slots (see Section 16.19.7 [Delay Slots],
page 357) or that have instructions whose output is not available for multiple cycles (see
Section 16.19.8 [Processor pipeline description], page 358), the compiler phases that optimize
these cases need to be able to move insns into one-instruction delay slots. However, some
insns may generate more than one machine instruction. These insns cannot be placed into
a delay slot.

Often you can rewrite the single insn as a list of individual insns, each corresponding to
one machine instruction. The disadvantage of doing so is that it will cause the compilation
to be slower and require more space. If the resulting insns are too complex, it may also
suppress some optimizations. The compiler splits the insn if there is a reason to believe
that it might improve instruction or delay slot scheduling.

The insn combiner phase also splits putative insns. If three insns are merged into one
insn with a complex expression that cannot be matched by some define_insn pattern,
the combiner phase attempts to split the complex pattern into two insns that are recog-
nized. Usually it can break the complex pattern into two patterns by splitting out some
subexpression. However, in some other cases, such as performing an addition of a large
constant in two insns on a RISC machine, the way to split the addition into two insns is
machine-dependent.

The define_split definition tells the compiler how to split a complex insn into several
simpler insns. It looks like this:

(define_split

[insn-pattern]

"condition"

[new-insn-pattern-1

new-insn-pattern-2

...]

"preparation-statements")

insn-pattern is a pattern that needs to be split and condition is the final condition to be
tested, as in a define_insn. When an insn matching insn-pattern and satisfying condition
is found, it is replaced in the insn list with the insns given by new-insn-pattern-1, new-insn-
pattern-2, etc.

The preparation-statements are similar to those statements that are specified for define_
expand (see Section 16.15 [Expander Definitions], page 339) and are executed before the
new RTL is generated to prepare for the generated code or emit some insns whose pattern
is not fixed. Unlike those in define_expand, however, these statements must not generate
any new pseudo-registers. Once reload has completed, they also must not allocate any space
in the stack frame.

Patterns are matched against insn-pattern in two different circumstances. If an insn
needs to be split for delay slot scheduling or insn scheduling, the insn is already known
to be valid, which means that it must have been matched by some define_insn and, if
reload_completed is nonzero, is known to satisfy the constraints of that define_insn. In

Chapter 16: Machine Descriptions 343

that case, the new insn patterns must also be insns that are matched by some define_insn
and, if reload_completed is nonzero, must also satisfy the constraints of those definitions.

As an example of this usage of define_split, consider the following example from
‘a29k.md’, which splits a sign_extend from HImode to SImode into a pair of shift insns:

(define_split

[(set (match_operand:SI 0 "gen_reg_operand" "")

(sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]

""

[(set (match_dup 0)

(ashift:SI (match_dup 1)

(const_int 16)))

(set (match_dup 0)

(ashiftrt:SI (match_dup 0)

(const_int 16)))]

"

{ operands[1] = gen_lowpart (SImode, operands[1]); }")

When the combiner phase tries to split an insn pattern, it is always the case that the
pattern is not matched by any define_insn. The combiner pass first tries to split a single
set expression and then the same set expression inside a parallel, but followed by a
clobber of a pseudo-reg to use as a scratch register. In these cases, the combiner expects
exactly two new insn patterns to be generated. It will verify that these patterns match
some define_insn definitions, so you need not do this test in the define_split (of course,
there is no point in writing a define_split that will never produce insns that match).

Here is an example of this use of define_split, taken from ‘rs6000.md’:
(define_split

[(set (match_operand:SI 0 "gen_reg_operand" "")

(plus:SI (match_operand:SI 1 "gen_reg_operand" "")

(match_operand:SI 2 "non_add_cint_operand" "")))]

""

[(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))

(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]

"

{

int low = INTVAL (operands[2]) & 0xffff;

int high = (unsigned) INTVAL (operands[2]) >> 16;

if (low & 0x8000)

high++, low |= 0xffff0000;

operands[3] = GEN_INT (high << 16);

operands[4] = GEN_INT (low);

}")

Here the predicate non_add_cint_operand matches any const_int that is not a valid
operand of a single add insn. The add with the smaller displacement is written so that it
can be substituted into the address of a subsequent operation.

An example that uses a scratch register, from the same file, generates an equality com-
parison of a register and a large constant:

(define_split

[(set (match_operand:CC 0 "cc_reg_operand" "")

(compare:CC (match_operand:SI 1 "gen_reg_operand" "")

(match_operand:SI 2 "non_short_cint_operand" "")))

(clobber (match_operand:SI 3 "gen_reg_operand" ""))]

344 GNU Compiler Collection (GCC) Internals

"find_single_use (operands[0], insn, 0)

&& (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ

|| GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"

[(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))

(set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]

"

{

/* Get the constant we are comparing against, C, and see what it
looks like sign-extended to 16 bits. Then see what constant
could be XOR’ed with C to get the sign-extended value. */

int c = INTVAL (operands[2]);

int sextc = (c << 16) >> 16;

int xorv = c ^ sextc;

operands[4] = GEN_INT (xorv);

operands[5] = GEN_INT (sextc);

}")

To avoid confusion, don’t write a single define_split that accepts some insns that
match some define_insn as well as some insns that don’t. Instead, write two separate
define_split definitions, one for the insns that are valid and one for the insns that are
not valid.

The splitter is allowed to split jump instructions into sequence of jumps or create new
jumps in while splitting non-jump instructions. As the central flowgraph and branch pre-
diction information needs to be updated, several restriction apply.

Splitting of jump instruction into sequence that over by another jump instruction is always
valid, as compiler expect identical behavior of new jump. When new sequence contains
multiple jump instructions or new labels, more assistance is needed. Splitter is required
to create only unconditional jumps, or simple conditional jump instructions. Additionally
it must attach a REG_BR_PROB note to each conditional jump. A global variable split_
branch_probability holds the probability of the original branch in case it was an simple
conditional jump, −1 otherwise. To simplify recomputing of edge frequencies, the new
sequence is required to have only forward jumps to the newly created labels.

For the common case where the pattern of a define split exactly matches the pattern of
a define insn, use define_insn_and_split. It looks like this:

(define_insn_and_split

[insn-pattern]

"condition"

"output-template"

"split-condition"

[new-insn-pattern-1

new-insn-pattern-2

...]

"preparation-statements"

[insn-attributes])

insn-pattern, condition, output-template, and insn-attributes are used as in define_insn.
The new-insn-pattern vector and the preparation-statements are used as in a define_split.
The split-condition is also used as in define_split, with the additional behavior that if
the condition starts with ‘&&’, the condition used for the split will be the constructed as a
logical “and” of the split condition with the insn condition. For example, from i386.md:

Chapter 16: Machine Descriptions 345

(define_insn_and_split "zero_extendhisi2_and"

[(set (match_operand:SI 0 "register_operand" "=r")

(zero_extend:SI (match_operand:HI 1 "register_operand" "0")))

(clobber (reg:CC 17))]

"TARGET_ZERO_EXTEND_WITH_AND && !optimize_size"

"#"

"&& reload_completed"

[(parallel [(set (match_dup 0)

(and:SI (match_dup 0) (const_int 65535)))

(clobber (reg:CC 17))])]

""

[(set_attr "type" "alu1")])

In this case, the actual split condition will be ‘TARGET_ZERO_EXTEND_WITH_AND &&
!optimize_size && reload_completed’.

The define_insn_and_split construction provides exactly the same functionality as
two separate define_insn and define_split patterns. It exists for compactness, and as
a maintenance tool to prevent having to ensure the two patterns’ templates match.

16.17 Including Patterns in Machine Descriptions.

The include pattern tells the compiler tools where to look for patterns that are in files
other than in the file ‘.md’. This is used only at build time and there is no preprocessing
allowed.

It looks like:

(include

pathname)

For example:

(include "filestuff")

Where pathname is a string that specifies the location of the file, specifies the include file
to be in ‘gcc/config/target/filestuff’. The directory ‘gcc/config/target’ is regarded
as the default directory.

Machine descriptions may be split up into smaller more manageable subsections and
placed into subdirectories.

By specifying:

(include "BOGUS/filestuff")

the include file is specified to be in ‘gcc/config/target/BOGUS/filestuff’.

Specifying an absolute path for the include file such as;

(include "/u2/BOGUS/filestuff")

is permitted but is not encouraged.

346 GNU Compiler Collection (GCC) Internals

16.17.1 RTL Generation Tool Options for Directory Search

The ‘-Idir ’ option specifies directories to search for machine descriptions. For example:

genrecog -I/p1/abc/proc1 -I/p2/abcd/pro2 target.md

Add the directory dir to the head of the list of directories to be searched for header files.
This can be used to override a system machine definition file, substituting your own version,
since these directories are searched before the default machine description file directories.
If you use more than one ‘-I’ option, the directories are scanned in left-to-right order; the
standard default directory come after.

16.18 Machine-Specific Peephole Optimizers

In addition to instruction patterns the ‘md’ file may contain definitions of machine-specific
peephole optimizations.

The combiner does not notice certain peephole optimizations when the data flow in the
program does not suggest that it should try them. For example, sometimes two consecutive
insns related in purpose can be combined even though the second one does not appear to
use a register computed in the first one. A machine-specific peephole optimizer can detect
such opportunities.

There are two forms of peephole definitions that may be used. The original define_
peephole is run at assembly output time to match insns and substitute assembly text. Use
of define_peephole is deprecated.

A newer define_peephole2 matches insns and substitutes new insns. The peephole2
pass is run after register allocation but before scheduling, which may result in much better
code for targets that do scheduling.

16.18.1 RTL to Text Peephole Optimizers

A definition looks like this:
(define_peephole

[insn-pattern-1

insn-pattern-2

...]

"condition"

"template"

"optional-insn-attributes")

The last string operand may be omitted if you are not using any machine-specific information
in this machine description. If present, it must obey the same rules as in a define_insn.

In this skeleton, insn-pattern-1 and so on are patterns to match consecutive insns. The
optimization applies to a sequence of insns when insn-pattern-1 matches the first one, insn-
pattern-2 matches the next, and so on.

Each of the insns matched by a peephole must also match a define_insn. Peepholes are
checked only at the last stage just before code generation, and only optionally. Therefore,
any insn which would match a peephole but no define_insn will cause a crash in code
generation in an unoptimized compilation, or at various optimization stages.

The operands of the insns are matched with match_operands, match_operator, and
match_dup, as usual. What is not usual is that the operand numbers apply to all the insn

Chapter 16: Machine Descriptions 347

patterns in the definition. So, you can check for identical operands in two insns by using
match_operand in one insn and match_dup in the other.

The operand constraints used in match_operand patterns do not have any direct effect
on the applicability of the peephole, but they will be validated afterward, so make sure your
constraints are general enough to apply whenever the peephole matches. If the peephole
matches but the constraints are not satisfied, the compiler will crash.

It is safe to omit constraints in all the operands of the peephole; or you can write con-
straints which serve as a double-check on the criteria previously tested.

Once a sequence of insns matches the patterns, the condition is checked. This is a C
expression which makes the final decision whether to perform the optimization (we do so
if the expression is nonzero). If condition is omitted (in other words, the string is empty)
then the optimization is applied to every sequence of insns that matches the patterns.

The defined peephole optimizations are applied after register allocation is complete.
Therefore, the peephole definition can check which operands have ended up in which kinds
of registers, just by looking at the operands.

The way to refer to the operands in condition is to write operands[i] for operand number
i (as matched by (match_operand i ...)). Use the variable insn to refer to the last of
the insns being matched; use prev_active_insn to find the preceding insns.

When optimizing computations with intermediate results, you can use condition to match
only when the intermediate results are not used elsewhere. Use the C expression dead_or_
set_p (insn, op), where insn is the insn in which you expect the value to be used for the
last time (from the value of insn, together with use of prev_nonnote_insn), and op is the
intermediate value (from operands[i]).

Applying the optimization means replacing the sequence of insns with one new insn. The
template controls ultimate output of assembler code for this combined insn. It works exactly
like the template of a define_insn. Operand numbers in this template are the same ones
used in matching the original sequence of insns.

The result of a defined peephole optimizer does not need to match any of the insn patterns
in the machine description; it does not even have an opportunity to match them. The
peephole optimizer definition itself serves as the insn pattern to control how the insn is
output.

Defined peephole optimizers are run as assembler code is being output, so the insns they
produce are never combined or rearranged in any way.

Here is an example, taken from the 68000 machine description:
(define_peephole

[(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))

(set (match_operand:DF 0 "register_operand" "=f")

(match_operand:DF 1 "register_operand" "ad"))]

"FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"

{

rtx xoperands[2];

xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);

#ifdef MOTOROLA

output_asm_insn ("move.l %1,(sp)", xoperands);

output_asm_insn ("move.l %1,-(sp)", operands);

return "fmove.d (sp)+,%0";

#else

348 GNU Compiler Collection (GCC) Internals

output_asm_insn ("movel %1,sp@", xoperands);

output_asm_insn ("movel %1,sp@-", operands);

return "fmoved sp@+,%0";

#endif

})

The effect of this optimization is to change
jbsr _foobar

addql #4,sp

movel d1,sp@-

movel d0,sp@-

fmoved sp@+,fp0

into
jbsr _foobar

movel d1,sp@

movel d0,sp@-

fmoved sp@+,fp0

insn-pattern-1 and so on look almost like the second operand of define_insn. There
is one important difference: the second operand of define_insn consists of one or more
RTX’s enclosed in square brackets. Usually, there is only one: then the same action can
be written as an element of a define_peephole. But when there are multiple actions in a
define_insn, they are implicitly enclosed in a parallel. Then you must explicitly write
the parallel, and the square brackets within it, in the define_peephole. Thus, if an insn
pattern looks like this,

(define_insn "divmodsi4"

[(set (match_operand:SI 0 "general_operand" "=d")

(div:SI (match_operand:SI 1 "general_operand" "0")

(match_operand:SI 2 "general_operand" "dmsK")))

(set (match_operand:SI 3 "general_operand" "=d")

(mod:SI (match_dup 1) (match_dup 2)))]

"TARGET_68020"

"divsl%.l %2,%3:%0")

then the way to mention this insn in a peephole is as follows:
(define_peephole

[...

(parallel

[(set (match_operand:SI 0 "general_operand" "=d")

(div:SI (match_operand:SI 1 "general_operand" "0")

(match_operand:SI 2 "general_operand" "dmsK")))

(set (match_operand:SI 3 "general_operand" "=d")

(mod:SI (match_dup 1) (match_dup 2)))])

...]

...)

16.18.2 RTL to RTL Peephole Optimizers

The define_peephole2 definition tells the compiler how to substitute one sequence of
instructions for another sequence, what additional scratch registers may be needed and
what their lifetimes must be.

(define_peephole2

[insn-pattern-1

insn-pattern-2

...]

"condition"

Chapter 16: Machine Descriptions 349

[new-insn-pattern-1

new-insn-pattern-2

...]

"preparation-statements")

The definition is almost identical to define_split (see Section 16.16 [Insn Splitting],
page 342) except that the pattern to match is not a single instruction, but a sequence of
instructions.

It is possible to request additional scratch registers for use in the output template. If
appropriate registers are not free, the pattern will simply not match.

Scratch registers are requested with a match_scratch pattern at the top level of the input
pattern. The allocated register (initially) will be dead at the point requested within the
original sequence. If the scratch is used at more than a single point, a match_dup pattern
at the top level of the input pattern marks the last position in the input sequence at which
the register must be available.

Here is an example from the IA-32 machine description:

(define_peephole2

[(match_scratch:SI 2 "r")

(parallel [(set (match_operand:SI 0 "register_operand" "")

(match_operator:SI 3 "arith_or_logical_operator"

[(match_dup 0)

(match_operand:SI 1 "memory_operand" "")]))

(clobber (reg:CC 17))])]

"! optimize_size && ! TARGET_READ_MODIFY"

[(set (match_dup 2) (match_dup 1))

(parallel [(set (match_dup 0)

(match_op_dup 3 [(match_dup 0) (match_dup 2)]))

(clobber (reg:CC 17))])]

"")

This pattern tries to split a load from its use in the hopes that we’ll be able to schedule
around the memory load latency. It allocates a single SImode register of class GENERAL_REGS
("r") that needs to be live only at the point just before the arithmetic.

A real example requiring extended scratch lifetimes is harder to come by, so here’s a silly
made-up example:

(define_peephole2

[(match_scratch:SI 4 "r")

(set (match_operand:SI 0 "" "") (match_operand:SI 1 "" ""))

(set (match_operand:SI 2 "" "") (match_dup 1))

(match_dup 4)

(set (match_operand:SI 3 "" "") (match_dup 1))]

"/* determine 1 does not overlap 0 and 2 */"

[(set (match_dup 4) (match_dup 1))

(set (match_dup 0) (match_dup 4))

(set (match_dup 2) (match_dup 4))]

(set (match_dup 3) (match_dup 4))]

"")

If we had not added the (match_dup 4) in the middle of the input sequence, it might have
been the case that the register we chose at the beginning of the sequence is killed by the
first or second set.

350 GNU Compiler Collection (GCC) Internals

16.19 Instruction Attributes

In addition to describing the instruction supported by the target machine, the ‘md’ file also
defines a group of attributes and a set of values for each. Every generated insn is assigned
a value for each attribute. One possible attribute would be the effect that the insn has on
the machine’s condition code. This attribute can then be used by NOTICE_UPDATE_CC to
track the condition codes.

16.19.1 Defining Attributes and their Values

The define_attr expression is used to define each attribute required by the target machine.
It looks like:

(define_attr name list-of-values default)

name is a string specifying the name of the attribute being defined.

list-of-values is either a string that specifies a comma-separated list of values that can
be assigned to the attribute, or a null string to indicate that the attribute takes numeric
values.

default is an attribute expression that gives the value of this attribute for insns that
match patterns whose definition does not include an explicit value for this attribute. See
Section 16.19.4 [Attr Example], page 354, for more information on the handling of defaults.
See Section 16.19.6 [Constant Attributes], page 356, for information on attributes that do
not depend on any particular insn.

For each defined attribute, a number of definitions are written to the ‘insn-attr.h’ file.
For cases where an explicit set of values is specified for an attribute, the following are
defined:

• A ‘#define’ is written for the symbol ‘HAVE_ATTR_name ’.
• An enumerated class is defined for ‘attr_name ’ with elements of the form ‘upper-

name_upper-value ’ where the attribute name and value are first converted to upper-
case.

• A function ‘get_attr_name ’ is defined that is passed an insn and returns the attribute
value for that insn.

For example, if the following is present in the ‘md’ file:
(define_attr "type" "branch,fp,load,store,arith" ...)

the following lines will be written to the file ‘insn-attr.h’.
#define HAVE_ATTR_type

enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD,

TYPE_STORE, TYPE_ARITH};

extern enum attr_type get_attr_type ();

If the attribute takes numeric values, no enum type will be defined and the function to
obtain the attribute’s value will return int.

There are attributes which are tied to a specific meaning. These attributes are not free
to use for other purposes:

length The length attribute is used to calculate the length of emitted code
chunks. This is especially important when verifying branch distances. See
Section 16.19.5 [Insn Lengths], page 355.

Chapter 16: Machine Descriptions 351

enabled The enabled attribute can be defined to prevent certain alternatives of an insn
definition from being used during code generation. See Section 16.8.6 [Disable
Insn Alternatives], page 305.

16.19.2 Attribute Expressions

RTL expressions used to define attributes use the codes described above plus a few specific
to attribute definitions, to be discussed below. Attribute value expressions must have one
of the following forms:

(const_int i)
The integer i specifies the value of a numeric attribute. i must be non-negative.
The value of a numeric attribute can be specified either with a const_int, or
as an integer represented as a string in const_string, eq_attr (see below),
attr, symbol_ref, simple arithmetic expressions, and set_attr overrides on
specific instructions (see Section 16.19.3 [Tagging Insns], page 353).

(const_string value)
The string value specifies a constant attribute value. If value is specified as
‘"*"’, it means that the default value of the attribute is to be used for the
insn containing this expression. ‘"*"’ obviously cannot be used in the default
expression of a define_attr.
If the attribute whose value is being specified is numeric, value must be a string
containing a non-negative integer (normally const_int would be used in this
case). Otherwise, it must contain one of the valid values for the attribute.

(if_then_else test true-value false-value)
test specifies an attribute test, whose format is defined below. The value of this
expression is true-value if test is true, otherwise it is false-value.

(cond [test1 value1 ...] default)
The first operand of this expression is a vector containing an even number of
expressions and consisting of pairs of test and value expressions. The value
of the cond expression is that of the value corresponding to the first true test
expression. If none of the test expressions are true, the value of the cond
expression is that of the default expression.

test expressions can have one of the following forms:

(const_int i)
This test is true if i is nonzero and false otherwise.

(not test)
(ior test1 test2)
(and test1 test2)

These tests are true if the indicated logical function is true.

(match_operand:m n pred constraints)
This test is true if operand n of the insn whose attribute value is being de-
termined has mode m (this part of the test is ignored if m is VOIDmode) and
the function specified by the string pred returns a nonzero value when passed
operand n and mode m (this part of the test is ignored if pred is the null string).

352 GNU Compiler Collection (GCC) Internals

The constraints operand is ignored and should be the null string.

(le arith1 arith2)
(leu arith1 arith2)
(lt arith1 arith2)
(ltu arith1 arith2)
(gt arith1 arith2)
(gtu arith1 arith2)
(ge arith1 arith2)
(geu arith1 arith2)
(ne arith1 arith2)
(eq arith1 arith2)

These tests are true if the indicated comparison of the two arithmetic expres-
sions is true. Arithmetic expressions are formed with plus, minus, mult, div,
mod, abs, neg, and, ior, xor, not, ashift, lshiftrt, and ashiftrt expres-
sions.
const_int and symbol_ref are always valid terms (see Section 16.19.5 [Insn
Lengths], page 355,for additional forms). symbol_ref is a string denoting a C
expression that yields an int when evaluated by the ‘get_attr_...’ routine.
It should normally be a global variable.

(eq_attr name value)
name is a string specifying the name of an attribute.
value is a string that is either a valid value for attribute name, a comma-
separated list of values, or ‘!’ followed by a value or list. If value does not
begin with a ‘!’, this test is true if the value of the name attribute of the
current insn is in the list specified by value. If value begins with a ‘!’, this test
is true if the attribute’s value is not in the specified list.
For example,

(eq_attr "type" "load,store")

is equivalent to
(ior (eq_attr "type" "load") (eq_attr "type" "store"))

If name specifies an attribute of ‘alternative’, it refers to the value of the
compiler variable which_alternative (see Section 16.6 [Output Statement],
page 276) and the values must be small integers. For example,

(eq_attr "alternative" "2,3")

is equivalent to
(ior (eq (symbol_ref "which_alternative") (const_int 2))

(eq (symbol_ref "which_alternative") (const_int 3)))

Note that, for most attributes, an eq_attr test is simplified in cases where the
value of the attribute being tested is known for all insns matching a particular
pattern. This is by far the most common case.

(attr_flag name)
The value of an attr_flag expression is true if the flag specified by name is
true for the insn currently being scheduled.
name is a string specifying one of a fixed set of flags to test. Test the flags
forward and backward to determine the direction of a conditional branch. Test

Chapter 16: Machine Descriptions 353

the flags very_likely, likely, very_unlikely, and unlikely to determine if
a conditional branch is expected to be taken.
If the very_likely flag is true, then the likely flag is also true. Likewise for
the very_unlikely and unlikely flags.
This example describes a conditional branch delay slot which can be nullified for
forward branches that are taken (annul-true) or for backward branches which
are not taken (annul-false).

(define_delay (eq_attr "type" "cbranch")

[(eq_attr "in_branch_delay" "true")

(and (eq_attr "in_branch_delay" "true")

(attr_flag "forward"))

(and (eq_attr "in_branch_delay" "true")

(attr_flag "backward"))])

The forward and backward flags are false if the current insn being scheduled
is not a conditional branch.
The very_likely and likely flags are true if the insn being scheduled is not
a conditional branch. The very_unlikely and unlikely flags are false if the
insn being scheduled is not a conditional branch.
attr_flag is only used during delay slot scheduling and has no meaning to
other passes of the compiler.

(attr name)
The value of another attribute is returned. This is most useful for numeric
attributes, as eq_attr and attr_flag produce more efficient code for non-
numeric attributes.

16.19.3 Assigning Attribute Values to Insns

The value assigned to an attribute of an insn is primarily determined by which pattern is
matched by that insn (or which define_peephole generated it). Every define_insn and
define_peephole can have an optional last argument to specify the values of attributes for
matching insns. The value of any attribute not specified in a particular insn is set to the
default value for that attribute, as specified in its define_attr. Extensive use of default
values for attributes permits the specification of the values for only one or two attributes
in the definition of most insn patterns, as seen in the example in the next section.

The optional last argument of define_insn and define_peephole is a vector of ex-
pressions, each of which defines the value for a single attribute. The most general way of
assigning an attribute’s value is to use a set expression whose first operand is an attr
expression giving the name of the attribute being set. The second operand of the set is
an attribute expression (see Section 16.19.2 [Expressions], page 351) giving the value of the
attribute.

When the attribute value depends on the ‘alternative’ attribute (i.e., which is the
applicable alternative in the constraint of the insn), the set_attr_alternative expression
can be used. It allows the specification of a vector of attribute expressions, one for each
alternative.

When the generality of arbitrary attribute expressions is not required, the simpler set_
attr expression can be used, which allows specifying a string giving either a single attribute
value or a list of attribute values, one for each alternative.

354 GNU Compiler Collection (GCC) Internals

The form of each of the above specifications is shown below. In each case, name is a
string specifying the attribute to be set.

(set_attr name value-string)
value-string is either a string giving the desired attribute value, or a string
containing a comma-separated list giving the values for succeeding alternatives.
The number of elements must match the number of alternatives in the constraint
of the insn pattern.
Note that it may be useful to specify ‘*’ for some alternative, in which case the
attribute will assume its default value for insns matching that alternative.

(set_attr_alternative name [value1 value2 ...])
Depending on the alternative of the insn, the value will be one of the specified
values. This is a shorthand for using a cond with tests on the ‘alternative’
attribute.

(set (attr name) value)
The first operand of this set must be the special RTL expression attr, whose
sole operand is a string giving the name of the attribute being set. value is the
value of the attribute.

The following shows three different ways of representing the same attribute value speci-
fication:

(set_attr "type" "load,store,arith")

(set_attr_alternative "type"

[(const_string "load") (const_string "store")

(const_string "arith")])

(set (attr "type")

(cond [(eq_attr "alternative" "1") (const_string "load")

(eq_attr "alternative" "2") (const_string "store")]

(const_string "arith")))

The define_asm_attributes expression provides a mechanism to specify the attributes
assigned to insns produced from an asm statement. It has the form:

(define_asm_attributes [attr-sets])

where attr-sets is specified the same as for both the define_insn and the define_peephole
expressions.

These values will typically be the “worst case” attribute values. For example, they might
indicate that the condition code will be clobbered.

A specification for a length attribute is handled specially. The way to compute the length
of an asm insn is to multiply the length specified in the expression define_asm_attributes
by the number of machine instructions specified in the asm statement, determined by count-
ing the number of semicolons and newlines in the string. Therefore, the value of the length
attribute specified in a define_asm_attributes should be the maximum possible length
of a single machine instruction.

16.19.4 Example of Attribute Specifications

The judicious use of defaulting is important in the efficient use of insn attributes. Typ-
ically, insns are divided into types and an attribute, customarily called type, is used to

Chapter 16: Machine Descriptions 355

represent this value. This attribute is normally used only to define the default value for
other attributes. An example will clarify this usage.

Assume we have a RISC machine with a condition code and in which only full-word
operations are performed in registers. Let us assume that we can divide all insns into loads,
stores, (integer) arithmetic operations, floating point operations, and branches.

Here we will concern ourselves with determining the effect of an insn on the condition
code and will limit ourselves to the following possible effects: The condition code can be set
unpredictably (clobbered), not be changed, be set to agree with the results of the operation,
or only changed if the item previously set into the condition code has been modified.

Here is part of a sample ‘md’ file for such a machine:

(define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))

(define_attr "cc" "clobber,unchanged,set,change0"

(cond [(eq_attr "type" "load")

(const_string "change0")

(eq_attr "type" "store,branch")

(const_string "unchanged")

(eq_attr "type" "arith")

(if_then_else (match_operand:SI 0 "" "")

(const_string "set")

(const_string "clobber"))]

(const_string "clobber")))

(define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r,r,m")

(match_operand:SI 1 "general_operand" "r,m,r"))]

""

"@

move %0,%1

load %0,%1

store %0,%1"

[(set_attr "type" "arith,load,store")])

Note that we assume in the above example that arithmetic operations performed on
quantities smaller than a machine word clobber the condition code since they will set the
condition code to a value corresponding to the full-word result.

16.19.5 Computing the Length of an Insn

For many machines, multiple types of branch instructions are provided, each for different
length branch displacements. In most cases, the assembler will choose the correct instruction
to use. However, when the assembler cannot do so, GCC can when a special attribute, the
length attribute, is defined. This attribute must be defined to have numeric values by
specifying a null string in its define_attr.

In the case of the length attribute, two additional forms of arithmetic terms are allowed
in test expressions:

(match_dup n)
This refers to the address of operand n of the current insn, which must be a
label_ref.

356 GNU Compiler Collection (GCC) Internals

(pc) This refers to the address of the current insn. It might have been more consis-
tent with other usage to make this the address of the next insn but this would
be confusing because the length of the current insn is to be computed.

For normal insns, the length will be determined by value of the length attribute. In the
case of addr_vec and addr_diff_vec insn patterns, the length is computed as the number
of vectors multiplied by the size of each vector.

Lengths are measured in addressable storage units (bytes).
The following macros can be used to refine the length computation:

ADJUST_INSN_LENGTH (insn, length)
If defined, modifies the length assigned to instruction insn as a function of
the context in which it is used. length is an lvalue that contains the initially
computed length of the insn and should be updated with the correct length of
the insn.
This macro will normally not be required. A case in which it is required is the
ROMP. On this machine, the size of an addr_vec insn must be increased by
two to compensate for the fact that alignment may be required.

The routine that returns get_attr_length (the value of the length attribute) can be
used by the output routine to determine the form of the branch instruction to be written,
as the example below illustrates.

As an example of the specification of variable-length branches, consider the IBM 360. If
we adopt the convention that a register will be set to the starting address of a function, we
can jump to labels within 4k of the start using a four-byte instruction. Otherwise, we need
a six-byte sequence to load the address from memory and then branch to it.

On such a machine, a pattern for a branch instruction might be specified as follows:
(define_insn "jump"

[(set (pc)

(label_ref (match_operand 0 "" "")))]

""

{

return (get_attr_length (insn) == 4

? "b %l0" : "l r15,=a(%l0); br r15");

}

[(set (attr "length")

(if_then_else (lt (match_dup 0) (const_int 4096))

(const_int 4)

(const_int 6)))])

16.19.6 Constant Attributes

A special form of define_attr, where the expression for the default value is a const
expression, indicates an attribute that is constant for a given run of the compiler. Constant
attributes may be used to specify which variety of processor is used. For example,

(define_attr "cpu" "m88100,m88110,m88000"

(const

(cond [(symbol_ref "TARGET_88100") (const_string "m88100")

(symbol_ref "TARGET_88110") (const_string "m88110")]

(const_string "m88000"))))

(define_attr "memory" "fast,slow"

Chapter 16: Machine Descriptions 357

(const

(if_then_else (symbol_ref "TARGET_FAST_MEM")

(const_string "fast")

(const_string "slow"))))

The routine generated for constant attributes has no parameters as it does not depend
on any particular insn. RTL expressions used to define the value of a constant attribute
may use the symbol_ref form, but may not use either the match_operand form or eq_attr
forms involving insn attributes.

16.19.7 Delay Slot Scheduling

The insn attribute mechanism can be used to specify the requirements for delay slots, if any,
on a target machine. An instruction is said to require a delay slot if some instructions that
are physically after the instruction are executed as if they were located before it. Classic
examples are branch and call instructions, which often execute the following instruction
before the branch or call is performed.

On some machines, conditional branch instructions can optionally annul instructions in
the delay slot. This means that the instruction will not be executed for certain branch
outcomes. Both instructions that annul if the branch is true and instructions that annul if
the branch is false are supported.

Delay slot scheduling differs from instruction scheduling in that determining whether an
instruction needs a delay slot is dependent only on the type of instruction being generated,
not on data flow between the instructions. See the next section for a discussion of data-
dependent instruction scheduling.

The requirement of an insn needing one or more delay slots is indicated via the define_
delay expression. It has the following form:

(define_delay test

[delay-1 annul-true-1 annul-false-1

delay-2 annul-true-2 annul-false-2

...])

test is an attribute test that indicates whether this define_delay applies to a particular
insn. If so, the number of required delay slots is determined by the length of the vector
specified as the second argument. An insn placed in delay slot n must satisfy attribute
test delay-n. annul-true-n is an attribute test that specifies which insns may be annulled
if the branch is true. Similarly, annul-false-n specifies which insns in the delay slot may
be annulled if the branch is false. If annulling is not supported for that delay slot, (nil)
should be coded.

For example, in the common case where branch and call insns require a single delay slot,
which may contain any insn other than a branch or call, the following would be placed in
the ‘md’ file:

(define_delay (eq_attr "type" "branch,call")

[(eq_attr "type" "!branch,call") (nil) (nil)])

Multiple define_delay expressions may be specified. In this case, each such expression
specifies different delay slot requirements and there must be no insn for which tests in two
define_delay expressions are both true.

For example, if we have a machine that requires one delay slot for branches but two for
calls, no delay slot can contain a branch or call insn, and any valid insn in the delay slot
for the branch can be annulled if the branch is true, we might represent this as follows:

358 GNU Compiler Collection (GCC) Internals

(define_delay (eq_attr "type" "branch")

[(eq_attr "type" "!branch,call")

(eq_attr "type" "!branch,call")

(nil)])

(define_delay (eq_attr "type" "call")

[(eq_attr "type" "!branch,call") (nil) (nil)

(eq_attr "type" "!branch,call") (nil) (nil)])

16.19.8 Specifying processor pipeline description

To achieve better performance, most modern processors (super-pipelined, superscalar RISC,
and VLIW processors) have many functional units on which several instructions can be exe-
cuted simultaneously. An instruction starts execution if its issue conditions are satisfied. If
not, the instruction is stalled until its conditions are satisfied. Such interlock (pipeline) delay
causes interruption of the fetching of successor instructions (or demands nop instructions,
e.g. for some MIPS processors).

There are two major kinds of interlock delays in modern processors. The first one is
a data dependence delay determining instruction latency time. The instruction execution
is not started until all source data have been evaluated by prior instructions (there are
more complex cases when the instruction execution starts even when the data are not avail-
able but will be ready in given time after the instruction execution start). Taking the
data dependence delays into account is simple. The data dependence (true, output, and
anti-dependence) delay between two instructions is given by a constant. In most cases
this approach is adequate. The second kind of interlock delays is a reservation delay. The
reservation delay means that two instructions under execution will be in need of shared pro-
cessors resources, i.e. buses, internal registers, and/or functional units, which are reserved
for some time. Taking this kind of delay into account is complex especially for modern RISC
processors.

The task of exploiting more processor parallelism is solved by an instruction scheduler.
For a better solution to this problem, the instruction scheduler has to have an adequate
description of the processor parallelism (or pipeline description). GCC machine descriptions
describe processor parallelism and functional unit reservations for groups of instructions
with the aid of regular expressions.

The GCC instruction scheduler uses a pipeline hazard recognizer to figure out the pos-
sibility of the instruction issue by the processor on a given simulated processor cycle. The
pipeline hazard recognizer is automatically generated from the processor pipeline descrip-
tion. The pipeline hazard recognizer generated from the machine description is based on
a deterministic finite state automaton (DFA): the instruction issue is possible if there is
a transition from one automaton state to another one. This algorithm is very fast, and
furthermore, its speed is not dependent on processor complexity1.

The rest of this section describes the directives that constitute an automaton-based pro-
cessor pipeline description. The order of these constructions within the machine description
file is not important.

1 However, the size of the automaton depends on processor complexity. To limit this effect, machine
descriptions can split orthogonal parts of the machine description among several automata: but then,
since each of these must be stepped independently, this does cause a small decrease in the algorithm’s
performance.

Chapter 16: Machine Descriptions 359

The following optional construction describes names of automata generated and used
for the pipeline hazards recognition. Sometimes the generated finite state automaton used
by the pipeline hazard recognizer is large. If we use more than one automaton and bind
functional units to the automata, the total size of the automata is usually less than the
size of the single automaton. If there is no one such construction, only one finite state
automaton is generated.

(define_automaton automata-names)

automata-names is a string giving names of the automata. The names are separated by
commas. All the automata should have unique names. The automaton name is used in the
constructions define_cpu_unit and define_query_cpu_unit.

Each processor functional unit used in the description of instruction reservations should
be described by the following construction.

(define_cpu_unit unit-names [automaton-name])

unit-names is a string giving the names of the functional units separated by commas.
Don’t use name ‘nothing’, it is reserved for other goals.

automaton-name is a string giving the name of the automaton with which the unit is
bound. The automaton should be described in construction define_automaton. You should
give automaton-name, if there is a defined automaton.

The assignment of units to automata are constrained by the uses of the units in insn
reservations. The most important constraint is: if a unit reservation is present on a partic-
ular cycle of an alternative for an insn reservation, then some unit from the same automaton
must be present on the same cycle for the other alternatives of the insn reservation. The
rest of the constraints are mentioned in the description of the subsequent constructions.

The following construction describes CPU functional units analogously to define_cpu_
unit. The reservation of such units can be queried for an automaton state. The instruction
scheduler never queries reservation of functional units for given automaton state. So as
a rule, you don’t need this construction. This construction could be used for future code
generation goals (e.g. to generate VLIW insn templates).

(define_query_cpu_unit unit-names [automaton-name])

unit-names is a string giving names of the functional units separated by commas.
automaton-name is a string giving the name of the automaton with which the unit is

bound.
The following construction is the major one to describe pipeline characteristics of an

instruction.
(define_insn_reservation insn-name default_latency

condition regexp)

default latency is a number giving latency time of the instruction. There is an important
difference between the old description and the automaton based pipeline description. The
latency time is used for all dependencies when we use the old description. In the automa-
ton based pipeline description, the given latency time is only used for true dependencies.
The cost of anti-dependencies is always zero and the cost of output dependencies is the
difference between latency times of the producing and consuming insns (if the difference is
negative, the cost is considered to be zero). You can always change the default costs for
any description by using the target hook TARGET_SCHED_ADJUST_COST (see Section 17.18
[Scheduling], page 456).

360 GNU Compiler Collection (GCC) Internals

insn-name is a string giving the internal name of the insn. The internal names are
used in constructions define_bypass and in the automaton description file generated for
debugging. The internal name has nothing in common with the names in define_insn. It
is a good practice to use insn classes described in the processor manual.

condition defines what RTL insns are described by this construction. You should re-
member that you will be in trouble if condition for two or more different define_insn_
reservation constructions is TRUE for an insn. In this case what reservation will be used
for the insn is not defined. Such cases are not checked during generation of the pipeline haz-
ards recognizer because in general recognizing that two conditions may have the same value
is quite difficult (especially if the conditions contain symbol_ref). It is also not checked
during the pipeline hazard recognizer work because it would slow down the recognizer con-
siderably.

regexp is a string describing the reservation of the cpu’s functional units by the instruc-
tion. The reservations are described by a regular expression according to the following
syntax:

regexp = regexp "," oneof

| oneof

oneof = oneof "|" allof

| allof

allof = allof "+" repeat

| repeat

repeat = element "*" number

| element

element = cpu_function_unit_name

| reservation_name

| result_name

| "nothing"

| "(" regexp ")"

• ‘,’ is used for describing the start of the next cycle in the reservation.

• ‘|’ is used for describing a reservation described by the first regular expression or a
reservation described by the second regular expression or etc.

• ‘+’ is used for describing a reservation described by the first regular expression and a
reservation described by the second regular expression and etc.

• ‘*’ is used for convenience and simply means a sequence in which the regular expression
are repeated number times with cycle advancing (see ‘,’).

• ‘cpu_function_unit_name’ denotes reservation of the named functional unit.

• ‘reservation_name’ — see description of construction ‘define_reservation’.

• ‘nothing’ denotes no unit reservations.

Sometimes unit reservations for different insns contain common parts. In such case,
you can simplify the pipeline description by describing the common part by the following
construction

(define_reservation reservation-name regexp)

Chapter 16: Machine Descriptions 361

reservation-name is a string giving name of regexp. Functional unit names and reservation
names are in the same name space. So the reservation names should be different from the
functional unit names and can not be the reserved name ‘nothing’.

The following construction is used to describe exceptions in the latency time for given
instruction pair. This is so called bypasses.

(define_bypass number out_insn_names in_insn_names

[guard])

number defines when the result generated by the instructions given in string
out insn names will be ready for the instructions given in string in insn names. The
instructions in the string are separated by commas.

guard is an optional string giving the name of a C function which defines an additional
guard for the bypass. The function will get the two insns as parameters. If the function
returns zero the bypass will be ignored for this case. The additional guard is necessary to
recognize complicated bypasses, e.g. when the consumer is only an address of insn ‘store’
(not a stored value).

If there are more one bypass with the same output and input insns, the chosen bypass is
the first bypass with a guard in description whose guard function returns nonzero. If there
is no such bypass, then bypass without the guard function is chosen.

The following five constructions are usually used to describe VLIW processors, or more
precisely, to describe a placement of small instructions into VLIW instruction slots. They
can be used for RISC processors, too.

(exclusion_set unit-names unit-names)

(presence_set unit-names patterns)

(final_presence_set unit-names patterns)

(absence_set unit-names patterns)

(final_absence_set unit-names patterns)

unit-names is a string giving names of functional units separated by commas.
patterns is a string giving patterns of functional units separated by comma. Currently

pattern is one unit or units separated by white-spaces.
The first construction (‘exclusion_set’) means that each functional unit in the first

string can not be reserved simultaneously with a unit whose name is in the second string
and vice versa. For example, the construction is useful for describing processors (e.g. some
SPARC processors) with a fully pipelined floating point functional unit which can execute
simultaneously only single floating point insns or only double floating point insns.

The second construction (‘presence_set’) means that each functional unit in the first
string can not be reserved unless at least one of pattern of units whose names are in the
second string is reserved. This is an asymmetric relation. For example, it is useful for
description that VLIW ‘slot1’ is reserved after ‘slot0’ reservation. We could describe it
by the following construction

(presence_set "slot1" "slot0")

Or ‘slot1’ is reserved only after ‘slot0’ and unit ‘b0’ reservation. In this case we could
write

(presence_set "slot1" "slot0 b0")

The third construction (‘final_presence_set’) is analogous to ‘presence_set’. The
difference between them is when checking is done. When an instruction is issued in given

362 GNU Compiler Collection (GCC) Internals

automaton state reflecting all current and planned unit reservations, the automaton state
is changed. The first state is a source state, the second one is a result state. Checking for
‘presence_set’ is done on the source state reservation, checking for ‘final_presence_set’
is done on the result reservation. This construction is useful to describe a reservation which
is actually two subsequent reservations. For example, if we use

(presence_set "slot1" "slot0")

the following insn will be never issued (because ‘slot1’ requires ‘slot0’ which is absent
in the source state).

(define_reservation "insn_and_nop" "slot0 + slot1")

but it can be issued if we use analogous ‘final_presence_set’.

The forth construction (‘absence_set’) means that each functional unit in the first string
can be reserved only if each pattern of units whose names are in the second string is not
reserved. This is an asymmetric relation (actually ‘exclusion_set’ is analogous to this
one but it is symmetric). For example it might be useful in a VLIW description to say that
‘slot0’ cannot be reserved after either ‘slot1’ or ‘slot2’ have been reserved. This can be
described as:

(absence_set "slot0" "slot1, slot2")

Or ‘slot2’ can not be reserved if ‘slot0’ and unit ‘b0’ are reserved or ‘slot1’ and unit
‘b1’ are reserved. In this case we could write

(absence_set "slot2" "slot0 b0, slot1 b1")

All functional units mentioned in a set should belong to the same automaton.

The last construction (‘final_absence_set’) is analogous to ‘absence_set’ but checking
is done on the result (state) reservation. See comments for ‘final_presence_set’.

You can control the generator of the pipeline hazard recognizer with the following con-
struction.

(automata_option options)

options is a string giving options which affect the generated code. Currently there are
the following options:

• no-minimization makes no minimization of the automaton. This is only worth to do
when we are debugging the description and need to look more accurately at reservations
of states.

• time means printing time statistics about the generation of automata.

• stats means printing statistics about the generated automata such as the number of
DFA states, NDFA states and arcs.

• v means a generation of the file describing the result automata. The file has suffix
‘.dfa’ and can be used for the description verification and debugging.

• w means a generation of warning instead of error for non-critical errors.

• ndfa makes nondeterministic finite state automata. This affects the treatment of op-
erator ‘|’ in the regular expressions. The usual treatment of the operator is to try the
first alternative and, if the reservation is not possible, the second alternative. The non-
deterministic treatment means trying all alternatives, some of them may be rejected
by reservations in the subsequent insns.

Chapter 16: Machine Descriptions 363

• progress means output of a progress bar showing how many states were generated so
far for automaton being processed. This is useful during debugging a DFA description.
If you see too many generated states, you could interrupt the generator of the pipeline
hazard recognizer and try to figure out a reason for generation of the huge automaton.

As an example, consider a superscalar RISC machine which can issue three insns (two
integer insns and one floating point insn) on the cycle but can finish only two insns. To
describe this, we define the following functional units.

(define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline")

(define_cpu_unit "port0, port1")

All simple integer insns can be executed in any integer pipeline and their result is ready
in two cycles. The simple integer insns are issued into the first pipeline unless it is reserved,
otherwise they are issued into the second pipeline. Integer division and multiplication insns
can be executed only in the second integer pipeline and their results are ready correspond-
ingly in 8 and 4 cycles. The integer division is not pipelined, i.e. the subsequent integer
division insn can not be issued until the current division insn finished. Floating point insns
are fully pipelined and their results are ready in 3 cycles. Where the result of a floating point
insn is used by an integer insn, an additional delay of one cycle is incurred. To describe all
of this we could specify

(define_cpu_unit "div")

(define_insn_reservation "simple" 2 (eq_attr "type" "int")

"(i0_pipeline | i1_pipeline), (port0 | port1)")

(define_insn_reservation "mult" 4 (eq_attr "type" "mult")

"i1_pipeline, nothing*2, (port0 | port1)")

(define_insn_reservation "div" 8 (eq_attr "type" "div")

"i1_pipeline, div*7, div + (port0 | port1)")

(define_insn_reservation "float" 3 (eq_attr "type" "float")

"f_pipeline, nothing, (port0 | port1))

(define_bypass 4 "float" "simple,mult,div")

To simplify the description we could describe the following reservation
(define_reservation "finish" "port0|port1")

and use it in all define_insn_reservation as in the following construction
(define_insn_reservation "simple" 2 (eq_attr "type" "int")

"(i0_pipeline | i1_pipeline), finish")

16.20 Conditional Execution

A number of architectures provide for some form of conditional execution, or predication.
The hallmark of this feature is the ability to nullify most of the instructions in the instruction
set. When the instruction set is large and not entirely symmetric, it can be quite tedious
to describe these forms directly in the ‘.md’ file. An alternative is the define_cond_exec
template.

(define_cond_exec

[predicate-pattern]

"condition"

"output-template")

364 GNU Compiler Collection (GCC) Internals

predicate-pattern is the condition that must be true for the insn to be executed at runtime
and should match a relational operator. One can use match_operator to match several
relational operators at once. Any match_operand operands must have no more than one
alternative.

condition is a C expression that must be true for the generated pattern to match.

output-template is a string similar to the define_insn output template (see Section 16.5
[Output Template], page 275), except that the ‘*’ and ‘@’ special cases do not apply. This
is only useful if the assembly text for the predicate is a simple prefix to the main insn. In
order to handle the general case, there is a global variable current_insn_predicate that
will contain the entire predicate if the current insn is predicated, and will otherwise be NULL.

When define_cond_exec is used, an implicit reference to the predicable instruction
attribute is made. See Section 16.19 [Insn Attributes], page 350. This attribute must be
boolean (i.e. have exactly two elements in its list-of-values). Further, it must not be used
with complex expressions. That is, the default and all uses in the insns must be a simple
constant, not dependent on the alternative or anything else.

For each define_insn for which the predicable attribute is true, a new define_insn
pattern will be generated that matches a predicated version of the instruction. For example,

(define_insn "addsi"

[(set (match_operand:SI 0 "register_operand" "r")

(plus:SI (match_operand:SI 1 "register_operand" "r")

(match_operand:SI 2 "register_operand" "r")))]

"test1"

"add %2,%1,%0")

(define_cond_exec

[(ne (match_operand:CC 0 "register_operand" "c")

(const_int 0))]

"test2"

"(%0)")

generates a new pattern
(define_insn ""

[(cond_exec

(ne (match_operand:CC 3 "register_operand" "c") (const_int 0))

(set (match_operand:SI 0 "register_operand" "r")

(plus:SI (match_operand:SI 1 "register_operand" "r")

(match_operand:SI 2 "register_operand" "r"))))]

"(test2) && (test1)"

"(%3) add %2,%1,%0")

16.21 Constant Definitions

Using literal constants inside instruction patterns reduces legibility and can be a mainte-
nance problem.

To overcome this problem, you may use the define_constants expression. It contains
a vector of name-value pairs. From that point on, wherever any of the names appears in
the MD file, it is as if the corresponding value had been written instead. You may use
define_constants multiple times; each appearance adds more constants to the table. It
is an error to redefine a constant with a different value.

To come back to the a29k load multiple example, instead of

Chapter 16: Machine Descriptions 365

(define_insn ""

[(match_parallel 0 "load_multiple_operation"

[(set (match_operand:SI 1 "gpc_reg_operand" "=r")

(match_operand:SI 2 "memory_operand" "m"))

(use (reg:SI 179))

(clobber (reg:SI 179))])]

""

"loadm 0,0,%1,%2")

You could write:
(define_constants [

(R_BP 177)

(R_FC 178)

(R_CR 179)

(R_Q 180)

])

(define_insn ""

[(match_parallel 0 "load_multiple_operation"

[(set (match_operand:SI 1 "gpc_reg_operand" "=r")

(match_operand:SI 2 "memory_operand" "m"))

(use (reg:SI R_CR))

(clobber (reg:SI R_CR))])]

""

"loadm 0,0,%1,%2")

The constants that are defined with a define constant are also output in the insn-codes.h
header file as #defines.

16.22 Iterators

Ports often need to define similar patterns for more than one machine mode or for more
than one rtx code. GCC provides some simple iterator facilities to make this process easier.

16.22.1 Mode Iterators

Ports often need to define similar patterns for two or more different modes. For example:
• If a processor has hardware support for both single and double floating-point arithmetic,

the SFmode patterns tend to be very similar to the DFmode ones.
• If a port uses SImode pointers in one configuration and DImode pointers in another, it

will usually have very similar SImode and DImode patterns for manipulating pointers.

Mode iterators allow several patterns to be instantiated from one ‘.md’ file template. They
can be used with any type of rtx-based construct, such as a define_insn, define_split,
or define_peephole2.

16.22.1.1 Defining Mode Iterators

The syntax for defining a mode iterator is:
(define_mode_iterator name [(mode1 "cond1") ... (moden "condn")])

This allows subsequent ‘.md’ file constructs to use the mode suffix :name . Every construct
that does so will be expanded n times, once with every use of :name replaced by :mode1 ,
once with every use replaced by :mode2 , and so on. In the expansion for a particular modei,
every C condition will also require that condi be true.

For example:

366 GNU Compiler Collection (GCC) Internals

(define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])

defines a new mode suffix :P. Every construct that uses :P will be expanded twice, once
with every :P replaced by :SI and once with every :P replaced by :DI. The :SI version
will only apply if Pmode == SImode and the :DI version will only apply if Pmode == DImode.

As with other ‘.md’ conditions, an empty string is treated as “always true”. (mode "")
can also be abbreviated to mode . For example:

(define_mode_iterator GPR [SI (DI "TARGET_64BIT")])

means that the :DI expansion only applies if TARGET_64BIT but that the :SI expansion
has no such constraint.

Iterators are applied in the order they are defined. This can be significant if two iterators
are used in a construct that requires substitutions. See Section 16.22.1.2 [Substitutions],
page 366.

16.22.1.2 Substitution in Mode Iterators

If an ‘.md’ file construct uses mode iterators, each version of the construct will often need
slightly different strings or modes. For example:

• When a define_expand defines several addm3 patterns (see Section 16.9 [Standard
Names], page 309), each expander will need to use the appropriate mode name for m.

• When a define_insn defines several instruction patterns, each instruction will often
use a different assembler mnemonic.

• When a define_insn requires operands with different modes, using an iterator for one
of the operand modes usually requires a specific mode for the other operand(s).

GCC supports such variations through a system of “mode attributes”. There are two
standard attributes: mode, which is the name of the mode in lower case, and MODE, which
is the same thing in upper case. You can define other attributes using:

(define_mode_attr name [(mode1 "value1") ... (moden "valuen")])

where name is the name of the attribute and valuei is the value associated with modei.

When GCC replaces some :iterator with :mode, it will scan each string and mode in the
pattern for sequences of the form <iterator:attr>, where attr is the name of a mode
attribute. If the attribute is defined for mode, the whole <...> sequence will be replaced
by the appropriate attribute value.

For example, suppose an ‘.md’ file has:
(define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])

(define_mode_attr load [(SI "lw") (DI "ld")])

If one of the patterns that uses :P contains the string "<P:load>\t%0,%1", the SI version
of that pattern will use "lw\t%0,%1" and the DI version will use "ld\t%0,%1".

Here is an example of using an attribute for a mode:
(define_mode_iterator LONG [SI DI])

(define_mode_attr SHORT [(SI "HI") (DI "SI")])

(define_insn ...

(sign_extend:LONG (match_operand:<LONG:SHORT> ...)) ...)

The iterator: prefix may be omitted, in which case the substitution will be attempted
for every iterator expansion.

Chapter 16: Machine Descriptions 367

16.22.1.3 Mode Iterator Examples

Here is an example from the MIPS port. It defines the following modes and attributes
(among others):

(define_mode_iterator GPR [SI (DI "TARGET_64BIT")])

(define_mode_attr d [(SI "") (DI "d")])

and uses the following template to define both subsi3 and subdi3:
(define_insn "sub<mode>3"

[(set (match_operand:GPR 0 "register_operand" "=d")

(minus:GPR (match_operand:GPR 1 "register_operand" "d")

(match_operand:GPR 2 "register_operand" "d")))]

""

"<d>subu\t%0,%1,%2"

[(set_attr "type" "arith")

(set_attr "mode" "<MODE>")])

This is exactly equivalent to:
(define_insn "subsi3"

[(set (match_operand:SI 0 "register_operand" "=d")

(minus:SI (match_operand:SI 1 "register_operand" "d")

(match_operand:SI 2 "register_operand" "d")))]

""

"subu\t%0,%1,%2"

[(set_attr "type" "arith")

(set_attr "mode" "SI")])

(define_insn "subdi3"

[(set (match_operand:DI 0 "register_operand" "=d")

(minus:DI (match_operand:DI 1 "register_operand" "d")

(match_operand:DI 2 "register_operand" "d")))]

""

"dsubu\t%0,%1,%2"

[(set_attr "type" "arith")

(set_attr "mode" "DI")])

16.22.2 Code Iterators

Code iterators operate in a similar way to mode iterators. See Section 16.22.1 [Mode
Iterators], page 365.

The construct:
(define_code_iterator name [(code1 "cond1") ... (coden "condn")])

defines a pseudo rtx code name that can be instantiated as codei if condition condi is
true. Each codei must have the same rtx format. See Section 10.2 [RTL Classes], page 148.

As with mode iterators, each pattern that uses name will be expanded n times, once with
all uses of name replaced by code1, once with all uses replaced by code2, and so on. See
Section 16.22.1.1 [Defining Mode Iterators], page 365.

It is possible to define attributes for codes as well as for modes. There are two standard
code attributes: code, the name of the code in lower case, and CODE, the name of the code
in upper case. Other attributes are defined using:

(define_code_attr name [(code1 "value1") ... (coden "valuen")])

Here’s an example of code iterators in action, taken from the MIPS port:
(define_code_iterator any_cond [unordered ordered unlt unge uneq ltgt unle ungt

eq ne gt ge lt le gtu geu ltu leu])

368 GNU Compiler Collection (GCC) Internals

(define_expand "b<code>"

[(set (pc)

(if_then_else (any_cond:CC (cc0)

(const_int 0))

(label_ref (match_operand 0 ""))

(pc)))]

""

{

gen_conditional_branch (operands, <CODE>);

DONE;

})

This is equivalent to:
(define_expand "bunordered"

[(set (pc)

(if_then_else (unordered:CC (cc0)

(const_int 0))

(label_ref (match_operand 0 ""))

(pc)))]

""

{

gen_conditional_branch (operands, UNORDERED);

DONE;

})

(define_expand "bordered"

[(set (pc)

(if_then_else (ordered:CC (cc0)

(const_int 0))

(label_ref (match_operand 0 ""))

(pc)))]

""

{

gen_conditional_branch (operands, ORDERED);

DONE;

})

...

Chapter 17: Target Description Macros and Functions 369

17 Target Description Macros and Functions

In addition to the file ‘machine.md’, a machine description includes a C header file conven-
tionally given the name ‘machine.h’ and a C source file named ‘machine.c’. The header file
defines numerous macros that convey the information about the target machine that does
not fit into the scheme of the ‘.md’ file. The file ‘tm.h’ should be a link to ‘machine.h’. The
header file ‘config.h’ includes ‘tm.h’ and most compiler source files include ‘config.h’.
The source file defines a variable targetm, which is a structure containing pointers to
functions and data relating to the target machine. ‘machine.c’ should also contain their
definitions, if they are not defined elsewhere in GCC, and other functions called through
the macros defined in the ‘.h’ file.

17.1 The Global targetm Variable

[Variable]struct gcc_target targetm
The target ‘.c’ file must define the global targetm variable which contains pointers
to functions and data relating to the target machine. The variable is declared in
‘target.h’; ‘target-def.h’ defines the macro TARGET_INITIALIZER which is used
to initialize the variable, and macros for the default initializers for elements of the
structure. The ‘.c’ file should override those macros for which the default definition
is inappropriate. For example:

#include "target.h"

#include "target-def.h"

/* Initialize the GCC target structure. */

#undef TARGET_COMP_TYPE_ATTRIBUTES

#define TARGET_COMP_TYPE_ATTRIBUTES machine_comp_type_attributes

struct gcc_target targetm = TARGET_INITIALIZER;

Where a macro should be defined in the ‘.c’ file in this manner to form part of the
targetm structure, it is documented below as a “Target Hook” with a prototype. Many
macros will change in future from being defined in the ‘.h’ file to being part of the targetm
structure.

17.2 Controlling the Compilation Driver, ‘gcc’

You can control the compilation driver.

[Macro]SWITCH_TAKES_ARG (char)
A C expression which determines whether the option ‘-char ’ takes arguments. The
value should be the number of arguments that option takes–zero, for many options.

By default, this macro is defined as DEFAULT_SWITCH_TAKES_ARG, which handles the
standard options properly. You need not define SWITCH_TAKES_ARG unless you wish to
add additional options which take arguments. Any redefinition should call DEFAULT_
SWITCH_TAKES_ARG and then check for additional options.

370 GNU Compiler Collection (GCC) Internals

[Macro]WORD_SWITCH_TAKES_ARG (name)
A C expression which determines whether the option ‘-name ’ takes arguments. The
value should be the number of arguments that option takes–zero, for many options.
This macro rather than SWITCH_TAKES_ARG is used for multi-character option names.

By default, this macro is defined as DEFAULT_WORD_SWITCH_TAKES_ARG, which handles
the standard options properly. You need not define WORD_SWITCH_TAKES_ARG unless
you wish to add additional options which take arguments. Any redefinition should
call DEFAULT_WORD_SWITCH_TAKES_ARG and then check for additional options.

[Macro]SWITCH_CURTAILS_COMPILATION (char)
A C expression which determines whether the option ‘-char ’ stops compilation before
the generation of an executable. The value is boolean, nonzero if the option does stop
an executable from being generated, zero otherwise.

By default, this macro is defined as DEFAULT_SWITCH_CURTAILS_COMPILATION, which
handles the standard options properly. You need not define SWITCH_CURTAILS_
COMPILATION unless you wish to add additional options which affect the generation of
an executable. Any redefinition should call DEFAULT_SWITCH_CURTAILS_COMPILATION
and then check for additional options.

[Macro]SWITCHES_NEED_SPACES
A string-valued C expression which enumerates the options for which the linker needs
a space between the option and its argument.

If this macro is not defined, the default value is "".

[Macro]TARGET_OPTION_TRANSLATE_TABLE
If defined, a list of pairs of strings, the first of which is a potential command line
target to the ‘gcc’ driver program, and the second of which is a space-separated (tabs
and other whitespace are not supported) list of options with which to replace the
first option. The target defining this list is responsible for assuring that the results
are valid. Replacement options may not be the --opt style, they must be the -opt
style. It is the intention of this macro to provide a mechanism for substitution that
affects the multilibs chosen, such as one option that enables many options, some of
which select multilibs. Example nonsensical definition, where ‘-malt-abi’, ‘-EB’, and
‘-mspoo’ cause different multilibs to be chosen:

#define TARGET_OPTION_TRANSLATE_TABLE \

{ "-fast", "-march=fast-foo -malt-abi -I/usr/fast-foo" }, \

{ "-compat", "-EB -malign=4 -mspoo" }

[Macro]DRIVER_SELF_SPECS
A list of specs for the driver itself. It should be a suitable initializer for an array of
strings, with no surrounding braces.

The driver applies these specs to its own command line between loading default
‘specs’ files (but not command-line specified ones) and choosing the multilib directory
or running any subcommands. It applies them in the order given, so each spec can
depend on the options added by earlier ones. It is also possible to remove options
using ‘%<option ’ in the usual way.

Chapter 17: Target Description Macros and Functions 371

This macro can be useful when a port has several interdependent target options. It
provides a way of standardizing the command line so that the other specs are easier
to write.
Do not define this macro if it does not need to do anything.

[Macro]OPTION_DEFAULT_SPECS
A list of specs used to support configure-time default options (i.e. ‘--with’ options) in
the driver. It should be a suitable initializer for an array of structures, each containing
two strings, without the outermost pair of surrounding braces.
The first item in the pair is the name of the default. This must match the code in
‘config.gcc’ for the target. The second item is a spec to apply if a default with this
name was specified. The string ‘%(VALUE)’ in the spec will be replaced by the value
of the default everywhere it occurs.
The driver will apply these specs to its own command line between loading de-
fault ‘specs’ files and processing DRIVER_SELF_SPECS, using the same mechanism
as DRIVER_SELF_SPECS.
Do not define this macro if it does not need to do anything.

[Macro]CPP_SPEC
A C string constant that tells the GCC driver program options to pass to CPP. It
can also specify how to translate options you give to GCC into options for GCC to
pass to the CPP.
Do not define this macro if it does not need to do anything.

[Macro]CPLUSPLUS_CPP_SPEC
This macro is just like CPP_SPEC, but is used for C++, rather than C. If you do not
define this macro, then the value of CPP_SPEC (if any) will be used instead.

[Macro]CC1_SPEC
A C string constant that tells the GCC driver program options to pass to cc1,
cc1plus, f771, and the other language front ends. It can also specify how to translate
options you give to GCC into options for GCC to pass to front ends.
Do not define this macro if it does not need to do anything.

[Macro]CC1PLUS_SPEC
A C string constant that tells the GCC driver program options to pass to cc1plus.
It can also specify how to translate options you give to GCC into options for GCC to
pass to the cc1plus.
Do not define this macro if it does not need to do anything. Note that everything
defined in CC1 SPEC is already passed to cc1plus so there is no need to duplicate
the contents of CC1 SPEC in CC1PLUS SPEC.

[Macro]ASM_SPEC
A C string constant that tells the GCC driver program options to pass to the assem-
bler. It can also specify how to translate options you give to GCC into options for
GCC to pass to the assembler. See the file ‘sun3.h’ for an example of this.
Do not define this macro if it does not need to do anything.

372 GNU Compiler Collection (GCC) Internals

[Macro]ASM_FINAL_SPEC
A C string constant that tells the GCC driver program how to run any programs
which cleanup after the normal assembler. Normally, this is not needed. See the file
‘mips.h’ for an example of this.
Do not define this macro if it does not need to do anything.

[Macro]AS_NEEDS_DASH_FOR_PIPED_INPUT
Define this macro, with no value, if the driver should give the assembler an argument
consisting of a single dash, ‘-’, to instruct it to read from its standard input (which
will be a pipe connected to the output of the compiler proper). This argument is
given after any ‘-o’ option specifying the name of the output file.
If you do not define this macro, the assembler is assumed to read its standard input
if given no non-option arguments. If your assembler cannot read standard input at
all, use a ‘%{pipe:%e}’ construct; see ‘mips.h’ for instance.

[Macro]LINK_SPEC
A C string constant that tells the GCC driver program options to pass to the linker.
It can also specify how to translate options you give to GCC into options for GCC to
pass to the linker.
Do not define this macro if it does not need to do anything.

[Macro]LIB_SPEC
Another C string constant used much like LINK_SPEC. The difference between the
two is that LIB_SPEC is used at the end of the command given to the linker.
If this macro is not defined, a default is provided that loads the standard C library
from the usual place. See ‘gcc.c’.

[Macro]LIBGCC_SPEC
Another C string constant that tells the GCC driver program how and when to place
a reference to ‘libgcc.a’ into the linker command line. This constant is placed both
before and after the value of LIB_SPEC.
If this macro is not defined, the GCC driver provides a default that passes the string
‘-lgcc’ to the linker.

[Macro]REAL_LIBGCC_SPEC
By default, if ENABLE_SHARED_LIBGCC is defined, the LIBGCC_SPEC is not directly
used by the driver program but is instead modified to refer to different versions of
‘libgcc.a’ depending on the values of the command line flags ‘-static’, ‘-shared’,
‘-static-libgcc’, and ‘-shared-libgcc’. On targets where these modifications are
inappropriate, define REAL_LIBGCC_SPEC instead. REAL_LIBGCC_SPEC tells the driver
how to place a reference to ‘libgcc’ on the link command line, but, unlike LIBGCC_
SPEC, it is used unmodified.

[Macro]USE_LD_AS_NEEDED
A macro that controls the modifications to LIBGCC_SPEC mentioned in REAL_LIBGCC_
SPEC. If nonzero, a spec will be generated that uses –as-needed and the shared libgcc
in place of the static exception handler library, when linking without any of -static,
-static-libgcc, or -shared-libgcc.

Chapter 17: Target Description Macros and Functions 373

[Macro]LINK_EH_SPEC
If defined, this C string constant is added to LINK_SPEC. When USE_LD_AS_NEEDED
is zero or undefined, it also affects the modifications to LIBGCC_SPEC mentioned in
REAL_LIBGCC_SPEC.

[Macro]STARTFILE_SPEC
Another C string constant used much like LINK_SPEC. The difference between the
two is that STARTFILE_SPEC is used at the very beginning of the command given to
the linker.
If this macro is not defined, a default is provided that loads the standard C startup
file from the usual place. See ‘gcc.c’.

[Macro]ENDFILE_SPEC
Another C string constant used much like LINK_SPEC. The difference between the
two is that ENDFILE_SPEC is used at the very end of the command given to the linker.
Do not define this macro if it does not need to do anything.

[Macro]THREAD_MODEL_SPEC
GCC -v will print the thread model GCC was configured to use. However, this doesn’t
work on platforms that are multilibbed on thread models, such as AIX 4.3. On such
platforms, define THREAD_MODEL_SPEC such that it evaluates to a string without blanks
that names one of the recognized thread models. %*, the default value of this macro,
will expand to the value of thread_file set in ‘config.gcc’.

[Macro]SYSROOT_SUFFIX_SPEC
Define this macro to add a suffix to the target sysroot when GCC is configured with
a sysroot. This will cause GCC to search for usr/lib, et al, within sysroot+suffix.

[Macro]SYSROOT_HEADERS_SUFFIX_SPEC
Define this macro to add a headers suffix to the target sysroot when GCC is configured
with a sysroot. This will cause GCC to pass the updated sysroot+headers suffix to
CPP, causing it to search for usr/include, et al, within sysroot+headers suffix.

[Macro]EXTRA_SPECS
Define this macro to provide additional specifications to put in the ‘specs’ file that
can be used in various specifications like CC1_SPEC.
The definition should be an initializer for an array of structures, containing a string
constant, that defines the specification name, and a string constant that provides the
specification.
Do not define this macro if it does not need to do anything.
EXTRA_SPECS is useful when an architecture contains several related targets, which
have various ..._SPECS which are similar to each other, and the maintainer would
like one central place to keep these definitions.
For example, the PowerPC System V.4 targets use EXTRA_SPECS to define either _
CALL_SYSV when the System V calling sequence is used or _CALL_AIX when the older
AIX-based calling sequence is used.
The ‘config/rs6000/rs6000.h’ target file defines:

374 GNU Compiler Collection (GCC) Internals

#define EXTRA_SPECS \

{ "cpp_sysv_default", CPP_SYSV_DEFAULT },

#define CPP_SYS_DEFAULT ""

The ‘config/rs6000/sysv.h’ target file defines:
#undef CPP_SPEC

#define CPP_SPEC \

"%{posix: -D_POSIX_SOURCE } \

%{mcall-sysv: -D_CALL_SYSV } \

%{!mcall-sysv: %(cpp_sysv_default) } \

%{msoft-float: -D_SOFT_FLOAT} %{mcpu=403: -D_SOFT_FLOAT}"

#undef CPP_SYSV_DEFAULT

#define CPP_SYSV_DEFAULT "-D_CALL_SYSV"

while the ‘config/rs6000/eabiaix.h’ target file defines CPP_SYSV_DEFAULT as:
#undef CPP_SYSV_DEFAULT

#define CPP_SYSV_DEFAULT "-D_CALL_AIX"

[Macro]LINK_LIBGCC_SPECIAL_1
Define this macro if the driver program should find the library ‘libgcc.a’. If you do
not define this macro, the driver program will pass the argument ‘-lgcc’ to tell the
linker to do the search.

[Macro]LINK_GCC_C_SEQUENCE_SPEC
The sequence in which libgcc and libc are specified to the linker. By default this is
%G %L %G.

[Macro]LINK_COMMAND_SPEC
A C string constant giving the complete command line need to execute the linker.
When you do this, you will need to update your port each time a change is made to
the link command line within ‘gcc.c’. Therefore, define this macro only if you need
to completely redefine the command line for invoking the linker and there is no other
way to accomplish the effect you need. Overriding this macro may be avoidable by
overriding LINK_GCC_C_SEQUENCE_SPEC instead.

[Macro]LINK_ELIMINATE_DUPLICATE_LDIRECTORIES
A nonzero value causes collect2 to remove duplicate ‘-Ldirectory ’ search direc-
tories from linking commands. Do not give it a nonzero value if removing duplicate
search directories changes the linker’s semantics.

[Macro]MULTILIB_DEFAULTS
Define this macro as a C expression for the initializer of an array of string to tell the
driver program which options are defaults for this target and thus do not need to be
handled specially when using MULTILIB_OPTIONS.
Do not define this macro if MULTILIB_OPTIONS is not defined in the target makefile
fragment or if none of the options listed in MULTILIB_OPTIONS are set by default. See
Section 19.1 [Target Fragment], page 529.

[Macro]RELATIVE_PREFIX_NOT_LINKDIR
Define this macro to tell gcc that it should only translate a ‘-B’ prefix into a ‘-L’
linker option if the prefix indicates an absolute file name.

Chapter 17: Target Description Macros and Functions 375

[Macro]MD_EXEC_PREFIX
If defined, this macro is an additional prefix to try after STANDARD_EXEC_PREFIX.
MD_EXEC_PREFIX is not searched when the ‘-b’ option is used, or the compiler is built
as a cross compiler. If you define MD_EXEC_PREFIX, then be sure to add it to the list
of directories used to find the assembler in ‘configure.in’.

[Macro]STANDARD_STARTFILE_PREFIX
Define this macro as a C string constant if you wish to override the standard choice of
libdir as the default prefix to try when searching for startup files such as ‘crt0.o’.
STANDARD_STARTFILE_PREFIX is not searched when the compiler is built as a cross
compiler.

[Macro]STANDARD_STARTFILE_PREFIX_1
Define this macro as a C string constant if you wish to override the standard choice
of /lib as a prefix to try after the default prefix when searching for startup files such
as ‘crt0.o’. STANDARD_STARTFILE_PREFIX_1 is not searched when the compiler is
built as a cross compiler.

[Macro]STANDARD_STARTFILE_PREFIX_2
Define this macro as a C string constant if you wish to override the standard choice
of /lib as yet another prefix to try after the default prefix when searching for startup
files such as ‘crt0.o’. STANDARD_STARTFILE_PREFIX_2 is not searched when the
compiler is built as a cross compiler.

[Macro]MD_STARTFILE_PREFIX
If defined, this macro supplies an additional prefix to try after the standard prefixes.
MD_EXEC_PREFIX is not searched when the ‘-b’ option is used, or when the compiler
is built as a cross compiler.

[Macro]MD_STARTFILE_PREFIX_1
If defined, this macro supplies yet another prefix to try after the standard prefixes. It
is not searched when the ‘-b’ option is used, or when the compiler is built as a cross
compiler.

[Macro]INIT_ENVIRONMENT
Define this macro as a C string constant if you wish to set environment variables for
programs called by the driver, such as the assembler and loader. The driver passes
the value of this macro to putenv to initialize the necessary environment variables.

[Macro]LOCAL_INCLUDE_DIR
Define this macro as a C string constant if you wish to override the standard choice
of ‘/usr/local/include’ as the default prefix to try when searching for local header
files. LOCAL_INCLUDE_DIR comes before SYSTEM_INCLUDE_DIR in the search order.
Cross compilers do not search either ‘/usr/local/include’ or its replacement.

[Macro]MODIFY_TARGET_NAME
Define this macro if you wish to define command-line switches that modify the default
target name.
For each switch, you can include a string to be appended to the first part of the
configuration name or a string to be deleted from the configuration name, if present.

376 GNU Compiler Collection (GCC) Internals

The definition should be an initializer for an array of structures. Each array ele-
ment should have three elements: the switch name (a string constant, including the
initial dash), one of the enumeration codes ADD or DELETE to indicate whether the
string should be inserted or deleted, and the string to be inserted or deleted (a string
constant).

For example, on a machine where ‘64’ at the end of the configuration name denotes
a 64-bit target and you want the ‘-32’ and ‘-64’ switches to select between 32- and
64-bit targets, you would code

#define MODIFY_TARGET_NAME \

{ { "-32", DELETE, "64"}, \

{"-64", ADD, "64"}}

[Macro]SYSTEM_INCLUDE_DIR
Define this macro as a C string constant if you wish to specify a system-specific
directory to search for header files before the standard directory. SYSTEM_INCLUDE_
DIR comes before STANDARD_INCLUDE_DIR in the search order.

Cross compilers do not use this macro and do not search the directory specified.

[Macro]STANDARD_INCLUDE_DIR
Define this macro as a C string constant if you wish to override the standard choice
of ‘/usr/include’ as the default prefix to try when searching for header files.

Cross compilers ignore this macro and do not search either ‘/usr/include’ or its
replacement.

[Macro]STANDARD_INCLUDE_COMPONENT
The “component” corresponding to STANDARD_INCLUDE_DIR. See INCLUDE_DEFAULTS,
below, for the description of components. If you do not define this macro, no compo-
nent is used.

[Macro]INCLUDE_DEFAULTS
Define this macro if you wish to override the entire default search path for
include files. For a native compiler, the default search path usually consists
of GCC_INCLUDE_DIR, LOCAL_INCLUDE_DIR, SYSTEM_INCLUDE_DIR, GPLUSPLUS_
INCLUDE_DIR, and STANDARD_INCLUDE_DIR. In addition, GPLUSPLUS_INCLUDE_DIR
and GCC_INCLUDE_DIR are defined automatically by ‘Makefile’, and specify private
search areas for GCC. The directory GPLUSPLUS_INCLUDE_DIR is used only for C++
programs.

The definition should be an initializer for an array of structures. Each array element
should have four elements: the directory name (a string constant), the component
name (also a string constant), a flag for C++-only directories, and a flag showing that
the includes in the directory don’t need to be wrapped in extern ‘C’ when compiling
C++. Mark the end of the array with a null element.

The component name denotes what GNU package the include file is part of, if any,
in all uppercase letters. For example, it might be ‘GCC’ or ‘BINUTILS’. If the package
is part of a vendor-supplied operating system, code the component name as ‘0’.

For example, here is the definition used for VAX/VMS:

Chapter 17: Target Description Macros and Functions 377

#define INCLUDE_DEFAULTS \

{ \

{ "GNU_GXX_INCLUDE:", "G++", 1, 1}, \

{ "GNU_CC_INCLUDE:", "GCC", 0, 0}, \

{ "SYS$SYSROOT:[SYSLIB.]", 0, 0, 0}, \

{ ".", 0, 0, 0}, \

{ 0, 0, 0, 0} \

}

Here is the order of prefixes tried for exec files:

1. Any prefixes specified by the user with ‘-B’.

2. The environment variable GCC_EXEC_PREFIX or, if GCC_EXEC_PREFIX is not set and the
compiler has not been installed in the configure-time prefix, the location in which the
compiler has actually been installed.

3. The directories specified by the environment variable COMPILER_PATH.

4. The macro STANDARD_EXEC_PREFIX, if the compiler has been installed in the configured-
time prefix.

5. The location ‘/usr/libexec/gcc/’, but only if this is a native compiler.

6. The location ‘/usr/lib/gcc/’, but only if this is a native compiler.

7. The macro MD_EXEC_PREFIX, if defined, but only if this is a native compiler.

Here is the order of prefixes tried for startfiles:

1. Any prefixes specified by the user with ‘-B’.

2. The environment variable GCC_EXEC_PREFIX or its automatically determined value
based on the installed toolchain location.

3. The directories specified by the environment variable LIBRARY_PATH (or port-specific
name; native only, cross compilers do not use this).

4. The macro STANDARD_EXEC_PREFIX, but only if the toolchain is installed in the config-
ured prefix or this is a native compiler.

5. The location ‘/usr/lib/gcc/’, but only if this is a native compiler.

6. The macro MD_EXEC_PREFIX, if defined, but only if this is a native compiler.

7. The macro MD_STARTFILE_PREFIX, if defined, but only if this is a native compiler, or
we have a target system root.

8. The macro MD_STARTFILE_PREFIX_1, if defined, but only if this is a native compiler,
or we have a target system root.

9. The macro STANDARD_STARTFILE_PREFIX, with any sysroot modifications. If this path
is relative it will be prefixed by GCC_EXEC_PREFIX and the machine suffix or STANDARD_
EXEC_PREFIX and the machine suffix.

10. The macro STANDARD_STARTFILE_PREFIX_1, but only if this is a native compiler, or
we have a target system root. The default for this macro is ‘/lib/’.

11. The macro STANDARD_STARTFILE_PREFIX_2, but only if this is a native compiler, or
we have a target system root. The default for this macro is ‘/usr/lib/’.

378 GNU Compiler Collection (GCC) Internals

17.3 Run-time Target Specification

Here are run-time target specifications.

[Macro]TARGET_CPU_CPP_BUILTINS ()
This function-like macro expands to a block of code that defines built-in preproces-
sor macros and assertions for the target CPU, using the functions builtin_define,
builtin_define_std and builtin_assert. When the front end calls this macro it
provides a trailing semicolon, and since it has finished command line option processing
your code can use those results freely.
builtin_assert takes a string in the form you pass to the command-line option ‘-A’,
such as cpu=mips, and creates the assertion. builtin_define takes a string in the
form accepted by option ‘-D’ and unconditionally defines the macro.
builtin_define_std takes a string representing the name of an object-like macro. If
it doesn’t lie in the user’s namespace, builtin_define_std defines it unconditionally.
Otherwise, it defines a version with two leading underscores, and another version with
two leading and trailing underscores, and defines the original only if an ISO standard
was not requested on the command line. For example, passing unix defines __unix,
__unix__ and possibly unix; passing _mips defines __mips, __mips__ and possibly
_mips, and passing _ABI64 defines only _ABI64.
You can also test for the C dialect being compiled. The variable c_language is set to
one of clk_c, clk_cplusplus or clk_objective_c. Note that if we are preprocessing
assembler, this variable will be clk_c but the function-like macro preprocessing_
asm_p() will return true, so you might want to check for that first. If you need to
check for strict ANSI, the variable flag_iso can be used. The function-like macro
preprocessing_trad_p() can be used to check for traditional preprocessing.

[Macro]TARGET_OS_CPP_BUILTINS ()
Similarly to TARGET_CPU_CPP_BUILTINS but this macro is optional and is used for
the target operating system instead.

[Macro]TARGET_OBJFMT_CPP_BUILTINS ()
Similarly to TARGET_CPU_CPP_BUILTINS but this macro is optional and is used for the
target object format. ‘elfos.h’ uses this macro to define __ELF__, so you probably
do not need to define it yourself.

[Variable]extern int target_flags
This variable is declared in ‘options.h’, which is included before any target-specific
headers.

[Variable]Target Hook int TARGET DEFAULT TARGET FLAGS
This variable specifies the initial value of target_flags. Its default setting is 0.

[Target Hook]bool TARGET_HANDLE_OPTION (size t code, const char *arg, int
value)

This hook is called whenever the user specifies one of the target-specific options
described by the ‘.opt’ definition files (see Chapter 7 [Options], page 89). It has the
opportunity to do some option-specific processing and should return true if the option
is valid. The default definition does nothing but return true.

Chapter 17: Target Description Macros and Functions 379

code specifies the OPT_name enumeration value associated with the selected option;
name is just a rendering of the option name in which non-alphanumeric characters are
replaced by underscores. arg specifies the string argument and is null if no argument
was given. If the option is flagged as a UInteger (see Section 7.2 [Option properties],
page 90), value is the numeric value of the argument. Otherwise value is 1 if the
positive form of the option was used and 0 if the “no-” form was.

[Target Hook]bool TARGET_HANDLE_C_OPTION (size t code, const char *arg, int
value)

This target hook is called whenever the user specifies one of the target-specific C lan-
guage family options described by the ‘.opt’ definition files(see Chapter 7 [Options],
page 89). It has the opportunity to do some option-specific processing and should
return true if the option is valid. The default definition does nothing but return false.
In general, you should use TARGET_HANDLE_OPTION to handle options. However, if
processing an option requires routines that are only available in the C (and related
language) front ends, then you should use TARGET_HANDLE_C_OPTION instead.

[Macro]TARGET_VERSION
This macro is a C statement to print on stderr a string describing the particular ma-
chine description choice. Every machine description should define TARGET_VERSION.
For example:

#ifdef MOTOROLA

#define TARGET_VERSION \

fprintf (stderr, " (68k, Motorola syntax)");

#else

#define TARGET_VERSION \

fprintf (stderr, " (68k, MIT syntax)");

#endif

[Macro]OVERRIDE_OPTIONS
Sometimes certain combinations of command options do not make sense on a partic-
ular target machine. You can define a macro OVERRIDE_OPTIONS to take account of
this. This macro, if defined, is executed once just after all the command options have
been parsed.
Don’t use this macro to turn on various extra optimizations for ‘-O’. That is what
OPTIMIZATION_OPTIONS is for.

[Macro]C_COMMON_OVERRIDE_OPTIONS
This is similar to OVERRIDE_OPTIONS but is only used in the C language frontends (C,
Objective-C, C++, Objective-C++) and so can be used to alter option flag variables
which only exist in those frontends.

[Macro]OPTIMIZATION_OPTIONS (level, size)
Some machines may desire to change what optimizations are performed for various
optimization levels. This macro, if defined, is executed once just after the optimization
level is determined and before the remainder of the command options have been
parsed. Values set in this macro are used as the default values for the other command
line options.
level is the optimization level specified; 2 if ‘-O2’ is specified, 1 if ‘-O’ is specified, and
0 if neither is specified.

380 GNU Compiler Collection (GCC) Internals

size is nonzero if ‘-Os’ is specified and zero otherwise.
This macro is run once at program startup and when the optimization options are
changed via #pragma GCC optimize or by using the optimize attribute.
Do not examine write_symbols in this macro! The debugging options are not sup-
posed to alter the generated code.

[Target Hook]bool TARGET_HELP (void)
This hook is called in response to the user invoking ‘--target-help’ on the command
line. It gives the target a chance to display extra information on the target specific
command line options found in its ‘.opt’ file.

[Macro]CAN_DEBUG_WITHOUT_FP
Define this macro if debugging can be performed even without a frame pointer. If
this macro is defined, GCC will turn on the ‘-fomit-frame-pointer’ option whenever
‘-O’ is specified.

17.4 Defining data structures for per-function information.

If the target needs to store information on a per-function basis, GCC provides a macro and
a couple of variables to allow this. Note, just using statics to store the information is a bad
idea, since GCC supports nested functions, so you can be halfway through encoding one
function when another one comes along.

GCC defines a data structure called struct function which contains all of the data
specific to an individual function. This structure contains a field called machine whose
type is struct machine_function *, which can be used by targets to point to their own
specific data.

If a target needs per-function specific data it should define the type struct machine_
function and also the macro INIT_EXPANDERS. This macro should be used to initialize the
function pointer init_machine_status. This pointer is explained below.

One typical use of per-function, target specific data is to create an RTX to hold the
register containing the function’s return address. This RTX can then be used to implement
the __builtin_return_address function, for level 0.

Note—earlier implementations of GCC used a single data area to hold all of the per-
function information. Thus when processing of a nested function began the old per-function
data had to be pushed onto a stack, and when the processing was finished, it had to be
popped off the stack. GCC used to provide function pointers called save_machine_status
and restore_machine_status to handle the saving and restoring of the target specific
information. Since the single data area approach is no longer used, these pointers are no
longer supported.

[Macro]INIT_EXPANDERS
Macro called to initialize any target specific information. This macro is called once
per function, before generation of any RTL has begun. The intention of this macro
is to allow the initialization of the function pointer init_machine_status.

[Variable]void (*)(struct function *) init_machine_status
If this function pointer is non-NULL it will be called once per function, before function
compilation starts, in order to allow the target to perform any target specific initial-

Chapter 17: Target Description Macros and Functions 381

ization of the struct function structure. It is intended that this would be used to
initialize the machine of that structure.
struct machine_function structures are expected to be freed by GC. Generally,
any memory that they reference must be allocated by using ggc_alloc, including the
structure itself.

17.5 Storage Layout

Note that the definitions of the macros in this table which are sizes or alignments measured
in bits do not need to be constant. They can be C expressions that refer to static variables,
such as the target_flags. See Section 17.3 [Run-time Target], page 378.

[Macro]BITS_BIG_ENDIAN
Define this macro to have the value 1 if the most significant bit in a byte has the
lowest number; otherwise define it to have the value zero. This means that bit-
field instructions count from the most significant bit. If the machine has no bit-field
instructions, then this must still be defined, but it doesn’t matter which value it is
defined to. This macro need not be a constant.
This macro does not affect the way structure fields are packed into bytes or words;
that is controlled by BYTES_BIG_ENDIAN.

[Macro]BYTES_BIG_ENDIAN
Define this macro to have the value 1 if the most significant byte in a word has the
lowest number. This macro need not be a constant.

[Macro]WORDS_BIG_ENDIAN
Define this macro to have the value 1 if, in a multiword object, the most significant
word has the lowest number. This applies to both memory locations and registers;
GCC fundamentally assumes that the order of words in memory is the same as the
order in registers. This macro need not be a constant.

[Macro]LIBGCC2_WORDS_BIG_ENDIAN
Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a constant
value with the same meaning as WORDS_BIG_ENDIAN, which will be used only when
compiling ‘libgcc2.c’. Typically the value will be set based on preprocessor defines.

[Macro]FLOAT_WORDS_BIG_ENDIAN
Define this macro to have the value 1 if DFmode, XFmode or TFmode floating point
numbers are stored in memory with the word containing the sign bit at the lowest
address; otherwise define it to have the value 0. This macro need not be a constant.
You need not define this macro if the ordering is the same as for multi-word integers.

[Macro]BITS_PER_UNIT
Define this macro to be the number of bits in an addressable storage unit (byte). If
you do not define this macro the default is 8.

[Macro]BITS_PER_WORD
Number of bits in a word. If you do not define this macro, the default is BITS_PER_
UNIT * UNITS_PER_WORD.

382 GNU Compiler Collection (GCC) Internals

[Macro]MAX_BITS_PER_WORD
Maximum number of bits in a word. If this is undefined, the default is BITS_PER_
WORD. Otherwise, it is the constant value that is the largest value that BITS_PER_WORD
can have at run-time.

[Macro]UNITS_PER_WORD
Number of storage units in a word; normally the size of a general-purpose register, a
power of two from 1 or 8.

[Macro]MIN_UNITS_PER_WORD
Minimum number of units in a word. If this is undefined, the default is UNITS_PER_
WORD. Otherwise, it is the constant value that is the smallest value that UNITS_PER_
WORD can have at run-time.

[Macro]UNITS_PER_SIMD_WORD (mode)
Number of units in the vectors that the vectorizer can produce for scalar mode mode.
The default is equal to UNITS_PER_WORD, because the vectorizer can do some trans-
formations even in absence of specialized SIMD hardware.

[Macro]POINTER_SIZE
Width of a pointer, in bits. You must specify a value no wider than the width of
Pmode. If it is not equal to the width of Pmode, you must define POINTERS_EXTEND_
UNSIGNED. If you do not specify a value the default is BITS_PER_WORD.

[Macro]POINTERS_EXTEND_UNSIGNED
A C expression that determines how pointers should be extended from ptr_mode to
either Pmode or word_mode. It is greater than zero if pointers should be zero-extended,
zero if they should be sign-extended, and negative if some other sort of conversion is
needed. In the last case, the extension is done by the target’s ptr_extend instruction.

You need not define this macro if the ptr_mode, Pmode and word_mode are all the
same width.

[Macro]PROMOTE_MODE (m, unsignedp, type)
A macro to update m and unsignedp when an object whose type is type and which
has the specified mode and signedness is to be stored in a register. This macro is only
called when type is a scalar type.

On most RISC machines, which only have operations that operate on a full register,
define this macro to set m to word_mode if m is an integer mode narrower than
BITS_PER_WORD. In most cases, only integer modes should be widened because wider-
precision floating-point operations are usually more expensive than their narrower
counterparts.

For most machines, the macro definition does not change unsignedp. However, some
machines, have instructions that preferentially handle either signed or unsigned quan-
tities of certain modes. For example, on the DEC Alpha, 32-bit loads from memory
and 32-bit add instructions sign-extend the result to 64 bits. On such machines, set
unsignedp according to which kind of extension is more efficient.

Do not define this macro if it would never modify m.

Chapter 17: Target Description Macros and Functions 383

[Macro]PROMOTE_FUNCTION_MODE
Like PROMOTE_MODE, but is applied to outgoing function arguments or function re-
turn values, as specified by TARGET_PROMOTE_FUNCTION_ARGS and TARGET_PROMOTE_
FUNCTION_RETURN, respectively.
The default is PROMOTE_MODE.

[Target Hook]bool TARGET_PROMOTE_FUNCTION_ARGS (tree fntype)
This target hook should return true if the promotion described by PROMOTE_
FUNCTION_MODE should be done for outgoing function arguments.

[Target Hook]bool TARGET_PROMOTE_FUNCTION_RETURN (tree fntype)
This target hook should return true if the promotion described by PROMOTE_
FUNCTION_MODE should be done for the return value of functions.
If this target hook returns true, TARGET_FUNCTION_VALUE must perform the same
promotions done by PROMOTE_FUNCTION_MODE.

[Macro]PARM_BOUNDARY
Normal alignment required for function parameters on the stack, in bits. All stack
parameters receive at least this much alignment regardless of data type. On most
machines, this is the same as the size of an integer.

[Macro]STACK_BOUNDARY
Define this macro to the minimum alignment enforced by hardware for the stack
pointer on this machine. The definition is a C expression for the desired alignment
(measured in bits). This value is used as a default if PREFERRED_STACK_BOUNDARY is
not defined. On most machines, this should be the same as PARM_BOUNDARY.

[Macro]PREFERRED_STACK_BOUNDARY
Define this macro if you wish to preserve a certain alignment for the stack pointer,
greater than what the hardware enforces. The definition is a C expression for the
desired alignment (measured in bits). This macro must evaluate to a value equal to
or larger than STACK_BOUNDARY.

[Macro]INCOMING_STACK_BOUNDARY
Define this macro if the incoming stack boundary may be different from PREFERRED_
STACK_BOUNDARY. This macro must evaluate to a value equal to or larger than STACK_
BOUNDARY.

[Macro]FUNCTION_BOUNDARY
Alignment required for a function entry point, in bits.

[Macro]BIGGEST_ALIGNMENT
Biggest alignment that any data type can require on this machine, in bits. Note that
this is not the biggest alignment that is supported, just the biggest alignment that,
when violated, may cause a fault.

[Macro]MALLOC_ABI_ALIGNMENT
Alignment, in bits, a C conformant malloc implementation has to provide. If not
defined, the default value is BITS_PER_WORD.

384 GNU Compiler Collection (GCC) Internals

[Macro]ATTRIBUTE_ALIGNED_VALUE
Alignment used by the __attribute__ ((aligned)) construct. If not defined, the
default value is BIGGEST_ALIGNMENT.

[Macro]MINIMUM_ATOMIC_ALIGNMENT
If defined, the smallest alignment, in bits, that can be given to an object that can
be referenced in one operation, without disturbing any nearby object. Normally, this
is BITS_PER_UNIT, but may be larger on machines that don’t have byte or half-word
store operations.

[Macro]BIGGEST_FIELD_ALIGNMENT
Biggest alignment that any structure or union field can require on this machine,
in bits. If defined, this overrides BIGGEST_ALIGNMENT for structure and union fields
only, unless the field alignment has been set by the __attribute__ ((aligned (n)))
construct.

[Macro]ADJUST_FIELD_ALIGN (field, computed)
An expression for the alignment of a structure field field if the alignment computed
in the usual way (including applying of BIGGEST_ALIGNMENT and BIGGEST_FIELD_
ALIGNMENT to the alignment) is computed. It overrides alignment only if the field
alignment has not been set by the __attribute__ ((aligned (n))) construct.

[Macro]MAX_STACK_ALIGNMENT
Biggest stack alignment guaranteed by the backend. Use this macro to specify the
maximum alignment of a variable on stack.
If not defined, the default value is STACK_BOUNDARY.

[Macro]MAX_OFILE_ALIGNMENT
Biggest alignment supported by the object file format of this machine. Use this macro
to limit the alignment which can be specified using the __attribute__ ((aligned
(n))) construct. If not defined, the default value is BIGGEST_ALIGNMENT.
On systems that use ELF, the default (in ‘config/elfos.h’) is the largest supported
32-bit ELF section alignment representable on a 32-bit host e.g. ‘(((unsigned
HOST_WIDEST_INT) 1 << 28) * 8)’. On 32-bit ELF the largest supported section
alignment in bits is ‘(0x80000000 * 8)’, but this is not representable on 32-bit hosts.

[Macro]DATA_ALIGNMENT (type, basic-align)
If defined, a C expression to compute the alignment for a variable in the static store.
type is the data type, and basic-align is the alignment that the object would ordinarily
have. The value of this macro is used instead of that alignment to align the object.
If this macro is not defined, then basic-align is used.
One use of this macro is to increase alignment of medium-size data to make it all fit
in fewer cache lines. Another is to cause character arrays to be word-aligned so that
strcpy calls that copy constants to character arrays can be done inline.

[Macro]CONSTANT_ALIGNMENT (constant, basic-align)
If defined, a C expression to compute the alignment given to a constant that is being
placed in memory. constant is the constant and basic-align is the alignment that

Chapter 17: Target Description Macros and Functions 385

the object would ordinarily have. The value of this macro is used instead of that
alignment to align the object.
If this macro is not defined, then basic-align is used.
The typical use of this macro is to increase alignment for string constants to be word
aligned so that strcpy calls that copy constants can be done inline.

[Macro]LOCAL_ALIGNMENT (type, basic-align)
If defined, a C expression to compute the alignment for a variable in the local store.
type is the data type, and basic-align is the alignment that the object would ordinarily
have. The value of this macro is used instead of that alignment to align the object.
If this macro is not defined, then basic-align is used.
One use of this macro is to increase alignment of medium-size data to make it all fit
in fewer cache lines.

[Macro]STACK_SLOT_ALIGNMENT (type, mode, basic-align)
If defined, a C expression to compute the alignment for stack slot. type is the data
type, mode is the widest mode available, and basic-align is the alignment that the
slot would ordinarily have. The value of this macro is used instead of that alignment
to align the slot.
If this macro is not defined, then basic-align is used when type is NULL. Otherwise,
LOCAL_ALIGNMENT will be used.
This macro is to set alignment of stack slot to the maximum alignment of all possible
modes which the slot may have.

[Macro]LOCAL_DECL_ALIGNMENT (decl)
If defined, a C expression to compute the alignment for a local variable decl.
If this macro is not defined, then LOCAL_ALIGNMENT (TREE_TYPE (decl),
DECL_ALIGN (decl)) is used.
One use of this macro is to increase alignment of medium-size data to make it all fit
in fewer cache lines.

[Macro]MINIMUM_ALIGNMENT (exp, mode, align)
If defined, a C expression to compute the minimum required alignment for dynamic
stack realignment purposes for exp (a type or decl), mode, assuming normal alignment
align.
If this macro is not defined, then align will be used.

[Macro]EMPTY_FIELD_BOUNDARY
Alignment in bits to be given to a structure bit-field that follows an empty field such
as int : 0;.
If PCC_BITFIELD_TYPE_MATTERS is true, it overrides this macro.

[Macro]STRUCTURE_SIZE_BOUNDARY
Number of bits which any structure or union’s size must be a multiple of. Each
structure or union’s size is rounded up to a multiple of this.
If you do not define this macro, the default is the same as BITS_PER_UNIT.

386 GNU Compiler Collection (GCC) Internals

[Macro]STRICT_ALIGNMENT
Define this macro to be the value 1 if instructions will fail to work if given data not
on the nominal alignment. If instructions will merely go slower in that case, define
this macro as 0.

[Macro]PCC_BITFIELD_TYPE_MATTERS
Define this if you wish to imitate the way many other C compilers handle alignment
of bit-fields and the structures that contain them.
The behavior is that the type written for a named bit-field (int, short, or other
integer type) imposes an alignment for the entire structure, as if the structure really
did contain an ordinary field of that type. In addition, the bit-field is placed within
the structure so that it would fit within such a field, not crossing a boundary for it.
Thus, on most machines, a named bit-field whose type is written as int would not
cross a four-byte boundary, and would force four-byte alignment for the whole struc-
ture. (The alignment used may not be four bytes; it is controlled by the other align-
ment parameters.)
An unnamed bit-field will not affect the alignment of the containing structure.
If the macro is defined, its definition should be a C expression; a nonzero value for
the expression enables this behavior.
Note that if this macro is not defined, or its value is zero, some bit-fields may cross
more than one alignment boundary. The compiler can support such references if there
are ‘insv’, ‘extv’, and ‘extzv’ insns that can directly reference memory.
The other known way of making bit-fields work is to define STRUCTURE_SIZE_
BOUNDARY as large as BIGGEST_ALIGNMENT. Then every structure can be accessed
with fullwords.
Unless the machine has bit-field instructions or you define STRUCTURE_SIZE_BOUNDARY
that way, you must define PCC_BITFIELD_TYPE_MATTERS to have a nonzero value.
If your aim is to make GCC use the same conventions for laying out bit-fields as are
used by another compiler, here is how to investigate what the other compiler does.
Compile and run this program:

struct foo1

{

char x;

char :0;

char y;

};

struct foo2

{

char x;

int :0;

char y;

};

main ()

{

printf ("Size of foo1 is %d\n",

sizeof (struct foo1));

printf ("Size of foo2 is %d\n",

Chapter 17: Target Description Macros and Functions 387

sizeof (struct foo2));

exit (0);

}

If this prints 2 and 5, then the compiler’s behavior is what you would get from PCC_
BITFIELD_TYPE_MATTERS.

[Macro]BITFIELD_NBYTES_LIMITED
Like PCC_BITFIELD_TYPE_MATTERS except that its effect is limited to aligning a bit-
field within the structure.

[Target Hook]bool TARGET_ALIGN_ANON_BITFIELD (void)
When PCC_BITFIELD_TYPE_MATTERS is true this hook will determine whether un-
named bitfields affect the alignment of the containing structure. The hook should
return true if the structure should inherit the alignment requirements of an unnamed
bitfield’s type.

[Target Hook]bool TARGET_NARROW_VOLATILE_BITFIELD (void)
This target hook should return true if accesses to volatile bitfields should use the
narrowest mode possible. It should return false if these accesses should use the
bitfield container type.
The default is !TARGET_STRICT_ALIGN.

[Macro]MEMBER_TYPE_FORCES_BLK (field, mode)
Return 1 if a structure or array containing field should be accessed using BLKMODE.
If field is the only field in the structure, mode is its mode, otherwise mode is VOID-
mode. mode is provided in the case where structures of one field would require the
structure’s mode to retain the field’s mode.
Normally, this is not needed.

[Macro]ROUND_TYPE_ALIGN (type, computed, specified)
Define this macro as an expression for the alignment of a type (given by type as a
tree node) if the alignment computed in the usual way is computed and the alignment
explicitly specified was specified.
The default is to use specified if it is larger; otherwise, use the smaller of computed
and BIGGEST_ALIGNMENT

[Macro]MAX_FIXED_MODE_SIZE
An integer expression for the size in bits of the largest integer machine mode that
should actually be used. All integer machine modes of this size or smaller can be
used for structures and unions with the appropriate sizes. If this macro is undefined,
GET_MODE_BITSIZE (DImode) is assumed.

[Macro]STACK_SAVEAREA_MODE (save_level)
If defined, an expression of type enum machine_mode that specifies the mode of the
save area operand of a save_stack_level named pattern (see Section 16.9 [Stan-
dard Names], page 309). save level is one of SAVE_BLOCK, SAVE_FUNCTION, or SAVE_
NONLOCAL and selects which of the three named patterns is having its mode specified.
You need not define this macro if it always returns Pmode. You would most commonly
define this macro if the save_stack_level patterns need to support both a 32- and
a 64-bit mode.

388 GNU Compiler Collection (GCC) Internals

[Macro]STACK_SIZE_MODE
If defined, an expression of type enum machine_mode that specifies the mode of the size
increment operand of an allocate_stack named pattern (see Section 16.9 [Standard
Names], page 309).
You need not define this macro if it always returns word_mode. You would most
commonly define this macro if the allocate_stack pattern needs to support both a
32- and a 64-bit mode.

[Target Hook]enum machine_mode TARGET_LIBGCC_CMP_RETURN_MODE ()
This target hook should return the mode to be used for the return value of compare
instructions expanded to libgcc calls. If not defined word_mode is returned which is
the right choice for a majority of targets.

[Target Hook]enum machine_mode TARGET_LIBGCC_SHIFT_COUNT_MODE ()
This target hook should return the mode to be used for the shift count operand of
shift instructions expanded to libgcc calls. If not defined word_mode is returned which
is the right choice for a majority of targets.

[Macro]ROUND_TOWARDS_ZERO
If defined, this macro should be true if the prevailing rounding mode is towards zero.
Defining this macro only affects the way ‘libgcc.a’ emulates floating-point arith-
metic.
Not defining this macro is equivalent to returning zero.

[Macro]LARGEST_EXPONENT_IS_NORMAL (size)
This macro should return true if floats with size bits do not have a NaN or infinity
representation, but use the largest exponent for normal numbers instead.
Defining this macro only affects the way ‘libgcc.a’ emulates floating-point arith-
metic.
The default definition of this macro returns false for all sizes.

[Target Hook]bool TARGET_VECTOR_OPAQUE_P (tree type)
This target hook should return true a vector is opaque. That is, if no cast is needed
when copying a vector value of type type into another vector lvalue of the same size.
Vector opaque types cannot be initialized. The default is that there are no such types.

[Target Hook]bool TARGET_MS_BITFIELD_LAYOUT_P (tree record_type)
This target hook returns true if bit-fields in the given record type are to be laid out
following the rules of Microsoft Visual C/C++, namely: (i) a bit-field won’t share the
same storage unit with the previous bit-field if their underlying types have different
sizes, and the bit-field will be aligned to the highest alignment of the underlying types
of itself and of the previous bit-field; (ii) a zero-sized bit-field will affect the alignment
of the whole enclosing structure, even if it is unnamed; except that (iii) a zero-sized
bit-field will be disregarded unless it follows another bit-field of nonzero size. If this
hook returns true, other macros that control bit-field layout are ignored.
When a bit-field is inserted into a packed record, the whole size of the underlying type
is used by one or more same-size adjacent bit-fields (that is, if its long:3, 32 bits is used

Chapter 17: Target Description Macros and Functions 389

in the record, and any additional adjacent long bit-fields are packed into the same
chunk of 32 bits. However, if the size changes, a new field of that size is allocated).
In an unpacked record, this is the same as using alignment, but not equivalent when
packing.

If both MS bit-fields and ‘__attribute__((packed))’ are used, the latter will take
precedence. If ‘__attribute__((packed))’ is used on a single field when MS bit-
fields are in use, it will take precedence for that field, but the alignment of the rest
of the structure may affect its placement.

[Target Hook]bool TARGET_DECIMAL_FLOAT_SUPPORTED_P (void)
Returns true if the target supports decimal floating point.

[Target Hook]bool TARGET_FIXED_POINT_SUPPORTED_P (void)
Returns true if the target supports fixed-point arithmetic.

[Target Hook]void TARGET_EXPAND_TO_RTL_HOOK (void)
This hook is called just before expansion into rtl, allowing the target to perform
additional initializations or analysis before the expansion. For example, the rs6000
port uses it to allocate a scratch stack slot for use in copying SDmode values between
memory and floating point registers whenever the function being expanded has any
SDmode usage.

[Target Hook]void TARGET_INSTANTIATE_DECLS (void)
This hook allows the backend to perform additional instantiations on rtl that are not
actually in any insns yet, but will be later.

[Target Hook]const char * TARGET_MANGLE_TYPE (tree type)
If your target defines any fundamental types, or any types your target uses should
be mangled differently from the default, define this hook to return the appropriate
encoding for these types as part of a C++ mangled name. The type argument is the
tree structure representing the type to be mangled. The hook may be applied to trees
which are not target-specific fundamental types; it should return NULL for all such
types, as well as arguments it does not recognize. If the return value is not NULL, it
must point to a statically-allocated string constant.

Target-specific fundamental types might be new fundamental types or qualified ver-
sions of ordinary fundamental types. Encode new fundamental types as ‘u n name ’,
where name is the name used for the type in source code, and n is the length of name
in decimal. Encode qualified versions of ordinary types as ‘U n name code ’, where
name is the name used for the type qualifier in source code, n is the length of name
as above, and code is the code used to represent the unqualified version of this type.
(See write_builtin_type in ‘cp/mangle.c’ for the list of codes.) In both cases the
spaces are for clarity; do not include any spaces in your string.

This hook is applied to types prior to typedef resolution. If the mangled name for a
particular type depends only on that type’s main variant, you can perform typedef
resolution yourself using TYPE_MAIN_VARIANT before mangling.

The default version of this hook always returns NULL, which is appropriate for a target
that does not define any new fundamental types.

390 GNU Compiler Collection (GCC) Internals

17.6 Layout of Source Language Data Types

These macros define the sizes and other characteristics of the standard basic data types
used in programs being compiled. Unlike the macros in the previous section, these apply to
specific features of C and related languages, rather than to fundamental aspects of storage
layout.

[Macro]INT_TYPE_SIZE
A C expression for the size in bits of the type int on the target machine. If you don’t
define this, the default is one word.

[Macro]SHORT_TYPE_SIZE
A C expression for the size in bits of the type short on the target machine. If you
don’t define this, the default is half a word. (If this would be less than one storage
unit, it is rounded up to one unit.)

[Macro]LONG_TYPE_SIZE
A C expression for the size in bits of the type long on the target machine. If you
don’t define this, the default is one word.

[Macro]ADA_LONG_TYPE_SIZE
On some machines, the size used for the Ada equivalent of the type long by a native
Ada compiler differs from that used by C. In that situation, define this macro to be a
C expression to be used for the size of that type. If you don’t define this, the default
is the value of LONG_TYPE_SIZE.

[Macro]LONG_LONG_TYPE_SIZE
A C expression for the size in bits of the type long long on the target machine. If
you don’t define this, the default is two words. If you want to support GNU Ada on
your machine, the value of this macro must be at least 64.

[Macro]CHAR_TYPE_SIZE
A C expression for the size in bits of the type char on the target machine. If you
don’t define this, the default is BITS_PER_UNIT.

[Macro]BOOL_TYPE_SIZE
A C expression for the size in bits of the C++ type bool and C99 type _Bool on the
target machine. If you don’t define this, and you probably shouldn’t, the default is
CHAR_TYPE_SIZE.

[Macro]FLOAT_TYPE_SIZE
A C expression for the size in bits of the type float on the target machine. If you
don’t define this, the default is one word.

[Macro]DOUBLE_TYPE_SIZE
A C expression for the size in bits of the type double on the target machine. If you
don’t define this, the default is two words.

[Macro]LONG_DOUBLE_TYPE_SIZE
A C expression for the size in bits of the type long double on the target machine. If
you don’t define this, the default is two words.

Chapter 17: Target Description Macros and Functions 391

[Macro]SHORT_FRACT_TYPE_SIZE
A C expression for the size in bits of the type short _Fract on the target machine.
If you don’t define this, the default is BITS_PER_UNIT.

[Macro]FRACT_TYPE_SIZE
A C expression for the size in bits of the type _Fract on the target machine. If you
don’t define this, the default is BITS_PER_UNIT * 2.

[Macro]LONG_FRACT_TYPE_SIZE
A C expression for the size in bits of the type long _Fract on the target machine. If
you don’t define this, the default is BITS_PER_UNIT * 4.

[Macro]LONG_LONG_FRACT_TYPE_SIZE
A C expression for the size in bits of the type long long _Fract on the target machine.
If you don’t define this, the default is BITS_PER_UNIT * 8.

[Macro]SHORT_ACCUM_TYPE_SIZE
A C expression for the size in bits of the type short _Accum on the target machine.
If you don’t define this, the default is BITS_PER_UNIT * 2.

[Macro]ACCUM_TYPE_SIZE
A C expression for the size in bits of the type _Accum on the target machine. If you
don’t define this, the default is BITS_PER_UNIT * 4.

[Macro]LONG_ACCUM_TYPE_SIZE
A C expression for the size in bits of the type long _Accum on the target machine. If
you don’t define this, the default is BITS_PER_UNIT * 8.

[Macro]LONG_LONG_ACCUM_TYPE_SIZE
A C expression for the size in bits of the type long long _Accum on the target machine.
If you don’t define this, the default is BITS_PER_UNIT * 16.

[Macro]LIBGCC2_LONG_DOUBLE_TYPE_SIZE
Define this macro if LONG_DOUBLE_TYPE_SIZE is not constant or if you want routines
in ‘libgcc2.a’ for a size other than LONG_DOUBLE_TYPE_SIZE. If you don’t define
this, the default is LONG_DOUBLE_TYPE_SIZE.

[Macro]LIBGCC2_HAS_DF_MODE
Define this macro if neither LIBGCC2_DOUBLE_TYPE_SIZE nor LIBGCC2_LONG_DOUBLE_
TYPE_SIZE is DFmode but you want DFmode routines in ‘libgcc2.a’ anyway. If you
don’t define this and either LIBGCC2_DOUBLE_TYPE_SIZE or LIBGCC2_LONG_DOUBLE_
TYPE_SIZE is 64 then the default is 1, otherwise it is 0.

[Macro]LIBGCC2_HAS_XF_MODE
Define this macro if LIBGCC2_LONG_DOUBLE_TYPE_SIZE is not XFmode but you want
XFmode routines in ‘libgcc2.a’ anyway. If you don’t define this and LIBGCC2_LONG_
DOUBLE_TYPE_SIZE is 80 then the default is 1, otherwise it is 0.

[Macro]LIBGCC2_HAS_TF_MODE
Define this macro if LIBGCC2_LONG_DOUBLE_TYPE_SIZE is not TFmode but you want
TFmode routines in ‘libgcc2.a’ anyway. If you don’t define this and LIBGCC2_LONG_
DOUBLE_TYPE_SIZE is 128 then the default is 1, otherwise it is 0.

392 GNU Compiler Collection (GCC) Internals

[Macro]SF_SIZE
[Macro]DF_SIZE
[Macro]XF_SIZE
[Macro]TF_SIZE

Define these macros to be the size in bits of the mantissa of SFmode, DFmode, XFmode
and TFmode values, if the defaults in ‘libgcc2.h’ are inappropriate. By default, FLT_
MANT_DIG is used for SF_SIZE, LDBL_MANT_DIG for XF_SIZE and TF_SIZE, and DBL_
MANT_DIG or LDBL_MANT_DIG for DF_SIZE according to whether LIBGCC2_DOUBLE_
TYPE_SIZE or LIBGCC2_LONG_DOUBLE_TYPE_SIZE is 64.

[Macro]TARGET_FLT_EVAL_METHOD
A C expression for the value for FLT_EVAL_METHOD in ‘float.h’, assuming, if appli-
cable, that the floating-point control word is in its default state. If you do not define
this macro the value of FLT_EVAL_METHOD will be zero.

[Macro]WIDEST_HARDWARE_FP_SIZE
A C expression for the size in bits of the widest floating-point format supported by
the hardware. If you define this macro, you must specify a value less than or equal
to the value of LONG_DOUBLE_TYPE_SIZE. If you do not define this macro, the value
of LONG_DOUBLE_TYPE_SIZE is the default.

[Macro]DEFAULT_SIGNED_CHAR
An expression whose value is 1 or 0, according to whether the type char should be
signed or unsigned by default. The user can always override this default with the
options ‘-fsigned-char’ and ‘-funsigned-char’.

[Target Hook]bool TARGET_DEFAULT_SHORT_ENUMS (void)
This target hook should return true if the compiler should give an enum type only
as many bytes as it takes to represent the range of possible values of that type. It
should return false if all enum types should be allocated like int.

The default is to return false.

[Macro]SIZE_TYPE
A C expression for a string describing the name of the data type to use for size values.
The typedef name size_t is defined using the contents of the string.

The string can contain more than one keyword. If so, separate them with spaces,
and write first any length keyword, then unsigned if appropriate, and finally int.
The string must exactly match one of the data type names defined in the function
init_decl_processing in the file ‘c-decl.c’. You may not omit int or change the
order—that would cause the compiler to crash on startup.

If you don’t define this macro, the default is "long unsigned int".

[Macro]PTRDIFF_TYPE
A C expression for a string describing the name of the data type to use for the result of
subtracting two pointers. The typedef name ptrdiff_t is defined using the contents
of the string. See SIZE_TYPE above for more information.

If you don’t define this macro, the default is "long int".

Chapter 17: Target Description Macros and Functions 393

[Macro]WCHAR_TYPE
A C expression for a string describing the name of the data type to use for wide
characters. The typedef name wchar_t is defined using the contents of the string.
See SIZE_TYPE above for more information.
If you don’t define this macro, the default is "int".

[Macro]WCHAR_TYPE_SIZE
A C expression for the size in bits of the data type for wide characters. This is used
in cpp, which cannot make use of WCHAR_TYPE.

[Macro]WINT_TYPE
A C expression for a string describing the name of the data type to use for wide
characters passed to printf and returned from getwc. The typedef name wint_t is
defined using the contents of the string. See SIZE_TYPE above for more information.
If you don’t define this macro, the default is "unsigned int".

[Macro]INTMAX_TYPE
A C expression for a string describing the name of the data type that can represent any
value of any standard or extended signed integer type. The typedef name intmax_t is
defined using the contents of the string. See SIZE_TYPE above for more information.
If you don’t define this macro, the default is the first of "int", "long int", or "long
long int" that has as much precision as long long int.

[Macro]UINTMAX_TYPE
A C expression for a string describing the name of the data type that can represent
any value of any standard or extended unsigned integer type. The typedef name
uintmax_t is defined using the contents of the string. See SIZE_TYPE above for more
information.
If you don’t define this macro, the default is the first of "unsigned int", "long
unsigned int", or "long long unsigned int" that has as much precision as long
long unsigned int.

[Macro]TARGET_PTRMEMFUNC_VBIT_LOCATION
The C++ compiler represents a pointer-to-member-function with a struct that looks
like:

struct {

union {

void (*fn)();

ptrdiff_t vtable_index;

};

ptrdiff_t delta;

};

The C++ compiler must use one bit to indicate whether the function that will be
called through a pointer-to-member-function is virtual. Normally, we assume that
the low-order bit of a function pointer must always be zero. Then, by ensuring that
the vtable index is odd, we can distinguish which variant of the union is in use. But,
on some platforms function pointers can be odd, and so this doesn’t work. In that
case, we use the low-order bit of the delta field, and shift the remainder of the delta
field to the left.

394 GNU Compiler Collection (GCC) Internals

GCC will automatically make the right selection about where to store this bit using
the FUNCTION_BOUNDARY setting for your platform. However, some platforms such as
ARM/Thumb have FUNCTION_BOUNDARY set such that functions always start at even
addresses, but the lowest bit of pointers to functions indicate whether the function at
that address is in ARM or Thumb mode. If this is the case of your architecture, you
should define this macro to ptrmemfunc_vbit_in_delta.

In general, you should not have to define this macro. On architectures in which
function addresses are always even, according to FUNCTION_BOUNDARY, GCC will au-
tomatically define this macro to ptrmemfunc_vbit_in_pfn.

[Macro]TARGET_VTABLE_USES_DESCRIPTORS
Normally, the C++ compiler uses function pointers in vtables. This macro allows the
target to change to use “function descriptors” instead. Function descriptors are found
on targets for whom a function pointer is actually a small data structure. Normally
the data structure consists of the actual code address plus a data pointer to which
the function’s data is relative.

If vtables are used, the value of this macro should be the number of words that the
function descriptor occupies.

[Macro]TARGET_VTABLE_ENTRY_ALIGN
By default, the vtable entries are void pointers, the so the alignment is the same as
pointer alignment. The value of this macro specifies the alignment of the vtable entry
in bits. It should be defined only when special alignment is necessary. */

[Macro]TARGET_VTABLE_DATA_ENTRY_DISTANCE
There are a few non-descriptor entries in the vtable at offsets below zero. If these
entries must be padded (say, to preserve the alignment specified by TARGET_VTABLE_
ENTRY_ALIGN), set this to the number of words in each data entry.

17.7 Register Usage

This section explains how to describe what registers the target machine has, and how (in
general) they can be used.

The description of which registers a specific instruction can use is done with register
classes; see Section 17.8 [Register Classes], page 400. For information on using registers to
access a stack frame, see Section 17.10.4 [Frame Registers], page 418. For passing values
in registers, see Section 17.10.7 [Register Arguments], page 424. For returning values in
registers, see Section 17.10.8 [Scalar Return], page 429.

17.7.1 Basic Characteristics of Registers

Registers have various characteristics.

[Macro]FIRST_PSEUDO_REGISTER
Number of hardware registers known to the compiler. They receive numbers 0 through
FIRST_PSEUDO_REGISTER-1; thus, the first pseudo register’s number really is assigned
the number FIRST_PSEUDO_REGISTER.

Chapter 17: Target Description Macros and Functions 395

[Macro]FIXED_REGISTERS
An initializer that says which registers are used for fixed purposes all throughout the
compiled code and are therefore not available for general allocation. These would
include the stack pointer, the frame pointer (except on machines where that can be
used as a general register when no frame pointer is needed), the program counter
on machines where that is considered one of the addressable registers, and any other
numbered register with a standard use.
This information is expressed as a sequence of numbers, separated by commas and
surrounded by braces. The nth number is 1 if register n is fixed, 0 otherwise.
The table initialized from this macro, and the table initialized by the following
one, may be overridden at run time either automatically, by the actions of the
macro CONDITIONAL_REGISTER_USAGE, or by the user with the command options
‘-ffixed-reg ’, ‘-fcall-used-reg ’ and ‘-fcall-saved-reg ’.

[Macro]CALL_USED_REGISTERS
Like FIXED_REGISTERS but has 1 for each register that is clobbered (in general) by
function calls as well as for fixed registers. This macro therefore identifies the registers
that are not available for general allocation of values that must live across function
calls.
If a register has 0 in CALL_USED_REGISTERS, the compiler automatically saves it on
function entry and restores it on function exit, if the register is used within the
function.

[Macro]CALL_REALLY_USED_REGISTERS
Like CALL_USED_REGISTERS except this macro doesn’t require that the entire set of
FIXED_REGISTERS be included. (CALL_USED_REGISTERS must be a superset of FIXED_
REGISTERS). This macro is optional. If not specified, it defaults to the value of
CALL_USED_REGISTERS.

[Macro]HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)
A C expression that is nonzero if it is not permissible to store a value of mode mode
in hard register number regno across a call without some part of it being clobbered.
For most machines this macro need not be defined. It is only required for machines
that do not preserve the entire contents of a register across a call.

[Macro]CONDITIONAL_REGISTER_USAGE
Zero or more C statements that may conditionally modify five variables fixed_regs,
call_used_regs, global_regs, reg_names, and reg_class_contents, to take into
account any dependence of these register sets on target flags. The first three of
these are of type char [] (interpreted as Boolean vectors). global_regs is a const
char *[], and reg_class_contents is a HARD_REG_SET. Before the macro is called,
fixed_regs, call_used_regs, reg_class_contents, and reg_names have been
initialized from FIXED_REGISTERS, CALL_USED_REGISTERS, REG_CLASS_CONTENTS,
and REGISTER_NAMES, respectively. global_regs has been cleared, and any
‘-ffixed-reg ’, ‘-fcall-used-reg ’ and ‘-fcall-saved-reg ’ command options
have been applied.
You need not define this macro if it has no work to do.

396 GNU Compiler Collection (GCC) Internals

If the usage of an entire class of registers depends on the target flags, you may indicate
this to GCC by using this macro to modify fixed_regs and call_used_regs to 1 for
each of the registers in the classes which should not be used by GCC. Also define the
macro REG_CLASS_FROM_LETTER / REG_CLASS_FROM_CONSTRAINT to return NO_REGS
if it is called with a letter for a class that shouldn’t be used.
(However, if this class is not included in GENERAL_REGS and all of the insn patterns
whose constraints permit this class are controlled by target switches, then GCC will
automatically avoid using these registers when the target switches are opposed to
them.)

[Macro]INCOMING_REGNO (out)
Define this macro if the target machine has register windows. This C expression
returns the register number as seen by the called function corresponding to the register
number out as seen by the calling function. Return out if register number out is not
an outbound register.

[Macro]OUTGOING_REGNO (in)
Define this macro if the target machine has register windows. This C expression
returns the register number as seen by the calling function corresponding to the
register number in as seen by the called function. Return in if register number in is
not an inbound register.

[Macro]LOCAL_REGNO (regno)
Define this macro if the target machine has register windows. This C expression
returns true if the register is call-saved but is in the register window. Unlike most
call-saved registers, such registers need not be explicitly restored on function exit or
during non-local gotos.

[Macro]PC_REGNUM
If the program counter has a register number, define this as that register number.
Otherwise, do not define it.

17.7.2 Order of Allocation of Registers

Registers are allocated in order.

[Macro]REG_ALLOC_ORDER
If defined, an initializer for a vector of integers, containing the numbers of hard
registers in the order in which GCC should prefer to use them (from most preferred
to least).
If this macro is not defined, registers are used lowest numbered first (all else being
equal).
One use of this macro is on machines where the highest numbered registers must
always be saved and the save-multiple-registers instruction supports only sequences of
consecutive registers. On such machines, define REG_ALLOC_ORDER to be an initializer
that lists the highest numbered allocable register first.

[Macro]ORDER_REGS_FOR_LOCAL_ALLOC
A C statement (sans semicolon) to choose the order in which to allocate hard registers
for pseudo-registers local to a basic block.

Chapter 17: Target Description Macros and Functions 397

Store the desired register order in the array reg_alloc_order. Element 0 should be
the register to allocate first; element 1, the next register; and so on.
The macro body should not assume anything about the contents of reg_alloc_order
before execution of the macro.
On most machines, it is not necessary to define this macro.

[Macro]IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno)
In some case register allocation order is not enough for the Integrated Register Al-
locator (IRA) to generate a good code. If this macro is defined, it should return a
floating point value based on regno. The cost of using regno for a pseudo will be
increased by approximately the pseudo’s usage frequency times the value returned by
this macro. Not defining this macro is equivalent to having it always return 0.0.
On most machines, it is not necessary to define this macro.

17.7.3 How Values Fit in Registers

This section discusses the macros that describe which kinds of values (specifically, which
machine modes) each register can hold, and how many consecutive registers are needed for
a given mode.

[Macro]HARD_REGNO_NREGS (regno, mode)
A C expression for the number of consecutive hard registers, starting at register
number regno, required to hold a value of mode mode. This macro must never
return zero, even if a register cannot hold the requested mode - indicate that with
HARD REGNO MODE OK and/or CANNOT CHANGE MODE CLASS instead.
On a machine where all registers are exactly one word, a suitable definition of this
macro is

#define HARD_REGNO_NREGS(REGNO, MODE) \

((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \

/ UNITS_PER_WORD)

[Macro]HARD_REGNO_NREGS_HAS_PADDING (regno, mode)
A C expression that is nonzero if a value of mode mode, stored in memory, ends with
padding that causes it to take up more space than in registers starting at register
number regno (as determined by multiplying GCC’s notion of the size of the register
when containing this mode by the number of registers returned by HARD_REGNO_
NREGS). By default this is zero.
For example, if a floating-point value is stored in three 32-bit registers but takes up
128 bits in memory, then this would be nonzero.
This macros only needs to be defined if there are cases where subreg_get_info would
otherwise wrongly determine that a subreg can be represented by an offset to the
register number, when in fact such a subreg would contain some of the padding not
stored in registers and so not be representable.

[Macro]HARD_REGNO_NREGS_WITH_PADDING (regno, mode)
For values of regno and mode for which HARD_REGNO_NREGS_HAS_PADDING returns
nonzero, a C expression returning the greater number of registers required to hold
the value including any padding. In the example above, the value would be four.

398 GNU Compiler Collection (GCC) Internals

[Macro]REGMODE_NATURAL_SIZE (mode)
Define this macro if the natural size of registers that hold values of mode mode is
not the word size. It is a C expression that should give the natural size in bytes for
the specified mode. It is used by the register allocator to try to optimize its results.
This happens for example on SPARC 64-bit where the natural size of floating-point
registers is still 32-bit.

[Macro]HARD_REGNO_MODE_OK (regno, mode)
A C expression that is nonzero if it is permissible to store a value of mode mode in
hard register number regno (or in several registers starting with that one). For a
machine where all registers are equivalent, a suitable definition is

#define HARD_REGNO_MODE_OK(REGNO, MODE) 1

You need not include code to check for the numbers of fixed registers, because the
allocation mechanism considers them to be always occupied.

On some machines, double-precision values must be kept in even/odd register pairs.
You can implement that by defining this macro to reject odd register numbers for
such modes.

The minimum requirement for a mode to be OK in a register is that the ‘movmode ’
instruction pattern support moves between the register and other hard register in the
same class and that moving a value into the register and back out not alter it.

Since the same instruction used to move word_mode will work for all narrower integer
modes, it is not necessary on any machine for HARD_REGNO_MODE_OK to distinguish
between these modes, provided you define patterns ‘movhi’, etc., to take advantage
of this. This is useful because of the interaction between HARD_REGNO_MODE_OK and
MODES_TIEABLE_P; it is very desirable for all integer modes to be tieable.

Many machines have special registers for floating point arithmetic. Often people
assume that floating point machine modes are allowed only in floating point registers.
This is not true. Any registers that can hold integers can safely hold a floating point
machine mode, whether or not floating arithmetic can be done on it in those registers.
Integer move instructions can be used to move the values.

On some machines, though, the converse is true: fixed-point machine modes may
not go in floating registers. This is true if the floating registers normalize any value
stored in them, because storing a non-floating value there would garble it. In this case,
HARD_REGNO_MODE_OK should reject fixed-point machine modes in floating registers.
But if the floating registers do not automatically normalize, if you can store any bit
pattern in one and retrieve it unchanged without a trap, then any machine mode may
go in a floating register, so you can define this macro to say so.

The primary significance of special floating registers is rather that they are the reg-
isters acceptable in floating point arithmetic instructions. However, this is of no
concern to HARD_REGNO_MODE_OK. You handle it by writing the proper constraints for
those instructions.

On some machines, the floating registers are especially slow to access, so that it
is better to store a value in a stack frame than in such a register if floating point
arithmetic is not being done. As long as the floating registers are not in class GENERAL_
REGS, they will not be used unless some pattern’s constraint asks for one.

Chapter 17: Target Description Macros and Functions 399

[Macro]HARD_REGNO_RENAME_OK (from, to)
A C expression that is nonzero if it is OK to rename a hard register from to another
hard register to.

One common use of this macro is to prevent renaming of a register to another register
that is not saved by a prologue in an interrupt handler.

The default is always nonzero.

[Macro]MODES_TIEABLE_P (mode1, mode2)
A C expression that is nonzero if a value of mode mode1 is accessible in mode mode2
without copying.

If HARD_REGNO_MODE_OK (r, mode1) and HARD_REGNO_MODE_OK (r, mode2) are al-
ways the same for any r, then MODES_TIEABLE_P (mode1, mode2) should be nonzero.
If they differ for any r, you should define this macro to return zero unless some other
mechanism ensures the accessibility of the value in a narrower mode.

You should define this macro to return nonzero in as many cases as possible since
doing so will allow GCC to perform better register allocation.

[Target Hook]bool TARGET_HARD_REGNO_SCRATCH_OK (unsigned int regno)
This target hook should return true if it is OK to use a hard register regno as scratch
reg in peephole2.

One common use of this macro is to prevent using of a register that is not saved by
a prologue in an interrupt handler.

The default version of this hook always returns true.

[Macro]AVOID_CCMODE_COPIES
Define this macro if the compiler should avoid copies to/from CCmode registers. You
should only define this macro if support for copying to/from CCmode is incomplete.

17.7.4 Handling Leaf Functions

On some machines, a leaf function (i.e., one which makes no calls) can run more efficiently
if it does not make its own register window. Often this means it is required to receive its
arguments in the registers where they are passed by the caller, instead of the registers where
they would normally arrive.

The special treatment for leaf functions generally applies only when other conditions
are met; for example, often they may use only those registers for its own variables and
temporaries. We use the term “leaf function” to mean a function that is suitable for this
special handling, so that functions with no calls are not necessarily “leaf functions”.

GCC assigns register numbers before it knows whether the function is suitable for leaf
function treatment. So it needs to renumber the registers in order to output a leaf function.
The following macros accomplish this.

[Macro]LEAF_REGISTERS
Name of a char vector, indexed by hard register number, which contains 1 for a
register that is allowable in a candidate for leaf function treatment.

400 GNU Compiler Collection (GCC) Internals

If leaf function treatment involves renumbering the registers, then the registers marked
here should be the ones before renumbering—those that GCC would ordinarily allo-
cate. The registers which will actually be used in the assembler code, after renum-
bering, should not be marked with 1 in this vector.

Define this macro only if the target machine offers a way to optimize the treatment
of leaf functions.

[Macro]LEAF_REG_REMAP (regno)
A C expression whose value is the register number to which regno should be renum-
bered, when a function is treated as a leaf function.

If regno is a register number which should not appear in a leaf function before renum-
bering, then the expression should yield −1, which will cause the compiler to abort.

Define this macro only if the target machine offers a way to optimize the treatment
of leaf functions, and registers need to be renumbered to do this.

TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE must usually
treat leaf functions specially. They can test the C variable current_function_is_leaf
which is nonzero for leaf functions. current_function_is_leaf is set prior to local
register allocation and is valid for the remaining compiler passes. They can also test the
C variable current_function_uses_only_leaf_regs which is nonzero for leaf functions
which only use leaf registers. current_function_uses_only_leaf_regs is valid after all
passes that modify the instructions have been run and is only useful if LEAF_REGISTERS is
defined.

17.7.5 Registers That Form a Stack

There are special features to handle computers where some of the “registers” form a stack.
Stack registers are normally written by pushing onto the stack, and are numbered relative
to the top of the stack.

Currently, GCC can only handle one group of stack-like registers, and they must be
consecutively numbered. Furthermore, the existing support for stack-like registers is specific
to the 80387 floating point coprocessor. If you have a new architecture that uses stack-like
registers, you will need to do substantial work on ‘reg-stack.c’ and write your machine
description to cooperate with it, as well as defining these macros.

[Macro]STACK_REGS
Define this if the machine has any stack-like registers.

[Macro]FIRST_STACK_REG
The number of the first stack-like register. This one is the top of the stack.

[Macro]LAST_STACK_REG
The number of the last stack-like register. This one is the bottom of the stack.

17.8 Register Classes

On many machines, the numbered registers are not all equivalent. For example, certain
registers may not be allowed for indexed addressing; certain registers may not be allowed in

Chapter 17: Target Description Macros and Functions 401

some instructions. These machine restrictions are described to the compiler using register
classes.

You define a number of register classes, giving each one a name and saying which of the
registers belong to it. Then you can specify register classes that are allowed as operands to
particular instruction patterns.

In general, each register will belong to several classes. In fact, one class must be named
ALL_REGS and contain all the registers. Another class must be named NO_REGS and contain
no registers. Often the union of two classes will be another class; however, this is not
required.

One of the classes must be named GENERAL_REGS. There is nothing terribly special about
the name, but the operand constraint letters ‘r’ and ‘g’ specify this class. If GENERAL_REGS
is the same as ALL_REGS, just define it as a macro which expands to ALL_REGS.

Order the classes so that if class x is contained in class y then x has a lower class number
than y.

The way classes other than GENERAL_REGS are specified in operand constraints is through
machine-dependent operand constraint letters. You can define such letters to correspond
to various classes, then use them in operand constraints.

You should define a class for the union of two classes whenever some instruction allows
both classes. For example, if an instruction allows either a floating point (coprocessor)
register or a general register for a certain operand, you should define a class FLOAT_OR_
GENERAL_REGS which includes both of them. Otherwise you will get suboptimal code.

You must also specify certain redundant information about the register classes: for each
class, which classes contain it and which ones are contained in it; for each pair of classes,
the largest class contained in their union.

When a value occupying several consecutive registers is expected in a certain class, all
the registers used must belong to that class. Therefore, register classes cannot be used to
enforce a requirement for a register pair to start with an even-numbered register. The way
to specify this requirement is with HARD_REGNO_MODE_OK.

Register classes used for input-operands of bitwise-and or shift instructions have a special
requirement: each such class must have, for each fixed-point machine mode, a subclass whose
registers can transfer that mode to or from memory. For example, on some machines, the
operations for single-byte values (QImode) are limited to certain registers. When this is so,
each register class that is used in a bitwise-and or shift instruction must have a subclass
consisting of registers from which single-byte values can be loaded or stored. This is so that
PREFERRED_RELOAD_CLASS can always have a possible value to return.

[Data type]enum reg_class
An enumerated type that must be defined with all the register class names as enu-
merated values. NO_REGS must be first. ALL_REGS must be the last register class,
followed by one more enumerated value, LIM_REG_CLASSES, which is not a register
class but rather tells how many classes there are.
Each register class has a number, which is the value of casting the class name to type
int. The number serves as an index in many of the tables described below.

[Macro]N_REG_CLASSES
The number of distinct register classes, defined as follows:

402 GNU Compiler Collection (GCC) Internals

#define N_REG_CLASSES (int) LIM_REG_CLASSES

[Macro]REG_CLASS_NAMES
An initializer containing the names of the register classes as C string constants. These
names are used in writing some of the debugging dumps.

[Macro]REG_CLASS_CONTENTS
An initializer containing the contents of the register classes, as integers which are bit
masks. The nth integer specifies the contents of class n. The way the integer mask is
interpreted is that register r is in the class if mask & (1 << r) is 1.
When the machine has more than 32 registers, an integer does not suffice. Then the
integers are replaced by sub-initializers, braced groupings containing several integers.
Each sub-initializer must be suitable as an initializer for the type HARD_REG_SET
which is defined in ‘hard-reg-set.h’. In this situation, the first integer in each sub-
initializer corresponds to registers 0 through 31, the second integer to registers 32
through 63, and so on.

[Macro]REGNO_REG_CLASS (regno)
A C expression whose value is a register class containing hard register regno. In
general there is more than one such class; choose a class which is minimal, meaning
that no smaller class also contains the register.

[Macro]BASE_REG_CLASS
A macro whose definition is the name of the class to which a valid base register must
belong. A base register is one used in an address which is the register value plus a
displacement.

[Macro]MODE_BASE_REG_CLASS (mode)
This is a variation of the BASE_REG_CLASS macro which allows the selection of a base
register in a mode dependent manner. If mode is VOIDmode then it should return
the same value as BASE_REG_CLASS.

[Macro]MODE_BASE_REG_REG_CLASS (mode)
A C expression whose value is the register class to which a valid base register must
belong in order to be used in a base plus index register address. You should define
this macro if base plus index addresses have different requirements than other base
register uses.

[Macro]MODE_CODE_BASE_REG_CLASS (mode, outer_code, index_code)
A C expression whose value is the register class to which a valid base register must
belong. outer code and index code define the context in which the base register
occurs. outer code is the code of the immediately enclosing expression (MEM for the
top level of an address, ADDRESS for something that occurs in an address_operand).
index code is the code of the corresponding index expression if outer code is PLUS;
SCRATCH otherwise.

[Macro]INDEX_REG_CLASS
A macro whose definition is the name of the class to which a valid index register must
belong. An index register is one used in an address where its value is either multiplied
by a scale factor or added to another register (as well as added to a displacement).

Chapter 17: Target Description Macros and Functions 403

[Macro]MODE_INDEX_REG_CLASS (mode)
This is a variation of the INDEX_REG_CLASS macro which allows the selection of an
index register in a mode dependent manner. It can return NO_REGS for modes that do
not support any form of index register. If mode is VOIDmode then the macro should
return a class of registers that is suitable for all addresses in which an index register
of some form is allowed.

[Macro]REGNO_OK_FOR_BASE_P (num)
A C expression which is nonzero if register number num is suitable for use as a base
register in operand addresses. It may be either a suitable hard register or a pseudo
register that has been allocated such a hard register.

[Macro]REGNO_MODE_OK_FOR_BASE_P (num, mode)
A C expression that is just like REGNO_OK_FOR_BASE_P, except that that expression
may examine the mode of the memory reference in mode. You should define this
macro if the mode of the memory reference affects whether a register may be used as
a base register. If you define this macro, the compiler will use it instead of REGNO_OK_
FOR_BASE_P. The mode may be VOIDmode for addresses that appear outside a MEM,
i.e., as an address_operand.

[Macro]REGNO_MODE_OK_FOR_REG_BASE_P (num, mode)
A C expression which is nonzero if register number num is suitable for use as a base
register in base plus index operand addresses, accessing memory in mode mode. It
may be either a suitable hard register or a pseudo register that has been allocated
such a hard register. You should define this macro if base plus index addresses have
different requirements than other base register uses.
Use of this macro is deprecated; please use the more general REGNO_MODE_CODE_OK_
FOR_BASE_P.

[Macro]REGNO_MODE_CODE_OK_FOR_BASE_P (num, mode, outer_code,
index_code)

A C expression that is just like REGNO_MODE_OK_FOR_BASE_P, except that that expres-
sion may examine the context in which the register appears in the memory reference.
outer code is the code of the immediately enclosing expression (MEM if at the top
level of the address, ADDRESS for something that occurs in an address_operand).
index code is the code of the corresponding index expression if outer code is PLUS;
SCRATCH otherwise. The mode may be VOIDmode for addresses that appear outside a
MEM, i.e., as an address_operand.

[Macro]REGNO_OK_FOR_INDEX_P (num)
A C expression which is nonzero if register number num is suitable for use as an index
register in operand addresses. It may be either a suitable hard register or a pseudo
register that has been allocated such a hard register.
The difference between an index register and a base register is that the index register
may be scaled. If an address involves the sum of two registers, neither one of them
scaled, then either one may be labeled the “base” and the other the “index”; but
whichever labeling is used must fit the machine’s constraints of which registers may
serve in each capacity. The compiler will try both labelings, looking for one that is
valid, and will reload one or both registers only if neither labeling works.

404 GNU Compiler Collection (GCC) Internals

[Macro]REGNO_MODE_OK_FOR_INDEX_P (num, mode)
A C expression that is just like REGNO_OK_FOR_INDEX_P, except that the expression
may examine the mode of the memory reference in mode. If mode is VOIDmode, the
macro should return true if x is suitable for all modes in which some form of index
register is allowed.

[Macro]PREFERRED_RELOAD_CLASS (x, class)
A C expression that places additional restrictions on the register class to use when it
is necessary to copy value x into a register in class class. The value is a register class;
perhaps class, or perhaps another, smaller class. On many machines, the following
definition is safe:

#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS

Sometimes returning a more restrictive class makes better code. For example, on the
68000, when x is an integer constant that is in range for a ‘moveq’ instruction, the
value of this macro is always DATA_REGS as long as class includes the data registers.
Requiring a data register guarantees that a ‘moveq’ will be used.

One case where PREFERRED_RELOAD_CLASS must not return class is if x is a legitimate
constant which cannot be loaded into some register class. By returning NO_REGS
you can force x into a memory location. For example, rs6000 can load immediate
values into general-purpose registers, but does not have an instruction for loading an
immediate value into a floating-point register, so PREFERRED_RELOAD_CLASS returns
NO_REGS when x is a floating-point constant. If the constant can’t be loaded into any
kind of register, code generation will be better if LEGITIMATE_CONSTANT_P makes the
constant illegitimate instead of using PREFERRED_RELOAD_CLASS.

If an insn has pseudos in it after register allocation, reload will go through the alter-
natives and call repeatedly PREFERRED_RELOAD_CLASS to find the best one. Returning
NO_REGS, in this case, makes reload add a ! in front of the constraint: the x86 back-
end uses this feature to discourage usage of 387 registers when math is done in the
SSE registers (and vice versa).

[Macro]PREFERRED_OUTPUT_RELOAD_CLASS (x, class)
Like PREFERRED_RELOAD_CLASS, but for output reloads instead of input reloads. If
you don’t define this macro, the default is to use class, unchanged.

You can also use PREFERRED_OUTPUT_RELOAD_CLASS to discourage reload from using
some alternatives, like PREFERRED_RELOAD_CLASS.

[Macro]LIMIT_RELOAD_CLASS (mode, class)
A C expression that places additional restrictions on the register class to use when it
is necessary to be able to hold a value of mode mode in a reload register for which
class class would ordinarily be used.

Unlike PREFERRED_RELOAD_CLASS, this macro should be used when there are certain
modes that simply can’t go in certain reload classes.

The value is a register class; perhaps class, or perhaps another, smaller class.

Don’t define this macro unless the target machine has limitations which require the
macro to do something nontrivial.

Chapter 17: Target Description Macros and Functions 405

[Target Hook]enum reg_class TARGET_SECONDARY_RELOAD (bool in_p, rtx x,
enum reg class reload_class, enum machine mode reload_mode,
secondary reload info *sri)

Many machines have some registers that cannot be copied directly to or from memory
or even from other types of registers. An example is the ‘MQ’ register, which on most
machines, can only be copied to or from general registers, but not memory. Below,
we shall be using the term ’intermediate register’ when a move operation cannot be
performed directly, but has to be done by copying the source into the intermediate
register first, and then copying the intermediate register to the destination. An in-
termediate register always has the same mode as source and destination. Since it
holds the actual value being copied, reload might apply optimizations to re-use an
intermediate register and eliding the copy from the source when it can determine that
the intermediate register still holds the required value.

Another kind of secondary reload is required on some machines which allow copying
all registers to and from memory, but require a scratch register for stores to some
memory locations (e.g., those with symbolic address on the RT, and those with certain
symbolic address on the SPARC when compiling PIC). Scratch registers need not have
the same mode as the value being copied, and usually hold a different value that that
being copied. Special patterns in the md file are needed to describe how the copy
is performed with the help of the scratch register; these patterns also describe the
number, register class(es) and mode(s) of the scratch register(s).

In some cases, both an intermediate and a scratch register are required.

For input reloads, this target hook is called with nonzero in p, and x is an rtx that
needs to be copied to a register of class reload class in reload mode. For output
reloads, this target hook is called with zero in p, and a register of class reload class
needs to be copied to rtx x in reload mode.

If copying a register of reload class from/to x requires an intermediate register, the
hook secondary_reload should return the register class required for this intermediate
register. If no intermediate register is required, it should return NO REGS. If more
than one intermediate register is required, describe the one that is closest in the copy
chain to the reload register.

If scratch registers are needed, you also have to describe how to perform the copy
from/to the reload register to/from this closest intermediate register. Or if no inter-
mediate register is required, but still a scratch register is needed, describe the copy
from/to the reload register to/from the reload operand x.

You do this by setting sri->icode to the instruction code of a pattern in the md
file which performs the move. Operands 0 and 1 are the output and input of this
copy, respectively. Operands from operand 2 onward are for scratch operands. These
scratch operands must have a mode, and a single-register-class output constraint.

When an intermediate register is used, the secondary_reload hook will be called
again to determine how to copy the intermediate register to/from the reload operand
x, so your hook must also have code to handle the register class of the intermediate
operand.

406 GNU Compiler Collection (GCC) Internals

x might be a pseudo-register or a subreg of a pseudo-register, which could either be
in a hard register or in memory. Use true_regnum to find out; it will return −1 if
the pseudo is in memory and the hard register number if it is in a register.
Scratch operands in memory (constraint "=m" / "=&m") are currently not supported.
For the time being, you will have to continue to use SECONDARY_MEMORY_NEEDED for
that purpose.
copy_cost also uses this target hook to find out how values are copied. If you want
it to include some extra cost for the need to allocate (a) scratch register(s), set sri-
>extra_cost to the additional cost. Or if two dependent moves are supposed to have a
lower cost than the sum of the individual moves due to expected fortuitous scheduling
and/or special forwarding logic, you can set sri->extra_cost to a negative amount.

[Macro]SECONDARY_RELOAD_CLASS (class, mode, x)
[Macro]SECONDARY_INPUT_RELOAD_CLASS (class, mode, x)
[Macro]SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x)

These macros are obsolete, new ports should use the target hook TARGET_SECONDARY_
RELOAD instead.
These are obsolete macros, replaced by the TARGET_SECONDARY_RELOAD target hook.
Older ports still define these macros to indicate to the reload phase that it may need
to allocate at least one register for a reload in addition to the register to contain the
data. Specifically, if copying x to a register class in mode requires an intermediate
register, you were supposed to define SECONDARY_INPUT_RELOAD_CLASS to return the
largest register class all of whose registers can be used as intermediate registers or
scratch registers.
If copying a register class in mode to x requires an intermediate or scratch register,
SECONDARY_OUTPUT_RELOAD_CLASS was supposed to be defined be defined to return
the largest register class required. If the requirements for input and output reloads
were the same, the macro SECONDARY_RELOAD_CLASS should have been used instead
of defining both macros identically.
The values returned by these macros are often GENERAL_REGS. Return NO_REGS if no
spare register is needed; i.e., if x can be directly copied to or from a register of class
in mode without requiring a scratch register. Do not define this macro if it would
always return NO_REGS.
If a scratch register is required (either with or without an intermediate register), you
were supposed to define patterns for ‘reload_inm ’ or ‘reload_outm ’, as required
(see Section 16.9 [Standard Names], page 309. These patterns, which were normally
implemented with a define_expand, should be similar to the ‘movm ’ patterns, except
that operand 2 is the scratch register.
These patterns need constraints for the reload register and scratch register that con-
tain a single register class. If the original reload register (whose class is class) can
meet the constraint given in the pattern, the value returned by these macros is used
for the class of the scratch register. Otherwise, two additional reload registers are
required. Their classes are obtained from the constraints in the insn pattern.
x might be a pseudo-register or a subreg of a pseudo-register, which could either be
in a hard register or in memory. Use true_regnum to find out; it will return −1 if
the pseudo is in memory and the hard register number if it is in a register.

Chapter 17: Target Description Macros and Functions 407

These macros should not be used in the case where a particular class of registers
can only be copied to memory and not to another class of registers. In that case,
secondary reload registers are not needed and would not be helpful. Instead, a stack
location must be used to perform the copy and the movm pattern should use memory
as an intermediate storage. This case often occurs between floating-point and general
registers.

[Macro]SECONDARY_MEMORY_NEEDED (class1, class2, m)
Certain machines have the property that some registers cannot be copied to some
other registers without using memory. Define this macro on those machines to be
a C expression that is nonzero if objects of mode m in registers of class1 can only
be copied to registers of class class2 by storing a register of class1 into memory and
loading that memory location into a register of class2.
Do not define this macro if its value would always be zero.

[Macro]SECONDARY_MEMORY_NEEDED_RTX (mode)
Normally when SECONDARY_MEMORY_NEEDED is defined, the compiler allocates a stack
slot for a memory location needed for register copies. If this macro is defined, the
compiler instead uses the memory location defined by this macro.
Do not define this macro if you do not define SECONDARY_MEMORY_NEEDED.

[Macro]SECONDARY_MEMORY_NEEDED_MODE (mode)
When the compiler needs a secondary memory location to copy between two registers
of mode mode, it normally allocates sufficient memory to hold a quantity of BITS_
PER_WORD bits and performs the store and load operations in a mode that many bits
wide and whose class is the same as that of mode.
This is right thing to do on most machines because it ensures that all bits of the
register are copied and prevents accesses to the registers in a narrower mode, which
some machines prohibit for floating-point registers.
However, this default behavior is not correct on some machines, such as the DEC
Alpha, that store short integers in floating-point registers differently than in integer
registers. On those machines, the default widening will not work correctly and you
must define this macro to suppress that widening in some cases. See the file ‘alpha.h’
for details.
Do not define this macro if you do not define SECONDARY_MEMORY_NEEDED or if widen-
ing mode to a mode that is BITS_PER_WORD bits wide is correct for your machine.

[Macro]SMALL_REGISTER_CLASSES
On some machines, it is risky to let hard registers live across arbitrary insns. Typically,
these machines have instructions that require values to be in specific registers (like
an accumulator), and reload will fail if the required hard register is used for another
purpose across such an insn.
Define SMALL_REGISTER_CLASSES to be an expression with a nonzero value on these
machines. When this macro has a nonzero value, the compiler will try to minimize
the lifetime of hard registers.
It is always safe to define this macro with a nonzero value, but if you unnecessarily
define it, you will reduce the amount of optimizations that can be performed in some

408 GNU Compiler Collection (GCC) Internals

cases. If you do not define this macro with a nonzero value when it is required, the
compiler will run out of spill registers and print a fatal error message. For most
machines, you should not define this macro at all.

[Macro]CLASS_LIKELY_SPILLED_P (class)
A C expression whose value is nonzero if pseudos that have been assigned to registers
of class class would likely be spilled because registers of class are needed for spill
registers.
The default value of this macro returns 1 if class has exactly one register and zero
otherwise. On most machines, this default should be used. Only define this macro
to some other expression if pseudos allocated by ‘local-alloc.c’ end up in memory
because their hard registers were needed for spill registers. If this macro returns
nonzero for those classes, those pseudos will only be allocated by ‘global.c’, which
knows how to reallocate the pseudo to another register. If there would not be another
register available for reallocation, you should not change the definition of this macro
since the only effect of such a definition would be to slow down register allocation.

[Macro]CLASS_MAX_NREGS (class, mode)
A C expression for the maximum number of consecutive registers of class class needed
to hold a value of mode mode.
This is closely related to the macro HARD_REGNO_NREGS. In fact, the value of the
macro CLASS_MAX_NREGS (class, mode) should be the maximum value of HARD_
REGNO_NREGS (regno, mode) for all regno values in the class class.
This macro helps control the handling of multiple-word values in the reload pass.

[Macro]CANNOT_CHANGE_MODE_CLASS (from, to, class)
If defined, a C expression that returns nonzero for a class for which a change from
mode from to mode to is invalid.
For the example, loading 32-bit integer or floating-point objects into floating-point
registers on the Alpha extends them to 64 bits. Therefore loading a 64-bit object and
then storing it as a 32-bit object does not store the low-order 32 bits, as would be the
case for a normal register. Therefore, ‘alpha.h’ defines CANNOT_CHANGE_MODE_CLASS
as below:

#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \

(GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \

? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)

[Target Hook]const enum reg_class * TARGET_IRA_COVER_CLASSES ()
Return an array of cover classes for the Integrated Register Allocator (IRA). Cover
classes are a set of non-intersecting register classes covering all hard registers used for
register allocation purposes. If a move between two registers in the same cover class
is possible, it should be cheaper than a load or store of the registers. The array is
terminated by a LIM_REG_CLASSES element.
This hook is called once at compiler startup, after the command-line options have
been processed. It is then re-examined by every call to target_reinit.
The default implementation returns IRA_COVER_CLASSES, if defined, otherwise there is
no default implementation. You must define either this macro or IRA_COVER_CLASSES

Chapter 17: Target Description Macros and Functions 409

in order to use the integrated register allocator with Chaitin-Briggs coloring. If the
macro is not defined, the only available coloring algorithm is Chow’s priority coloring.

[Macro]IRA_COVER_CLASSES
See the documentation for TARGET_IRA_COVER_CLASSES.

17.9 Obsolete Macros for Defining Constraints

Machine-specific constraints can be defined with these macros instead of the machine de-
scription constructs described in Section 16.8.7 [Define Constraints], page 306. This mech-
anism is obsolete. New ports should not use it; old ports should convert to the new mech-
anism.

[Macro]CONSTRAINT_LEN (char, str)
For the constraint at the start of str, which starts with the letter c, return the
length. This allows you to have register class / constant / extra constraints that
are longer than a single letter; you don’t need to define this macro if you can do
with single-letter constraints only. The definition of this macro should use DE-
FAULT CONSTRAINT LEN for all the characters that you don’t want to handle
specially. There are some sanity checks in genoutput.c that check the constraint
lengths for the md file, so you can also use this macro to help you while you are
transitioning from a byzantine single-letter-constraint scheme: when you return a
negative length for a constraint you want to re-use, genoutput will complain about
every instance where it is used in the md file.

[Macro]REG_CLASS_FROM_LETTER (char)
A C expression which defines the machine-dependent operand constraint letters for
register classes. If char is such a letter, the value should be the register class cor-
responding to it. Otherwise, the value should be NO_REGS. The register letter ‘r’,
corresponding to class GENERAL_REGS, will not be passed to this macro; you do not
need to handle it.

[Macro]REG_CLASS_FROM_CONSTRAINT (char, str)
Like REG_CLASS_FROM_LETTER, but you also get the constraint string passed in str,
so that you can use suffixes to distinguish between different variants.

[Macro]CONST_OK_FOR_LETTER_P (value, c)
A C expression that defines the machine-dependent operand constraint letters (‘I’,
‘J’, ‘K’, . . . ‘P’) that specify particular ranges of integer values. If c is one of those
letters, the expression should check that value, an integer, is in the appropriate range
and return 1 if so, 0 otherwise. If c is not one of those letters, the value should be 0
regardless of value.

[Macro]CONST_OK_FOR_CONSTRAINT_P (value, c, str)
Like CONST_OK_FOR_LETTER_P, but you also get the constraint string passed in str,
so that you can use suffixes to distinguish between different variants.

[Macro]CONST_DOUBLE_OK_FOR_LETTER_P (value, c)
A C expression that defines the machine-dependent operand constraint letters that
specify particular ranges of const_double values (‘G’ or ‘H’).

410 GNU Compiler Collection (GCC) Internals

If c is one of those letters, the expression should check that value, an RTX of code
const_double, is in the appropriate range and return 1 if so, 0 otherwise. If c is not
one of those letters, the value should be 0 regardless of value.
const_double is used for all floating-point constants and for DImode fixed-point con-
stants. A given letter can accept either or both kinds of values. It can use GET_MODE
to distinguish between these kinds.

[Macro]CONST_DOUBLE_OK_FOR_CONSTRAINT_P (value, c, str)
Like CONST_DOUBLE_OK_FOR_LETTER_P, but you also get the constraint string passed
in str, so that you can use suffixes to distinguish between different variants.

[Macro]EXTRA_CONSTRAINT (value, c)
A C expression that defines the optional machine-dependent constraint letters that
can be used to segregate specific types of operands, usually memory references, for
the target machine. Any letter that is not elsewhere defined and not matched by
REG_CLASS_FROM_LETTER / REG_CLASS_FROM_CONSTRAINT may be used. Normally
this macro will not be defined.
If it is required for a particular target machine, it should return 1 if value corresponds
to the operand type represented by the constraint letter c. If c is not defined as an
extra constraint, the value returned should be 0 regardless of value.
For example, on the ROMP, load instructions cannot have their output in r0 if the
memory reference contains a symbolic address. Constraint letter ‘Q’ is defined as
representing a memory address that does not contain a symbolic address. An alter-
native is specified with a ‘Q’ constraint on the input and ‘r’ on the output. The next
alternative specifies ‘m’ on the input and a register class that does not include r0 on
the output.

[Macro]EXTRA_CONSTRAINT_STR (value, c, str)
Like EXTRA_CONSTRAINT, but you also get the constraint string passed in str, so that
you can use suffixes to distinguish between different variants.

[Macro]EXTRA_MEMORY_CONSTRAINT (c, str)
A C expression that defines the optional machine-dependent constraint letters,
amongst those accepted by EXTRA_CONSTRAINT, that should be treated like memory
constraints by the reload pass.
It should return 1 if the operand type represented by the constraint at the start of
str, the first letter of which is the letter c, comprises a subset of all memory references
including all those whose address is simply a base register. This allows the reload
pass to reload an operand, if it does not directly correspond to the operand type of
c, by copying its address into a base register.
For example, on the S/390, some instructions do not accept arbitrary memory refer-
ences, but only those that do not make use of an index register. The constraint letter
‘Q’ is defined via EXTRA_CONSTRAINT as representing a memory address of this type.
If the letter ‘Q’ is marked as EXTRA_MEMORY_CONSTRAINT, a ‘Q’ constraint can handle
any memory operand, because the reload pass knows it can be reloaded by copying
the memory address into a base register if required. This is analogous to the way a
‘o’ constraint can handle any memory operand.

Chapter 17: Target Description Macros and Functions 411

[Macro]EXTRA_ADDRESS_CONSTRAINT (c, str)
A C expression that defines the optional machine-dependent constraint letters,
amongst those accepted by EXTRA_CONSTRAINT / EXTRA_CONSTRAINT_STR, that
should be treated like address constraints by the reload pass.
It should return 1 if the operand type represented by the constraint at the start of str,
which starts with the letter c, comprises a subset of all memory addresses including
all those that consist of just a base register. This allows the reload pass to reload an
operand, if it does not directly correspond to the operand type of str, by copying it
into a base register.
Any constraint marked as EXTRA_ADDRESS_CONSTRAINT can only be used with the
address_operand predicate. It is treated analogously to the ‘p’ constraint.

17.10 Stack Layout and Calling Conventions

This describes the stack layout and calling conventions.

17.10.1 Basic Stack Layout

Here is the basic stack layout.

[Macro]STACK_GROWS_DOWNWARD
Define this macro if pushing a word onto the stack moves the stack pointer to a
smaller address.
When we say, “define this macro if . . . ”, it means that the compiler checks this macro
only with #ifdef so the precise definition used does not matter.

[Macro]STACK_PUSH_CODE
This macro defines the operation used when something is pushed on the stack. In
RTL, a push operation will be (set (mem (STACK_PUSH_CODE (reg sp))) ...)

The choices are PRE_DEC, POST_DEC, PRE_INC, and POST_INC. Which of these is
correct depends on the stack direction and on whether the stack pointer points to the
last item on the stack or whether it points to the space for the next item on the stack.
The default is PRE_DEC when STACK_GROWS_DOWNWARD is defined, which is almost
always right, and PRE_INC otherwise, which is often wrong.

[Macro]FRAME_GROWS_DOWNWARD
Define this macro to nonzero value if the addresses of local variable slots are at
negative offsets from the frame pointer.

[Macro]ARGS_GROW_DOWNWARD
Define this macro if successive arguments to a function occupy decreasing addresses
on the stack.

[Macro]STARTING_FRAME_OFFSET
Offset from the frame pointer to the first local variable slot to be allocated.
If FRAME_GROWS_DOWNWARD, find the next slot’s offset by subtracting the first slot’s
length from STARTING_FRAME_OFFSET. Otherwise, it is found by adding the length of
the first slot to the value STARTING_FRAME_OFFSET.

412 GNU Compiler Collection (GCC) Internals

[Macro]STACK_ALIGNMENT_NEEDED
Define to zero to disable final alignment of the stack during reload. The nonzero
default for this macro is suitable for most ports.
On ports where STARTING_FRAME_OFFSET is nonzero or where there is a register save
block following the local block that doesn’t require alignment to STACK_BOUNDARY, it
may be beneficial to disable stack alignment and do it in the backend.

[Macro]STACK_POINTER_OFFSET
Offset from the stack pointer register to the first location at which outgoing arguments
are placed. If not specified, the default value of zero is used. This is the proper value
for most machines.
If ARGS_GROW_DOWNWARD, this is the offset to the location above the first location at
which outgoing arguments are placed.

[Macro]FIRST_PARM_OFFSET (fundecl)
Offset from the argument pointer register to the first argument’s address. On some
machines it may depend on the data type of the function.
If ARGS_GROW_DOWNWARD, this is the offset to the location above the first argument’s
address.

[Macro]STACK_DYNAMIC_OFFSET (fundecl)
Offset from the stack pointer register to an item dynamically allocated on the stack,
e.g., by alloca.
The default value for this macro is STACK_POINTER_OFFSET plus the length of the
outgoing arguments. The default is correct for most machines. See ‘function.c’ for
details.

[Macro]INITIAL_FRAME_ADDRESS_RTX
A C expression whose value is RTL representing the address of the initial stack frame.
This address is passed to RETURN_ADDR_RTX and DYNAMIC_CHAIN_ADDRESS. If you
don’t define this macro, a reasonable default value will be used. Define this macro in
order to make frame pointer elimination work in the presence of __builtin_frame_
address (count) and __builtin_return_address (count) for count not equal to
zero.

[Macro]DYNAMIC_CHAIN_ADDRESS (frameaddr)
A C expression whose value is RTL representing the address in a stack frame where the
pointer to the caller’s frame is stored. Assume that frameaddr is an RTL expression
for the address of the stack frame itself.
If you don’t define this macro, the default is to return the value of frameaddr—that
is, the stack frame address is also the address of the stack word that points to the
previous frame.

[Macro]SETUP_FRAME_ADDRESSES
If defined, a C expression that produces the machine-specific code to setup the stack
so that arbitrary frames can be accessed. For example, on the SPARC, we must flush
all of the register windows to the stack before we can access arbitrary stack frames.
You will seldom need to define this macro.

Chapter 17: Target Description Macros and Functions 413

[Target Hook]bool TARGET_BUILTIN_SETJMP_FRAME_VALUE ()
This target hook should return an rtx that is used to store the address of the current
frame into the built in setjmp buffer. The default value, virtual_stack_vars_rtx,
is correct for most machines. One reason you may need to define this target hook is
if hard_frame_pointer_rtx is the appropriate value on your machine.

[Macro]FRAME_ADDR_RTX (frameaddr)
A C expression whose value is RTL representing the value of the frame address for
the current frame. frameaddr is the frame pointer of the current frame. This is used
for builtin frame address. You need only define this macro if the frame address is
not the same as the frame pointer. Most machines do not need to define it.

[Macro]RETURN_ADDR_RTX (count, frameaddr)
A C expression whose value is RTL representing the value of the return address for
the frame count steps up from the current frame, after the prologue. frameaddr is
the frame pointer of the count frame, or the frame pointer of the count − 1 frame if
RETURN_ADDR_IN_PREVIOUS_FRAME is defined.
The value of the expression must always be the correct address when count is zero,
but may be NULL_RTX if there is no way to determine the return address of other
frames.

[Macro]RETURN_ADDR_IN_PREVIOUS_FRAME
Define this if the return address of a particular stack frame is accessed from the frame
pointer of the previous stack frame.

[Macro]INCOMING_RETURN_ADDR_RTX
A C expression whose value is RTL representing the location of the incoming return
address at the beginning of any function, before the prologue. This RTL is either a
REG, indicating that the return value is saved in ‘REG’, or a MEM representing a location
in the stack.
You only need to define this macro if you want to support call frame debugging
information like that provided by DWARF 2.
If this RTL is a REG, you should also define DWARF_FRAME_RETURN_COLUMN to DWARF_
FRAME_REGNUM (REGNO).

[Macro]DWARF_ALT_FRAME_RETURN_COLUMN
A C expression whose value is an integer giving a DWARF 2 column number that
may be used as an alternative return column. The column must not correspond to
any gcc hard register (that is, it must not be in the range of DWARF_FRAME_REGNUM).
This macro can be useful if DWARF_FRAME_RETURN_COLUMN is set to a general register,
but an alternative column needs to be used for signal frames. Some targets have also
used different frame return columns over time.

[Macro]DWARF_ZERO_REG
A C expression whose value is an integer giving a DWARF 2 register number that is
considered to always have the value zero. This should only be defined if the target
has an architected zero register, and someone decided it was a good idea to use that
register number to terminate the stack backtrace. New ports should avoid this.

414 GNU Compiler Collection (GCC) Internals

[Target Hook]void TARGET_DWARF_HANDLE_FRAME_UNSPEC (const char *label,
rtx pattern, int index)

This target hook allows the backend to emit frame-related insns that contain UN-
SPECs or UNSPEC VOLATILEs. The DWARF 2 call frame debugging info engine
will invoke it on insns of the form

(set (reg) (unspec [...] UNSPEC_INDEX))

and
(set (reg) (unspec_volatile [...] UNSPECV_INDEX)).

to let the backend emit the call frame instructions. label is the CFI label attached to
the insn, pattern is the pattern of the insn and index is UNSPEC_INDEX or UNSPECV_
INDEX.

[Macro]INCOMING_FRAME_SP_OFFSET
A C expression whose value is an integer giving the offset, in bytes, from the value
of the stack pointer register to the top of the stack frame at the beginning of any
function, before the prologue. The top of the frame is defined to be the value of the
stack pointer in the previous frame, just before the call instruction.
You only need to define this macro if you want to support call frame debugging
information like that provided by DWARF 2.

[Macro]ARG_POINTER_CFA_OFFSET (fundecl)
A C expression whose value is an integer giving the offset, in bytes, from the argument
pointer to the canonical frame address (cfa). The final value should coincide with that
calculated by INCOMING_FRAME_SP_OFFSET. Which is unfortunately not usable during
virtual register instantiation.
The default value for this macro is FIRST_PARM_OFFSET (fundecl) + crtl-
>args.pretend_args_size, which is correct for most machines; in general, the
arguments are found immediately before the stack frame. Note that this is not the
case on some targets that save registers into the caller’s frame, such as SPARC and
rs6000, and so such targets need to define this macro.
You only need to define this macro if the default is incorrect, and you want to support
call frame debugging information like that provided by DWARF 2.

[Macro]FRAME_POINTER_CFA_OFFSET (fundecl)
If defined, a C expression whose value is an integer giving the offset in bytes from the
frame pointer to the canonical frame address (cfa). The final value should coincide
with that calculated by INCOMING_FRAME_SP_OFFSET.
Normally the CFA is calculated as an offset from the argument pointer, via ARG_
POINTER_CFA_OFFSET, but if the argument pointer is variable due to the ABI, this
may not be possible. If this macro is defined, it implies that the virtual register
instantiation should be based on the frame pointer instead of the argument pointer.
Only one of FRAME_POINTER_CFA_OFFSET and ARG_POINTER_CFA_OFFSET should be
defined.

[Macro]CFA_FRAME_BASE_OFFSET (fundecl)
If defined, a C expression whose value is an integer giving the offset in bytes from the
canonical frame address (cfa) to the frame base used in DWARF 2 debug information.

Chapter 17: Target Description Macros and Functions 415

The default is zero. A different value may reduce the size of debug information on
some ports.

17.10.2 Exception Handling Support

[Macro]EH_RETURN_DATA_REGNO (N)
A C expression whose value is the Nth register number used for data by exception
handlers, or INVALID_REGNUM if fewer than N registers are usable.
The exception handling library routines communicate with the exception handlers via
a set of agreed upon registers. Ideally these registers should be call-clobbered; it is
possible to use call-saved registers, but may negatively impact code size. The target
must support at least 2 data registers, but should define 4 if there are enough free
registers.
You must define this macro if you want to support call frame exception handling like
that provided by DWARF 2.

[Macro]EH_RETURN_STACKADJ_RTX
A C expression whose value is RTL representing a location in which to store a stack
adjustment to be applied before function return. This is used to unwind the stack to
an exception handler’s call frame. It will be assigned zero on code paths that return
normally.
Typically this is a call-clobbered hard register that is otherwise untouched by the
epilogue, but could also be a stack slot.
Do not define this macro if the stack pointer is saved and restored by the regular
prolog and epilog code in the call frame itself; in this case, the exception handling
library routines will update the stack location to be restored in place. Otherwise, you
must define this macro if you want to support call frame exception handling like that
provided by DWARF 2.

[Macro]EH_RETURN_HANDLER_RTX
A C expression whose value is RTL representing a location in which to store the
address of an exception handler to which we should return. It will not be assigned on
code paths that return normally.
Typically this is the location in the call frame at which the normal return address is
stored. For targets that return by popping an address off the stack, this might be a
memory address just below the target call frame rather than inside the current call
frame. If defined, EH_RETURN_STACKADJ_RTX will have already been assigned, so it
may be used to calculate the location of the target call frame.
Some targets have more complex requirements than storing to an address calculable
during initial code generation. In that case the eh_return instruction pattern should
be used instead.
If you want to support call frame exception handling, you must define either this
macro or the eh_return instruction pattern.

[Macro]RETURN_ADDR_OFFSET
If defined, an integer-valued C expression for which rtl will be generated to add it to
the exception handler address before it is searched in the exception handling tables,

416 GNU Compiler Collection (GCC) Internals

and to subtract it again from the address before using it to return to the exception
handler.

[Macro]ASM_PREFERRED_EH_DATA_FORMAT (code, global)
This macro chooses the encoding of pointers embedded in the exception handling
sections. If at all possible, this should be defined such that the exception handling
section will not require dynamic relocations, and so may be read-only.
code is 0 for data, 1 for code labels, 2 for function pointers. global is true if the symbol
may be affected by dynamic relocations. The macro should return a combination of
the DW_EH_PE_* defines as found in ‘dwarf2.h’.
If this macro is not defined, pointers will not be encoded but represented directly.

[Macro]ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX (file, encoding, size, addr,
done)

This macro allows the target to emit whatever special magic is required to represent
the encoding chosen by ASM_PREFERRED_EH_DATA_FORMAT. Generic code takes care of
pc-relative and indirect encodings; this must be defined if the target uses text-relative
or data-relative encodings.
This is a C statement that branches to done if the format was handled. encoding is
the format chosen, size is the number of bytes that the format occupies, addr is the
SYMBOL_REF to be emitted.

[Macro]MD_UNWIND_SUPPORT
A string specifying a file to be #include’d in unwind-dw2.c. The file so included
typically defines MD_FALLBACK_FRAME_STATE_FOR.

[Macro]MD_FALLBACK_FRAME_STATE_FOR (context, fs)
This macro allows the target to add CPU and operating system specific code to
the call-frame unwinder for use when there is no unwind data available. The most
common reason to implement this macro is to unwind through signal frames.
This macro is called from uw_frame_state_for in ‘unwind-dw2.c’,
‘unwind-dw2-xtensa.c’ and ‘unwind-ia64.c’. context is an _Unwind_
Context; fs is an _Unwind_FrameState. Examine context->ra for the address of
the code being executed and context->cfa for the stack pointer value. If the frame
can be decoded, the register save addresses should be updated in fs and the macro
should evaluate to _URC_NO_REASON. If the frame cannot be decoded, the macro
should evaluate to _URC_END_OF_STACK.
For proper signal handling in Java this macro is accompanied by MAKE_THROW_FRAME,
defined in ‘libjava/include/*-signal.h’ headers.

[Macro]MD_HANDLE_UNWABI (context, fs)
This macro allows the target to add operating system specific code to the call-frame
unwinder to handle the IA-64 .unwabi unwinding directive, usually used for signal
or interrupt frames.
This macro is called from uw_update_context in ‘unwind-ia64.c’. context is an
_Unwind_Context; fs is an _Unwind_FrameState. Examine fs->unwabi for the abi
and context in the .unwabi directive. If the .unwabi directive can be handled, the
register save addresses should be updated in fs.

Chapter 17: Target Description Macros and Functions 417

[Macro]TARGET_USES_WEAK_UNWIND_INFO
A C expression that evaluates to true if the target requires unwind info to be given
comdat linkage. Define it to be 1 if comdat linkage is necessary. The default is 0.

17.10.3 Specifying How Stack Checking is Done

GCC will check that stack references are within the boundaries of the stack, if the option
‘-fstack-check’ is specified, in one of three ways:

1. If the value of the STACK_CHECK_BUILTIN macro is nonzero, GCC will assume that
you have arranged for full stack checking to be done at appropriate places in the
configuration files. GCC will not do other special processing.

2. If STACK_CHECK_BUILTIN is zero and the value of the STACK_CHECK_STATIC_BUILTIN
macro is nonzero, GCC will assume that you have arranged for static stack checking
(checking of the static stack frame of functions) to be done at appropriate places in the
configuration files. GCC will only emit code to do dynamic stack checking (checking
on dynamic stack allocations) using the third approach below.

3. If neither of the above are true, GCC will generate code to periodically “probe” the
stack pointer using the values of the macros defined below.

If neither STACK CHECK BUILTIN nor STACK CHECK STATIC BUILTIN is de-
fined, GCC will change its allocation strategy for large objects if the option ‘-fstack-check’
is specified: they will always be allocated dynamically if their size exceeds STACK_CHECK_
MAX_VAR_SIZE bytes.

[Macro]STACK_CHECK_BUILTIN
A nonzero value if stack checking is done by the configuration files in a machine-
dependent manner. You should define this macro if stack checking is require by the
ABI of your machine or if you would like to do stack checking in some more efficient
way than the generic approach. The default value of this macro is zero.

[Macro]STACK_CHECK_STATIC_BUILTIN
A nonzero value if static stack checking is done by the configuration files in a machine-
dependent manner. You should define this macro if you would like to do static stack
checking in some more efficient way than the generic approach. The default value of
this macro is zero.

[Macro]STACK_CHECK_PROBE_INTERVAL
An integer representing the interval at which GCC must generate stack probe in-
structions. You will normally define this macro to be no larger than the size of the
“guard pages” at the end of a stack area. The default value of 4096 is suitable for
most systems.

[Macro]STACK_CHECK_PROBE_LOAD
An integer which is nonzero if GCC should perform the stack probe as a load instruc-
tion and zero if GCC should use a store instruction. The default is zero, which is the
most efficient choice on most systems.

418 GNU Compiler Collection (GCC) Internals

[Macro]STACK_CHECK_PROTECT
The number of bytes of stack needed to recover from a stack overflow, for languages
where such a recovery is supported. The default value of 75 words should be adequate
for most machines.

The following macros are relevant only if neither STACK CHECK BUILTIN nor
STACK CHECK STATIC BUILTIN is defined; you can omit them altogether in the
opposite case.

[Macro]STACK_CHECK_MAX_FRAME_SIZE
The maximum size of a stack frame, in bytes. GCC will generate probe instructions
in non-leaf functions to ensure at least this many bytes of stack are available. If a
stack frame is larger than this size, stack checking will not be reliable and GCC will
issue a warning. The default is chosen so that GCC only generates one instruction
on most systems. You should normally not change the default value of this macro.

[Macro]STACK_CHECK_FIXED_FRAME_SIZE
GCC uses this value to generate the above warning message. It represents the amount
of fixed frame used by a function, not including space for any callee-saved registers,
temporaries and user variables. You need only specify an upper bound for this amount
and will normally use the default of four words.

[Macro]STACK_CHECK_MAX_VAR_SIZE
The maximum size, in bytes, of an object that GCC will place in the fixed area of
the stack frame when the user specifies ‘-fstack-check’. GCC computed the default
from the values of the above macros and you will normally not need to override that
default.

17.10.4 Registers That Address the Stack Frame

This discusses registers that address the stack frame.

[Macro]STACK_POINTER_REGNUM
The register number of the stack pointer register, which must also be a fixed register
according to FIXED_REGISTERS. On most machines, the hardware determines which
register this is.

[Macro]FRAME_POINTER_REGNUM
The register number of the frame pointer register, which is used to access automatic
variables in the stack frame. On some machines, the hardware determines which
register this is. On other machines, you can choose any register you wish for this
purpose.

[Macro]HARD_FRAME_POINTER_REGNUM
On some machines the offset between the frame pointer and starting offset of the
automatic variables is not known until after register allocation has been done (for
example, because the saved registers are between these two locations). On those
machines, define FRAME_POINTER_REGNUM the number of a special, fixed register to be
used internally until the offset is known, and define HARD_FRAME_POINTER_REGNUM to
be the actual hard register number used for the frame pointer.

Chapter 17: Target Description Macros and Functions 419

You should define this macro only in the very rare circumstances when it is not possi-
ble to calculate the offset between the frame pointer and the automatic variables until
after register allocation has been completed. When this macro is defined, you must
also indicate in your definition of ELIMINABLE_REGS how to eliminate FRAME_POINTER_
REGNUM into either HARD_FRAME_POINTER_REGNUM or STACK_POINTER_REGNUM.
Do not define this macro if it would be the same as FRAME_POINTER_REGNUM.

[Macro]ARG_POINTER_REGNUM
The register number of the arg pointer register, which is used to access the function’s
argument list. On some machines, this is the same as the frame pointer register. On
some machines, the hardware determines which register this is. On other machines,
you can choose any register you wish for this purpose. If this is not the same register
as the frame pointer register, then you must mark it as a fixed register according to
FIXED_REGISTERS, or arrange to be able to eliminate it (see Section 17.10.5 [Elimi-
nation], page 420).

[Macro]RETURN_ADDRESS_POINTER_REGNUM
The register number of the return address pointer register, which is used to access
the current function’s return address from the stack. On some machines, the return
address is not at a fixed offset from the frame pointer or stack pointer or argument
pointer. This register can be defined to point to the return address on the stack, and
then be converted by ELIMINABLE_REGS into either the frame pointer or stack pointer.
Do not define this macro unless there is no other way to get the return address from
the stack.

[Macro]STATIC_CHAIN_REGNUM
[Macro]STATIC_CHAIN_INCOMING_REGNUM

Register numbers used for passing a function’s static chain pointer. If register
windows are used, the register number as seen by the called function is
STATIC_CHAIN_INCOMING_REGNUM, while the register number as seen by the
calling function is STATIC_CHAIN_REGNUM. If these registers are the same,
STATIC_CHAIN_INCOMING_REGNUM need not be defined.
The static chain register need not be a fixed register.
If the static chain is passed in memory, these macros should not be defined; instead,
the next two macros should be defined.

[Macro]STATIC_CHAIN
[Macro]STATIC_CHAIN_INCOMING

If the static chain is passed in memory, these macros provide rtx giving mem expressions
that denote where they are stored. STATIC_CHAIN and STATIC_CHAIN_INCOMING give
the locations as seen by the calling and called functions, respectively. Often the former
will be at an offset from the stack pointer and the latter at an offset from the frame
pointer.
The variables stack_pointer_rtx, frame_pointer_rtx, and arg_pointer_rtx will
have been initialized prior to the use of these macros and should be used to refer to
those items.
If the static chain is passed in a register, the two previous macros should be defined
instead.

420 GNU Compiler Collection (GCC) Internals

[Macro]DWARF_FRAME_REGISTERS
This macro specifies the maximum number of hard registers that can be saved in a
call frame. This is used to size data structures used in DWARF2 exception handling.
Prior to GCC 3.0, this macro was needed in order to establish a stable exception
handling ABI in the face of adding new hard registers for ISA extensions. In GCC
3.0 and later, the EH ABI is insulated from changes in the number of hard registers.
Nevertheless, this macro can still be used to reduce the runtime memory requirements
of the exception handling routines, which can be substantial if the ISA contains a lot
of registers that are not call-saved.
If this macro is not defined, it defaults to FIRST_PSEUDO_REGISTER.

[Macro]PRE_GCC3_DWARF_FRAME_REGISTERS
This macro is similar to DWARF_FRAME_REGISTERS, but is provided for backward com-
patibility in pre GCC 3.0 compiled code.
If this macro is not defined, it defaults to DWARF_FRAME_REGISTERS.

[Macro]DWARF_REG_TO_UNWIND_COLUMN (regno)
Define this macro if the target’s representation for dwarf registers is different than
the internal representation for unwind column. Given a dwarf register, this macro
should return the internal unwind column number to use instead.
See the PowerPC’s SPE target for an example.

[Macro]DWARF_FRAME_REGNUM (regno)
Define this macro if the target’s representation for dwarf registers used in .eh frame
or .debug frame is different from that used in other debug info sections. Given a GCC
hard register number, this macro should return the .eh frame register number. The
default is DBX_REGISTER_NUMBER (regno).

[Macro]DWARF2_FRAME_REG_OUT (regno, for_eh)
Define this macro to map register numbers held in the call frame info that GCC has
collected using DWARF_FRAME_REGNUM to those that should be output in .debug frame
(for_eh is zero) and .eh frame (for_eh is nonzero). The default is to return regno .

17.10.5 Eliminating Frame Pointer and Arg Pointer

This is about eliminating the frame pointer and arg pointer.

[Macro]FRAME_POINTER_REQUIRED
A C expression which is nonzero if a function must have and use a frame pointer.
This expression is evaluated in the reload pass. If its value is nonzero the function
will have a frame pointer.
The expression can in principle examine the current function and decide according to
the facts, but on most machines the constant 0 or the constant 1 suffices. Use 0 when
the machine allows code to be generated with no frame pointer, and doing so saves
some time or space. Use 1 when there is no possible advantage to avoiding a frame
pointer.
In certain cases, the compiler does not know how to produce valid code without
a frame pointer. The compiler recognizes those cases and automatically gives the

Chapter 17: Target Description Macros and Functions 421

function a frame pointer regardless of what FRAME_POINTER_REQUIRED says. You
don’t need to worry about them.

In a function that does not require a frame pointer, the frame pointer register can
be allocated for ordinary usage, unless you mark it as a fixed register. See FIXED_
REGISTERS for more information.

[Macro]INITIAL_FRAME_POINTER_OFFSET (depth-var)
A C statement to store in the variable depth-var the difference between the frame
pointer and the stack pointer values immediately after the function prologue. The
value would be computed from information such as the result of get_frame_size ()
and the tables of registers regs_ever_live and call_used_regs.

If ELIMINABLE_REGS is defined, this macro will be not be used and need not be defined.
Otherwise, it must be defined even if FRAME_POINTER_REQUIRED is defined to always
be true; in that case, you may set depth-var to anything.

[Macro]ELIMINABLE_REGS
If defined, this macro specifies a table of register pairs used to eliminate unneeded
registers that point into the stack frame. If it is not defined, the only elimination
attempted by the compiler is to replace references to the frame pointer with references
to the stack pointer.

The definition of this macro is a list of structure initializations, each of which specifies
an original and replacement register.

On some machines, the position of the argument pointer is not known until the
compilation is completed. In such a case, a separate hard register must be used for
the argument pointer. This register can be eliminated by replacing it with either
the frame pointer or the argument pointer, depending on whether or not the frame
pointer has been eliminated.

In this case, you might specify:
#define ELIMINABLE_REGS \

{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \

{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \

{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}

Note that the elimination of the argument pointer with the stack pointer is specified
first since that is the preferred elimination.

[Macro]CAN_ELIMINATE (from-reg, to-reg)
A C expression that returns nonzero if the compiler is allowed to try to replace
register number from-reg with register number to-reg. This macro need only be
defined if ELIMINABLE_REGS is defined, and will usually be the constant 1, since most
of the cases preventing register elimination are things that the compiler already knows
about.

[Macro]INITIAL_ELIMINATION_OFFSET (from-reg, to-reg, offset-var)
This macro is similar to INITIAL_FRAME_POINTER_OFFSET. It specifies the initial
difference between the specified pair of registers. This macro must be defined if
ELIMINABLE_REGS is defined.

422 GNU Compiler Collection (GCC) Internals

17.10.6 Passing Function Arguments on the Stack

The macros in this section control how arguments are passed on the stack. See the following
section for other macros that control passing certain arguments in registers.

[Target Hook]bool TARGET_PROMOTE_PROTOTYPES (tree fntype)
This target hook returns true if an argument declared in a prototype as an integral
type smaller than int should actually be passed as an int. In addition to avoiding
errors in certain cases of mismatch, it also makes for better code on certain machines.
The default is to not promote prototypes.

[Macro]PUSH_ARGS
A C expression. If nonzero, push insns will be used to pass outgoing arguments. If
the target machine does not have a push instruction, set it to zero. That directs GCC
to use an alternate strategy: to allocate the entire argument block and then store the
arguments into it. When PUSH_ARGS is nonzero, PUSH_ROUNDING must be defined too.

[Macro]PUSH_ARGS_REVERSED
A C expression. If nonzero, function arguments will be evaluated from last to first,
rather than from first to last. If this macro is not defined, it defaults to PUSH_ARGS
on targets where the stack and args grow in opposite directions, and 0 otherwise.

[Macro]PUSH_ROUNDING (npushed)
A C expression that is the number of bytes actually pushed onto the stack when an
instruction attempts to push npushed bytes.

On some machines, the definition
#define PUSH_ROUNDING(BYTES) (BYTES)

will suffice. But on other machines, instructions that appear to push one byte actually
push two bytes in an attempt to maintain alignment. Then the definition should be

#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)

[Macro]ACCUMULATE_OUTGOING_ARGS
A C expression. If nonzero, the maximum amount of space required for outgoing argu-
ments will be computed and placed into the variable current_function_outgoing_
args_size. No space will be pushed onto the stack for each call; instead, the function
prologue should increase the stack frame size by this amount.

Setting both PUSH_ARGS and ACCUMULATE_OUTGOING_ARGS is not proper.

[Macro]REG_PARM_STACK_SPACE (fndecl)
Define this macro if functions should assume that stack space has been allocated for
arguments even when their values are passed in registers.

The value of this macro is the size, in bytes, of the area reserved for arguments passed
in registers for the function represented by fndecl, which can be zero if GCC is calling
a library function. The argument fndecl can be the FUNCTION DECL, or the type
itself of the function.

This space can be allocated by the caller, or be a part of the machine-dependent stack
frame: OUTGOING_REG_PARM_STACK_SPACE says which.

Chapter 17: Target Description Macros and Functions 423

[Macro]OUTGOING_REG_PARM_STACK_SPACE (fntype)
Define this to a nonzero value if it is the responsibility of the caller to allocate the area
reserved for arguments passed in registers when calling a function of fntype. fntype
may be NULL if the function called is a library function.
If ACCUMULATE_OUTGOING_ARGS is defined, this macro controls whether the space for
these arguments counts in the value of current_function_outgoing_args_size.

[Macro]STACK_PARMS_IN_REG_PARM_AREA
Define this macro if REG_PARM_STACK_SPACE is defined, but the stack parameters
don’t skip the area specified by it.
Normally, when a parameter is not passed in registers, it is placed on the stack beyond
the REG_PARM_STACK_SPACE area. Defining this macro suppresses this behavior and
causes the parameter to be passed on the stack in its natural location.

[Macro]RETURN_POPS_ARGS (fundecl, funtype, stack-size)
A C expression that should indicate the number of bytes of its own arguments that
a function pops on returning, or 0 if the function pops no arguments and the caller
must therefore pop them all after the function returns.
fundecl is a C variable whose value is a tree node that describes the function in
question. Normally it is a node of type FUNCTION_DECL that describes the declaration
of the function. From this you can obtain the DECL_ATTRIBUTES of the function.
funtype is a C variable whose value is a tree node that describes the function in
question. Normally it is a node of type FUNCTION_TYPE that describes the data type
of the function. From this it is possible to obtain the data types of the value and
arguments (if known).
When a call to a library function is being considered, fundecl will contain an identifier
node for the library function. Thus, if you need to distinguish among various library
functions, you can do so by their names. Note that “library function” in this context
means a function used to perform arithmetic, whose name is known specially in the
compiler and was not mentioned in the C code being compiled.
stack-size is the number of bytes of arguments passed on the stack. If a variable
number of bytes is passed, it is zero, and argument popping will always be the re-
sponsibility of the calling function.
On the VAX, all functions always pop their arguments, so the definition of this macro
is stack-size. On the 68000, using the standard calling convention, no functions pop
their arguments, so the value of the macro is always 0 in this case. But an alternative
calling convention is available in which functions that take a fixed number of argu-
ments pop them but other functions (such as printf) pop nothing (the caller pops
all). When this convention is in use, funtype is examined to determine whether a
function takes a fixed number of arguments.

[Macro]CALL_POPS_ARGS (cum)
A C expression that should indicate the number of bytes a call sequence pops off the
stack. It is added to the value of RETURN_POPS_ARGS when compiling a function call.
cum is the variable in which all arguments to the called function have been accumu-
lated.

424 GNU Compiler Collection (GCC) Internals

On certain architectures, such as the SH5, a call trampoline is used that pops certain
registers off the stack, depending on the arguments that have been passed to the
function. Since this is a property of the call site, not of the called function, RETURN_
POPS_ARGS is not appropriate.

17.10.7 Passing Arguments in Registers

This section describes the macros which let you control how various types of arguments are
passed in registers or how they are arranged in the stack.

[Macro]FUNCTION_ARG (cum, mode, type, named)
A C expression that controls whether a function argument is passed in a register, and
which register.

The arguments are cum, which summarizes all the previous arguments; mode, the
machine mode of the argument; type, the data type of the argument as a tree node or
0 if that is not known (which happens for C support library functions); and named,
which is 1 for an ordinary argument and 0 for nameless arguments that correspond to
‘...’ in the called function’s prototype. type can be an incomplete type if a syntax
error has previously occurred.

The value of the expression is usually either a reg RTX for the hard register in which
to pass the argument, or zero to pass the argument on the stack.

For machines like the VAX and 68000, where normally all arguments are pushed, zero
suffices as a definition.

The value of the expression can also be a parallel RTX. This is used when an
argument is passed in multiple locations. The mode of the parallel should be the
mode of the entire argument. The parallel holds any number of expr_list pairs;
each one describes where part of the argument is passed. In each expr_list the
first operand must be a reg RTX for the hard register in which to pass this part
of the argument, and the mode of the register RTX indicates how large this part of
the argument is. The second operand of the expr_list is a const_int which gives
the offset in bytes into the entire argument of where this part starts. As a special
exception the first expr_list in the parallel RTX may have a first operand of zero.
This indicates that the entire argument is also stored on the stack.

The last time this macro is called, it is called with MODE == VOIDmode, and its result
is passed to the call or call_value pattern as operands 2 and 3 respectively.

The usual way to make the ISO library ‘stdarg.h’ work on a machine where some
arguments are usually passed in registers, is to cause nameless arguments to be passed
on the stack instead. This is done by making FUNCTION_ARG return 0 whenever named
is 0.

You may use the hook targetm.calls.must_pass_in_stack in the definition of this
macro to determine if this argument is of a type that must be passed in the stack. If
REG_PARM_STACK_SPACE is not defined and FUNCTION_ARG returns nonzero for such an
argument, the compiler will abort. If REG_PARM_STACK_SPACE is defined, the argument
will be computed in the stack and then loaded into a register.

Chapter 17: Target Description Macros and Functions 425

[Target Hook]bool TARGET_MUST_PASS_IN_STACK (enum machine mode mode,
tree type)

This target hook should return true if we should not pass type solely in registers.
The file ‘expr.h’ defines a definition that is usually appropriate, refer to ‘expr.h’ for
additional documentation.

[Macro]FUNCTION_INCOMING_ARG (cum, mode, type, named)
Define this macro if the target machine has “register windows”, so that the register
in which a function sees an arguments is not necessarily the same as the one in which
the caller passed the argument.

For such machines, FUNCTION_ARG computes the register in which the caller passes
the value, and FUNCTION_INCOMING_ARG should be defined in a similar fashion to tell
the function being called where the arguments will arrive.

If FUNCTION_INCOMING_ARG is not defined, FUNCTION_ARG serves both purposes.

[Target Hook]int TARGET_ARG_PARTIAL_BYTES (CUMULATIVE ARGS *cum,
enum machine mode mode, tree type, bool named)

This target hook returns the number of bytes at the beginning of an argument that
must be put in registers. The value must be zero for arguments that are passed
entirely in registers or that are entirely pushed on the stack.

On some machines, certain arguments must be passed partially in registers and par-
tially in memory. On these machines, typically the first few words of arguments are
passed in registers, and the rest on the stack. If a multi-word argument (a double
or a structure) crosses that boundary, its first few words must be passed in registers
and the rest must be pushed. This macro tells the compiler when this occurs, and
how many bytes should go in registers.

FUNCTION_ARG for these arguments should return the first register to be used by the
caller for this argument; likewise FUNCTION_INCOMING_ARG, for the called function.

[Target Hook]bool TARGET_PASS_BY_REFERENCE (CUMULATIVE ARGS *cum,
enum machine mode mode, tree type, bool named)

This target hook should return true if an argument at the position indicated by cum
should be passed by reference. This predicate is queried after target independent
reasons for being passed by reference, such as TREE_ADDRESSABLE (type).

If the hook returns true, a copy of that argument is made in memory and a pointer
to the argument is passed instead of the argument itself. The pointer is passed in
whatever way is appropriate for passing a pointer to that type.

[Target Hook]bool TARGET_CALLEE_COPIES (CUMULATIVE ARGS *cum, enum
machine mode mode, tree type, bool named)

The function argument described by the parameters to this hook is known to be
passed by reference. The hook should return true if the function argument should be
copied by the callee instead of copied by the caller.

For any argument for which the hook returns true, if it can be determined that the
argument is not modified, then a copy need not be generated.

The default version of this hook always returns false.

426 GNU Compiler Collection (GCC) Internals

[Macro]CUMULATIVE_ARGS
A C type for declaring a variable that is used as the first argument of FUNCTION_ARG
and other related values. For some target machines, the type int suffices and can
hold the number of bytes of argument so far.

There is no need to record in CUMULATIVE_ARGS anything about the arguments that
have been passed on the stack. The compiler has other variables to keep track of that.
For target machines on which all arguments are passed on the stack, there is no need
to store anything in CUMULATIVE_ARGS; however, the data structure must exist and
should not be empty, so use int.

[Macro]OVERRIDE_ABI_FORMAT (fndecl)
If defined, this macro is called before generating any code for a function, but after the
cfun descriptor for the function has been created. The back end may use this macro
to update cfun to reflect an ABI other than that which would normally be used by
default. If the compiler is generating code for a compiler-generated function, fndecl
may be NULL.

[Macro]INIT_CUMULATIVE_ARGS (cum, fntype, libname, fndecl,
n_named_args)

A C statement (sans semicolon) for initializing the variable cum for the state at the
beginning of the argument list. The variable has type CUMULATIVE_ARGS. The value
of fntype is the tree node for the data type of the function which will receive the args,
or 0 if the args are to a compiler support library function. For direct calls that are not
libcalls, fndecl contain the declaration node of the function. fndecl is also set when
INIT_CUMULATIVE_ARGS is used to find arguments for the function being compiled.
n named args is set to the number of named arguments, including a structure return
address if it is passed as a parameter, when making a call. When processing incoming
arguments, n named args is set to −1.

When processing a call to a compiler support library function, libname identifies
which one. It is a symbol_ref rtx which contains the name of the function, as a
string. libname is 0 when an ordinary C function call is being processed. Thus, each
time this macro is called, either libname or fntype is nonzero, but never both of them
at once.

[Macro]INIT_CUMULATIVE_LIBCALL_ARGS (cum, mode, libname)
Like INIT_CUMULATIVE_ARGS but only used for outgoing libcalls, it gets a MODE argu-
ment instead of fntype, that would be NULL. indirect would always be zero, too. If
this macro is not defined, INIT_CUMULATIVE_ARGS (cum, NULL_RTX, libname, 0) is
used instead.

[Macro]INIT_CUMULATIVE_INCOMING_ARGS (cum, fntype, libname)
Like INIT_CUMULATIVE_ARGS but overrides it for the purposes of finding the argu-
ments for the function being compiled. If this macro is undefined, INIT_CUMULATIVE_
ARGS is used instead.

The value passed for libname is always 0, since library routines with special calling
conventions are never compiled with GCC. The argument libname exists for symme-
try with INIT_CUMULATIVE_ARGS.

Chapter 17: Target Description Macros and Functions 427

[Macro]FUNCTION_ARG_ADVANCE (cum, mode, type, named)
A C statement (sans semicolon) to update the summarizer variable cum to advance
past an argument in the argument list. The values mode, type and named describe
that argument. Once this is done, the variable cum is suitable for analyzing the
following argument with FUNCTION_ARG, etc.
This macro need not do anything if the argument in question was passed on the
stack. The compiler knows how to track the amount of stack space used for arguments
without any special help.

[Macro]FUNCTION_ARG_OFFSET (mode, type)
If defined, a C expression that is the number of bytes to add to the offset of the
argument passed in memory. This is needed for the SPU, which passes char and
short arguments in the preferred slot that is in the middle of the quad word instead
of starting at the top.

[Macro]FUNCTION_ARG_PADDING (mode, type)
If defined, a C expression which determines whether, and in which direction, to pad
out an argument with extra space. The value should be of type enum direction:
either upward to pad above the argument, downward to pad below, or none to inhibit
padding.
The amount of padding is always just enough to reach the next multiple of FUNCTION_
ARG_BOUNDARY; this macro does not control it.
This macro has a default definition which is right for most systems. For little-endian
machines, the default is to pad upward. For big-endian machines, the default is to
pad downward for an argument of constant size shorter than an int, and upward
otherwise.

[Macro]PAD_VARARGS_DOWN
If defined, a C expression which determines whether the default implementation of
va arg will attempt to pad down before reading the next argument, if that argument
is smaller than its aligned space as controlled by PARM_BOUNDARY. If this macro is not
defined, all such arguments are padded down if BYTES_BIG_ENDIAN is true.

[Macro]BLOCK_REG_PADDING (mode, type, first)
Specify padding for the last element of a block move between registers and memory.
first is nonzero if this is the only element. Defining this macro allows better control of
register function parameters on big-endian machines, without using PARALLEL rtl. In
particular, MUST_PASS_IN_STACK need not test padding and mode of types in registers,
as there is no longer a "wrong" part of a register; For example, a three byte aggregate
may be passed in the high part of a register if so required.

[Macro]FUNCTION_ARG_BOUNDARY (mode, type)
If defined, a C expression that gives the alignment boundary, in bits, of an argument
with the specified mode and type. If it is not defined, PARM_BOUNDARY is used for all
arguments.

[Macro]FUNCTION_ARG_REGNO_P (regno)
A C expression that is nonzero if regno is the number of a hard register in which
function arguments are sometimes passed. This does not include implicit arguments

428 GNU Compiler Collection (GCC) Internals

such as the static chain and the structure-value address. On many machines, no
registers can be used for this purpose since all function arguments are pushed on the
stack.

[Target Hook]bool TARGET_SPLIT_COMPLEX_ARG (tree type)
This hook should return true if parameter of type type are passed as two scalar
parameters. By default, GCC will attempt to pack complex arguments into the
target’s word size. Some ABIs require complex arguments to be split and treated
as their individual components. For example, on AIX64, complex floats should be
passed in a pair of floating point registers, even though a complex float would fit in
one 64-bit floating point register.

The default value of this hook is NULL, which is treated as always false.

[Target Hook]tree TARGET_BUILD_BUILTIN_VA_LIST (void)
This hook returns a type node for va_list for the target. The default version of the
hook returns void*.

[Target Hook]tree TARGET_FN_ABI_VA_LIST (tree fndecl)
This hook returns the va list type of the calling convention specified by fndecl. The
default version of this hook returns va_list_type_node.

[Target Hook]tree TARGET_CANONICAL_VA_LIST_TYPE (tree type)
This hook returns the va list type of the calling convention specified by the type of
type. If type is not a valid va list type, it returns NULL_TREE.

[Target Hook]tree TARGET_GIMPLIFY_VA_ARG_EXPR (tree valist, tree type, tree
*pre_p, tree *post_p)

This hook performs target-specific gimplification of VA_ARG_EXPR. The first two
parameters correspond to the arguments to va_arg; the latter two are as in
gimplify.c:gimplify_expr.

[Target Hook]bool TARGET_VALID_POINTER_MODE (enum machine mode mode)
Define this to return nonzero if the port can handle pointers with machine mode
mode. The default version of this hook returns true for both ptr_mode and Pmode.

[Target Hook]bool TARGET_SCALAR_MODE_SUPPORTED_P (enum machine mode
mode)

Define this to return nonzero if the port is prepared to handle insns involving scalar
mode mode. For a scalar mode to be considered supported, all the basic arithmetic
and comparisons must work.

The default version of this hook returns true for any mode required to handle the
basic C types (as defined by the port). Included here are the double-word arithmetic
supported by the code in ‘optabs.c’.

[Target Hook]bool TARGET_VECTOR_MODE_SUPPORTED_P (enum machine mode
mode)

Define this to return nonzero if the port is prepared to handle insns involving vector
mode mode. At the very least, it must have move patterns for this mode.

Chapter 17: Target Description Macros and Functions 429

17.10.8 How Scalar Function Values Are Returned

This section discusses the macros that control returning scalars as values—values that can
fit in registers.

[Target Hook]rtx TARGET_FUNCTION_VALUE (tree ret_type, tree
fn_decl_or_type, bool outgoing)

Define this to return an RTX representing the place where a function returns or
receives a value of data type ret type, a tree node node representing a data type.
fn decl or type is a tree node representing FUNCTION_DECL or FUNCTION_TYPE of a
function being called. If outgoing is false, the hook should compute the register in
which the caller will see the return value. Otherwise, the hook should return an RTX
representing the place where a function returns a value.
On many machines, only TYPE_MODE (ret_type) is relevant. (Actually, on most
machines, scalar values are returned in the same place regardless of mode.) The value
of the expression is usually a reg RTX for the hard register where the return value
is stored. The value can also be a parallel RTX, if the return value is in multiple
places. See FUNCTION_ARG for an explanation of the parallel form. Note that the
callee will populate every location specified in the parallel, but if the first element
of the parallel contains the whole return value, callers will use that element as the
canonical location and ignore the others. The m68k port uses this type of parallel
to return pointers in both ‘%a0’ (the canonical location) and ‘%d0’.
If TARGET_PROMOTE_FUNCTION_RETURN returns true, you must apply the same promo-
tion rules specified in PROMOTE_MODE if valtype is a scalar type.
If the precise function being called is known, func is a tree node (FUNCTION_DECL)
for it; otherwise, func is a null pointer. This makes it possible to use a different
value-returning convention for specific functions when all their calls are known.
Some target machines have “register windows” so that the register in which a function
returns its value is not the same as the one in which the caller sees the value. For
such machines, you should return different RTX depending on outgoing.
TARGET_FUNCTION_VALUE is not used for return values with aggregate data types, be-
cause these are returned in another way. See TARGET_STRUCT_VALUE_RTX and related
macros, below.

[Macro]FUNCTION_VALUE (valtype, func)
This macro has been deprecated. Use TARGET_FUNCTION_VALUE for a new target
instead.

[Macro]FUNCTION_OUTGOING_VALUE (valtype, func)
This macro has been deprecated. Use TARGET_FUNCTION_VALUE for a new target
instead.

[Macro]LIBCALL_VALUE (mode)
A C expression to create an RTX representing the place where a library function
returns a value of mode mode.
Note that “library function” in this context means a compiler support routine, used
to perform arithmetic, whose name is known specially by the compiler and was not
mentioned in the C code being compiled.

430 GNU Compiler Collection (GCC) Internals

[Target Hook]rtx TARGET_LIBCALL_VALUE (enum machine mode
mode, rtx fun) Define this hook if the back-end needs to know the name of the libcall
function in order to determine where the result should be returned.
The mode of the result is given by mode and the name of the called library function
is given by fun. The hook should return an RTX representing the place where the
library function result will be returned.
If this hook is not defined, then LIBCALL VALUE will be used.

[Macro]FUNCTION_VALUE_REGNO_P (regno)
A C expression that is nonzero if regno is the number of a hard register in which the
values of called function may come back.
A register whose use for returning values is limited to serving as the second of a pair
(for a value of type double, say) need not be recognized by this macro. So for most
machines, this definition suffices:

#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)

If the machine has register windows, so that the caller and the called function use
different registers for the return value, this macro should recognize only the caller’s
register numbers.

[Macro]TARGET_ENUM_VA_LIST (idx, pname, ptype)
This target macro is used in function c_common_nodes_and_builtins to iterate
through the target specific builtin types for va list. The variable idx is used as
iterator. pname has to be a pointer to a const char * and ptype a pointer to a tree
typed variable. The arguments pname and ptype are used to store the result of this
macro and are set to the name of the va list builtin type and its internal type. If the
return value of this macro is zero, then there is no more element. Otherwise the IDX
should be increased for the next call of this macro to iterate through all types.

[Macro]APPLY_RESULT_SIZE
Define this macro if ‘untyped_call’ and ‘untyped_return’ need more space than
is implied by FUNCTION_VALUE_REGNO_P for saving and restoring an arbitrary return
value.

[Target Hook]bool TARGET_RETURN_IN_MSB (tree type)
This hook should return true if values of type type are returned at the most significant
end of a register (in other words, if they are padded at the least significant end). You
can assume that type is returned in a register; the caller is required to check this.
Note that the register provided by TARGET_FUNCTION_VALUE must be able to hold the
complete return value. For example, if a 1-, 2- or 3-byte structure is returned at the
most significant end of a 4-byte register, TARGET_FUNCTION_VALUE should provide an
SImode rtx.

17.10.9 How Large Values Are Returned

When a function value’s mode is BLKmode (and in some other cases), the value is not returned
according to TARGET_FUNCTION_VALUE (see Section 17.10.8 [Scalar Return], page 429). In-
stead, the caller passes the address of a block of memory in which the value should be
stored. This address is called the structure value address.

This section describes how to control returning structure values in memory.

Chapter 17: Target Description Macros and Functions 431

[Target Hook]bool TARGET_RETURN_IN_MEMORY (tree type, tree fntype)
This target hook should return a nonzero value to say to return the function value
in memory, just as large structures are always returned. Here type will be the data
type of the value, and fntype will be the type of the function doing the returning, or
NULL for libcalls.

Note that values of mode BLKmode must be explicitly handled by this function. Also,
the option ‘-fpcc-struct-return’ takes effect regardless of this macro. On most
systems, it is possible to leave the hook undefined; this causes a default definition to
be used, whose value is the constant 1 for BLKmode values, and 0 otherwise.

Do not use this hook to indicate that structures and unions should always be returned
in memory. You should instead use DEFAULT_PCC_STRUCT_RETURN to indicate this.

[Macro]DEFAULT_PCC_STRUCT_RETURN
Define this macro to be 1 if all structure and union return values must be in memory.
Since this results in slower code, this should be defined only if needed for compatibility
with other compilers or with an ABI. If you define this macro to be 0, then the
conventions used for structure and union return values are decided by the TARGET_
RETURN_IN_MEMORY target hook.

If not defined, this defaults to the value 1.

[Target Hook]rtx TARGET_STRUCT_VALUE_RTX (tree fndecl, int incoming)
This target hook should return the location of the structure value address (normally
a mem or reg), or 0 if the address is passed as an “invisible” first argument. Note that
fndecl may be NULL, for libcalls. You do not need to define this target hook if the
address is always passed as an “invisible” first argument.

On some architectures the place where the structure value address is found by the
called function is not the same place that the caller put it. This can be due to register
windows, or it could be because the function prologue moves it to a different place.
incoming is 1 or 2 when the location is needed in the context of the called function,
and 0 in the context of the caller.

If incoming is nonzero and the address is to be found on the stack, return a mem which
refers to the frame pointer. If incoming is 2, the result is being used to fetch the
structure value address at the beginning of a function. If you need to emit adjusting
code, you should do it at this point.

[Macro]PCC_STATIC_STRUCT_RETURN
Define this macro if the usual system convention on the target machine for returning
structures and unions is for the called function to return the address of a static variable
containing the value.

Do not define this if the usual system convention is for the caller to pass an address
to the subroutine.

This macro has effect in ‘-fpcc-struct-return’ mode, but it does nothing when you
use ‘-freg-struct-return’ mode.

432 GNU Compiler Collection (GCC) Internals

17.10.10 Caller-Saves Register Allocation

If you enable it, GCC can save registers around function calls. This makes it possible to
use call-clobbered registers to hold variables that must live across calls.

[Macro]CALLER_SAVE_PROFITABLE (refs, calls)
A C expression to determine whether it is worthwhile to consider placing a pseudo-
register in a call-clobbered hard register and saving and restoring it around each
function call. The expression should be 1 when this is worth doing, and 0 otherwise.
If you don’t define this macro, a default is used which is good on most machines: 4
* calls < refs .

[Macro]HARD_REGNO_CALLER_SAVE_MODE (regno, nregs)
A C expression specifying which mode is required for saving nregs of a pseudo-register
in call-clobbered hard register regno. If regno is unsuitable for caller save, VOIDmode
should be returned. For most machines this macro need not be defined since GCC
will select the smallest suitable mode.

17.10.11 Function Entry and Exit

This section describes the macros that output function entry (prologue) and exit (epilogue)
code.

[Target Hook]void TARGET_ASM_FUNCTION_PROLOGUE (FILE *file,
HOST WIDE INT size)

If defined, a function that outputs the assembler code for entry to a function. The
prologue is responsible for setting up the stack frame, initializing the frame pointer
register, saving registers that must be saved, and allocating size additional bytes of
storage for the local variables. size is an integer. file is a stdio stream to which the
assembler code should be output.
The label for the beginning of the function need not be output by this macro. That
has already been done when the macro is run.
To determine which registers to save, the macro can refer to the array regs_ever_
live: element r is nonzero if hard register r is used anywhere within the function.
This implies the function prologue should save register r, provided it is not one of the
call-used registers. (TARGET_ASM_FUNCTION_EPILOGUE must likewise use regs_ever_
live.)
On machines that have “register windows”, the function entry code does not save
on the stack the registers that are in the windows, even if they are supposed to be
preserved by function calls; instead it takes appropriate steps to “push” the register
stack, if any non-call-used registers are used in the function.
On machines where functions may or may not have frame-pointers, the function entry
code must vary accordingly; it must set up the frame pointer if one is wanted, and not
otherwise. To determine whether a frame pointer is in wanted, the macro can refer
to the variable frame_pointer_needed. The variable’s value will be 1 at run time in
a function that needs a frame pointer. See Section 17.10.5 [Elimination], page 420.
The function entry code is responsible for allocating any stack space required for the
function. This stack space consists of the regions listed below. In most cases, these

Chapter 17: Target Description Macros and Functions 433

regions are allocated in the order listed, with the last listed region closest to the top
of the stack (the lowest address if STACK_GROWS_DOWNWARD is defined, and the highest
address if it is not defined). You can use a different order for a machine if doing so is
more convenient or required for compatibility reasons. Except in cases where required
by standard or by a debugger, there is no reason why the stack layout used by GCC
need agree with that used by other compilers for a machine.

[Target Hook]void TARGET_ASM_FUNCTION_END_PROLOGUE (FILE *file)
If defined, a function that outputs assembler code at the end of a prologue. This
should be used when the function prologue is being emitted as RTL, and you have
some extra assembler that needs to be emitted. See [prologue instruction pattern],
page 329.

[Target Hook]void TARGET_ASM_FUNCTION_BEGIN_EPILOGUE (FILE *file)
If defined, a function that outputs assembler code at the start of an epilogue. This
should be used when the function epilogue is being emitted as RTL, and you have
some extra assembler that needs to be emitted. See [epilogue instruction pattern],
page 330.

[Target Hook]void TARGET_ASM_FUNCTION_EPILOGUE (FILE *file,
HOST WIDE INT size)

If defined, a function that outputs the assembler code for exit from a function. The
epilogue is responsible for restoring the saved registers and stack pointer to their
values when the function was called, and returning control to the caller. This macro
takes the same arguments as the macro TARGET_ASM_FUNCTION_PROLOGUE, and the
registers to restore are determined from regs_ever_live and CALL_USED_REGISTERS
in the same way.

On some machines, there is a single instruction that does all the work of returning
from the function. On these machines, give that instruction the name ‘return’ and
do not define the macro TARGET_ASM_FUNCTION_EPILOGUE at all.

Do not define a pattern named ‘return’ if you want the TARGET_ASM_FUNCTION_
EPILOGUE to be used. If you want the target switches to control whether return
instructions or epilogues are used, define a ‘return’ pattern with a validity condi-
tion that tests the target switches appropriately. If the ‘return’ pattern’s validity
condition is false, epilogues will be used.

On machines where functions may or may not have frame-pointers, the function exit
code must vary accordingly. Sometimes the code for these two cases is completely
different. To determine whether a frame pointer is wanted, the macro can refer to
the variable frame_pointer_needed. The variable’s value will be 1 when compiling
a function that needs a frame pointer.

Normally, TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE
must treat leaf functions specially. The C variable current_function_is_leaf is
nonzero for such a function. See Section 17.7.4 [Leaf Functions], page 399.

On some machines, some functions pop their arguments on exit while others leave
that for the caller to do. For example, the 68020 when given ‘-mrtd’ pops arguments
in functions that take a fixed number of arguments.

434 GNU Compiler Collection (GCC) Internals

Your definition of the macro RETURN_POPS_ARGS decides which functions pop their
own arguments. TARGET_ASM_FUNCTION_EPILOGUE needs to know what was decided.
The variable that is called current_function_pops_args is the number of bytes
of its arguments that a function should pop. See Section 17.10.8 [Scalar Return],
page 429.

• A region of current_function_pretend_args_size bytes of uninitialized space just
underneath the first argument arriving on the stack. (This may not be at the very
start of the allocated stack region if the calling sequence has pushed anything else since
pushing the stack arguments. But usually, on such machines, nothing else has been
pushed yet, because the function prologue itself does all the pushing.) This region is
used on machines where an argument may be passed partly in registers and partly in
memory, and, in some cases to support the features in <stdarg.h>.

• An area of memory used to save certain registers used by the function. The size of this
area, which may also include space for such things as the return address and pointers
to previous stack frames, is machine-specific and usually depends on which registers
have been used in the function. Machines with register windows often do not require a
save area.

• A region of at least size bytes, possibly rounded up to an allocation boundary, to
contain the local variables of the function. On some machines, this region and the save
area may occur in the opposite order, with the save area closer to the top of the stack.

• Optionally, when ACCUMULATE_OUTGOING_ARGS is defined, a region of current_
function_outgoing_args_size bytes to be used for outgoing argument lists of the
function. See Section 17.10.6 [Stack Arguments], page 422.

[Macro]EXIT_IGNORE_STACK
Define this macro as a C expression that is nonzero if the return instruction or the
function epilogue ignores the value of the stack pointer; in other words, if it is safe
to delete an instruction to adjust the stack pointer before a return from the function.
The default is 0.
Note that this macro’s value is relevant only for functions for which frame pointers
are maintained. It is never safe to delete a final stack adjustment in a function that
has no frame pointer, and the compiler knows this regardless of EXIT_IGNORE_STACK.

[Macro]EPILOGUE_USES (regno)
Define this macro as a C expression that is nonzero for registers that are used by the
epilogue or the ‘return’ pattern. The stack and frame pointer registers are already
assumed to be used as needed.

[Macro]EH_USES (regno)
Define this macro as a C expression that is nonzero for registers that are used by
the exception handling mechanism, and so should be considered live on entry to an
exception edge.

[Macro]DELAY_SLOTS_FOR_EPILOGUE
Define this macro if the function epilogue contains delay slots to which instructions
from the rest of the function can be “moved”. The definition should be a C expression
whose value is an integer representing the number of delay slots there.

Chapter 17: Target Description Macros and Functions 435

[Macro]ELIGIBLE_FOR_EPILOGUE_DELAY (insn, n)
A C expression that returns 1 if insn can be placed in delay slot number n of the
epilogue.

The argument n is an integer which identifies the delay slot now being considered
(since different slots may have different rules of eligibility). It is never negative
and is always less than the number of epilogue delay slots (what DELAY_SLOTS_FOR_
EPILOGUE returns). If you reject a particular insn for a given delay slot, in principle,
it may be reconsidered for a subsequent delay slot. Also, other insns may (at least in
principle) be considered for the so far unfilled delay slot.

The insns accepted to fill the epilogue delay slots are put in an RTL list made with
insn_list objects, stored in the variable current_function_epilogue_delay_list.
The insn for the first delay slot comes first in the list. Your definition of the macro
TARGET_ASM_FUNCTION_EPILOGUE should fill the delay slots by outputting the insns
in this list, usually by calling final_scan_insn.

You need not define this macro if you did not define DELAY_SLOTS_FOR_EPILOGUE.

[Target Hook]void TARGET_ASM_OUTPUT_MI_THUNK (FILE *file, tree
thunk_fndecl, HOST WIDE INT delta, HOST WIDE INT
vcall_offset, tree function)

A function that outputs the assembler code for a thunk function, used to implement
C++ virtual function calls with multiple inheritance. The thunk acts as a wrapper
around a virtual function, adjusting the implicit object parameter before handing
control off to the real function.

First, emit code to add the integer delta to the location that contains the incoming
first argument. Assume that this argument contains a pointer, and is the one used
to pass the this pointer in C++. This is the incoming argument before the function
prologue, e.g. ‘%o0’ on a sparc. The addition must preserve the values of all other
incoming arguments.

Then, if vcall offset is nonzero, an additional adjustment should be made after adding
delta. In particular, if p is the adjusted pointer, the following adjustment should be
made:

p += (*((ptrdiff_t **)p))[vcall_offset/sizeof(ptrdiff_t)]

After the additions, emit code to jump to function, which is a FUNCTION_DECL. This is
a direct pure jump, not a call, and does not touch the return address. Hence returning
from FUNCTION will return to whoever called the current ‘thunk’.

The effect must be as if function had been called directly with the adjusted first ar-
gument. This macro is responsible for emitting all of the code for a thunk function;
TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE are not in-
voked.

The thunk fndecl is redundant. (delta and function have already been extracted from
it.) It might possibly be useful on some targets, but probably not.

If you do not define this macro, the target-independent code in the C++ front end will
generate a less efficient heavyweight thunk that calls function instead of jumping to
it. The generic approach does not support varargs.

436 GNU Compiler Collection (GCC) Internals

[Target Hook]bool TARGET_ASM_CAN_OUTPUT_MI_THUNK (tree thunk_fndecl,
HOST WIDE INT delta, HOST WIDE INT vcall_offset, tree
function)

A function that returns true if TARGET ASM OUTPUT MI THUNK would be able
to output the assembler code for the thunk function specified by the arguments it is
passed, and false otherwise. In the latter case, the generic approach will be used by
the C++ front end, with the limitations previously exposed.

17.10.12 Generating Code for Profiling

These macros will help you generate code for profiling.

[Macro]FUNCTION_PROFILER (file, labelno)
A C statement or compound statement to output to file some assembler code to call
the profiling subroutine mcount.

The details of how mcount expects to be called are determined by your operating
system environment, not by GCC. To figure them out, compile a small program for
profiling using the system’s installed C compiler and look at the assembler code that
results.

Older implementations of mcount expect the address of a counter variable to be loaded
into some register. The name of this variable is ‘LP’ followed by the number labelno,
so you would generate the name using ‘LP%d’ in a fprintf.

[Macro]PROFILE_HOOK
A C statement or compound statement to output to file some assembly code to call
the profiling subroutine mcount even the target does not support profiling.

[Macro]NO_PROFILE_COUNTERS
Define this macro to be an expression with a nonzero value if the mcount subroutine
on your system does not need a counter variable allocated for each function. This is
true for almost all modern implementations. If you define this macro, you must not
use the labelno argument to FUNCTION_PROFILER.

[Macro]PROFILE_BEFORE_PROLOGUE
Define this macro if the code for function profiling should come before the function
prologue. Normally, the profiling code comes after.

17.10.13 Permitting tail calls

[Target Hook]bool TARGET_FUNCTION_OK_FOR_SIBCALL (tree decl, tree exp)
True if it is ok to do sibling call optimization for the specified call expression exp.
decl will be the called function, or NULL if this is an indirect call.

It is not uncommon for limitations of calling conventions to prevent tail calls to
functions outside the current unit of translation, or during PIC compilation. The
hook is used to enforce these restrictions, as the sibcall md pattern can not fail, or
fall over to a “normal” call. The criteria for successful sibling call optimization may
vary greatly between different architectures.

Chapter 17: Target Description Macros and Functions 437

[Target Hook]void TARGET_EXTRA_LIVE_ON_ENTRY (bitmap *regs)
Add any hard registers to regs that are live on entry to the function. This
hook only needs to be defined to provide registers that cannot be found
by examination of FUNCTION ARG REGNO P, the callee saved registers,
STATIC CHAIN INCOMING REGNUM, STATIC CHAIN REGNUM, TAR-
GET STRUCT VALUE RTX, FRAME POINTER REGNUM, EH USES,
FRAME POINTER REGNUM, ARG POINTER REGNUM, and the
PIC OFFSET TABLE REGNUM.

17.10.14 Stack smashing protection

[Target Hook]tree TARGET_STACK_PROTECT_GUARD (void)
This hook returns a DECL node for the external variable to use for the stack protection
guard. This variable is initialized by the runtime to some random value and is used
to initialize the guard value that is placed at the top of the local stack frame. The
type of this variable must be ptr_type_node.
The default version of this hook creates a variable called ‘__stack_chk_guard’, which
is normally defined in ‘libgcc2.c’.

[Target Hook]tree TARGET_STACK_PROTECT_FAIL (void)
This hook returns a tree expression that alerts the runtime that the stack protect
guard variable has been modified. This expression should involve a call to a noreturn
function.
The default version of this hook invokes a function called ‘__stack_chk_fail’, taking
no arguments. This function is normally defined in ‘libgcc2.c’.

17.11 Implementing the Varargs Macros

GCC comes with an implementation of <varargs.h> and <stdarg.h> that work without
change on machines that pass arguments on the stack. Other machines require their own
implementations of varargs, and the two machine independent header files must have con-
ditionals to include it.

ISO <stdarg.h> differs from traditional <varargs.h> mainly in the calling convention for
va_start. The traditional implementation takes just one argument, which is the variable
in which to store the argument pointer. The ISO implementation of va_start takes an
additional second argument. The user is supposed to write the last named argument of the
function here.

However, va_start should not use this argument. The way to find the end of the named
arguments is with the built-in functions described below.

[Macro]__builtin_saveregs ()
Use this built-in function to save the argument registers in memory so that the varargs
mechanism can access them. Both ISO and traditional versions of va_start must use
__builtin_saveregs, unless you use TARGET_SETUP_INCOMING_VARARGS (see below)
instead.
On some machines, __builtin_saveregs is open-coded under the control of the tar-
get hook TARGET_EXPAND_BUILTIN_SAVEREGS. On other machines, it calls a routine
written in assembler language, found in ‘libgcc2.c’.

438 GNU Compiler Collection (GCC) Internals

Code generated for the call to __builtin_saveregs appears at the beginning of the
function, as opposed to where the call to __builtin_saveregs is written, regardless
of what the code is. This is because the registers must be saved before the function
starts to use them for its own purposes.

[Macro]__builtin_args_info (category)
Use this built-in function to find the first anonymous arguments in registers.
In general, a machine may have several categories of registers used for arguments, each
for a particular category of data types. (For example, on some machines, floating-
point registers are used for floating-point arguments while other arguments are passed
in the general registers.) To make non-varargs functions use the proper calling conven-
tion, you have defined the CUMULATIVE_ARGS data type to record how many registers
in each category have been used so far
__builtin_args_info accesses the same data structure of type CUMULATIVE_ARGS
after the ordinary argument layout is finished with it, with category specifying which
word to access. Thus, the value indicates the first unused register in a given category.
Normally, you would use __builtin_args_info in the implementation of va_start,
accessing each category just once and storing the value in the va_list object. This
is because va_list will have to update the values, and there is no way to alter the
values accessed by __builtin_args_info.

[Macro]__builtin_next_arg (lastarg)
This is the equivalent of __builtin_args_info, for stack arguments. It returns
the address of the first anonymous stack argument, as type void *. If ARGS_GROW_
DOWNWARD, it returns the address of the location above the first anonymous stack
argument. Use it in va_start to initialize the pointer for fetching arguments from
the stack. Also use it in va_start to verify that the second parameter lastarg is the
last named argument of the current function.

[Macro]__builtin_classify_type (object)
Since each machine has its own conventions for which data types are passed in which
kind of register, your implementation of va_arg has to embody these conventions.
The easiest way to categorize the specified data type is to use __builtin_classify_
type together with sizeof and __alignof__.
__builtin_classify_type ignores the value of object, considering only its data type.
It returns an integer describing what kind of type that is—integer, floating, pointer,
structure, and so on.
The file ‘typeclass.h’ defines an enumeration that you can use to interpret the values
of __builtin_classify_type.

These machine description macros help implement varargs:

[Target Hook]rtx TARGET_EXPAND_BUILTIN_SAVEREGS (void)
If defined, this hook produces the machine-specific code for a call to __builtin_
saveregs. This code will be moved to the very beginning of the function, before any
parameter access are made. The return value of this function should be an RTX that
contains the value to use as the return of __builtin_saveregs.

Chapter 17: Target Description Macros and Functions 439

[Target Hook]void TARGET_SETUP_INCOMING_VARARGS (CUMULATIVE ARGS
*args_so_far, enum machine mode mode, tree type, int
*pretend_args_size, int second_time)

This target hook offers an alternative to using __builtin_saveregs and defining the
hook TARGET_EXPAND_BUILTIN_SAVEREGS. Use it to store the anonymous register
arguments into the stack so that all the arguments appear to have been passed con-
secutively on the stack. Once this is done, you can use the standard implementation
of varargs that works for machines that pass all their arguments on the stack.
The argument args so far points to the CUMULATIVE_ARGS data structure, containing
the values that are obtained after processing the named arguments. The arguments
mode and type describe the last named argument—its machine mode and its data
type as a tree node.
The target hook should do two things: first, push onto the stack all the argument
registers not used for the named arguments, and second, store the size of the data
thus pushed into the int-valued variable pointed to by pretend args size. The value
that you store here will serve as additional offset for setting up the stack frame.
Because you must generate code to push the anonymous arguments at compile time
without knowing their data types, TARGET_SETUP_INCOMING_VARARGS is only useful
on machines that have just a single category of argument register and use it uniformly
for all data types.
If the argument second time is nonzero, it means that the arguments of the function
are being analyzed for the second time. This happens for an inline function, which
is not actually compiled until the end of the source file. The hook TARGET_SETUP_
INCOMING_VARARGS should not generate any instructions in this case.

[Target Hook]bool TARGET_STRICT_ARGUMENT_NAMING (CUMULATIVE ARGS
*ca)

Define this hook to return true if the location where a function argument is passed
depends on whether or not it is a named argument.
This hook controls how the named argument to FUNCTION_ARG is set for varargs and
stdarg functions. If this hook returns true, the named argument is always true for
named arguments, and false for unnamed arguments. If it returns false, but TARGET_
PRETEND_OUTGOING_VARARGS_NAMED returns true, then all arguments are treated as
named. Otherwise, all named arguments except the last are treated as named.
You need not define this hook if it always returns zero.

[Target Hook]bool TARGET_PRETEND_OUTGOING_VARARGS_NAMED
If you need to conditionally change ABIs so that one works with TARGET_SETUP_
INCOMING_VARARGS, but the other works like neither TARGET_SETUP_INCOMING_
VARARGS nor TARGET_STRICT_ARGUMENT_NAMING was defined, then define this hook
to return true if TARGET_SETUP_INCOMING_VARARGS is used, false otherwise.
Otherwise, you should not define this hook.

17.12 Trampolines for Nested Functions

A trampoline is a small piece of code that is created at run time when the address of
a nested function is taken. It normally resides on the stack, in the stack frame of the

440 GNU Compiler Collection (GCC) Internals

containing function. These macros tell GCC how to generate code to allocate and initialize
a trampoline.

The instructions in the trampoline must do two things: load a constant address into
the static chain register, and jump to the real address of the nested function. On CISC
machines such as the m68k, this requires two instructions, a move immediate and a jump.
Then the two addresses exist in the trampoline as word-long immediate operands. On RISC
machines, it is often necessary to load each address into a register in two parts. Then pieces
of each address form separate immediate operands.

The code generated to initialize the trampoline must store the variable parts—the static
chain value and the function address—into the immediate operands of the instructions. On
a CISC machine, this is simply a matter of copying each address to a memory reference at
the proper offset from the start of the trampoline. On a RISC machine, it may be necessary
to take out pieces of the address and store them separately.

[Macro]TRAMPOLINE_TEMPLATE (file)
A C statement to output, on the stream file, assembler code for a block of data that
contains the constant parts of a trampoline. This code should not include a label—the
label is taken care of automatically.
If you do not define this macro, it means no template is needed for the target. Do
not define this macro on systems where the block move code to copy the trampoline
into place would be larger than the code to generate it on the spot.

[Macro]TRAMPOLINE_SECTION
Return the section into which the trampoline template is to be placed (see
Section 17.19 [Sections], page 462). The default value is readonly_data_section.

[Macro]TRAMPOLINE_SIZE
A C expression for the size in bytes of the trampoline, as an integer.

[Macro]TRAMPOLINE_ALIGNMENT
Alignment required for trampolines, in bits.
If you don’t define this macro, the value of BIGGEST_ALIGNMENT is used for aligning
trampolines.

[Macro]INITIALIZE_TRAMPOLINE (addr, fnaddr, static_chain)
A C statement to initialize the variable parts of a trampoline. addr is an RTX for the
address of the trampoline; fnaddr is an RTX for the address of the nested function;
static chain is an RTX for the static chain value that should be passed to the function
when it is called.

[Macro]TRAMPOLINE_ADJUST_ADDRESS (addr)
A C statement that should perform any machine-specific adjustment in the address of
the trampoline. Its argument contains the address that was passed to INITIALIZE_
TRAMPOLINE. In case the address to be used for a function call should be different
from the address in which the template was stored, the different address should be
assigned to addr. If this macro is not defined, addr will be used for function calls.
If this macro is not defined, by default the trampoline is allocated as a stack slot.
This default is right for most machines. The exceptions are machines where it is

Chapter 17: Target Description Macros and Functions 441

impossible to execute instructions in the stack area. On such machines, you may
have to implement a separate stack, using this macro in conjunction with TARGET_
ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE.

fp points to a data structure, a struct function, which describes the compilation
status of the immediate containing function of the function which the trampoline
is for. The stack slot for the trampoline is in the stack frame of this containing
function. Other allocation strategies probably must do something analogous with
this information.

Implementing trampolines is difficult on many machines because they have separate in-
struction and data caches. Writing into a stack location fails to clear the memory in the
instruction cache, so when the program jumps to that location, it executes the old contents.

Here are two possible solutions. One is to clear the relevant parts of the instruction cache
whenever a trampoline is set up. The other is to make all trampolines identical, by having
them jump to a standard subroutine. The former technique makes trampoline execution
faster; the latter makes initialization faster.

To clear the instruction cache when a trampoline is initialized, define the following macro.

[Macro]CLEAR_INSN_CACHE (beg, end)
If defined, expands to a C expression clearing the instruction cache in the specified
interval. The definition of this macro would typically be a series of asm statements.
Both beg and end are both pointer expressions.

The operating system may also require the stack to be made executable before calling
the trampoline. To implement this requirement, define the following macro.

[Macro]ENABLE_EXECUTE_STACK
Define this macro if certain operations must be performed before executing code
located on the stack. The macro should expand to a series of C file-scope constructs
(e.g. functions) and provide a unique entry point named __enable_execute_stack.
The target is responsible for emitting calls to the entry point in the code, for example
from the INITIALIZE_TRAMPOLINE macro.

To use a standard subroutine, define the following macro. In addition, you must make
sure that the instructions in a trampoline fill an entire cache line with identical instructions,
or else ensure that the beginning of the trampoline code is always aligned at the same point
in its cache line. Look in ‘m68k.h’ as a guide.

[Macro]TRANSFER_FROM_TRAMPOLINE
Define this macro if trampolines need a special subroutine to do their work. The
macro should expand to a series of asm statements which will be compiled with GCC.
They go in a library function named __transfer_from_trampoline.

If you need to avoid executing the ordinary prologue code of a compiled C function
when you jump to the subroutine, you can do so by placing a special label of your
own in the assembler code. Use one asm statement to generate an assembler label,
and another to make the label global. Then trampolines can use that label to jump
directly to your special assembler code.

442 GNU Compiler Collection (GCC) Internals

17.13 Implicit Calls to Library Routines

Here is an explanation of implicit calls to library routines.

[Macro]DECLARE_LIBRARY_RENAMES
This macro, if defined, should expand to a piece of C code that will get expanded
when compiling functions for libgcc.a. It can be used to provide alternate names for
GCC’s internal library functions if there are ABI-mandated names that the compiler
should provide.

[Target Hook]void TARGET_INIT_LIBFUNCS (void)
This hook should declare additional library routines or rename existing ones, using the
functions set_optab_libfunc and init_one_libfunc defined in ‘optabs.c’. init_
optabs calls this macro after initializing all the normal library routines.
The default is to do nothing. Most ports don’t need to define this hook.

[Macro]FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
This macro should return true if the library routine that implements the floating
point comparison operator comparison in mode mode will return a boolean, and false
if it will return a tristate.
GCC’s own floating point libraries return tristates from the comparison operators, so
the default returns false always. Most ports don’t need to define this macro.

[Macro]TARGET_LIB_INT_CMP_BIASED
This macro should evaluate to true if the integer comparison functions (like __
cmpdi2) return 0 to indicate that the first operand is smaller than the second, 1
to indicate that they are equal, and 2 to indicate that the first operand is greater
than the second. If this macro evaluates to false the comparison functions return
−1, 0, and 1 instead of 0, 1, and 2. If the target uses the routines in ‘libgcc.a’, you
do not need to define this macro.

[Macro]US_SOFTWARE_GOFAST
Define this macro if your system C library uses the US Software GOFAST library to
provide floating point emulation.
In addition to defining this macro, your architecture must set TARGET_INIT_LIBFUNCS
to gofast_maybe_init_libfuncs, or else call that function from its version of that
hook. It is defined in ‘config/gofast.h’, which must be included by your architec-
ture’s ‘cpu.c’ file. See ‘sparc/sparc.c’ for an example.
If this macro is defined, the TARGET_FLOAT_LIB_COMPARE_RETURNS_BOOL target hook
must return false for SFmode and DFmode comparisons.

[Macro]TARGET_EDOM
The value of EDOM on the target machine, as a C integer constant expression. If you
don’t define this macro, GCC does not attempt to deposit the value of EDOM into
errno directly. Look in ‘/usr/include/errno.h’ to find the value of EDOM on your
system.
If you do not define TARGET_EDOM, then compiled code reports domain errors by
calling the library function and letting it report the error. If mathematical functions
on your system use matherr when there is an error, then you should leave TARGET_
EDOM undefined so that matherr is used normally.

Chapter 17: Target Description Macros and Functions 443

[Macro]GEN_ERRNO_RTX
Define this macro as a C expression to create an rtl expression that refers to the
global “variable” errno. (On certain systems, errno may not actually be a variable.)
If you don’t define this macro, a reasonable default is used.

[Macro]TARGET_C99_FUNCTIONS
When this macro is nonzero, GCC will implicitly optimize sin calls into sinf and
similarly for other functions defined by C99 standard. The default is zero because a
number of existing systems lack support for these functions in their runtime so this
macro needs to be redefined to one on systems that do support the C99 runtime.

[Macro]TARGET_HAS_SINCOS
When this macro is nonzero, GCC will implicitly optimize calls to sin and cos with
the same argument to a call to sincos. The default is zero. The target has to provide
the following functions:

void sincos(double x, double *sin, double *cos);

void sincosf(float x, float *sin, float *cos);

void sincosl(long double x, long double *sin, long double *cos);

[Macro]NEXT_OBJC_RUNTIME
Define this macro to generate code for Objective-C message sending using the calling
convention of the NeXT system. This calling convention involves passing the object,
the selector and the method arguments all at once to the method-lookup library
function.

The default calling convention passes just the object and the selector to the lookup
function, which returns a pointer to the method.

17.14 Addressing Modes

This is about addressing modes.

[Macro]HAVE_PRE_INCREMENT
[Macro]HAVE_PRE_DECREMENT
[Macro]HAVE_POST_INCREMENT
[Macro]HAVE_POST_DECREMENT

A C expression that is nonzero if the machine supports pre-increment, pre-decrement,
post-increment, or post-decrement addressing respectively.

[Macro]HAVE_PRE_MODIFY_DISP
[Macro]HAVE_POST_MODIFY_DISP

A C expression that is nonzero if the machine supports pre- or post-address side-effect
generation involving constants other than the size of the memory operand.

[Macro]HAVE_PRE_MODIFY_REG
[Macro]HAVE_POST_MODIFY_REG

A C expression that is nonzero if the machine supports pre- or post-address side-effect
generation involving a register displacement.

444 GNU Compiler Collection (GCC) Internals

[Macro]CONSTANT_ADDRESS_P (x)
A C expression that is 1 if the RTX x is a constant which is a valid address. On
most machines, this can be defined as CONSTANT_P (x), but a few machines are more
restrictive in which constant addresses are supported.

[Macro]CONSTANT_P (x)
CONSTANT_P, which is defined by target-independent code, accepts integer-values ex-
pressions whose values are not explicitly known, such as symbol_ref, label_ref,
and high expressions and const arithmetic expressions, in addition to const_int
and const_double expressions.

[Macro]MAX_REGS_PER_ADDRESS
A number, the maximum number of registers that can appear in a valid memory
address. Note that it is up to you to specify a value equal to the maximum number
that GO_IF_LEGITIMATE_ADDRESS would ever accept.

[Macro]GO_IF_LEGITIMATE_ADDRESS (mode, x, label)
A C compound statement with a conditional goto label; executed if x (an RTX) is
a legitimate memory address on the target machine for a memory operand of mode
mode.
It usually pays to define several simpler macros to serve as subroutines for this one.
Otherwise it may be too complicated to understand.
This macro must exist in two variants: a strict variant and a non-strict one. The strict
variant is used in the reload pass. It must be defined so that any pseudo-register that
has not been allocated a hard register is considered a memory reference. In contexts
where some kind of register is required, a pseudo-register with no hard register must
be rejected.
The non-strict variant is used in other passes. It must be defined to accept all pseudo-
registers in every context where some kind of register is required.
Compiler source files that want to use the strict variant of this macro define the macro
REG_OK_STRICT. You should use an #ifdef REG_OK_STRICT conditional to define the
strict variant in that case and the non-strict variant otherwise.
Subroutines to check for acceptable registers for various purposes (one for base regis-
ters, one for index registers, and so on) are typically among the subroutines used to
define GO_IF_LEGITIMATE_ADDRESS. Then only these subroutine macros need have
two variants; the higher levels of macros may be the same whether strict or not.
Normally, constant addresses which are the sum of a symbol_ref and an integer are
stored inside a const RTX to mark them as constant. Therefore, there is no need to
recognize such sums specifically as legitimate addresses. Normally you would simply
recognize any const as legitimate.
Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant sums that are
not marked with const. It assumes that a naked plus indicates indexing. If so, then
you must reject such naked constant sums as illegitimate addresses, so that none of
them will be given to PRINT_OPERAND_ADDRESS.
On some machines, whether a symbolic address is legitimate depends on the section
that the address refers to. On these machines, define the target hook TARGET_ENCODE_
SECTION_INFO to store the information into the symbol_ref, and then check for it

Chapter 17: Target Description Macros and Functions 445

here. When you see a const, you will have to look inside it to find the symbol_ref
in order to determine the section. See Section 17.21 [Assembler Format], page 467.

[Macro]TARGET_MEM_CONSTRAINT
A single character to be used instead of the default ’m’ character for general memory
addresses. This defines the constraint letter which matches the memory addresses
accepted by GO_IF_LEGITIMATE_ADDRESS_P. Define this macro if you want to support
new address formats in your back end without changing the semantics of the ’m’
constraint. This is necessary in order to preserve functionality of inline assembly
constructs using the ’m’ constraint.

[Macro]FIND_BASE_TERM (x)
A C expression to determine the base term of address x, or to provide a simplified
version of x from which ‘alias.c’ can easily find the base term. This macro is used
in only two places: find_base_value and find_base_term in ‘alias.c’.

It is always safe for this macro to not be defined. It exists so that alias analysis can
understand machine-dependent addresses.

The typical use of this macro is to handle addresses containing a label ref or sym-
bol ref within an UNSPEC.

[Macro]LEGITIMIZE_ADDRESS (x, oldx, mode, win)
A C compound statement that attempts to replace x with a valid memory address
for an operand of mode mode. win will be a C statement label elsewhere in the code;
the macro definition may use

GO_IF_LEGITIMATE_ADDRESS (mode, x, win);

to avoid further processing if the address has become legitimate.

x will always be the result of a call to break_out_memory_refs, and oldx will be the
operand that was given to that function to produce x.

The code generated by this macro should not alter the substructure of x. If it trans-
forms x into a more legitimate form, it should assign x (which will always be a C
variable) a new value.

It is not necessary for this macro to come up with a legitimate address. The compiler
has standard ways of doing so in all cases. In fact, it is safe to omit this macro. But
often a machine-dependent strategy can generate better code.

[Macro]LEGITIMIZE_RELOAD_ADDRESS (x, mode, opnum, type, ind_levels, win)
A C compound statement that attempts to replace x, which is an address that needs
reloading, with a valid memory address for an operand of mode mode. win will be a
C statement label elsewhere in the code. It is not necessary to define this macro, but
it might be useful for performance reasons.

For example, on the i386, it is sometimes possible to use a single reload register instead
of two by reloading a sum of two pseudo registers into a register. On the other hand,
for number of RISC processors offsets are limited so that often an intermediate address
needs to be generated in order to address a stack slot. By defining LEGITIMIZE_
RELOAD_ADDRESS appropriately, the intermediate addresses generated for adjacent
some stack slots can be made identical, and thus be shared.

446 GNU Compiler Collection (GCC) Internals

Note: This macro should be used with caution. It is necessary to know something
of how reload works in order to effectively use this, and it is quite easy to produce
macros that build in too much knowledge of reload internals.

Note: This macro must be able to reload an address created by a previous invocation
of this macro. If it fails to handle such addresses then the compiler may generate
incorrect code or abort.

The macro definition should use push_reload to indicate parts that need reloading;
opnum, type and ind levels are usually suitable to be passed unaltered to push_
reload.

The code generated by this macro must not alter the substructure of x. If it transforms
x into a more legitimate form, it should assign x (which will always be a C variable)
a new value. This also applies to parts that you change indirectly by calling push_
reload.

The macro definition may use strict_memory_address_p to test if the address has
become legitimate.

If you want to change only a part of x, one standard way of doing this is to use
copy_rtx. Note, however, that it unshares only a single level of rtl. Thus, if the
part to be changed is not at the top level, you’ll need to replace first the top level.
It is not necessary for this macro to come up with a legitimate address; but often a
machine-dependent strategy can generate better code.

[Macro]GO_IF_MODE_DEPENDENT_ADDRESS (addr, label)
A C statement or compound statement with a conditional goto label; executed if
memory address x (an RTX) can have different meanings depending on the machine
mode of the memory reference it is used for or if the address is valid for some modes
but not others.

Autoincrement and autodecrement addresses typically have mode-dependent effects
because the amount of the increment or decrement is the size of the operand be-
ing addressed. Some machines have other mode-dependent addresses. Many RISC
machines have no mode-dependent addresses.

You may assume that addr is a valid address for the machine.

[Macro]LEGITIMATE_CONSTANT_P (x)
A C expression that is nonzero if x is a legitimate constant for an immediate operand
on the target machine. You can assume that x satisfies CONSTANT_P, so you need
not check this. In fact, ‘1’ is a suitable definition for this macro on machines where
anything CONSTANT_P is valid.

[Target Hook]rtx TARGET_DELEGITIMIZE_ADDRESS (rtx x)
This hook is used to undo the possibly obfuscating effects of the LEGITIMIZE_ADDRESS
and LEGITIMIZE_RELOAD_ADDRESS target macros. Some backend implementations
of these macros wrap symbol references inside an UNSPEC rtx to represent PIC or
similar addressing modes. This target hook allows GCC’s optimizers to understand
the semantics of these opaque UNSPECs by converting them back into their original
form.

Chapter 17: Target Description Macros and Functions 447

[Target Hook]bool TARGET_CANNOT_FORCE_CONST_MEM (rtx x)
This hook should return true if x is of a form that cannot (or should not) be spilled
to the constant pool. The default version of this hook returns false.
The primary reason to define this hook is to prevent reload from deciding that a
non-legitimate constant would be better reloaded from the constant pool instead of
spilling and reloading a register holding the constant. This restriction is often true of
addresses of TLS symbols for various targets.

[Target Hook]bool TARGET_USE_BLOCKS_FOR_CONSTANT_P (enum machine mode
mode, rtx x)

This hook should return true if pool entries for constant x can be placed in an object_
block structure. mode is the mode of x.
The default version returns false for all constants.

[Target Hook]tree TARGET_BUILTIN_RECIPROCAL (enum tree code fn, bool
tm_fn, bool sqrt)

This hook should return the DECL of a function that implements reciprocal of the
builtin function with builtin function code fn, or NULL_TREE if such a function is not
available. tm fn is true when fn is a code of a machine-dependent builtin function.
When sqrt is true, additional optimizations that apply only to the reciprocal of a
square root function are performed, and only reciprocals of sqrt function are valid.

[Target Hook]tree TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD (void)
This hook should return the DECL of a function f that given an address addr as an
argument returns a mask m that can be used to extract from two vectors the relevant
data that resides in addr in case addr is not properly aligned.
The autovectorizer, when vectorizing a load operation from an address addr that may
be unaligned, will generate two vector loads from the two aligned addresses around
addr. It then generates a REALIGN_LOAD operation to extract the relevant data from
the two loaded vectors. The first two arguments to REALIGN_LOAD, v1 and v2, are
the two vectors, each of size VS, and the third argument, OFF, defines how the data
will be extracted from these two vectors: if OFF is 0, then the returned vector is
v2; otherwise, the returned vector is composed from the last VS-OFF elements of v1
concatenated to the first OFF elements of v2.
If this hook is defined, the autovectorizer will generate a call to f (using the DECL
tree that this hook returns) and will use the return value of f as the argument OFF
to REALIGN_LOAD. Therefore, the mask m returned by f should comply with the
semantics expected by REALIGN_LOAD described above. If this hook is not defined,
then addr will be used as the argument OFF to REALIGN_LOAD, in which case the low
log2(VS)-1 bits of addr will be considered.

[Target Hook]tree TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN (tree x)
This hook should return the DECL of a function f that implements widening multi-
plication of the even elements of two input vectors of type x.
If this hook is defined, the autovectorizer will use it along with the TARGET_
VECTORIZE_BUILTIN_MUL_WIDEN_ODD target hook when vectorizing widening
multiplication in cases that the order of the results does not have to be preserved

448 GNU Compiler Collection (GCC) Internals

(e.g. used only by a reduction computation). Otherwise, the widen_mult_hi/lo
idioms will be used.

[Target Hook]tree TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD (tree x)
This hook should return the DECL of a function f that implements widening multi-
plication of the odd elements of two input vectors of type x.
If this hook is defined, the autovectorizer will use it along with the TARGET_
VECTORIZE_BUILTIN_MUL_WIDEN_EVEN target hook when vectorizing widening
multiplication in cases that the order of the results does not have to be preserved
(e.g. used only by a reduction computation). Otherwise, the widen_mult_hi/lo
idioms will be used.

[Target Hook]tree TARGET_VECTORIZE_BUILTIN_CONVERSION (enum tree code
code, tree type)

This hook should return the DECL of a function that implements conversion of the
input vector of type type. If type is an integral type, the result of the conversion is
a vector of floating-point type of the same size. If type is a floating-point type, the
result of the conversion is a vector of integral type of the same size. code specifies
how the conversion is to be applied (truncation, rounding, etc.).
If this hook is defined, the autovectorizer will use the TARGET_VECTORIZE_BUILTIN_
CONVERSION target hook when vectorizing conversion. Otherwise, it will return NULL_
TREE.

[Target Hook]tree TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION (enum
built in function code, tree vec_type_out, tree vec_type_in)

This hook should return the decl of a function that implements the vectorized variant
of the builtin function with builtin function code code or NULL_TREE if such a function
is not available. The return type of the vectorized function shall be of vector type
vec type out and the argument types should be vec type in.

17.15 Anchored Addresses

GCC usually addresses every static object as a separate entity. For example, if we have:
static int a, b, c;

int foo (void) { return a + b + c; }

the code for foo will usually calculate three separate symbolic addresses: those of a, b
and c. On some targets, it would be better to calculate just one symbolic address and access
the three variables relative to it. The equivalent pseudocode would be something like:

int foo (void)

{

register int *xr = &x;

return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];

}

(which isn’t valid C). We refer to shared addresses like x as “section anchors”. Their use
is controlled by ‘-fsection-anchors’.

The hooks below describe the target properties that GCC needs to know in order to
make effective use of section anchors. It won’t use section anchors at all unless either
TARGET_MIN_ANCHOR_OFFSET or TARGET_MAX_ANCHOR_OFFSET is set to a nonzero value.

Chapter 17: Target Description Macros and Functions 449

[Variable]Target Hook HOST_WIDE_INT TARGET MIN ANCHOR OFFSET
The minimum offset that should be applied to a section anchor. On most targets, it
should be the smallest offset that can be applied to a base register while still giving
a legitimate address for every mode. The default value is 0.

[Variable]Target Hook HOST_WIDE_INT TARGET MAX ANCHOR OFFSET
Like TARGET_MIN_ANCHOR_OFFSET, but the maximum (inclusive) offset that should be
applied to section anchors. The default value is 0.

[Target Hook]void TARGET_ASM_OUTPUT_ANCHOR (rtx x)
Write the assembly code to define section anchor x, which is a SYMBOL_REF for which
‘SYMBOL_REF_ANCHOR_P (x)’ is true. The hook is called with the assembly output
position set to the beginning of SYMBOL_REF_BLOCK (x).
If ASM_OUTPUT_DEF is available, the hook’s default definition uses it to define the sym-
bol as ‘. + SYMBOL_REF_BLOCK_OFFSET (x)’. If ASM_OUTPUT_DEF is not available, the
hook’s default definition is NULL, which disables the use of section anchors altogether.

[Target Hook]bool TARGET_USE_ANCHORS_FOR_SYMBOL_P (rtx x)
Return true if GCC should attempt to use anchors to access SYMBOL_REF x. You can
assume ‘SYMBOL_REF_HAS_BLOCK_INFO_P (x)’ and ‘!SYMBOL_REF_ANCHOR_P (x)’.
The default version is correct for most targets, but you might need to intercept this
hook to handle things like target-specific attributes or target-specific sections.

17.16 Condition Code Status

This describes the condition code status.
The file ‘conditions.h’ defines a variable cc_status to describe how the condition code

was computed (in case the interpretation of the condition code depends on the instruction
that it was set by). This variable contains the RTL expressions on which the condition code
is currently based, and several standard flags.

Sometimes additional machine-specific flags must be defined in the machine description
header file. It can also add additional machine-specific information by defining CC_STATUS_
MDEP.

[Macro]CC_STATUS_MDEP
C code for a data type which is used for declaring the mdep component of cc_status.
It defaults to int.
This macro is not used on machines that do not use cc0.

[Macro]CC_STATUS_MDEP_INIT
A C expression to initialize the mdep field to “empty”. The default definition does
nothing, since most machines don’t use the field anyway. If you want to use the field,
you should probably define this macro to initialize it.
This macro is not used on machines that do not use cc0.

[Macro]NOTICE_UPDATE_CC (exp, insn)
A C compound statement to set the components of cc_status appropriately for an
insn insn whose body is exp. It is this macro’s responsibility to recognize insns that

450 GNU Compiler Collection (GCC) Internals

set the condition code as a byproduct of other activity as well as those that explicitly
set (cc0).

This macro is not used on machines that do not use cc0.

If there are insns that do not set the condition code but do alter other machine
registers, this macro must check to see whether they invalidate the expressions that
the condition code is recorded as reflecting. For example, on the 68000, insns that
store in address registers do not set the condition code, which means that usually
NOTICE_UPDATE_CC can leave cc_status unaltered for such insns. But suppose that
the previous insn set the condition code based on location ‘a4@(102)’ and the current
insn stores a new value in ‘a4’. Although the condition code is not changed by this, it
will no longer be true that it reflects the contents of ‘a4@(102)’. Therefore, NOTICE_
UPDATE_CC must alter cc_status in this case to say that nothing is known about the
condition code value.

The definition of NOTICE_UPDATE_CC must be prepared to deal with the results of
peephole optimization: insns whose patterns are parallel RTXs containing various
reg, mem or constants which are just the operands. The RTL structure of these insns
is not sufficient to indicate what the insns actually do. What NOTICE_UPDATE_CC
should do when it sees one is just to run CC_STATUS_INIT.

A possible definition of NOTICE_UPDATE_CC is to call a function that looks at an
attribute (see Section 16.19 [Insn Attributes], page 350) named, for example, ‘cc’.
This avoids having detailed information about patterns in two places, the ‘md’ file
and in NOTICE_UPDATE_CC.

[Macro]SELECT_CC_MODE (op, x, y)
Returns a mode from class MODE_CC to be used when comparison operation code op
is applied to rtx x and y. For example, on the SPARC, SELECT_CC_MODE is defined
as (see see Section 16.12 [Jump Patterns], page 334 for a description of the reason for
this definition)

#define SELECT_CC_MODE(OP,X,Y) \

(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \

? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \

: ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \

|| GET_CODE (X) == NEG) \

? CC_NOOVmode : CCmode))

You should define this macro if and only if you define extra CC modes in
‘machine-modes.def’.

[Macro]CANONICALIZE_COMPARISON (code, op0, op1)
On some machines not all possible comparisons are defined, but you can convert an
invalid comparison into a valid one. For example, the Alpha does not have a GT
comparison, but you can use an LT comparison instead and swap the order of the
operands.

On such machines, define this macro to be a C statement to do any required con-
versions. code is the initial comparison code and op0 and op1 are the left and right
operands of the comparison, respectively. You should modify code, op0, and op1 as
required.

Chapter 17: Target Description Macros and Functions 451

GCC will not assume that the comparison resulting from this macro is valid but will
see if the resulting insn matches a pattern in the ‘md’ file.

You need not define this macro if it would never change the comparison code or
operands.

[Macro]REVERSIBLE_CC_MODE (mode)
A C expression whose value is one if it is always safe to reverse a comparison whose
mode is mode. If SELECT_CC_MODE can ever return mode for a floating-point inequality
comparison, then REVERSIBLE_CC_MODE (mode) must be zero.

You need not define this macro if it would always returns zero or if the floating-
point format is anything other than IEEE_FLOAT_FORMAT. For example, here is the
definition used on the SPARC, where floating-point inequality comparisons are always
given CCFPEmode:

#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)

[Macro]REVERSE_CONDITION (code, mode)
A C expression whose value is reversed condition code of the code for comparison
done in CC MODE mode. The macro is used only in case REVERSIBLE_CC_MODE
(mode) is nonzero. Define this macro in case machine has some non-standard way
how to reverse certain conditionals. For instance in case all floating point conditions
are non-trapping, compiler may freely convert unordered compares to ordered one.
Then definition may look like:

#define REVERSE_CONDITION(CODE, MODE) \

((MODE) != CCFPmode ? reverse_condition (CODE) \

: reverse_condition_maybe_unordered (CODE))

[Macro]REVERSE_CONDEXEC_PREDICATES_P (op1, op2)
A C expression that returns true if the conditional execution predicate op1, a com-
parison operation, is the inverse of op2 and vice versa. Define this to return 0 if the
target has conditional execution predicates that cannot be reversed safely. There is
no need to validate that the arguments of op1 and op2 are the same, this is done
separately. If no expansion is specified, this macro is defined as follows:

#define REVERSE_CONDEXEC_PREDICATES_P (x, y) \

(GET_CODE ((x)) == reversed_comparison_code ((y), NULL))

[Target Hook]bool TARGET_FIXED_CONDITION_CODE_REGS (unsigned int *,
unsigned int *)

On targets which do not use (cc0), and which use a hard register rather than a
pseudo-register to hold condition codes, the regular CSE passes are often not able
to identify cases in which the hard register is set to a common value. Use this hook
to enable a small pass which optimizes such cases. This hook should return true to
enable this pass, and it should set the integers to which its arguments point to the
hard register numbers used for condition codes. When there is only one such register,
as is true on most systems, the integer pointed to by the second argument should be
set to INVALID_REGNUM.

The default version of this hook returns false.

452 GNU Compiler Collection (GCC) Internals

[Target Hook]enum machine_mode TARGET CC MODES COMPATIBLE (enum
machine mode, enum machine mode)

On targets which use multiple condition code modes in class MODE_CC, it is sometimes
the case that a comparison can be validly done in more than one mode. On such a
system, define this target hook to take two mode arguments and to return a mode
in which both comparisons may be validly done. If there is no such mode, return
VOIDmode.
The default version of this hook checks whether the modes are the same. If they are,
it returns that mode. If they are different, it returns VOIDmode.

17.17 Describing Relative Costs of Operations

These macros let you describe the relative speed of various operations on the target machine.

[Macro]REGISTER_MOVE_COST (mode, from, to)
A C expression for the cost of moving data of mode mode from a register in class
from to one in class to. The classes are expressed using the enumeration values such
as GENERAL_REGS. A value of 2 is the default; other values are interpreted relative to
that.
It is not required that the cost always equal 2 when from is the same as to; on some
machines it is expensive to move between registers if they are not general registers.
If reload sees an insn consisting of a single set between two hard registers, and if
REGISTER_MOVE_COST applied to their classes returns a value of 2, reload does not
check to ensure that the constraints of the insn are met. Setting a cost of other than
2 will allow reload to verify that the constraints are met. You should do this if the
‘movm ’ pattern’s constraints do not allow such copying.

[Macro]MEMORY_MOVE_COST (mode, class, in)
A C expression for the cost of moving data of mode mode between a register of class
class and memory; in is zero if the value is to be written to memory, nonzero if it is to
be read in. This cost is relative to those in REGISTER_MOVE_COST. If moving between
registers and memory is more expensive than between two registers, you should define
this macro to express the relative cost.
If you do not define this macro, GCC uses a default cost of 4 plus the cost of copying
via a secondary reload register, if one is needed. If your machine requires a secondary
reload register to copy between memory and a register of class but the reload mech-
anism is more complex than copying via an intermediate, define this macro to reflect
the actual cost of the move.
GCC defines the function memory_move_secondary_cost if secondary reloads are
needed. It computes the costs due to copying via a secondary register. If your
machine copies from memory using a secondary register in the conventional way but
the default base value of 4 is not correct for your machine, define this macro to add
some other value to the result of that function. The arguments to that function are
the same as to this macro.

[Macro]BRANCH_COST (speed_p, predictable_p)
A C expression for the cost of a branch instruction. A value of 1 is the default;
other values are interpreted relative to that. Parameter speed p is true when the

Chapter 17: Target Description Macros and Functions 453

branch in question should be optimized for speed. When it is false, BRANCH_COST
should be returning value optimal for code size rather then performance considera-
tions. predictable p is true for well predictable branches. On many architectures the
BRANCH_COST can be reduced then.

Here are additional macros which do not specify precise relative costs, but only that
certain actions are more expensive than GCC would ordinarily expect.

[Macro]SLOW_BYTE_ACCESS
Define this macro as a C expression which is nonzero if accessing less than a word of
memory (i.e. a char or a short) is no faster than accessing a word of memory, i.e.,
if such access require more than one instruction or if there is no difference in cost
between byte and (aligned) word loads.

When this macro is not defined, the compiler will access a field by finding the smallest
containing object; when it is defined, a fullword load will be used if alignment permits.
Unless bytes accesses are faster than word accesses, using word accesses is preferable
since it may eliminate subsequent memory access if subsequent accesses occur to other
fields in the same word of the structure, but to different bytes.

[Macro]SLOW_UNALIGNED_ACCESS (mode, alignment)
Define this macro to be the value 1 if memory accesses described by the mode and
alignment parameters have a cost many times greater than aligned accesses, for ex-
ample if they are emulated in a trap handler.

When this macro is nonzero, the compiler will act as if STRICT_ALIGNMENT were
nonzero when generating code for block moves. This can cause significantly more
instructions to be produced. Therefore, do not set this macro nonzero if unaligned
accesses only add a cycle or two to the time for a memory access.

If the value of this macro is always zero, it need not be defined. If this macro is
defined, it should produce a nonzero value when STRICT_ALIGNMENT is nonzero.

[Macro]MOVE_RATIO
The threshold of number of scalar memory-to-memory move insns, below which a
sequence of insns should be generated instead of a string move insn or a library call.
Increasing the value will always make code faster, but eventually incurs high cost in
increased code size.

Note that on machines where the corresponding move insn is a define_expand that
emits a sequence of insns, this macro counts the number of such sequences.

If you don’t define this, a reasonable default is used.

[Macro]MOVE_BY_PIECES_P (size, alignment)
A C expression used to determine whether move_by_pieces will be used to copy a
chunk of memory, or whether some other block move mechanism will be used. Defaults
to 1 if move_by_pieces_ninsns returns less than MOVE_RATIO.

[Macro]MOVE_MAX_PIECES
A C expression used by move_by_pieces to determine the largest unit a load or store
used to copy memory is. Defaults to MOVE_MAX.

454 GNU Compiler Collection (GCC) Internals

[Macro]CLEAR_RATIO
The threshold of number of scalar move insns, below which a sequence of insns should
be generated to clear memory instead of a string clear insn or a library call. Increasing
the value will always make code faster, but eventually incurs high cost in increased
code size.
If you don’t define this, a reasonable default is used.

[Macro]CLEAR_BY_PIECES_P (size, alignment)
A C expression used to determine whether clear_by_pieces will be used to clear a
chunk of memory, or whether some other block clear mechanism will be used. Defaults
to 1 if move_by_pieces_ninsns returns less than CLEAR_RATIO.

[Macro]SET_RATIO
The threshold of number of scalar move insns, below which a sequence of insns should
be generated to set memory to a constant value, instead of a block set insn or a library
call. Increasing the value will always make code faster, but eventually incurs high
cost in increased code size.
If you don’t define this, it defaults to the value of MOVE_RATIO.

[Macro]SET_BY_PIECES_P (size, alignment)
A C expression used to determine whether store_by_pieces will be used to set a
chunk of memory to a constant value, or whether some other mechanism will be used.
Used by __builtin_memset when storing values other than constant zero. Defaults
to 1 if move_by_pieces_ninsns returns less than SET_RATIO.

[Macro]STORE_BY_PIECES_P (size, alignment)
A C expression used to determine whether store_by_pieces will be used to set a
chunk of memory to a constant string value, or whether some other mechanism will be
used. Used by __builtin_strcpy when called with a constant source string. Defaults
to 1 if move_by_pieces_ninsns returns less than MOVE_RATIO.

[Macro]USE_LOAD_POST_INCREMENT (mode)
A C expression used to determine whether a load postincrement is a good thing to
use for a given mode. Defaults to the value of HAVE_POST_INCREMENT.

[Macro]USE_LOAD_POST_DECREMENT (mode)
A C expression used to determine whether a load postdecrement is a good thing to
use for a given mode. Defaults to the value of HAVE_POST_DECREMENT.

[Macro]USE_LOAD_PRE_INCREMENT (mode)
A C expression used to determine whether a load preincrement is a good thing to use
for a given mode. Defaults to the value of HAVE_PRE_INCREMENT.

[Macro]USE_LOAD_PRE_DECREMENT (mode)
A C expression used to determine whether a load predecrement is a good thing to use
for a given mode. Defaults to the value of HAVE_PRE_DECREMENT.

[Macro]USE_STORE_POST_INCREMENT (mode)
A C expression used to determine whether a store postincrement is a good thing to
use for a given mode. Defaults to the value of HAVE_POST_INCREMENT.

Chapter 17: Target Description Macros and Functions 455

[Macro]USE_STORE_POST_DECREMENT (mode)
A C expression used to determine whether a store postdecrement is a good thing to
use for a given mode. Defaults to the value of HAVE_POST_DECREMENT.

[Macro]USE_STORE_PRE_INCREMENT (mode)
This macro is used to determine whether a store preincrement is a good thing to use
for a given mode. Defaults to the value of HAVE_PRE_INCREMENT.

[Macro]USE_STORE_PRE_DECREMENT (mode)
This macro is used to determine whether a store predecrement is a good thing to use
for a given mode. Defaults to the value of HAVE_PRE_DECREMENT.

[Macro]NO_FUNCTION_CSE
Define this macro if it is as good or better to call a constant function address than to
call an address kept in a register.

[Macro]RANGE_TEST_NON_SHORT_CIRCUIT
Define this macro if a non-short-circuit operation produced by ‘fold_range_test ()’
is optimal. This macro defaults to true if BRANCH_COST is greater than or equal to
the value 2.

[Target Hook]bool TARGET_RTX_COSTS (rtx x, int code, int outer_code, int
*total)

This target hook describes the relative costs of RTL expressions.
The cost may depend on the precise form of the expression, which is available for
examination in x, and the rtx code of the expression in which it is contained, found
in outer code. code is the expression code—redundant, since it can be obtained with
GET_CODE (x).
In implementing this hook, you can use the construct COSTS_N_INSNS (n) to specify
a cost equal to n fast instructions.
On entry to the hook, *total contains a default estimate for the cost of the ex-
pression. The hook should modify this value as necessary. Traditionally, the default
costs are COSTS_N_INSNS (5) for multiplications, COSTS_N_INSNS (7) for division and
modulus operations, and COSTS_N_INSNS (1) for all other operations.
When optimizing for code size, i.e. when optimize_size is nonzero, this target hook
should be used to estimate the relative size cost of an expression, again relative to
COSTS_N_INSNS.
The hook returns true when all subexpressions of x have been processed, and false
when rtx_cost should recurse.

[Target Hook]int TARGET_ADDRESS_COST (rtx address)
This hook computes the cost of an addressing mode that contains address. If not
defined, the cost is computed from the address expression and the TARGET_RTX_COST
hook.
For most CISC machines, the default cost is a good approximation of the true cost
of the addressing mode. However, on RISC machines, all instructions normally have
the same length and execution time. Hence all addresses will have equal costs.

456 GNU Compiler Collection (GCC) Internals

In cases where more than one form of an address is known, the form with the lowest
cost will be used. If multiple forms have the same, lowest, cost, the one that is the
most complex will be used.

For example, suppose an address that is equal to the sum of a register and a constant
is used twice in the same basic block. When this macro is not defined, the address
will be computed in a register and memory references will be indirect through that
register. On machines where the cost of the addressing mode containing the sum is
no higher than that of a simple indirect reference, this will produce an additional
instruction and possibly require an additional register. Proper specification of this
macro eliminates this overhead for such machines.

This hook is never called with an invalid address.

On machines where an address involving more than one register is as cheap as an
address computation involving only one register, defining TARGET_ADDRESS_COST to
reflect this can cause two registers to be live over a region of code where only one
would have been if TARGET_ADDRESS_COST were not defined in that manner. This
effect should be considered in the definition of this macro. Equivalent costs should
probably only be given to addresses with different numbers of registers on machines
with lots of registers.

17.18 Adjusting the Instruction Scheduler

The instruction scheduler may need a fair amount of machine-specific adjustment in order
to produce good code. GCC provides several target hooks for this purpose. It is usually
enough to define just a few of them: try the first ones in this list first.

[Target Hook]int TARGET_SCHED_ISSUE_RATE (void)
This hook returns the maximum number of instructions that can ever issue at the
same time on the target machine. The default is one. Although the insn scheduler
can define itself the possibility of issue an insn on the same cycle, the value can serve
as an additional constraint to issue insns on the same simulated processor cycle (see
hooks ‘TARGET_SCHED_REORDER’ and ‘TARGET_SCHED_REORDER2’). This value must be
constant over the entire compilation. If you need it to vary depending on what the
instructions are, you must use ‘TARGET_SCHED_VARIABLE_ISSUE’.

[Target Hook]int TARGET_SCHED_VARIABLE_ISSUE (FILE *file, int verbose,
rtx insn, int more)

This hook is executed by the scheduler after it has scheduled an insn from the ready
list. It should return the number of insns which can still be issued in the current cycle.
The default is ‘more - 1’ for insns other than CLOBBER and USE, which normally are
not counted against the issue rate. You should define this hook if some insns take
more machine resources than others, so that fewer insns can follow them in the same
cycle. file is either a null pointer, or a stdio stream to write any debug output to.
verbose is the verbose level provided by ‘-fsched-verbose-n ’. insn is the instruction
that was scheduled.

Chapter 17: Target Description Macros and Functions 457

[Target Hook]int TARGET_SCHED_ADJUST_COST (rtx insn, rtx link, rtx
dep_insn, int cost)

This function corrects the value of cost based on the relationship between insn and
dep insn through the dependence link. It should return the new value. The default is
to make no adjustment to cost. This can be used for example to specify to the sched-
uler using the traditional pipeline description that an output- or anti-dependence does
not incur the same cost as a data-dependence. If the scheduler using the automaton
based pipeline description, the cost of anti-dependence is zero and the cost of output-
dependence is maximum of one and the difference of latency times of the first and the
second insns. If these values are not acceptable, you could use the hook to modify
them too. See also see Section 16.19.8 [Processor pipeline description], page 358.

[Target Hook]int TARGET_SCHED_ADJUST_PRIORITY (rtx insn, int priority)
This hook adjusts the integer scheduling priority priority of insn. It should return
the new priority. Increase the priority to execute insn earlier, reduce the priority to
execute insn later. Do not define this hook if you do not need to adjust the scheduling
priorities of insns.

[Target Hook]int TARGET_SCHED_REORDER (FILE *file, int verbose, rtx
*ready, int *n_readyp, int clock)

This hook is executed by the scheduler after it has scheduled the ready list, to allow
the machine description to reorder it (for example to combine two small instructions
together on ‘VLIW’ machines). file is either a null pointer, or a stdio stream to write
any debug output to. verbose is the verbose level provided by ‘-fsched-verbose-n ’.
ready is a pointer to the ready list of instructions that are ready to be scheduled.
n readyp is a pointer to the number of elements in the ready list. The scheduler
reads the ready list in reverse order, starting with ready [*n readyp-1] and going to
ready [0]. clock is the timer tick of the scheduler. You may modify the ready list and
the number of ready insns. The return value is the number of insns that can issue
this cycle; normally this is just issue_rate. See also ‘TARGET_SCHED_REORDER2’.

[Target Hook]int TARGET_SCHED_REORDER2 (FILE *file, int verbose, rtx
*ready, int *n_ready, clock)

Like ‘TARGET_SCHED_REORDER’, but called at a different time. That function is called
whenever the scheduler starts a new cycle. This one is called once per iteration over
a cycle, immediately after ‘TARGET_SCHED_VARIABLE_ISSUE’; it can reorder the ready
list and return the number of insns to be scheduled in the same cycle. Defining this
hook can be useful if there are frequent situations where scheduling one insn causes
other insns to become ready in the same cycle. These other insns can then be taken
into account properly.

[Target Hook]void TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK (rtx head,
rtx tail)

This hook is called after evaluation forward dependencies of insns in chain given by
two parameter values (head and tail correspondingly) but before insns scheduling of
the insn chain. For example, it can be used for better insn classification if it requires
analysis of dependencies. This hook can use backward and forward dependencies of
the insn scheduler because they are already calculated.

458 GNU Compiler Collection (GCC) Internals

[Target Hook]void TARGET_SCHED_INIT (FILE *file, int verbose, int
max_ready)

This hook is executed by the scheduler at the beginning of each block of instructions
that are to be scheduled. file is either a null pointer, or a stdio stream to write
any debug output to. verbose is the verbose level provided by ‘-fsched-verbose-n ’.
max ready is the maximum number of insns in the current scheduling region that can
be live at the same time. This can be used to allocate scratch space if it is needed,
e.g. by ‘TARGET_SCHED_REORDER’.

[Target Hook]void TARGET_SCHED_FINISH (FILE *file, int verbose)
This hook is executed by the scheduler at the end of each block of instructions that
are to be scheduled. It can be used to perform cleanup of any actions done by the
other scheduling hooks. file is either a null pointer, or a stdio stream to write any
debug output to. verbose is the verbose level provided by ‘-fsched-verbose-n ’.

[Target Hook]void TARGET_SCHED_INIT_GLOBAL (FILE *file, int verbose, int
old_max_uid)

This hook is executed by the scheduler after function level initializations. file is either
a null pointer, or a stdio stream to write any debug output to. verbose is the verbose
level provided by ‘-fsched-verbose-n ’. old max uid is the maximum insn uid when
scheduling begins.

[Target Hook]void TARGET_SCHED_FINISH_GLOBAL (FILE *file, int verbose)
This is the cleanup hook corresponding to TARGET_SCHED_INIT_GLOBAL. file is either
a null pointer, or a stdio stream to write any debug output to. verbose is the verbose
level provided by ‘-fsched-verbose-n ’.

[Target Hook]int TARGET_SCHED_DFA_PRE_CYCLE_INSN (void)
The hook returns an RTL insn. The automaton state used in the pipeline hazard
recognizer is changed as if the insn were scheduled when the new simulated processor
cycle starts. Usage of the hook may simplify the automaton pipeline description for
some VLIW processors. If the hook is defined, it is used only for the automaton based
pipeline description. The default is not to change the state when the new simulated
processor cycle starts.

[Target Hook]void TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN (void)
The hook can be used to initialize data used by the previous hook.

[Target Hook]int TARGET_SCHED_DFA_POST_CYCLE_INSN (void)
The hook is analogous to ‘TARGET_SCHED_DFA_PRE_CYCLE_INSN’ but used to changed
the state as if the insn were scheduled when the new simulated processor cycle finishes.

[Target Hook]void TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN (void)
The hook is analogous to ‘TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN’ but used to
initialize data used by the previous hook.

[Target Hook]void TARGET_SCHED_DFA_PRE_CYCLE_ADVANCE (void)
The hook to notify target that the current simulated cycle is about to finish. The
hook is analogous to ‘TARGET_SCHED_DFA_PRE_CYCLE_INSN’ but used to change the
state in more complicated situations - e.g., when advancing state on a single insn is
not enough.

Chapter 17: Target Description Macros and Functions 459

[Target Hook]void TARGET_SCHED_DFA_POST_CYCLE_ADVANCE (void)
The hook to notify target that new simulated cycle has just started. The hook is
analogous to ‘TARGET_SCHED_DFA_POST_CYCLE_INSN’ but used to change the state
in more complicated situations - e.g., when advancing state on a single insn is not
enough.

[Target Hook]int TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
(void)

This hook controls better choosing an insn from the ready insn queue for the DFA-
based insn scheduler. Usually the scheduler chooses the first insn from the queue.
If the hook returns a positive value, an additional scheduler code tries all permu-
tations of ‘TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ()’ subsequent
ready insns to choose an insn whose issue will result in maximal number of issued
insns on the same cycle. For the VLIW processor, the code could actually solve the
problem of packing simple insns into the VLIW insn. Of course, if the rules of VLIW
packing are described in the automaton.
This code also could be used for superscalar RISC processors. Let us consider a
superscalar RISC processor with 3 pipelines. Some insns can be executed in pipelines
A or B, some insns can be executed only in pipelines B or C, and one insn can be
executed in pipeline B. The processor may issue the 1st insn into A and the 2nd one
into B. In this case, the 3rd insn will wait for freeing B until the next cycle. If the
scheduler issues the 3rd insn the first, the processor could issue all 3 insns per cycle.
Actually this code demonstrates advantages of the automaton based pipeline hazard
recognizer. We try quickly and easy many insn schedules to choose the best one.
The default is no multipass scheduling.

[Target Hook]int
TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD (rtx)

This hook controls what insns from the ready insn queue will be considered for the
multipass insn scheduling. If the hook returns zero for insn passed as the parameter,
the insn will be not chosen to be issued.
The default is that any ready insns can be chosen to be issued.

[Target Hook]int TARGET_SCHED_DFA_NEW_CYCLE (FILE *, int, rtx, int, int, int *)
This hook is called by the insn scheduler before issuing insn passed as the third
parameter on given cycle. If the hook returns nonzero, the insn is not issued on given
processors cycle. Instead of that, the processor cycle is advanced. If the value passed
through the last parameter is zero, the insn ready queue is not sorted on the new cycle
start as usually. The first parameter passes file for debugging output. The second
one passes the scheduler verbose level of the debugging output. The forth and the
fifth parameter values are correspondingly processor cycle on which the previous insn
has been issued and the current processor cycle.

[Target Hook]bool TARGET_SCHED_IS_COSTLY_DEPENDENCE (struct dep def
*_dep, int cost, int distance)

This hook is used to define which dependences are considered costly by the target, so
costly that it is not advisable to schedule the insns that are involved in the dependence

460 GNU Compiler Collection (GCC) Internals

too close to one another. The parameters to this hook are as follows: The first
parameter dep is the dependence being evaluated. The second parameter cost is the
cost of the dependence, and the third parameter distance is the distance in cycles
between the two insns. The hook returns true if considering the distance between
the two insns the dependence between them is considered costly by the target, and
false otherwise.
Defining this hook can be useful in multiple-issue out-of-order machines, where (a) it’s
practically hopeless to predict the actual data/resource delays, however: (b) there’s
a better chance to predict the actual grouping that will be formed, and (c) correctly
emulating the grouping can be very important. In such targets one may want to
allow issuing dependent insns closer to one another—i.e., closer than the dependence
distance; however, not in cases of "costly dependences", which this hooks allows to
define.

[Target Hook]void TARGET_SCHED_H_I_D_EXTENDED (void)
This hook is called by the insn scheduler after emitting a new instruction to the
instruction stream. The hook notifies a target backend to extend its per instruction
data structures.

[Target Hook]void * TARGET SCHED ALLOC SCHED CONTEXT (void)
Return a pointer to a store large enough to hold target scheduling context.

[Target Hook]void TARGET_SCHED_INIT_SCHED_CONTEXT (void *tc, bool
clean_p)

Initialize store pointed to by tc to hold target scheduling context. It clean p is true
then initialize tc as if scheduler is at the beginning of the block. Otherwise, make a
copy of the current context in tc.

[Target Hook]void TARGET_SCHED_SET_SCHED_CONTEXT (void *tc)
Copy target scheduling context pointer to by tc to the current context.

[Target Hook]void TARGET_SCHED_CLEAR_SCHED_CONTEXT (void *tc)
Deallocate internal data in target scheduling context pointed to by tc.

[Target Hook]void TARGET_SCHED_FREE_SCHED_CONTEXT (void *tc)
Deallocate a store for target scheduling context pointed to by tc.

[Target Hook]void * TARGET SCHED ALLOC SCHED CONTEXT (void)
Return a pointer to a store large enough to hold target scheduling context.

[Target Hook]void TARGET_SCHED_INIT_SCHED_CONTEXT (void *tc, bool
clean_p)

Initialize store pointed to by tc to hold target scheduling context. It clean p is true
then initialize tc as if scheduler is at the beginning of the block. Otherwise, make a
copy of the current context in tc.

[Target Hook]void TARGET_SCHED_SET_SCHED_CONTEXT (void *tc)
Copy target scheduling context pointer to by tc to the current context.

[Target Hook]void TARGET_SCHED_CLEAR_SCHED_CONTEXT (void *tc)
Deallocate internal data in target scheduling context pointed to by tc.

Chapter 17: Target Description Macros and Functions 461

[Target Hook]void TARGET_SCHED_FREE_SCHED_CONTEXT (void *tc)
Deallocate a store for target scheduling context pointed to by tc.

[Target Hook]int TARGET_SCHED_SPECULATE_INSN (rtx insn, int request, rtx
*new_pat)

This hook is called by the insn scheduler when insn has only speculative dependencies
and therefore can be scheduled speculatively. The hook is used to check if the pattern
of insn has a speculative version and, in case of successful check, to generate that
speculative pattern. The hook should return 1, if the instruction has a speculative
form, or -1, if it doesn’t. request describes the type of requested speculation. If the
return value equals 1 then new pat is assigned the generated speculative pattern.

[Target Hook]int TARGET_SCHED_NEEDS_BLOCK_P (rtx insn)
This hook is called by the insn scheduler during generation of recovery code for insn.
It should return nonzero, if the corresponding check instruction should branch to
recovery code, or zero otherwise.

[Target Hook]rtx TARGET_SCHED_GEN_CHECK (rtx insn, rtx label, int
mutate_p)

This hook is called by the insn scheduler to generate a pattern for recovery check
instruction. If mutate p is zero, then insn is a speculative instruction for which the
check should be generated. label is either a label of a basic block, where recovery
code should be emitted, or a null pointer, when requested check doesn’t branch to
recovery code (a simple check). If mutate p is nonzero, then a pattern for a branchy
check corresponding to a simple check denoted by insn should be generated. In this
case label can’t be null.

[Target Hook]int
TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC
(rtx insn)

This hook is used as a workaround for ‘TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD’
not being called on the first instruction of the ready list. The hook is used to
discard speculative instruction that stand first in the ready list from being scheduled
on the current cycle. For non-speculative instructions, the hook should always
return nonzero. For example, in the ia64 backend the hook is used to cancel data
speculative insns when the ALAT table is nearly full.

[Target Hook]void TARGET_SCHED_SET_SCHED_FLAGS (unsigned int *flags,
spec info t spec_info)

This hook is used by the insn scheduler to find out what features should be
enabled/used. flags initially may have either the SCHED RGN or SCHED EBB
bit set. This denotes the scheduler pass for which the data should be provided.
The target backend should modify flags by modifying the bits corresponding to
the following features: USE DEPS LIST, USE GLAT, DETACH LIFE INFO, and
DO SPECULATION. For the DO SPECULATION feature an additional structure
spec info should be filled by the target. The structure describes speculation types
that can be used in the scheduler.

462 GNU Compiler Collection (GCC) Internals

[Target Hook]int TARGET_SCHED_SMS_RES_MII (struct ddg *g)
This hook is called by the swing modulo scheduler to calculate a resource-based lower
bound which is based on the resources available in the machine and the resources
required by each instruction. The target backend can use g to calculate such bound.
A very simple lower bound will be used in case this hook is not implemented: the
total number of instructions divided by the issue rate.

17.19 Dividing the Output into Sections (Texts, Data, . . .)

An object file is divided into sections containing different types of data. In the most common
case, there are three sections: the text section, which holds instructions and read-only data;
the data section, which holds initialized writable data; and the bss section, which holds
uninitialized data. Some systems have other kinds of sections.

‘varasm.c’ provides several well-known sections, such as text_section, data_section
and bss_section. The normal way of controlling a foo_section variable is to define the
associated FOO_SECTION_ASM_OP macro, as described below. The macros are only read
once, when ‘varasm.c’ initializes itself, so their values must be run-time constants. They
may however depend on command-line flags.

Note: Some run-time files, such ‘crtstuff.c’, also make use of the FOO_SECTION_ASM_OP
macros, and expect them to be string literals.

Some assemblers require a different string to be written every time a section is selected. If
your assembler falls into this category, you should define the TARGET_ASM_INIT_SECTIONS
hook and use get_unnamed_section to set up the sections.

You must always create a text_section, either by defining TEXT_SECTION_ASM_OP or
by initializing text_section in TARGET_ASM_INIT_SECTIONS. The same is true of data_
section and DATA_SECTION_ASM_OP. If you do not create a distinct readonly_data_
section, the default is to reuse text_section.

All the other ‘varasm.c’ sections are optional, and are null if the target does not provide
them.

[Macro]TEXT_SECTION_ASM_OP
A C expression whose value is a string, including spacing, containing the assembler
operation that should precede instructions and read-only data. Normally "\t.text"
is right.

[Macro]HOT_TEXT_SECTION_NAME
If defined, a C string constant for the name of the section containing most frequently
executed functions of the program. If not defined, GCC will provide a default defini-
tion if the target supports named sections.

[Macro]UNLIKELY_EXECUTED_TEXT_SECTION_NAME
If defined, a C string constant for the name of the section containing unlikely executed
functions in the program.

[Macro]DATA_SECTION_ASM_OP
A C expression whose value is a string, including spacing, containing the assem-
bler operation to identify the following data as writable initialized data. Normally
"\t.data" is right.

Chapter 17: Target Description Macros and Functions 463

[Macro]SDATA_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as initialized, writable small data.

[Macro]READONLY_DATA_SECTION_ASM_OP
A C expression whose value is a string, including spacing, containing the assembler
operation to identify the following data as read-only initialized data.

[Macro]BSS_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as uninitialized global data. If
not defined, and neither ASM_OUTPUT_BSS nor ASM_OUTPUT_ALIGNED_BSS are defined,
uninitialized global data will be output in the data section if ‘-fno-common’ is passed,
otherwise ASM_OUTPUT_COMMON will be used.

[Macro]SBSS_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as uninitialized, writable small
data.

[Macro]INIT_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as initialization code. If not defined,
GCC will assume such a section does not exist. This section has no corresponding
init_section variable; it is used entirely in runtime code.

[Macro]FINI_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as finalization code. If not defined,
GCC will assume such a section does not exist. This section has no corresponding
fini_section variable; it is used entirely in runtime code.

[Macro]INIT_ARRAY_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as part of the .init_array (or
equivalent) section. If not defined, GCC will assume such a section does not exist.
Do not define both this macro and INIT_SECTION_ASM_OP.

[Macro]FINI_ARRAY_SECTION_ASM_OP
If defined, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as part of the .fini_array (or
equivalent) section. If not defined, GCC will assume such a section does not exist.
Do not define both this macro and FINI_SECTION_ASM_OP.

[Macro]CRT_CALL_STATIC_FUNCTION (section_op, function)
If defined, an ASM statement that switches to a different section via section op, calls
function, and switches back to the text section. This is used in ‘crtstuff.c’ if INIT_
SECTION_ASM_OP or FINI_SECTION_ASM_OP to calls to initialization and finalization
functions from the init and fini sections. By default, this macro uses a simple function

464 GNU Compiler Collection (GCC) Internals

call. Some ports need hand-crafted assembly code to avoid dependencies on registers
initialized in the function prologue or to ensure that constant pools don’t end up too
far way in the text section.

[Macro]TARGET_LIBGCC_SDATA_SECTION
If defined, a string which names the section into which small variables defined in
crtstuff and libgcc should go. This is useful when the target has options for optimizing
access to small data, and you want the crtstuff and libgcc routines to be conservative
in what they expect of your application yet liberal in what your application expects.
For example, for targets with a .sdata section (like MIPS), you could compile crtstuff
with -G 0 so that it doesn’t require small data support from your application, but use
this macro to put small data into .sdata so that your application can access these
variables whether it uses small data or not.

[Macro]FORCE_CODE_SECTION_ALIGN
If defined, an ASM statement that aligns a code section to some arbitrary boundary.
This is used to force all fragments of the .init and .fini sections to have to same
alignment and thus prevent the linker from having to add any padding.

[Macro]JUMP_TABLES_IN_TEXT_SECTION
Define this macro to be an expression with a nonzero value if jump tables (for
tablejump insns) should be output in the text section, along with the assembler
instructions. Otherwise, the readonly data section is used.
This macro is irrelevant if there is no separate readonly data section.

[Target Hook]void TARGET_ASM_INIT_SECTIONS (void)
Define this hook if you need to do something special to set up the ‘varasm.c’ sections,
or if your target has some special sections of its own that you need to create.
GCC calls this hook after processing the command line, but before writing any as-
sembly code, and before calling any of the section-returning hooks described below.

[Target Hook]TARGET_ASM_RELOC_RW_MASK (void)
Return a mask describing how relocations should be treated when selecting sections.
Bit 1 should be set if global relocations should be placed in a read-write section; bit
0 should be set if local relocations should be placed in a read-write section.
The default version of this function returns 3 when ‘-fpic’ is in effect, and 0 other-
wise. The hook is typically redefined when the target cannot support (some kinds of)
dynamic relocations in read-only sections even in executables.

[Target Hook]section * TARGET_ASM_SELECT_SECTION (tree exp, int reloc,
unsigned HOST WIDE INT align)

Return the section into which exp should be placed. You can assume that exp is
either a VAR_DECL node or a constant of some sort. reloc indicates whether the
initial value of exp requires link-time relocations. Bit 0 is set when variable contains
local relocations only, while bit 1 is set for global relocations. align is the constant
alignment in bits.
The default version of this function takes care of putting read-only variables in
readonly_data_section.
See also USE SELECT SECTION FOR FUNCTIONS.

Chapter 17: Target Description Macros and Functions 465

[Macro]USE_SELECT_SECTION_FOR_FUNCTIONS
Define this macro if you wish TARGET ASM SELECT SECTION to be called for
FUNCTION_DECLs as well as for variables and constants.
In the case of a FUNCTION_DECL, reloc will be zero if the function has been determined
to be likely to be called, and nonzero if it is unlikely to be called.

[Target Hook]void TARGET_ASM_UNIQUE_SECTION (tree decl, int reloc)
Build up a unique section name, expressed as a STRING_CST node, and assign it
to ‘DECL_SECTION_NAME (decl)’. As with TARGET_ASM_SELECT_SECTION, reloc indi-
cates whether the initial value of exp requires link-time relocations.
The default version of this function appends the symbol name to the ELF section
name that would normally be used for the symbol. For example, the function foo
would be placed in .text.foo. Whatever the actual target object format, this is
often good enough.

[Target Hook]section * TARGET_ASM_FUNCTION_RODATA_SECTION (tree decl)
Return the readonly data section associated with ‘DECL_SECTION_NAME (decl)’. The
default version of this function selects .gnu.linkonce.r.name if the function’s sec-
tion is .gnu.linkonce.t.name, .rodata.name if function is in .text.name, and the
normal readonly-data section otherwise.

[Target Hook]section * TARGET_ASM_SELECT_RTX_SECTION (enum
machine mode mode, rtx x, unsigned HOST WIDE INT align)

Return the section into which a constant x, of mode mode, should be placed. You can
assume that x is some kind of constant in RTL. The argument mode is redundant
except in the case of a const_int rtx. align is the constant alignment in bits.
The default version of this function takes care of putting symbolic constants in flag_
pic mode in data_section and everything else in readonly_data_section.

[Target Hook]void TARGET_MANGLE_DECL_ASSEMBLER_NAME (tree decl, tree id)
Define this hook if you need to postprocess the assembler name generated by target-
independent code. The id provided to this hook will be the computed name (e.g., the
macro DECL_NAME of the decl in C, or the mangled name of the decl in C++). The
return value of the hook is an IDENTIFIER_NODE for the appropriate mangled name
on your target system. The default implementation of this hook just returns the id
provided.

[Target Hook]void TARGET_ENCODE_SECTION_INFO (tree decl, rtx rtl, int
new_decl_p)

Define this hook if references to a symbol or a constant must be treated differently
depending on something about the variable or function named by the symbol (such
as what section it is in).
The hook is executed immediately after rtl has been created for decl, which may be
a variable or function declaration or an entry in the constant pool. In either case, rtl
is the rtl in question. Do not use DECL_RTL (decl) in this hook; that field may not
have been initialized yet.
In the case of a constant, it is safe to assume that the rtl is a mem whose address is a
symbol_ref. Most decls will also have this form, but that is not guaranteed. Global

466 GNU Compiler Collection (GCC) Internals

register variables, for instance, will have a reg for their rtl. (Normally the right thing
to do with such unusual rtl is leave it alone.)

The new decl p argument will be true if this is the first time that TARGET_ENCODE_
SECTION_INFO has been invoked on this decl. It will be false for subsequent invoca-
tions, which will happen for duplicate declarations. Whether or not anything must
be done for the duplicate declaration depends on whether the hook examines DECL_
ATTRIBUTES. new decl p is always true when the hook is called for a constant.

The usual thing for this hook to do is to record flags in the symbol_ref, using
SYMBOL_REF_FLAG or SYMBOL_REF_FLAGS. Historically, the name string was modified
if it was necessary to encode more than one bit of information, but this practice is
now discouraged; use SYMBOL_REF_FLAGS.

The default definition of this hook, default_encode_section_info in ‘varasm.c’,
sets a number of commonly-useful bits in SYMBOL_REF_FLAGS. Check whether the
default does what you need before overriding it.

[Target Hook]const char *TARGET STRIP NAME ENCODING (const char
*name)

Decode name and return the real name part, sans the characters that TARGET_ENCODE_
SECTION_INFO may have added.

[Target Hook]bool TARGET_IN_SMALL_DATA_P (tree exp)
Returns true if exp should be placed into a “small data” section. The default version
of this hook always returns false.

[Variable]Target Hook bool TARGET HAVE SRODATA SECTION
Contains the value true if the target places read-only “small data” into a separate
section. The default value is false.

[Target Hook]bool TARGET_BINDS_LOCAL_P (tree exp)
Returns true if exp names an object for which name resolution rules must resolve to
the current “module” (dynamic shared library or executable image).

The default version of this hook implements the name resolution rules for ELF, which
has a looser model of global name binding than other currently supported object file
formats.

[Variable]Target Hook bool TARGET HAVE TLS
Contains the value true if the target supports thread-local storage. The default value
is false.

17.20 Position Independent Code

This section describes macros that help implement generation of position independent code.
Simply defining these macros is not enough to generate valid PIC; you must also add sup-
port to the macros GO_IF_LEGITIMATE_ADDRESS and PRINT_OPERAND_ADDRESS, as well as
LEGITIMIZE_ADDRESS. You must modify the definition of ‘movsi’ to do something appro-
priate when the source operand contains a symbolic address. You may also need to alter
the handling of switch statements so that they use relative addresses.

Chapter 17: Target Description Macros and Functions 467

[Macro]PIC_OFFSET_TABLE_REGNUM
The register number of the register used to address a table of static data addresses
in memory. In some cases this register is defined by a processor’s “application binary
interface” (ABI). When this macro is defined, RTL is generated for this register once,
as with the stack pointer and frame pointer registers. If this macro is not defined, it
is up to the machine-dependent files to allocate such a register (if necessary). Note
that this register must be fixed when in use (e.g. when flag_pic is true).

[Macro]PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is clobbered
by calls. Do not define this macro if PIC_OFFSET_TABLE_REGNUM is not defined.

[Macro]LEGITIMATE_PIC_OPERAND_P (x)
A C expression that is nonzero if x is a legitimate immediate operand on the target
machine when generating position independent code. You can assume that x satisfies
CONSTANT_P, so you need not check this. You can also assume flag pic is true, so you
need not check it either. You need not define this macro if all constants (including
SYMBOL_REF) can be immediate operands when generating position independent code.

17.21 Defining the Output Assembler Language

This section describes macros whose principal purpose is to describe how to write instruc-
tions in assembler language—rather than what the instructions do.

17.21.1 The Overall Framework of an Assembler File

This describes the overall framework of an assembly file.

[Target Hook]void TARGET_ASM_FILE_START ()
Output to asm_out_file any text which the assembler expects to find at the be-
ginning of a file. The default behavior is controlled by two flags, documented below.
Unless your target’s assembler is quite unusual, if you override the default, you should
call default_file_start at some point in your target hook. This lets other target
files rely on these variables.

[Target Hook]bool TARGET_ASM_FILE_START_APP_OFF
If this flag is true, the text of the macro ASM_APP_OFF will be printed as the very first
line in the assembly file, unless ‘-fverbose-asm’ is in effect. (If that macro has been
defined to the empty string, this variable has no effect.) With the normal definition
of ASM_APP_OFF, the effect is to notify the GNU assembler that it need not bother
stripping comments or extra whitespace from its input. This allows it to work a bit
faster.
The default is false. You should not set it to true unless you have verified that your
port does not generate any extra whitespace or comments that will cause GAS to
issue errors in NO APP mode.

[Target Hook]bool TARGET_ASM_FILE_START_FILE_DIRECTIVE
If this flag is true, output_file_directive will be called for the primary source file,
immediately after printing ASM_APP_OFF (if that is enabled). Most ELF assemblers
expect this to be done. The default is false.

468 GNU Compiler Collection (GCC) Internals

[Target Hook]void TARGET_ASM_FILE_END ()
Output to asm_out_file any text which the assembler expects to find at the end of
a file. The default is to output nothing.

[Function]void file_end_indicate_exec_stack ()
Some systems use a common convention, the ‘.note.GNU-stack’ special section, to
indicate whether or not an object file relies on the stack being executable. If your
system uses this convention, you should define TARGET_ASM_FILE_END to this function.
If you need to do other things in that hook, have your hook function call this function.

[Macro]ASM_COMMENT_START
A C string constant describing how to begin a comment in the target assembler
language. The compiler assumes that the comment will end at the end of the line.

[Macro]ASM_APP_ON
A C string constant for text to be output before each asm statement or group of
consecutive ones. Normally this is "#APP", which is a comment that has no effect on
most assemblers but tells the GNU assembler that it must check the lines that follow
for all valid assembler constructs.

[Macro]ASM_APP_OFF
A C string constant for text to be output after each asm statement or group of con-
secutive ones. Normally this is "#NO_APP", which tells the GNU assembler to resume
making the time-saving assumptions that are valid for ordinary compiler output.

[Macro]ASM_OUTPUT_SOURCE_FILENAME (stream, name)
A C statement to output COFF information or DWARF debugging information which
indicates that filename name is the current source file to the stdio stream stream.
This macro need not be defined if the standard form of output for the file format in
use is appropriate.

[Macro]OUTPUT_QUOTED_STRING (stream, string)
A C statement to output the string string to the stdio stream stream. If you do not
call the function output_quoted_string in your config files, GCC will only call it
to output filenames to the assembler source. So you can use it to canonicalize the
format of the filename using this macro.

[Macro]ASM_OUTPUT_IDENT (stream, string)
A C statement to output something to the assembler file to handle a ‘#ident’ directive
containing the text string. If this macro is not defined, nothing is output for a ‘#ident’
directive.

[Target Hook]void TARGET_ASM_NAMED_SECTION (const char *name, unsigned int
flags, unsigned int align)

Output assembly directives to switch to section name. The section should have at-
tributes as specified by flags, which is a bit mask of the SECTION_* flags defined in
‘output.h’. If align is nonzero, it contains an alignment in bytes to be used for the
section, otherwise some target default should be used. Only targets that must specify
an alignment within the section directive need pay attention to align – we will still
use ASM_OUTPUT_ALIGN.

Chapter 17: Target Description Macros and Functions 469

[Target Hook]bool TARGET_HAVE_NAMED_SECTIONS
This flag is true if the target supports TARGET_ASM_NAMED_SECTION.

[Target Hook]bool TARGET_HAVE_SWITCHABLE_BSS_SECTIONS
This flag is true if we can create zeroed data by switching to a BSS section and then
using ASM_OUTPUT_SKIP to allocate the space. This is true on most ELF targets.

[Target Hook]unsigned int TARGET_SECTION_TYPE_FLAGS (tree decl, const
char *name, int reloc)

Choose a set of section attributes for use by TARGET_ASM_NAMED_SECTION based on
a variable or function decl, a section name, and whether or not the declaration’s
initializer may contain runtime relocations. decl may be null, in which case read-
write data should be assumed.
The default version of this function handles choosing code vs data, read-only vs read-
write data, and flag_pic. You should only need to override this if your target has
special flags that might be set via __attribute__.

[Target Hook]int TARGET_ASM_RECORD_GCC_SWITCHES (print switch type type,
const char * text)

Provides the target with the ability to record the gcc command line switches that
have been passed to the compiler, and options that are enabled. The type argument
specifies what is being recorded. It can take the following values:

SWITCH_TYPE_PASSED
text is a command line switch that has been set by the user.

SWITCH_TYPE_ENABLED
text is an option which has been enabled. This might be as a direct
result of a command line switch, or because it is enabled by default or
because it has been enabled as a side effect of a different command line
switch. For example, the ‘-O2’ switch enables various different individual
optimization passes.

SWITCH_TYPE_DESCRIPTIVE
text is either NULL or some descriptive text which should be ignored.
If text is NULL then it is being used to warn the target hook
that either recording is starting or ending. The first time type is
SWITCH TYPE DESCRIPTIVE and text is NULL, the warning is for
start up and the second time the warning is for wind down. This feature
is to allow the target hook to make any necessary preparations before it
starts to record switches and to perform any necessary tidying up after
it has finished recording switches.

SWITCH_TYPE_LINE_START
This option can be ignored by this target hook.

SWITCH_TYPE_LINE_END
This option can be ignored by this target hook.

The hook’s return value must be zero. Other return values may be supported in the
future.

470 GNU Compiler Collection (GCC) Internals

By default this hook is set to NULL, but an example implementation is provided for
ELF based targets. Called elf record gcc switches, it records the switches as ASCII
text inside a new, string mergeable section in the assembler output file. The name
of the new section is provided by the TARGET_ASM_RECORD_GCC_SWITCHES_SECTION
target hook.

[Target Hook]const char * TARGET_ASM_RECORD_GCC_SWITCHES_SECTION
This is the name of the section that will be created by the example ELF implemen-
tation of the TARGET_ASM_RECORD_GCC_SWITCHES target hook.

17.21.2 Output of Data

[Target Hook]const char * TARGET_ASM_BYTE_OP
[Target Hook]const char * TARGET_ASM_ALIGNED_HI_OP
[Target Hook]const char * TARGET_ASM_ALIGNED_SI_OP
[Target Hook]const char * TARGET_ASM_ALIGNED_DI_OP
[Target Hook]const char * TARGET_ASM_ALIGNED_TI_OP
[Target Hook]const char * TARGET_ASM_UNALIGNED_HI_OP
[Target Hook]const char * TARGET_ASM_UNALIGNED_SI_OP
[Target Hook]const char * TARGET_ASM_UNALIGNED_DI_OP
[Target Hook]const char * TARGET_ASM_UNALIGNED_TI_OP

These hooks specify assembly directives for creating certain kinds of integer object.
The TARGET_ASM_BYTE_OP directive creates a byte-sized object, the TARGET_ASM_
ALIGNED_HI_OP one creates an aligned two-byte object, and so on. Any of the hooks
may be NULL, indicating that no suitable directive is available.

The compiler will print these strings at the start of a new line, followed immediately by
the object’s initial value. In most cases, the string should contain a tab, a pseudo-op,
and then another tab.

[Target Hook]bool TARGET_ASM_INTEGER (rtx x, unsigned int size, int
aligned_p)

The assemble_integer function uses this hook to output an integer object. x is the
object’s value, size is its size in bytes and aligned p indicates whether it is aligned.
The function should return true if it was able to output the object. If it returns false,
assemble_integer will try to split the object into smaller parts.

The default implementation of this hook will use the TARGET_ASM_BYTE_OP family of
strings, returning false when the relevant string is NULL.

[Macro]OUTPUT_ADDR_CONST_EXTRA (stream, x, fail)
A C statement to recognize rtx patterns that output_addr_const can’t deal with,
and output assembly code to stream corresponding to the pattern x. This may be
used to allow machine-dependent UNSPECs to appear within constants.

If OUTPUT_ADDR_CONST_EXTRA fails to recognize a pattern, it must goto fail, so that
a standard error message is printed. If it prints an error message itself, by calling, for
example, output_operand_lossage, it may just complete normally.

Chapter 17: Target Description Macros and Functions 471

[Macro]ASM_OUTPUT_ASCII (stream, ptr, len)
A C statement to output to the stdio stream stream an assembler instruction to
assemble a string constant containing the len bytes at ptr. ptr will be a C expression
of type char * and len a C expression of type int.

If the assembler has a .ascii pseudo-op as found in the Berkeley Unix assembler, do
not define the macro ASM_OUTPUT_ASCII.

[Macro]ASM_OUTPUT_FDESC (stream, decl, n)
A C statement to output word n of a function descriptor for decl. This must be
defined if TARGET_VTABLE_USES_DESCRIPTORS is defined, and is otherwise unused.

[Macro]CONSTANT_POOL_BEFORE_FUNCTION
You may define this macro as a C expression. You should define the expression to
have a nonzero value if GCC should output the constant pool for a function before
the code for the function, or a zero value if GCC should output the constant pool
after the function. If you do not define this macro, the usual case, GCC will output
the constant pool before the function.

[Macro]ASM_OUTPUT_POOL_PROLOGUE (file, funname, fundecl, size)
A C statement to output assembler commands to define the start of the constant pool
for a function. funname is a string giving the name of the function. Should the return
type of the function be required, it can be obtained via fundecl. size is the size, in
bytes, of the constant pool that will be written immediately after this call.

If no constant-pool prefix is required, the usual case, this macro need not be defined.

[Macro]ASM_OUTPUT_SPECIAL_POOL_ENTRY (file, x, mode, align, labelno,
jumpto)

A C statement (with or without semicolon) to output a constant in the constant pool,
if it needs special treatment. (This macro need not do anything for RTL expressions
that can be output normally.)

The argument file is the standard I/O stream to output the assembler code on. x is
the RTL expression for the constant to output, and mode is the machine mode (in
case x is a ‘const_int’). align is the required alignment for the value x; you should
output an assembler directive to force this much alignment.

The argument labelno is a number to use in an internal label for the address of
this pool entry. The definition of this macro is responsible for outputting the label
definition at the proper place. Here is how to do this:

(*targetm.asm_out.internal_label) (file, "LC", labelno);

When you output a pool entry specially, you should end with a goto to the label
jumpto. This will prevent the same pool entry from being output a second time in
the usual manner.

You need not define this macro if it would do nothing.

[Macro]ASM_OUTPUT_POOL_EPILOGUE (file funname fundecl size)
A C statement to output assembler commands to at the end of the constant pool for
a function. funname is a string giving the name of the function. Should the return

472 GNU Compiler Collection (GCC) Internals

type of the function be required, you can obtain it via fundecl. size is the size, in
bytes, of the constant pool that GCC wrote immediately before this call.
If no constant-pool epilogue is required, the usual case, you need not define this macro.

[Macro]IS_ASM_LOGICAL_LINE_SEPARATOR (C, STR)
Define this macro as a C expression which is nonzero if C is used as a logical line
separator by the assembler. STR points to the position in the string where C was
found; this can be used if a line separator uses multiple characters.
If you do not define this macro, the default is that only the character ‘;’ is treated as
a logical line separator.

[Target Hook]const char * TARGET_ASM_OPEN_PAREN
[Target Hook]const char * TARGET_ASM_CLOSE_PAREN

These target hooks are C string constants, describing the syntax in the assembler for
grouping arithmetic expressions. If not overridden, they default to normal parenthe-
ses, which is correct for most assemblers.

These macros are provided by ‘real.h’ for writing the definitions of ASM_OUTPUT_DOUBLE
and the like:

[Macro]REAL_VALUE_TO_TARGET_SINGLE (x, l)
[Macro]REAL_VALUE_TO_TARGET_DOUBLE (x, l)
[Macro]REAL_VALUE_TO_TARGET_LONG_DOUBLE (x, l)
[Macro]REAL_VALUE_TO_TARGET_DECIMAL32 (x, l)
[Macro]REAL_VALUE_TO_TARGET_DECIMAL64 (x, l)
[Macro]REAL_VALUE_TO_TARGET_DECIMAL128 (x, l)

These translate x, of type REAL_VALUE_TYPE, to the target’s floating point representa-
tion, and store its bit pattern in the variable l. For REAL_VALUE_TO_TARGET_SINGLE
and REAL_VALUE_TO_TARGET_DECIMAL32, this variable should be a simple long int.
For the others, it should be an array of long int. The number of elements in this
array is determined by the size of the desired target floating point data type: 32 bits
of it go in each long int array element. Each array element holds 32 bits of the
result, even if long int is wider than 32 bits on the host machine.
The array element values are designed so that you can print them out using fprintf
in the order they should appear in the target machine’s memory.

17.21.3 Output of Uninitialized Variables

Each of the macros in this section is used to do the whole job of outputting a single
uninitialized variable.

[Macro]ASM_OUTPUT_COMMON (stream, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream stream the assembler
definition of a common-label named name whose size is size bytes. The variable
rounded is the size rounded up to whatever alignment the caller wants. It is possible
that size may be zero, for instance if a struct with no other member than a zero-
length array is defined. In this case, the backend must output a symbol definition
that allocates at least one byte, both so that the address of the resulting object does
not compare equal to any other, and because some object formats cannot even express

Chapter 17: Target Description Macros and Functions 473

the concept of a zero-sized common symbol, as that is how they represent an ordinary
undefined external.
Use the expression assemble_name (stream, name) to output the name itself; before
and after that, output the additional assembler syntax for defining the name, and a
newline.
This macro controls how the assembler definitions of uninitialized common global
variables are output.

[Macro]ASM_OUTPUT_ALIGNED_COMMON (stream, name, size, alignment)
Like ASM_OUTPUT_COMMON except takes the required alignment as a separate, explicit
argument. If you define this macro, it is used in place of ASM_OUTPUT_COMMON, and
gives you more flexibility in handling the required alignment of the variable. The
alignment is specified as the number of bits.

[Macro]ASM_OUTPUT_ALIGNED_DECL_COMMON (stream, decl, name, size,
alignment)

Like ASM_OUTPUT_ALIGNED_COMMON except that decl of the variable to be output,
if there is one, or NULL_TREE if there is no corresponding variable. If you define
this macro, GCC will use it in place of both ASM_OUTPUT_COMMON and ASM_OUTPUT_
ALIGNED_COMMON. Define this macro when you need to see the variable’s decl in order
to chose what to output.

[Macro]ASM_OUTPUT_BSS (stream, decl, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream stream the assembler
definition of uninitialized global decl named name whose size is size bytes. The
variable rounded is the size rounded up to whatever alignment the caller wants.
Try to use function asm_output_bss defined in ‘varasm.c’ when defining this macro.
If unable, use the expression assemble_name (stream, name) to output the name
itself; before and after that, output the additional assembler syntax for defining the
name, and a newline.
There are two ways of handling global BSS. One is to define either this
macro or its aligned counterpart, ASM_OUTPUT_ALIGNED_BSS. The other is
to have TARGET_ASM_SELECT_SECTION return a switchable BSS section (see
[TARGET HAVE SWITCHABLE BSS SECTIONS], page 469). You do not need
to do both.
Some languages do not have common data, and require a non-common form of global
BSS in order to handle uninitialized globals efficiently. C++ is one example of this.
However, if the target does not support global BSS, the front end may choose to make
globals common in order to save space in the object file.

[Macro]ASM_OUTPUT_ALIGNED_BSS (stream, decl, name, size, alignment)
Like ASM_OUTPUT_BSS except takes the required alignment as a separate, explicit
argument. If you define this macro, it is used in place of ASM_OUTPUT_BSS, and gives
you more flexibility in handling the required alignment of the variable. The alignment
is specified as the number of bits.
Try to use function asm_output_aligned_bss defined in file ‘varasm.c’ when defining
this macro.

474 GNU Compiler Collection (GCC) Internals

[Macro]ASM_OUTPUT_LOCAL (stream, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream stream the assembler
definition of a local-common-label named name whose size is size bytes. The variable
rounded is the size rounded up to whatever alignment the caller wants.
Use the expression assemble_name (stream, name) to output the name itself; before
and after that, output the additional assembler syntax for defining the name, and a
newline.
This macro controls how the assembler definitions of uninitialized static variables are
output.

[Macro]ASM_OUTPUT_ALIGNED_LOCAL (stream, name, size, alignment)
Like ASM_OUTPUT_LOCAL except takes the required alignment as a separate, explicit
argument. If you define this macro, it is used in place of ASM_OUTPUT_LOCAL, and
gives you more flexibility in handling the required alignment of the variable. The
alignment is specified as the number of bits.

[Macro]ASM_OUTPUT_ALIGNED_DECL_LOCAL (stream, decl, name, size,
alignment)

Like ASM_OUTPUT_ALIGNED_DECL except that decl of the variable to be output, if there
is one, or NULL_TREE if there is no corresponding variable. If you define this macro,
GCC will use it in place of both ASM_OUTPUT_DECL and ASM_OUTPUT_ALIGNED_DECL.
Define this macro when you need to see the variable’s decl in order to chose what to
output.

17.21.4 Output and Generation of Labels

This is about outputting labels.

[Macro]ASM_OUTPUT_LABEL (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream the assem-
bler definition of a label named name. Use the expression assemble_name (stream,
name) to output the name itself; before and after that, output the additional assem-
bler syntax for defining the name, and a newline. A default definition of this macro
is provided which is correct for most systems.

[Macro]ASM_OUTPUT_INTERNAL_LABEL (stream, name)
Identical to ASM_OUTPUT_LABEL, except that name is known to refer to a
compiler-generated label. The default definition uses assemble_name_raw, which is
like assemble_name except that it is more efficient.

[Macro]SIZE_ASM_OP
A C string containing the appropriate assembler directive to specify the size of
a symbol, without any arguments. On systems that use ELF, the default (in
‘config/elfos.h’) is ‘"\t.size\t"’; on other systems, the default is not to define
this macro.
Define this macro only if it is correct to use the default definitions of ASM_OUTPUT_
SIZE_DIRECTIVE and ASM_OUTPUT_MEASURED_SIZE for your system. If you need your
own custom definitions of those macros, or if you do not need explicit symbol sizes at
all, do not define this macro.

Chapter 17: Target Description Macros and Functions 475

[Macro]ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size)
A C statement (sans semicolon) to output to the stdio stream stream a directive telling
the assembler that the size of the symbol name is size. size is a HOST_WIDE_INT. If
you define SIZE_ASM_OP, a default definition of this macro is provided.

[Macro]ASM_OUTPUT_MEASURED_SIZE (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream a directive
telling the assembler to calculate the size of the symbol name by subtracting its
address from the current address.
If you define SIZE_ASM_OP, a default definition of this macro is provided. The default
assumes that the assembler recognizes a special ‘.’ symbol as referring to the current
address, and can calculate the difference between this and another symbol. If your
assembler does not recognize ‘.’ or cannot do calculations with it, you will need to
redefine ASM_OUTPUT_MEASURED_SIZE to use some other technique.

[Macro]TYPE_ASM_OP
A C string containing the appropriate assembler directive to specify the type of
a symbol, without any arguments. On systems that use ELF, the default (in
‘config/elfos.h’) is ‘"\t.type\t"’; on other systems, the default is not to define
this macro.
Define this macro only if it is correct to use the default definition of ASM_OUTPUT_
TYPE_DIRECTIVE for your system. If you need your own custom definition of this
macro, or if you do not need explicit symbol types at all, do not define this macro.

[Macro]TYPE_OPERAND_FMT
A C string which specifies (using printf syntax) the format of the second operand
to TYPE_ASM_OP. On systems that use ELF, the default (in ‘config/elfos.h’) is
‘"@%s"’; on other systems, the default is not to define this macro.
Define this macro only if it is correct to use the default definition of ASM_OUTPUT_
TYPE_DIRECTIVE for your system. If you need your own custom definition of this
macro, or if you do not need explicit symbol types at all, do not define this macro.

[Macro]ASM_OUTPUT_TYPE_DIRECTIVE (stream, type)
A C statement (sans semicolon) to output to the stdio stream stream a directive
telling the assembler that the type of the symbol name is type. type is a C string;
currently, that string is always either ‘"function"’ or ‘"object"’, but you should not
count on this.
If you define TYPE_ASM_OP and TYPE_OPERAND_FMT, a default definition of this macro
is provided.

[Macro]ASM_DECLARE_FUNCTION_NAME (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text nec-
essary for declaring the name name of a function which is being defined. This macro
is responsible for outputting the label definition (perhaps using ASM_OUTPUT_LABEL).
The argument decl is the FUNCTION_DECL tree node representing the function.
If this macro is not defined, then the function name is defined in the usual manner
as a label (by means of ASM_OUTPUT_LABEL).
You may wish to use ASM_OUTPUT_TYPE_DIRECTIVE in the definition of this macro.

476 GNU Compiler Collection (GCC) Internals

[Macro]ASM_DECLARE_FUNCTION_SIZE (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text neces-
sary for declaring the size of a function which is being defined. The argument name
is the name of the function. The argument decl is the FUNCTION_DECL tree node
representing the function.
If this macro is not defined, then the function size is not defined.
You may wish to use ASM_OUTPUT_MEASURED_SIZE in the definition of this macro.

[Macro]ASM_DECLARE_OBJECT_NAME (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text nec-
essary for declaring the name name of an initialized variable which is being defined.
This macro must output the label definition (perhaps using ASM_OUTPUT_LABEL). The
argument decl is the VAR_DECL tree node representing the variable.
If this macro is not defined, then the variable name is defined in the usual manner as
a label (by means of ASM_OUTPUT_LABEL).
You may wish to use ASM_OUTPUT_TYPE_DIRECTIVE and/or ASM_OUTPUT_SIZE_
DIRECTIVE in the definition of this macro.

[Macro]ASM_DECLARE_CONSTANT_NAME (stream, name, exp, size)
A C statement (sans semicolon) to output to the stdio stream stream any text nec-
essary for declaring the name name of a constant which is being defined. This macro
is responsible for outputting the label definition (perhaps using ASM_OUTPUT_LABEL).
The argument exp is the value of the constant, and size is the size of the constant in
bytes. name will be an internal label.
If this macro is not defined, then the name is defined in the usual manner as a label
(by means of ASM_OUTPUT_LABEL).
You may wish to use ASM_OUTPUT_TYPE_DIRECTIVE in the definition of this macro.

[Macro]ASM_DECLARE_REGISTER_GLOBAL (stream, decl, regno, name)
A C statement (sans semicolon) to output to the stdio stream stream any text nec-
essary for claiming a register regno for a global variable decl with name name.
If you don’t define this macro, that is equivalent to defining it to do nothing.

[Macro]ASM_FINISH_DECLARE_OBJECT (stream, decl, toplevel, atend)
A C statement (sans semicolon) to finish up declaring a variable name once the
compiler has processed its initializer fully and thus has had a chance to determine the
size of an array when controlled by an initializer. This is used on systems where it’s
necessary to declare something about the size of the object.
If you don’t define this macro, that is equivalent to defining it to do nothing.
You may wish to use ASM_OUTPUT_SIZE_DIRECTIVE and/or ASM_OUTPUT_MEASURED_
SIZE in the definition of this macro.

[Target Hook]void TARGET_ASM_GLOBALIZE_LABEL (FILE *stream, const char
*name)

This target hook is a function to output to the stdio stream stream some commands
that will make the label name global; that is, available for reference from other files.
The default implementation relies on a proper definition of GLOBAL_ASM_OP.

Chapter 17: Target Description Macros and Functions 477

[Target Hook]void TARGET_ASM_GLOBALIZE_DECL_NAME (FILE *stream, tree
decl)

This target hook is a function to output to the stdio stream stream some commands
that will make the name associated with decl global; that is, available for reference
from other files.
The default implementation uses the TARGET ASM GLOBALIZE LABEL target
hook.

[Macro]ASM_WEAKEN_LABEL (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream some com-
mands that will make the label name weak; that is, available for reference from other
files but only used if no other definition is available. Use the expression assemble_
name (stream, name) to output the name itself; before and after that, output the
additional assembler syntax for making that name weak, and a newline.
If you don’t define this macro or ASM_WEAKEN_DECL, GCC will not support weak
symbols and you should not define the SUPPORTS_WEAK macro.

[Macro]ASM_WEAKEN_DECL (stream, decl, name, value)
Combines (and replaces) the function of ASM_WEAKEN_LABEL and ASM_OUTPUT_WEAK_
ALIAS, allowing access to the associated function or variable decl. If value is not
NULL, this C statement should output to the stdio stream stream assembler code
which defines (equates) the weak symbol name to have the value value. If value is
NULL, it should output commands to make name weak.

[Macro]ASM_OUTPUT_WEAKREF (stream, decl, name, value)
Outputs a directive that enables name to be used to refer to symbol value with
weak-symbol semantics. decl is the declaration of name.

[Macro]SUPPORTS_WEAK
A C expression which evaluates to true if the target supports weak symbols.
If you don’t define this macro, ‘defaults.h’ provides a default definition. If either
ASM_WEAKEN_LABEL or ASM_WEAKEN_DECL is defined, the default definition is ‘1’; oth-
erwise, it is ‘0’. Define this macro if you want to control weak symbol support with
a compiler flag such as ‘-melf’.

[Macro]MAKE_DECL_ONE_ONLY (decl)
A C statement (sans semicolon) to mark decl to be emitted as a public symbol such
that extra copies in multiple translation units will be discarded by the linker. Define
this macro if your object file format provides support for this concept, such as the
‘COMDAT’ section flags in the Microsoft Windows PE/COFF format, and this support
requires changes to decl, such as putting it in a separate section.

[Macro]SUPPORTS_ONE_ONLY
A C expression which evaluates to true if the target supports one-only semantics.
If you don’t define this macro, ‘varasm.c’ provides a default definition. If MAKE_
DECL_ONE_ONLY is defined, the default definition is ‘1’; otherwise, it is ‘0’. Define
this macro if you want to control one-only symbol support with a compiler flag, or
if setting the DECL_ONE_ONLY flag is enough to mark a declaration to be emitted as
one-only.

478 GNU Compiler Collection (GCC) Internals

[Target Hook]void TARGET_ASM_ASSEMBLE_VISIBILITY (tree decl, const char
*visibility)

This target hook is a function to output to asm out file some commands that will
make the symbol(s) associated with decl have hidden, protected or internal visibility
as specified by visibility.

[Macro]TARGET_WEAK_NOT_IN_ARCHIVE_TOC
A C expression that evaluates to true if the target’s linker expects that weak symbols
do not appear in a static archive’s table of contents. The default is 0.

Leaving weak symbols out of an archive’s table of contents means that, if a symbol
will only have a definition in one translation unit and will have undefined references
from other translation units, that symbol should not be weak. Defining this macro to
be nonzero will thus have the effect that certain symbols that would normally be weak
(explicit template instantiations, and vtables for polymorphic classes with noninline
key methods) will instead be nonweak.

The C++ ABI requires this macro to be zero. Define this macro for targets where full
C++ ABI compliance is impossible and where linker restrictions require weak symbols
to be left out of a static archive’s table of contents.

[Macro]ASM_OUTPUT_EXTERNAL (stream, decl, name)
A C statement (sans semicolon) to output to the stdio stream stream any text neces-
sary for declaring the name of an external symbol named name which is referenced in
this compilation but not defined. The value of decl is the tree node for the declaration.

This macro need not be defined if it does not need to output anything. The GNU
assembler and most Unix assemblers don’t require anything.

[Target Hook]void TARGET_ASM_EXTERNAL_LIBCALL (rtx symref)
This target hook is a function to output to asm out file an assembler pseudo-op to
declare a library function name external. The name of the library function is given
by symref, which is a symbol_ref.

[Target Hook]void TARGET_ASM_MARK_DECL_PRESERVED (tree decl)
This target hook is a function to output to asm out file an assembler directive to
annotate used symbol. Darwin target use .no dead code strip directive.

[Macro]ASM_OUTPUT_LABELREF (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream a reference in
assembler syntax to a label named name. This should add ‘_’ to the front of the
name, if that is customary on your operating system, as it is in most Berkeley Unix
systems. This macro is used in assemble_name.

[Macro]ASM_OUTPUT_SYMBOL_REF (stream, sym)
A C statement (sans semicolon) to output a reference to SYMBOL_REF sym. If not
defined, assemble_name will be used to output the name of the symbol. This macro
may be used to modify the way a symbol is referenced depending on information
encoded by TARGET_ENCODE_SECTION_INFO.

Chapter 17: Target Description Macros and Functions 479

[Macro]ASM_OUTPUT_LABEL_REF (stream, buf)
A C statement (sans semicolon) to output a reference to buf, the result of ASM_
GENERATE_INTERNAL_LABEL. If not defined, assemble_name will be used to output
the name of the symbol. This macro is not used by output_asm_label, or the %l
specifier that calls it; the intention is that this macro should be set when it is necessary
to output a label differently when its address is being taken.

[Target Hook]void TARGET_ASM_INTERNAL_LABEL (FILE *stream, const char
*prefix, unsigned long labelno)

A function to output to the stdio stream stream a label whose name is made from
the string prefix and the number labelno.
It is absolutely essential that these labels be distinct from the labels used for user-level
functions and variables. Otherwise, certain programs will have name conflicts with
internal labels.
It is desirable to exclude internal labels from the symbol table of the object file. Most
assemblers have a naming convention for labels that should be excluded; on many
systems, the letter ‘L’ at the beginning of a label has this effect. You should find out
what convention your system uses, and follow it.
The default version of this function utilizes ASM_GENERATE_INTERNAL_LABEL.

[Macro]ASM_OUTPUT_DEBUG_LABEL (stream, prefix, num)
A C statement to output to the stdio stream stream a debug info label whose name
is made from the string prefix and the number num. This is useful for VLIW tar-
gets, where debug info labels may need to be treated differently than branch target
labels. On some systems, branch target labels must be at the beginning of instruction
bundles, but debug info labels can occur in the middle of instruction bundles.
If this macro is not defined, then (*targetm.asm_out.internal_label) will be used.

[Macro]ASM_GENERATE_INTERNAL_LABEL (string, prefix, num)
A C statement to store into the string string a label whose name is made from the
string prefix and the number num.
This string, when output subsequently by assemble_name, should produce the output
that (*targetm.asm_out.internal_label) would produce with the same prefix and
num.
If the string begins with ‘*’, then assemble_name will output the rest of the string
unchanged. It is often convenient for ASM_GENERATE_INTERNAL_LABEL to use ‘*’ in
this way. If the string doesn’t start with ‘*’, then ASM_OUTPUT_LABELREF gets to
output the string, and may change it. (Of course, ASM_OUTPUT_LABELREF is also part
of your machine description, so you should know what it does on your machine.)

[Macro]ASM_FORMAT_PRIVATE_NAME (outvar, name, number)
A C expression to assign to outvar (which is a variable of type char *) a newly
allocated string made from the string name and the number number, with some
suitable punctuation added. Use alloca to get space for the string.
The string will be used as an argument to ASM_OUTPUT_LABELREF to produce an
assembler label for an internal static variable whose name is name. Therefore, the
string must be such as to result in valid assembler code. The argument number is

480 GNU Compiler Collection (GCC) Internals

different each time this macro is executed; it prevents conflicts between similarly-
named internal static variables in different scopes.
Ideally this string should not be a valid C identifier, to prevent any conflict with
the user’s own symbols. Most assemblers allow periods or percent signs in assembler
symbols; putting at least one of these between the name and the number will suffice.
If this macro is not defined, a default definition will be provided which is correct for
most systems.

[Macro]ASM_OUTPUT_DEF (stream, name, value)
A C statement to output to the stdio stream stream assembler code which defines
(equates) the symbol name to have the value value.
If SET_ASM_OP is defined, a default definition is provided which is correct for most
systems.

[Macro]ASM_OUTPUT_DEF_FROM_DECLS (stream, decl_of_name,
decl_of_value)

A C statement to output to the stdio stream stream assembler code which defines
(equates) the symbol whose tree node is decl of name to have the value of the tree
node decl of value. This macro will be used in preference to ‘ASM_OUTPUT_DEF’ if it
is defined and if the tree nodes are available.
If SET_ASM_OP is defined, a default definition is provided which is correct for most
systems.

[Macro]TARGET_DEFERRED_OUTPUT_DEFS (decl_of_name, decl_of_value)
A C statement that evaluates to true if the assembler code which defines (equates)
the symbol whose tree node is decl of name to have the value of the tree node
decl of value should be emitted near the end of the current compilation unit. The
default is to not defer output of defines. This macro affects defines output by
‘ASM_OUTPUT_DEF’ and ‘ASM_OUTPUT_DEF_FROM_DECLS’.

[Macro]ASM_OUTPUT_WEAK_ALIAS (stream, name, value)
A C statement to output to the stdio stream stream assembler code which defines
(equates) the weak symbol name to have the value value. If value is NULL, it defines
name as an undefined weak symbol.
Define this macro if the target only supports weak aliases; define ASM_OUTPUT_DEF
instead if possible.

[Macro]OBJC_GEN_METHOD_LABEL (buf, is_inst, class_name, cat_name,
sel_name)

Define this macro to override the default assembler names used for Objective-C meth-
ods.
The default name is a unique method number followed by the name of the class (e.g.
‘_1_Foo’). For methods in categories, the name of the category is also included in the
assembler name (e.g. ‘_1_Foo_Bar’).
These names are safe on most systems, but make debugging difficult since the
method’s selector is not present in the name. Therefore, particular systems define
other ways of computing names.

Chapter 17: Target Description Macros and Functions 481

buf is an expression of type char * which gives you a buffer in which to store the
name; its length is as long as class name, cat name and sel name put together, plus
50 characters extra.
The argument is inst specifies whether the method is an instance method or a class
method; class name is the name of the class; cat name is the name of the category
(or NULL if the method is not in a category); and sel name is the name of the selector.
On systems where the assembler can handle quoted names, you can use this macro
to provide more human-readable names.

[Macro]ASM_DECLARE_CLASS_REFERENCE (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream commands to
declare that the label name is an Objective-C class reference. This is only needed for
targets whose linkers have special support for NeXT-style runtimes.

[Macro]ASM_DECLARE_UNRESOLVED_REFERENCE (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream commands to
declare that the label name is an unresolved Objective-C class reference. This is only
needed for targets whose linkers have special support for NeXT-style runtimes.

17.21.5 How Initialization Functions Are Handled

The compiled code for certain languages includes constructors (also called initialization
routines)—functions to initialize data in the program when the program is started. These
functions need to be called before the program is “started”—that is to say, before main is
called.

Compiling some languages generates destructors (also called termination routines) that
should be called when the program terminates.

To make the initialization and termination functions work, the compiler must output
something in the assembler code to cause those functions to be called at the appropriate
time. When you port the compiler to a new system, you need to specify how to do this.

There are two major ways that GCC currently supports the execution of initialization
and termination functions. Each way has two variants. Much of the structure is common
to all four variations.

The linker must build two lists of these functions—a list of initialization functions, called
__CTOR_LIST__, and a list of termination functions, called __DTOR_LIST__.

Each list always begins with an ignored function pointer (which may hold 0, −1, or a
count of the function pointers after it, depending on the environment). This is followed
by a series of zero or more function pointers to constructors (or destructors), followed by a
function pointer containing zero.

Depending on the operating system and its executable file format, either ‘crtstuff.c’
or ‘libgcc2.c’ traverses these lists at startup time and exit time. Constructors are called
in reverse order of the list; destructors in forward order.

The best way to handle static constructors works only for object file formats which provide
arbitrarily-named sections. A section is set aside for a list of constructors, and another for
a list of destructors. Traditionally these are called ‘.ctors’ and ‘.dtors’. Each object file
that defines an initialization function also puts a word in the constructor section to point to

482 GNU Compiler Collection (GCC) Internals

that function. The linker accumulates all these words into one contiguous ‘.ctors’ section.
Termination functions are handled similarly.

This method will be chosen as the default by ‘target-def.h’ if TARGET_ASM_NAMED_
SECTION is defined. A target that does not support arbitrary sections, but does support
special designated constructor and destructor sections may define CTORS_SECTION_ASM_OP
and DTORS_SECTION_ASM_OP to achieve the same effect.

When arbitrary sections are available, there are two variants, depending upon how the
code in ‘crtstuff.c’ is called. On systems that support a .init section which is executed
at program startup, parts of ‘crtstuff.c’ are compiled into that section. The program is
linked by the gcc driver like this:

ld -o output_file crti.o crtbegin.o ... -lgcc crtend.o crtn.o

The prologue of a function (__init) appears in the .init section of ‘crti.o’; the epilogue
appears in ‘crtn.o’. Likewise for the function __fini in the .fini section. Normally these
files are provided by the operating system or by the GNU C library, but are provided by
GCC for a few targets.

The objects ‘crtbegin.o’ and ‘crtend.o’ are (for most targets) compiled from
‘crtstuff.c’. They contain, among other things, code fragments within the .init and
.fini sections that branch to routines in the .text section. The linker will pull all parts
of a section together, which results in a complete __init function that invokes the routines
we need at startup.

To use this variant, you must define the INIT_SECTION_ASM_OP macro properly.
If no init section is available, when GCC compiles any function called main (or more

accurately, any function designated as a program entry point by the language front end
calling expand_main_function), it inserts a procedure call to __main as the first executable
code after the function prologue. The __main function is defined in ‘libgcc2.c’ and runs
the global constructors.

In file formats that don’t support arbitrary sections, there are again two variants. In
the simplest variant, the GNU linker (GNU ld) and an ‘a.out’ format must be used. In
this case, TARGET_ASM_CONSTRUCTOR is defined to produce a .stabs entry of type ‘N_SETT’,
referencing the name __CTOR_LIST__, and with the address of the void function containing
the initialization code as its value. The GNU linker recognizes this as a request to add the
value to a set; the values are accumulated, and are eventually placed in the executable as
a vector in the format described above, with a leading (ignored) count and a trailing zero
element. TARGET_ASM_DESTRUCTOR is handled similarly. Since no init section is available,
the absence of INIT_SECTION_ASM_OP causes the compilation of main to call __main as
above, starting the initialization process.

The last variant uses neither arbitrary sections nor the GNU linker. This is preferable
when you want to do dynamic linking and when using file formats which the GNU linker
does not support, such as ‘ECOFF’. In this case, TARGET_HAVE_CTORS_DTORS is false,
initialization and termination functions are recognized simply by their names. This requires
an extra program in the linkage step, called collect2. This program pretends to be the
linker, for use with GCC; it does its job by running the ordinary linker, but also arranges to
include the vectors of initialization and termination functions. These functions are called
via __main as described above. In order to use this method, use_collect2 must be defined
in the target in ‘config.gcc’.

Chapter 17: Target Description Macros and Functions 483

17.21.6 Macros Controlling Initialization Routines

Here are the macros that control how the compiler handles initialization and termination
functions:

[Macro]INIT_SECTION_ASM_OP
If defined, a C string constant, including spacing, for the assembler operation to
identify the following data as initialization code. If not defined, GCC will assume such
a section does not exist. When you are using special sections for initialization and
termination functions, this macro also controls how ‘crtstuff.c’ and ‘libgcc2.c’
arrange to run the initialization functions.

[Macro]HAS_INIT_SECTION
If defined, main will not call __main as described above. This macro should be defined
for systems that control start-up code on a symbol-by-symbol basis, such as OSF/1,
and should not be defined explicitly for systems that support INIT_SECTION_ASM_OP.

[Macro]LD_INIT_SWITCH
If defined, a C string constant for a switch that tells the linker that the following
symbol is an initialization routine.

[Macro]LD_FINI_SWITCH
If defined, a C string constant for a switch that tells the linker that the following
symbol is a finalization routine.

[Macro]COLLECT_SHARED_INIT_FUNC (stream, func)
If defined, a C statement that will write a function that can be automatically called
when a shared library is loaded. The function should call func, which takes no ar-
guments. If not defined, and the object format requires an explicit initialization
function, then a function called _GLOBAL__DI will be generated.

This function and the following one are used by collect2 when linking a shared library
that needs constructors or destructors, or has DWARF2 exception tables embedded
in the code.

[Macro]COLLECT_SHARED_FINI_FUNC (stream, func)
If defined, a C statement that will write a function that can be automatically called
when a shared library is unloaded. The function should call func, which takes no
arguments. If not defined, and the object format requires an explicit finalization
function, then a function called _GLOBAL__DD will be generated.

[Macro]INVOKE__main
If defined, main will call __main despite the presence of INIT_SECTION_ASM_OP. This
macro should be defined for systems where the init section is not actually run auto-
matically, but is still useful for collecting the lists of constructors and destructors.

[Macro]SUPPORTS_INIT_PRIORITY
If nonzero, the C++ init_priority attribute is supported and the compiler should
emit instructions to control the order of initialization of objects. If zero, the compiler
will issue an error message upon encountering an init_priority attribute.

484 GNU Compiler Collection (GCC) Internals

[Target Hook]bool TARGET_HAVE_CTORS_DTORS
This value is true if the target supports some “native” method of collecting con-
structors and destructors to be run at startup and exit. It is false if we must use
collect2.

[Target Hook]void TARGET_ASM_CONSTRUCTOR (rtx symbol, int priority)
If defined, a function that outputs assembler code to arrange to call the function
referenced by symbol at initialization time.
Assume that symbol is a SYMBOL_REF for a function taking no arguments and with
no return value. If the target supports initialization priorities, priority is a value
between 0 and MAX_INIT_PRIORITY; otherwise it must be DEFAULT_INIT_PRIORITY.
If this macro is not defined by the target, a suitable default will be chosen if (1) the
target supports arbitrary section names, (2) the target defines CTORS_SECTION_ASM_
OP, or (3) USE_COLLECT2 is not defined.

[Target Hook]void TARGET_ASM_DESTRUCTOR (rtx symbol, int priority)
This is like TARGET_ASM_CONSTRUCTOR but used for termination functions rather than
initialization functions.

If TARGET_HAVE_CTORS_DTORS is true, the initialization routine generated for the gener-
ated object file will have static linkage.

If your system uses collect2 as the means of processing constructors, then that program
normally uses nm to scan an object file for constructor functions to be called.

On certain kinds of systems, you can define this macro to make collect2 work faster
(and, in some cases, make it work at all):

[Macro]OBJECT_FORMAT_COFF
Define this macro if the system uses COFF (Common Object File Format) object files,
so that collect2 can assume this format and scan object files directly for dynamic
constructor/destructor functions.
This macro is effective only in a native compiler; collect2 as part of a cross compiler
always uses nm for the target machine.

[Macro]REAL_NM_FILE_NAME
Define this macro as a C string constant containing the file name to use to execute
nm. The default is to search the path normally for nm.
If your system supports shared libraries and has a program to list the dynamic de-
pendencies of a given library or executable, you can define these macros to enable
support for running initialization and termination functions in shared libraries:

[Macro]LDD_SUFFIX
Define this macro to a C string constant containing the name of the program which
lists dynamic dependencies, like "ldd" under SunOS 4.

[Macro]PARSE_LDD_OUTPUT (ptr)
Define this macro to be C code that extracts filenames from the output of the program
denoted by LDD_SUFFIX. ptr is a variable of type char * that points to the beginning
of a line of output from LDD_SUFFIX. If the line lists a dynamic dependency, the code

Chapter 17: Target Description Macros and Functions 485

must advance ptr to the beginning of the filename on that line. Otherwise, it must
set ptr to NULL.

[Macro]SHLIB_SUFFIX
Define this macro to a C string constant containing the default shared library exten-
sion of the target (e.g., ‘".so"’). collect2 strips version information after this suffix
when generating global constructor and destructor names. This define is only needed
on targets that use collect2 to process constructors and destructors.

17.21.7 Output of Assembler Instructions

This describes assembler instruction output.

[Macro]REGISTER_NAMES
A C initializer containing the assembler’s names for the machine registers, each one
as a C string constant. This is what translates register numbers in the compiler into
assembler language.

[Macro]ADDITIONAL_REGISTER_NAMES
If defined, a C initializer for an array of structures containing a name and a register
number. This macro defines additional names for hard registers, thus allowing the
asm option in declarations to refer to registers using alternate names.

[Macro]ASM_OUTPUT_OPCODE (stream, ptr)
Define this macro if you are using an unusual assembler that requires different names
for the machine instructions.
The definition is a C statement or statements which output an assembler instruction
opcode to the stdio stream stream. The macro-operand ptr is a variable of type char
* which points to the opcode name in its “internal” form—the form that is written in
the machine description. The definition should output the opcode name to stream,
performing any translation you desire, and increment the variable ptr to point at the
end of the opcode so that it will not be output twice.
In fact, your macro definition may process less than the entire opcode name, or more
than the opcode name; but if you want to process text that includes ‘%’-sequences to
substitute operands, you must take care of the substitution yourself. Just be sure to
increment ptr over whatever text should not be output normally.
If you need to look at the operand values, they can be found as the elements of
recog_data.operand.
If the macro definition does nothing, the instruction is output in the usual way.

[Macro]FINAL_PRESCAN_INSN (insn, opvec, noperands)
If defined, a C statement to be executed just prior to the output of assembler code
for insn, to modify the extracted operands so they will be output differently.
Here the argument opvec is the vector containing the operands extracted from insn,
and noperands is the number of elements of the vector which contain meaningful data
for this insn. The contents of this vector are what will be used to convert the insn
template into assembler code, so you can change the assembler output by changing
the contents of the vector.

486 GNU Compiler Collection (GCC) Internals

This macro is useful when various assembler syntaxes share a single file of instruction
patterns; by defining this macro differently, you can cause a large class of instructions
to be output differently (such as with rearranged operands). Naturally, variations in
assembler syntax affecting individual insn patterns ought to be handled by writing
conditional output routines in those patterns.
If this macro is not defined, it is equivalent to a null statement.

[Macro]PRINT_OPERAND (stream, x, code)
A C compound statement to output to stdio stream stream the assembler syntax for
an instruction operand x. x is an RTL expression.
code is a value that can be used to specify one of several ways of printing the operand.
It is used when identical operands must be printed differently depending on the con-
text. code comes from the ‘%’ specification that was used to request printing of the
operand. If the specification was just ‘%digit ’ then code is 0; if the specification was
‘%ltr digit ’ then code is the ASCII code for ltr.
If x is a register, this macro should print the register’s name. The names can be
found in an array reg_names whose type is char *[]. reg_names is initialized from
REGISTER_NAMES.
When the machine description has a specification ‘%punct ’ (a ‘%’ followed by a punc-
tuation character), this macro is called with a null pointer for x and the punctuation
character for code.

[Macro]PRINT_OPERAND_PUNCT_VALID_P (code)
A C expression which evaluates to true if code is a valid punctuation character for
use in the PRINT_OPERAND macro. If PRINT_OPERAND_PUNCT_VALID_P is not defined,
it means that no punctuation characters (except for the standard one, ‘%’) are used
in this way.

[Macro]PRINT_OPERAND_ADDRESS (stream, x)
A C compound statement to output to stdio stream stream the assembler syntax for
an instruction operand that is a memory reference whose address is x. x is an RTL
expression.
On some machines, the syntax for a symbolic address depends on the section that
the address refers to. On these machines, define the hook TARGET_ENCODE_SECTION_
INFO to store the information into the symbol_ref, and then check for it here. See
Section 17.21 [Assembler Format], page 467.

[Macro]DBR_OUTPUT_SEQEND (file)
A C statement, to be executed after all slot-filler instructions have been output. If
necessary, call dbr_sequence_length to determine the number of slots filled in a
sequence (zero if not currently outputting a sequence), to decide how many no-ops to
output, or whatever.
Don’t define this macro if it has nothing to do, but it is helpful in reading assembly
output if the extent of the delay sequence is made explicit (e.g. with white space).

Note that output routines for instructions with delay slots must be prepared to deal with
not being output as part of a sequence (i.e. when the scheduling pass is not run, or when

Chapter 17: Target Description Macros and Functions 487

no slot fillers could be found.) The variable final_sequence is null when not processing a
sequence, otherwise it contains the sequence rtx being output.

[Macro]REGISTER_PREFIX
[Macro]LOCAL_LABEL_PREFIX
[Macro]USER_LABEL_PREFIX
[Macro]IMMEDIATE_PREFIX

If defined, C string expressions to be used for the ‘%R’, ‘%L’, ‘%U’, and ‘%I’ options of
asm_fprintf (see ‘final.c’). These are useful when a single ‘md’ file must support
multiple assembler formats. In that case, the various ‘tm.h’ files can define these
macros differently.

[Macro]ASM_FPRINTF_EXTENSIONS (file, argptr, format)
If defined this macro should expand to a series of case statements which will be
parsed inside the switch statement of the asm_fprintf function. This allows targets
to define extra printf formats which may useful when generating their assembler
statements. Note that uppercase letters are reserved for future generic extensions
to asm fprintf, and so are not available to target specific code. The output file is
given by the parameter file. The varargs input pointer is argptr and the rest of the
format string, starting the character after the one that is being switched upon, is
pointed to by format.

[Macro]ASSEMBLER_DIALECT
If your target supports multiple dialects of assembler language (such as different
opcodes), define this macro as a C expression that gives the numeric index of the
assembler language dialect to use, with zero as the first variant.

If this macro is defined, you may use constructs of the form
‘{option0|option1|option2...}’

in the output templates of patterns (see Section 16.5 [Output Template], page 275) or
in the first argument of asm_fprintf. This construct outputs ‘option0’, ‘option1’,
‘option2’, etc., if the value of ASSEMBLER_DIALECT is zero, one, two, etc. Any special
characters within these strings retain their usual meaning. If there are fewer alterna-
tives within the braces than the value of ASSEMBLER_DIALECT, the construct outputs
nothing.

If you do not define this macro, the characters ‘{’, ‘|’ and ‘}’ do not have any special
meaning when used in templates or operands to asm_fprintf.

Define the macros REGISTER_PREFIX, LOCAL_LABEL_PREFIX, USER_LABEL_PREFIX
and IMMEDIATE_PREFIX if you can express the variations in assembler language syntax
with that mechanism. Define ASSEMBLER_DIALECT and use the ‘{option0|option1}’
syntax if the syntax variant are larger and involve such things as different opcodes
or operand order.

[Macro]ASM_OUTPUT_REG_PUSH (stream, regno)
A C expression to output to stream some assembler code which will push hard register
number regno onto the stack. The code need not be optimal, since this macro is used
only when profiling.

488 GNU Compiler Collection (GCC) Internals

[Macro]ASM_OUTPUT_REG_POP (stream, regno)
A C expression to output to stream some assembler code which will pop hard register
number regno off of the stack. The code need not be optimal, since this macro is used
only when profiling.

17.21.8 Output of Dispatch Tables

This concerns dispatch tables.

[Macro]ASM_OUTPUT_ADDR_DIFF_ELT (stream, body, value, rel)
A C statement to output to the stdio stream stream an assembler pseudo-instruction
to generate a difference between two labels. value and rel are the numbers of two
internal labels. The definitions of these labels are output using (*targetm.asm_
out.internal_label), and they must be printed in the same way here. For example,

fprintf (stream, "\t.word L%d-L%d\n",

value, rel)

You must provide this macro on machines where the addresses in a dispatch table
are relative to the table’s own address. If defined, GCC will also use this macro on
all machines when producing PIC. body is the body of the ADDR_DIFF_VEC; it is
provided so that the mode and flags can be read.

[Macro]ASM_OUTPUT_ADDR_VEC_ELT (stream, value)
This macro should be provided on machines where the addresses in a dispatch table
are absolute.

The definition should be a C statement to output to the stdio stream stream an
assembler pseudo-instruction to generate a reference to a label. value is the number
of an internal label whose definition is output using (*targetm.asm_out.internal_
label). For example,

fprintf (stream, "\t.word L%d\n", value)

[Macro]ASM_OUTPUT_CASE_LABEL (stream, prefix, num, table)
Define this if the label before a jump-table needs to be output specially. The first three
arguments are the same as for (*targetm.asm_out.internal_label); the fourth
argument is the jump-table which follows (a jump_insn containing an addr_vec or
addr_diff_vec).

This feature is used on system V to output a swbeg statement for the table.

If this macro is not defined, these labels are output with (*targetm.asm_
out.internal_label).

[Macro]ASM_OUTPUT_CASE_END (stream, num, table)
Define this if something special must be output at the end of a jump-table. The
definition should be a C statement to be executed after the assembler code for the
table is written. It should write the appropriate code to stdio stream stream. The
argument table is the jump-table insn, and num is the label-number of the preceding
label.

If this macro is not defined, nothing special is output at the end of the jump-table.

Chapter 17: Target Description Macros and Functions 489

[Target Hook]void TARGET_ASM_EMIT_UNWIND_LABEL (stream, decl, for_eh,
empty)

This target hook emits a label at the beginning of each FDE. It should be defined on
targets where FDEs need special labels, and it should write the appropriate label, for
the FDE associated with the function declaration decl, to the stdio stream stream.
The third argument, for eh, is a boolean: true if this is for an exception table. The
fourth argument, empty, is a boolean: true if this is a placeholder label for an omitted
FDE.

The default is that FDEs are not given nonlocal labels.

[Target Hook]void TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL (stream)
This target hook emits a label at the beginning of the exception table. It should be
defined on targets where it is desirable for the table to be broken up according to
function.

The default is that no label is emitted.

[Target Hook]void TARGET_UNWIND_EMIT (FILE * stream, rtx insn)
This target hook emits and assembly directives required to unwind the given instruc-
tion. This is only used when TARGET UNWIND INFO is set.

17.21.9 Assembler Commands for Exception Regions

This describes commands marking the start and the end of an exception region.

[Macro]EH_FRAME_SECTION_NAME
If defined, a C string constant for the name of the section containing exception han-
dling frame unwind information. If not defined, GCC will provide a default definition
if the target supports named sections. ‘crtstuff.c’ uses this macro to switch to the
appropriate section.

You should define this symbol if your target supports DWARF 2 frame unwind infor-
mation and the default definition does not work.

[Macro]EH_FRAME_IN_DATA_SECTION
If defined, DWARF 2 frame unwind information will be placed in the data section even
though the target supports named sections. This might be necessary, for instance, if
the system linker does garbage collection and sections cannot be marked as not to be
collected.

Do not define this macro unless TARGET_ASM_NAMED_SECTION is also defined.

[Macro]EH_TABLES_CAN_BE_READ_ONLY
Define this macro to 1 if your target is such that no frame unwind information en-
coding used with non-PIC code will ever require a runtime relocation, but the linker
may not support merging read-only and read-write sections into a single read-write
section.

[Macro]MASK_RETURN_ADDR
An rtx used to mask the return address found via RETURN_ADDR_RTX, so that it does
not contain any extraneous set bits in it.

490 GNU Compiler Collection (GCC) Internals

[Macro]DWARF2_UNWIND_INFO
Define this macro to 0 if your target supports DWARF 2 frame unwind informa-
tion, but it does not yet work with exception handling. Otherwise, if your tar-
get supports this information (if it defines ‘INCOMING_RETURN_ADDR_RTX’ and either
‘UNALIGNED_INT_ASM_OP’ or ‘OBJECT_FORMAT_ELF’), GCC will provide a default def-
inition of 1.
If TARGET_UNWIND_INFO is defined, the target specific unwinder will be used in all
cases. Defining this macro will enable the generation of DWARF 2 frame debugging
information.
If TARGET_UNWIND_INFO is not defined, and this macro is defined to 1, the DWARF
2 unwinder will be the default exception handling mechanism; otherwise, the
setjmp/longjmp-based scheme will be used by default.

[Macro]TARGET_UNWIND_INFO
Define this macro if your target has ABI specified unwind tables. Usually these will
be output by TARGET_UNWIND_EMIT.

[Variable]Target Hook bool TARGET UNWIND TABLES DEFAULT
This variable should be set to true if the target ABI requires unwinding tables even
when exceptions are not used.

[Macro]MUST_USE_SJLJ_EXCEPTIONS
This macro need only be defined if DWARF2_UNWIND_INFO is runtime-variable. In that
case, ‘except.h’ cannot correctly determine the corresponding definition of MUST_
USE_SJLJ_EXCEPTIONS, so the target must provide it directly.

[Macro]DONT_USE_BUILTIN_SETJMP
Define this macro to 1 if the setjmp/longjmp-based scheme should use the
setjmp/longjmp functions from the C library instead of the __builtin_setjmp/__
builtin_longjmp machinery.

[Macro]DWARF_CIE_DATA_ALIGNMENT
This macro need only be defined if the target might save registers in the function
prologue at an offset to the stack pointer that is not aligned to UNITS_PER_WORD. The
definition should be the negative minimum alignment if STACK_GROWS_DOWNWARD is
defined, and the positive minimum alignment otherwise. See Section 17.22.5 [SDB
and DWARF], page 497. Only applicable if the target supports DWARF 2 frame
unwind information.

[Variable]Target Hook bool TARGET TERMINATE DW2 EH FRAME INFO
Contains the value true if the target should add a zero word onto the end of a Dwarf-2
frame info section when used for exception handling. Default value is false if EH_
FRAME_SECTION_NAME is defined, and true otherwise.

[Target Hook]rtx TARGET_DWARF_REGISTER_SPAN (rtx reg)
Given a register, this hook should return a parallel of registers to represent where to
find the register pieces. Define this hook if the register and its mode are represented
in Dwarf in non-contiguous locations, or if the register should be represented in more
than one register in Dwarf. Otherwise, this hook should return NULL_RTX. If not
defined, the default is to return NULL_RTX.

Chapter 17: Target Description Macros and Functions 491

[Target Hook]void TARGET_INIT_DWARF_REG_SIZES_EXTRA (tree address)
If some registers are represented in Dwarf-2 unwind information in multiple pieces,
define this hook to fill in information about the sizes of those pieces in the table used
by the unwinder at runtime. It will be called by expand_builtin_init_dwarf_reg_
sizes after filling in a single size corresponding to each hard register; address is the
address of the table.

[Target Hook]bool TARGET_ASM_TTYPE (rtx sym)
This hook is used to output a reference from a frame unwinding table to the type info
object identified by sym. It should return true if the reference was output. Returning
false will cause the reference to be output using the normal Dwarf2 routines.

[Target Hook]bool TARGET_ARM_EABI_UNWINDER
This hook should be set to true on targets that use an ARM EABI based unwinding
library, and false on other targets. This effects the format of unwinding tables, and
how the unwinder in entered after running a cleanup. The default is false.

17.21.10 Assembler Commands for Alignment

This describes commands for alignment.

[Macro]JUMP_ALIGN (label)
The alignment (log base 2) to put in front of label, which is a common destination of
jumps and has no fallthru incoming edge.

This macro need not be defined if you don’t want any special alignment to be done
at such a time. Most machine descriptions do not currently define the macro.

Unless it’s necessary to inspect the label parameter, it is better to set the variable
align jumps in the target’s OVERRIDE_OPTIONS. Otherwise, you should try to honor
the user’s selection in align jumps in a JUMP_ALIGN implementation.

[Macro]LABEL_ALIGN_AFTER_BARRIER (label)
The alignment (log base 2) to put in front of label, which follows a BARRIER.

This macro need not be defined if you don’t want any special alignment to be done
at such a time. Most machine descriptions do not currently define the macro.

[Macro]LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
The maximum number of bytes to skip when applying LABEL_ALIGN_AFTER_BARRIER.
This works only if ASM_OUTPUT_MAX_SKIP_ALIGN is defined.

[Macro]LOOP_ALIGN (label)
The alignment (log base 2) to put in front of label, which follows a NOTE_INSN_LOOP_
BEG note.

This macro need not be defined if you don’t want any special alignment to be done
at such a time. Most machine descriptions do not currently define the macro.

Unless it’s necessary to inspect the label parameter, it is better to set the variable
align_loops in the target’s OVERRIDE_OPTIONS. Otherwise, you should try to honor
the user’s selection in align_loops in a LOOP_ALIGN implementation.

492 GNU Compiler Collection (GCC) Internals

[Macro]LOOP_ALIGN_MAX_SKIP
The maximum number of bytes to skip when applying LOOP_ALIGN. This works only
if ASM_OUTPUT_MAX_SKIP_ALIGN is defined.

[Macro]LABEL_ALIGN (label)
The alignment (log base 2) to put in front of label. If LABEL_ALIGN_AFTER_BARRIER
/ LOOP_ALIGN specify a different alignment, the maximum of the specified values is
used.

Unless it’s necessary to inspect the label parameter, it is better to set the variable
align_labels in the target’s OVERRIDE_OPTIONS. Otherwise, you should try to honor
the user’s selection in align_labels in a LABEL_ALIGN implementation.

[Macro]LABEL_ALIGN_MAX_SKIP
The maximum number of bytes to skip when applying LABEL_ALIGN. This works only
if ASM_OUTPUT_MAX_SKIP_ALIGN is defined.

[Macro]ASM_OUTPUT_SKIP (stream, nbytes)
A C statement to output to the stdio stream stream an assembler instruction to
advance the location counter by nbytes bytes. Those bytes should be zero when
loaded. nbytes will be a C expression of type unsigned HOST_WIDE_INT.

[Macro]ASM_NO_SKIP_IN_TEXT
Define this macro if ASM_OUTPUT_SKIP should not be used in the text section because
it fails to put zeros in the bytes that are skipped. This is true on many Unix systems,
where the pseudo–op to skip bytes produces no-op instructions rather than zeros when
used in the text section.

[Macro]ASM_OUTPUT_ALIGN (stream, power)
A C statement to output to the stdio stream stream an assembler command to advance
the location counter to a multiple of 2 to the power bytes. power will be a C expression
of type int.

[Macro]ASM_OUTPUT_ALIGN_WITH_NOP (stream, power)
Like ASM_OUTPUT_ALIGN, except that the “nop” instruction is used for padding, if
necessary.

[Macro]ASM_OUTPUT_MAX_SKIP_ALIGN (stream, power, max_skip)
A C statement to output to the stdio stream stream an assembler command to advance
the location counter to a multiple of 2 to the power bytes, but only if max skip or
fewer bytes are needed to satisfy the alignment request. power and max skip will be
a C expression of type int.

Chapter 17: Target Description Macros and Functions 493

17.22 Controlling Debugging Information Format

This describes how to specify debugging information.

17.22.1 Macros Affecting All Debugging Formats

These macros affect all debugging formats.

[Macro]DBX_REGISTER_NUMBER (regno)
A C expression that returns the DBX register number for the compiler register number
regno. In the default macro provided, the value of this expression will be regno itself.
But sometimes there are some registers that the compiler knows about and DBX does
not, or vice versa. In such cases, some register may need to have one number in the
compiler and another for DBX.
If two registers have consecutive numbers inside GCC, and they can be used as a pair
to hold a multiword value, then they must have consecutive numbers after renumber-
ing with DBX_REGISTER_NUMBER. Otherwise, debuggers will be unable to access such
a pair, because they expect register pairs to be consecutive in their own numbering
scheme.
If you find yourself defining DBX_REGISTER_NUMBER in way that does not preserve
register pairs, then what you must do instead is redefine the actual register numbering
scheme.

[Macro]DEBUGGER_AUTO_OFFSET (x)
A C expression that returns the integer offset value for an automatic variable having
address x (an RTL expression). The default computation assumes that x is based on
the frame-pointer and gives the offset from the frame-pointer. This is required for
targets that produce debugging output for DBX or COFF-style debugging output for
SDB and allow the frame-pointer to be eliminated when the ‘-g’ options is used.

[Macro]DEBUGGER_ARG_OFFSET (offset, x)
A C expression that returns the integer offset value for an argument having address
x (an RTL expression). The nominal offset is offset.

[Macro]PREFERRED_DEBUGGING_TYPE
A C expression that returns the type of debugging output GCC should produce when
the user specifies just ‘-g’. Define this if you have arranged for GCC to support more
than one format of debugging output. Currently, the allowable values are DBX_DEBUG,
SDB_DEBUG, DWARF_DEBUG, DWARF2_DEBUG, XCOFF_DEBUG, VMS_DEBUG, and VMS_AND_
DWARF2_DEBUG.
When the user specifies ‘-ggdb’, GCC normally also uses the value of this macro to
select the debugging output format, but with two exceptions. If DWARF2_DEBUGGING_
INFO is defined, GCC uses the value DWARF2_DEBUG. Otherwise, if DBX_DEBUGGING_
INFO is defined, GCC uses DBX_DEBUG.
The value of this macro only affects the default debugging output; the user can always
get a specific type of output by using ‘-gstabs’, ‘-gcoff’, ‘-gdwarf-2’, ‘-gxcoff’, or
‘-gvms’.

494 GNU Compiler Collection (GCC) Internals

17.22.2 Specific Options for DBX Output

These are specific options for DBX output.

[Macro]DBX_DEBUGGING_INFO
Define this macro if GCC should produce debugging output for DBX in response to
the ‘-g’ option.

[Macro]XCOFF_DEBUGGING_INFO
Define this macro if GCC should produce XCOFF format debugging output in re-
sponse to the ‘-g’ option. This is a variant of DBX format.

[Macro]DEFAULT_GDB_EXTENSIONS
Define this macro to control whether GCC should by default generate GDB’s extended
version of DBX debugging information (assuming DBX-format debugging information
is enabled at all). If you don’t define the macro, the default is 1: always generate the
extended information if there is any occasion to.

[Macro]DEBUG_SYMS_TEXT
Define this macro if all .stabs commands should be output while in the text section.

[Macro]ASM_STABS_OP
A C string constant, including spacing, naming the assembler pseudo op to use instead
of "\t.stabs\t" to define an ordinary debugging symbol. If you don’t define this
macro, "\t.stabs\t" is used. This macro applies only to DBX debugging information
format.

[Macro]ASM_STABD_OP
A C string constant, including spacing, naming the assembler pseudo op to use instead
of "\t.stabd\t" to define a debugging symbol whose value is the current location. If
you don’t define this macro, "\t.stabd\t" is used. This macro applies only to DBX
debugging information format.

[Macro]ASM_STABN_OP
A C string constant, including spacing, naming the assembler pseudo op to use instead
of "\t.stabn\t" to define a debugging symbol with no name. If you don’t define this
macro, "\t.stabn\t" is used. This macro applies only to DBX debugging information
format.

[Macro]DBX_NO_XREFS
Define this macro if DBX on your system does not support the construct ‘xstagname ’.
On some systems, this construct is used to describe a forward reference to a structure
named tagname. On other systems, this construct is not supported at all.

[Macro]DBX_CONTIN_LENGTH
A symbol name in DBX-format debugging information is normally continued (split
into two separate .stabs directives) when it exceeds a certain length (by default,
80 characters). On some operating systems, DBX requires this splitting; on others,
splitting must not be done. You can inhibit splitting by defining this macro with the
value zero. You can override the default splitting-length by defining this macro as an
expression for the length you desire.

Chapter 17: Target Description Macros and Functions 495

[Macro]DBX_CONTIN_CHAR
Normally continuation is indicated by adding a ‘\’ character to the end of a .stabs
string when a continuation follows. To use a different character instead, define this
macro as a character constant for the character you want to use. Do not define this
macro if backslash is correct for your system.

[Macro]DBX_STATIC_STAB_DATA_SECTION
Define this macro if it is necessary to go to the data section before outputting the
‘.stabs’ pseudo-op for a non-global static variable.

[Macro]DBX_TYPE_DECL_STABS_CODE
The value to use in the “code” field of the .stabs directive for a typedef. The default
is N_LSYM.

[Macro]DBX_STATIC_CONST_VAR_CODE
The value to use in the “code” field of the .stabs directive for a static variable located
in the text section. DBX format does not provide any “right” way to do this. The
default is N_FUN.

[Macro]DBX_REGPARM_STABS_CODE
The value to use in the “code” field of the .stabs directive for a parameter passed
in registers. DBX format does not provide any “right” way to do this. The default is
N_RSYM.

[Macro]DBX_REGPARM_STABS_LETTER
The letter to use in DBX symbol data to identify a symbol as a parameter passed in
registers. DBX format does not customarily provide any way to do this. The default
is ’P’.

[Macro]DBX_FUNCTION_FIRST
Define this macro if the DBX information for a function and its arguments should
precede the assembler code for the function. Normally, in DBX format, the debugging
information entirely follows the assembler code.

[Macro]DBX_BLOCKS_FUNCTION_RELATIVE
Define this macro, with value 1, if the value of a symbol describing the scope of a
block (N_LBRAC or N_RBRAC) should be relative to the start of the enclosing function.
Normally, GCC uses an absolute address.

[Macro]DBX_LINES_FUNCTION_RELATIVE
Define this macro, with value 1, if the value of a symbol indicating the current line
number (N_SLINE) should be relative to the start of the enclosing function. Normally,
GCC uses an absolute address.

[Macro]DBX_USE_BINCL
Define this macro if GCC should generate N_BINCL and N_EINCL stabs for included
header files, as on Sun systems. This macro also directs GCC to output a type number
as a pair of a file number and a type number within the file. Normally, GCC does
not generate N_BINCL or N_EINCL stabs, and it outputs a single number for a type
number.

496 GNU Compiler Collection (GCC) Internals

17.22.3 Open-Ended Hooks for DBX Format

These are hooks for DBX format.

[Macro]DBX_OUTPUT_LBRAC (stream, name)
Define this macro to say how to output to stream the debugging information for the
start of a scope level for variable names. The argument name is the name of an
assembler symbol (for use with assemble_name) whose value is the address where the
scope begins.

[Macro]DBX_OUTPUT_RBRAC (stream, name)
Like DBX_OUTPUT_LBRAC, but for the end of a scope level.

[Macro]DBX_OUTPUT_NFUN (stream, lscope_label, decl)
Define this macro if the target machine requires special handling to output an N_FUN
entry for the function decl.

[Macro]DBX_OUTPUT_SOURCE_LINE (stream, line, counter)
A C statement to output DBX debugging information before code for line number line
of the current source file to the stdio stream stream. counter is the number of time
the macro was invoked, including the current invocation; it is intended to generate
unique labels in the assembly output.

This macro should not be defined if the default output is correct, or if it can be made
correct by defining DBX_LINES_FUNCTION_RELATIVE.

[Macro]NO_DBX_FUNCTION_END
Some stabs encapsulation formats (in particular ECOFF), cannot handle the .stabs
"",N_FUN,,0,0,Lscope-function-1 gdb dbx extension construct. On those ma-
chines, define this macro to turn this feature off without disturbing the rest of the
gdb extensions.

[Macro]NO_DBX_BNSYM_ENSYM
Some assemblers cannot handle the .stabd BNSYM/ENSYM,0,0 gdb dbx extension con-
struct. On those machines, define this macro to turn this feature off without disturb-
ing the rest of the gdb extensions.

17.22.4 File Names in DBX Format

This describes file names in DBX format.

[Macro]DBX_OUTPUT_MAIN_SOURCE_FILENAME (stream, name)
A C statement to output DBX debugging information to the stdio stream stream,
which indicates that file name is the main source file—the file specified as the input
file for compilation. This macro is called only once, at the beginning of compilation.

This macro need not be defined if the standard form of output for DBX debugging
information is appropriate.

It may be necessary to refer to a label equal to the beginning of the text section. You
can use ‘assemble_name (stream, ltext_label_name)’ to do so. If you do this, you
must also set the variable used ltext label name to true.

Chapter 17: Target Description Macros and Functions 497

[Macro]NO_DBX_MAIN_SOURCE_DIRECTORY
Define this macro, with value 1, if GCC should not emit an indication of the current
directory for compilation and current source language at the beginning of the file.

[Macro]NO_DBX_GCC_MARKER
Define this macro, with value 1, if GCC should not emit an indication that this object
file was compiled by GCC. The default is to emit an N_OPT stab at the beginning of
every source file, with ‘gcc2_compiled.’ for the string and value 0.

[Macro]DBX_OUTPUT_MAIN_SOURCE_FILE_END (stream, name)
A C statement to output DBX debugging information at the end of compilation of
the main source file name. Output should be written to the stdio stream stream.

If you don’t define this macro, nothing special is output at the end of compilation,
which is correct for most machines.

[Macro]DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END
Define this macro instead of defining DBX_OUTPUT_MAIN_SOURCE_FILE_END, if what
needs to be output at the end of compilation is a N_SO stab with an empty string,
whose value is the highest absolute text address in the file.

17.22.5 Macros for SDB and DWARF Output

Here are macros for SDB and DWARF output.

[Macro]SDB_DEBUGGING_INFO
Define this macro if GCC should produce COFF-style debugging output for SDB in
response to the ‘-g’ option.

[Macro]DWARF2_DEBUGGING_INFO
Define this macro if GCC should produce dwarf version 2 format debugging output
in response to the ‘-g’ option.

[Target Hook]int TARGET_DWARF_CALLING_CONVENTION (tree function)
Define this to enable the dwarf attribute DW_AT_calling_convention to be
emitted for each function. Instead of an integer return the enum value for the
DW_CC_ tag.

To support optional call frame debugging information, you must also define
INCOMING_RETURN_ADDR_RTX and either set RTX_FRAME_RELATED_P on the
prologue insns if you use RTL for the prologue, or call dwarf2out_def_cfa and
dwarf2out_reg_save as appropriate from TARGET_ASM_FUNCTION_PROLOGUE if you
don’t.

[Macro]DWARF2_FRAME_INFO
Define this macro to a nonzero value if GCC should always output Dwarf 2 frame
information. If DWARF2_UNWIND_INFO (see Section 17.21.9 [Exception Region Output],
page 489 is nonzero, GCC will output this information not matter how you define
DWARF2_FRAME_INFO.

498 GNU Compiler Collection (GCC) Internals

[Macro]DWARF2_ASM_LINE_DEBUG_INFO
Define this macro to be a nonzero value if the assembler can generate Dwarf 2 line
debug info sections. This will result in much more compact line number tables, and
hence is desirable if it works.

[Macro]ASM_OUTPUT_DWARF_DELTA (stream, size, label1, label2)
A C statement to issue assembly directives that create a difference lab1 minus lab2,
using an integer of the given size.

[Macro]ASM_OUTPUT_DWARF_OFFSET (stream, size, label, section)
A C statement to issue assembly directives that create a section-relative reference to
the given label, using an integer of the given size. The label is known to be defined
in the given section.

[Macro]ASM_OUTPUT_DWARF_PCREL (stream, size, label)
A C statement to issue assembly directives that create a self-relative reference to the
given label, using an integer of the given size.

[Target Hook]void TARGET_ASM_OUTPUT_DWARF_DTPREL (FILE *FILE, int size,
rtx x)

If defined, this target hook is a function which outputs a DTP-relative reference to
the given TLS symbol of the specified size.

[Macro]PUT_SDB_...
Define these macros to override the assembler syntax for the special SDB assembler
directives. See ‘sdbout.c’ for a list of these macros and their arguments. If the
standard syntax is used, you need not define them yourself.

[Macro]SDB_DELIM
Some assemblers do not support a semicolon as a delimiter, even between SDB as-
sembler directives. In that case, define this macro to be the delimiter to use (usually
‘\n’). It is not necessary to define a new set of PUT_SDB_op macros if this is the only
change required.

[Macro]SDB_ALLOW_UNKNOWN_REFERENCES
Define this macro to allow references to unknown structure, union, or enumeration
tags to be emitted. Standard COFF does not allow handling of unknown references,
MIPS ECOFF has support for it.

[Macro]SDB_ALLOW_FORWARD_REFERENCES
Define this macro to allow references to structure, union, or enumeration tags that
have not yet been seen to be handled. Some assemblers choke if forward tags are
used, while some require it.

[Macro]SDB_OUTPUT_SOURCE_LINE (stream, line)
A C statement to output SDB debugging information before code for line number
line of the current source file to the stdio stream stream. The default is to emit an
.ln directive.

Chapter 17: Target Description Macros and Functions 499

17.22.6 Macros for VMS Debug Format

Here are macros for VMS debug format.

[Macro]VMS_DEBUGGING_INFO
Define this macro if GCC should produce debugging output for VMS in response to
the ‘-g’ option. The default behavior for VMS is to generate minimal debug info for a
traceback in the absence of ‘-g’ unless explicitly overridden with ‘-g0’. This behavior
is controlled by OPTIMIZATION_OPTIONS and OVERRIDE_OPTIONS.

17.23 Cross Compilation and Floating Point

While all modern machines use twos-complement representation for integers, there are a
variety of representations for floating point numbers. This means that in a cross-compiler
the representation of floating point numbers in the compiled program may be different from
that used in the machine doing the compilation.

Because different representation systems may offer different amounts of range and pre-
cision, all floating point constants must be represented in the target machine’s format.
Therefore, the cross compiler cannot safely use the host machine’s floating point arith-
metic; it must emulate the target’s arithmetic. To ensure consistency, GCC always uses
emulation to work with floating point values, even when the host and target floating point
formats are identical.

The following macros are provided by ‘real.h’ for the compiler to use. All parts of
the compiler which generate or optimize floating-point calculations must use these macros.
They may evaluate their operands more than once, so operands must not have side effects.

[Macro]REAL_VALUE_TYPE
The C data type to be used to hold a floating point value in the target machine’s
format. Typically this is a struct containing an array of HOST_WIDE_INT, but all
code should treat it as an opaque quantity.

[Macro]int REAL_VALUES_EQUAL (REAL VALUE TYPE x, REAL VALUE TYPE
y)

Compares for equality the two values, x and y. If the target floating point format
supports negative zeroes and/or NaNs, ‘REAL_VALUES_EQUAL (-0.0, 0.0)’ is true,
and ‘REAL_VALUES_EQUAL (NaN, NaN)’ is false.

[Macro]int REAL_VALUES_LESS (REAL VALUE TYPE x, REAL VALUE TYPE
y)

Tests whether x is less than y.

[Macro]HOST_WIDE_INT REAL_VALUE_FIX (REAL VALUE TYPE x)
Truncates x to a signed integer, rounding toward zero.

[Macro]unsigned HOST_WIDE_INT REAL_VALUE_UNSIGNED_FIX
(REAL VALUE TYPE x)

Truncates x to an unsigned integer, rounding toward zero. If x is negative, returns
zero.

500 GNU Compiler Collection (GCC) Internals

[Macro]REAL_VALUE_TYPE REAL_VALUE_ATOF (const char *string, enum
machine mode mode)

Converts string into a floating point number in the target machine’s representation
for mode mode. This routine can handle both decimal and hexadecimal floating point
constants, using the syntax defined by the C language for both.

[Macro]int REAL_VALUE_NEGATIVE (REAL VALUE TYPE x)
Returns 1 if x is negative (including negative zero), 0 otherwise.

[Macro]int REAL_VALUE_ISINF (REAL VALUE TYPE x)
Determines whether x represents infinity (positive or negative).

[Macro]int REAL_VALUE_ISNAN (REAL VALUE TYPE x)
Determines whether x represents a “NaN” (not-a-number).

[Macro]void REAL_ARITHMETIC (REAL VALUE TYPE output, enum tree code
code, REAL VALUE TYPE x, REAL VALUE TYPE y)

Calculates an arithmetic operation on the two floating point values x and y, storing
the result in output (which must be a variable).

The operation to be performed is specified by code. Only the following codes are
supported: PLUS_EXPR, MINUS_EXPR, MULT_EXPR, RDIV_EXPR, MAX_EXPR, MIN_EXPR.

If REAL_ARITHMETIC is asked to evaluate division by zero and the target’s floating
point format cannot represent infinity, it will call abort. Callers should check for
this situation first, using MODE_HAS_INFINITIES. See Section 17.5 [Storage Layout],
page 381.

[Macro]REAL_VALUE_TYPE REAL_VALUE_NEGATE (REAL VALUE TYPE x)
Returns the negative of the floating point value x.

[Macro]REAL_VALUE_TYPE REAL_VALUE_ABS (REAL VALUE TYPE x)
Returns the absolute value of x.

[Macro]REAL_VALUE_TYPE REAL_VALUE_TRUNCATE (REAL VALUE TYPE mode,
enum machine mode x)

Truncates the floating point value x to fit in mode. The return value is still a full-size
REAL_VALUE_TYPE, but it has an appropriate bit pattern to be output as a floating
constant whose precision accords with mode mode.

[Macro]void REAL_VALUE_TO_INT (HOST WIDE INT low, HOST WIDE INT
high, REAL VALUE TYPE x)

Converts a floating point value x into a double-precision integer which is then stored
into low and high. If the value is not integral, it is truncated.

[Macro]void REAL_VALUE_FROM_INT (REAL VALUE TYPE x, HOST WIDE INT
low, HOST WIDE INT high, enum machine mode mode)

Converts a double-precision integer found in low and high, into a floating point value
which is then stored into x. The value is truncated to fit in mode mode.

Chapter 17: Target Description Macros and Functions 501

17.24 Mode Switching Instructions

The following macros control mode switching optimizations:

[Macro]OPTIMIZE_MODE_SWITCHING (entity)
Define this macro if the port needs extra instructions inserted for mode switching in
an optimizing compilation.

For an example, the SH4 can perform both single and double precision floating point
operations, but to perform a single precision operation, the FPSCR PR bit has to be
cleared, while for a double precision operation, this bit has to be set. Changing the
PR bit requires a general purpose register as a scratch register, hence these FPSCR
sets have to be inserted before reload, i.e. you can’t put this into instruction emitting
or TARGET_MACHINE_DEPENDENT_REORG.

You can have multiple entities that are mode-switched, and select at run time which
entities actually need it. OPTIMIZE_MODE_SWITCHING should return nonzero for any
entity that needs mode-switching. If you define this macro, you also have to de-
fine NUM_MODES_FOR_MODE_SWITCHING, MODE_NEEDED, MODE_PRIORITY_TO_MODE and
EMIT_MODE_SET. MODE_AFTER, MODE_ENTRY, and MODE_EXIT are optional.

[Macro]NUM_MODES_FOR_MODE_SWITCHING
If you define OPTIMIZE_MODE_SWITCHING, you have to define this as initializer for
an array of integers. Each initializer element N refers to an entity that needs mode
switching, and specifies the number of different modes that might need to be set
for this entity. The position of the initializer in the initializer—starting counting
at zero—determines the integer that is used to refer to the mode-switched entity in
question. In macros that take mode arguments / yield a mode result, modes are
represented as numbers 0 . . . N − 1. N is used to specify that no mode switch is
needed / supplied.

[Macro]MODE_NEEDED (entity, insn)
entity is an integer specifying a mode-switched entity. If OPTIMIZE_MODE_SWITCHING
is defined, you must define this macro to return an integer value not larger than the
corresponding element in NUM_MODES_FOR_MODE_SWITCHING, to denote the mode that
entity must be switched into prior to the execution of insn.

[Macro]MODE_AFTER (mode, insn)
If this macro is defined, it is evaluated for every insn during mode switching. It
determines the mode that an insn results in (if different from the incoming mode).

[Macro]MODE_ENTRY (entity)
If this macro is defined, it is evaluated for every entity that needs mode switching. It
should evaluate to an integer, which is a mode that entity is assumed to be switched
to at function entry. If MODE_ENTRY is defined then MODE_EXIT must be defined.

[Macro]MODE_EXIT (entity)
If this macro is defined, it is evaluated for every entity that needs mode switching. It
should evaluate to an integer, which is a mode that entity is assumed to be switched
to at function exit. If MODE_EXIT is defined then MODE_ENTRY must be defined.

502 GNU Compiler Collection (GCC) Internals

[Macro]MODE_PRIORITY_TO_MODE (entity, n)
This macro specifies the order in which modes for entity are processed. 0 is the highest
priority, NUM_MODES_FOR_MODE_SWITCHING[entity] - 1 the lowest. The value of the
macro should be an integer designating a mode for entity. For any fixed entity,
mode_priority_to_mode (entity, n) shall be a bijection in 0 . . . num_modes_for_
mode_switching[entity] - 1.

[Macro]EMIT_MODE_SET (entity, mode, hard_regs_live)
Generate one or more insns to set entity to mode. hard reg live is the set of hard
registers live at the point where the insn(s) are to be inserted.

17.25 Defining target-specific uses of __attribute__

Target-specific attributes may be defined for functions, data and types. These are described
using the following target hooks; they also need to be documented in ‘extend.texi’.

[Target Hook]const struct attribute_spec * TARGET_ATTRIBUTE_TABLE
If defined, this target hook points to an array of ‘struct attribute_spec’ (defined
in ‘tree.h’) specifying the machine specific attributes for this target and some of the
restrictions on the entities to which these attributes are applied and the arguments
they take.

[Target Hook]int TARGET_COMP_TYPE_ATTRIBUTES (tree type1, tree type2)
If defined, this target hook is a function which returns zero if the attributes on type1
and type2 are incompatible, one if they are compatible, and two if they are nearly
compatible (which causes a warning to be generated). If this is not defined, machine-
specific attributes are supposed always to be compatible.

[Target Hook]void TARGET_SET_DEFAULT_TYPE_ATTRIBUTES (tree type)
If defined, this target hook is a function which assigns default attributes to newly
defined type.

[Target Hook]tree TARGET_MERGE_TYPE_ATTRIBUTES (tree type1, tree type2)
Define this target hook if the merging of type attributes needs special handling. If
defined, the result is a list of the combined TYPE_ATTRIBUTES of type1 and type2. It
is assumed that comptypes has already been called and returned 1. This function
may call merge_attributes to handle machine-independent merging.

[Target Hook]tree TARGET_MERGE_DECL_ATTRIBUTES (tree olddecl, tree
newdecl)

Define this target hook if the merging of decl attributes needs special handling. If
defined, the result is a list of the combined DECL_ATTRIBUTES of olddecl and newdecl.
newdecl is a duplicate declaration of olddecl. Examples of when this is needed are
when one attribute overrides another, or when an attribute is nullified by a subsequent
definition. This function may call merge_attributes to handle machine-independent
merging.
If the only target-specific handling you require is ‘dllimport’ for Microsoft Win-
dows targets, you should define the macro TARGET_DLLIMPORT_DECL_ATTRIBUTES to 1.
The compiler will then define a function called merge_dllimport_decl_attributes

Chapter 17: Target Description Macros and Functions 503

which can then be defined as the expansion of TARGET_MERGE_DECL_ATTRIBUTES. You
can also add handle_dll_attribute in the attribute table for your port to perform
initial processing of the ‘dllimport’ and ‘dllexport’ attributes. This is done in
‘i386/cygwin.h’ and ‘i386/i386.c’, for example.

[Target Hook]bool TARGET_VALID_DLLIMPORT_ATTRIBUTE_P (tree decl)
decl is a variable or function with __attribute__((dllimport)) specified. Use this
hook if the target needs to add extra validation checks to handle_dll_attribute.

[Macro]TARGET_DECLSPEC
Define this macro to a nonzero value if you want to treat __declspec(X) as equivalent
to __attribute((X)). By default, this behavior is enabled only for targets that define
TARGET_DLLIMPORT_DECL_ATTRIBUTES. The current implementation of __declspec
is via a built-in macro, but you should not rely on this implementation detail.

[Target Hook]void TARGET_INSERT_ATTRIBUTES (tree node, tree *attr_ptr)
Define this target hook if you want to be able to add attributes to a decl when it
is being created. This is normally useful for back ends which wish to implement a
pragma by using the attributes which correspond to the pragma’s effect. The node
argument is the decl which is being created. The attr ptr argument is a pointer to
the attribute list for this decl. The list itself should not be modified, since it may be
shared with other decls, but attributes may be chained on the head of the list and
*attr_ptr modified to point to the new attributes, or a copy of the list may be made
if further changes are needed.

[Target Hook]bool TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P (tree fndecl)
This target hook returns true if it is ok to inline fndecl into the current function,
despite its having target-specific attributes, false otherwise. By default, if a function
has a target specific attribute attached to it, it will not be inlined.

[Target Hook]bool TARGET_VALID_OPTION_ATTRIBUTE_P (tree fndecl, tree
name, tree args, int flags)

This hook is called to parse the attribute(option("...")), and it allows the func-
tion to set different target machine compile time options for the current function that
might be different than the options specified on the command line. The hook should
return true if the options are valid.

The hook should set the DECL FUNCTION SPECIFIC TARGET field in the func-
tion declaration to hold a pointer to a target specific struct cl target option structure.

[Target Hook]void TARGET_OPTION_SAVE (struct cl target option *ptr)
This hook is called to save any additional target specific information in the struct
cl target option structure for function specific options. See Section 7.1 [Option file
format], page 89.

[Target Hook]void TARGET_OPTION_RESTORE (struct cl target option *ptr)
This hook is called to restore any additional target specific information in the struct
cl target option structure for function specific options.

504 GNU Compiler Collection (GCC) Internals

[Target Hook]void TARGET_OPTION_PRINT (struct cl target option *ptr)
This hook is called to print any additional target specific information in the struct
cl target option structure for function specific options.

[Target Hook]bool TARGET_OPTION_PRAGMA_PARSE (target args)
This target hook parses the options for #pragma GCC option to set the machine spe-
cific options for functions that occur later in the input stream. The options should
be the same as handled by the TARGET_VALID_OPTION_ATTRIBUTE_P hook.

[Target Hook]bool TARGET_CAN_INLINE_P (tree caller, tree callee)
This target hook returns false if the caller function cannot inline callee, based on
target specific information. By default, inlining is not allowed if the callee function
has function specific target options and the caller does not use the same options.

17.26 Emulating TLS

For targets whose psABI does not provide Thread Local Storage via specific relocations
and instruction sequences, an emulation layer is used. A set of target hooks allows this
emulation layer to be configured for the requirements of a particular target. For instance
the psABI may in fact specify TLS support in terms of an emulation layer.

The emulation layer works by creating a control object for every TLS object. To access
the TLS object, a lookup function is provided which, when given the address of the control
object, will return the address of the current thread’s instance of the TLS object.

[Target Hook]const char * TARGET_EMUTLS_GET_ADDRESS
Contains the name of the helper function that uses a TLS control object to locate a
TLS instance. The default causes libgcc’s emulated TLS helper function to be used.

[Target Hook]const char * TARGET_EMUTLS_REGISTER_COMMON
Contains the name of the helper function that should be used at program startup
to register TLS objects that are implicitly initialized to zero. If this is NULL, all
TLS objects will have explicit initializers. The default causes libgcc’s emulated TLS
registration function to be used.

[Target Hook]const char * TARGET_EMUTLS_VAR_SECTION
Contains the name of the section in which TLS control variables should be placed.
The default of NULL allows these to be placed in any section.

[Target Hook]const char * TARGET_EMUTLS_TMPL_SECTION
Contains the name of the section in which TLS initializers should be placed. The
default of NULL allows these to be placed in any section.

[Target Hook]const char * TARGET_EMUTLS_VAR_PREFIX
Contains the prefix to be prepended to TLS control variable names. The default of
NULL uses a target-specific prefix.

[Target Hook]const char * TARGET_EMUTLS_TMPL_PREFIX
Contains the prefix to be prepended to TLS initializer objects. The default of NULL
uses a target-specific prefix.

Chapter 17: Target Description Macros and Functions 505

[Target Hook]tree TARGET_EMUTLS_VAR_FIELDS (tree type, tree *name)
Specifies a function that generates the FIELD DECLs for a TLS control object type.
type is the RECORD TYPE the fields are for and name should be filled with the
structure tag, if the default of __emutls_object is unsuitable. The default creates a
type suitable for libgcc’s emulated TLS function.

[Target Hook]tree TARGET_EMUTLS_VAR_INIT (tree var, tree decl, tree
tmpl_addr)

Specifies a function that generates the CONSTRUCTOR to initialize a TLS control
object. var is the TLS control object, decl is the TLS object and tmpl addr is the
address of the initializer. The default initializes libgcc’s emulated TLS control object.

[Target Hook]bool TARGET_EMUTLS_VAR_ALIGN_FIXED
Specifies whether the alignment of TLS control variable objects is fixed and should
not be increased as some backends may do to optimize single objects. The default is
false.

[Target Hook]bool TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS
Specifies whether a DWARF DW_OP_form_tls_address location descriptor may be
used to describe emulated TLS control objects.

17.27 Defining coprocessor specifics for MIPS targets.

The MIPS specification allows MIPS implementations to have as many as 4 coprocessors,
each with as many as 32 private registers. GCC supports accessing these registers and
transferring values between the registers and memory using asm-ized variables. For example:

register unsigned int cp0count asm ("c0r1");

unsigned int d;

d = cp0count + 3;

(“c0r1” is the default name of register 1 in coprocessor 0; alternate names may be
added as described below, or the default names may be overridden entirely in SUBTARGET_
CONDITIONAL_REGISTER_USAGE.)

Coprocessor registers are assumed to be epilogue-used; sets to them will be preserved
even if it does not appear that the register is used again later in the function.

Another note: according to the MIPS spec, coprocessor 1 (if present) is the FPU. One
accesses COP1 registers through standard mips floating-point support; they are not included
in this mechanism.

There is one macro used in defining the MIPS coprocessor interface which you may want
to override in subtargets; it is described below.

[Macro]ALL_COP_ADDITIONAL_REGISTER_NAMES
A comma-separated list (with leading comma) of pairs describing the alternate names
of coprocessor registers. The format of each entry should be

{ alternatename, register_number}

Default: empty.

506 GNU Compiler Collection (GCC) Internals

17.28 Parameters for Precompiled Header Validity Checking

[Target Hook]void *TARGET_GET_PCH_VALIDITY (size t *sz)
This hook returns the data needed by TARGET_PCH_VALID_P and sets ‘*sz ’ to the size
of the data in bytes.

[Target Hook]const char *TARGET PCH VALID P (const void *data, size t sz)
This hook checks whether the options used to create a PCH file are compatible with
the current settings. It returns NULL if so and a suitable error message if not. Error
messages will be presented to the user and must be localized using ‘_(msg)’.
data is the data that was returned by TARGET_GET_PCH_VALIDITY when the PCH file
was created and sz is the size of that data in bytes. It’s safe to assume that the data
was created by the same version of the compiler, so no format checking is needed.
The default definition of default_pch_valid_p should be suitable for most targets.

[Target Hook]const char *TARGET CHECK PCH TARGET FLAGS (int
pch_flags)

If this hook is nonnull, the default implementation of TARGET_PCH_VALID_P will use
it to check for compatible values of target_flags. pch flags specifies the value that
target_flags had when the PCH file was created. The return value is the same as
for TARGET_PCH_VALID_P.

17.29 C++ ABI parameters

[Target Hook]tree TARGET_CXX_GUARD_TYPE (void)
Define this hook to override the integer type used for guard variables. These
are used to implement one-time construction of static objects. The default is
long long integer type node.

[Target Hook]bool TARGET_CXX_GUARD_MASK_BIT (void)
This hook determines how guard variables are used. It should return false (the
default) if first byte should be used. A return value of true indicates the least
significant bit should be used.

[Target Hook]tree TARGET_CXX_GET_COOKIE_SIZE (tree type)
This hook returns the size of the cookie to use when allocating an array whose elements
have the indicated type. Assumes that it is already known that a cookie is needed.
The default is max(sizeof (size_t), alignof(type)), as defined in section 2.7 of
the IA64/Generic C++ ABI.

[Target Hook]bool TARGET_CXX_COOKIE_HAS_SIZE (void)
This hook should return true if the element size should be stored in array cookies.
The default is to return false.

[Target Hook]int TARGET_CXX_IMPORT_EXPORT_CLASS (tree type, int
import_export)

If defined by a backend this hook allows the decision made to export class type to
be overruled. Upon entry import export will contain 1 if the class is going to be
exported, −1 if it is going to be imported and 0 otherwise. This function should

Chapter 17: Target Description Macros and Functions 507

return the modified value and perform any other actions necessary to support the
backend’s targeted operating system.

[Target Hook]bool TARGET_CXX_CDTOR_RETURNS_THIS (void)
This hook should return true if constructors and destructors return the address of
the object created/destroyed. The default is to return false.

[Target Hook]bool TARGET_CXX_KEY_METHOD_MAY_BE_INLINE (void)
This hook returns true if the key method for a class (i.e., the method which, if defined
in the current translation unit, causes the virtual table to be emitted) may be an inline
function. Under the standard Itanium C++ ABI the key method may be an inline
function so long as the function is not declared inline in the class definition. Under
some variants of the ABI, an inline function can never be the key method. The default
is to return true.

[Target Hook]void TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY (tree
decl)

decl is a virtual table, virtual table table, typeinfo object, or other similar implicit
class data object that will be emitted with external linkage in this translation unit. No
ELF visibility has been explicitly specified. If the target needs to specify a visibility
other than that of the containing class, use this hook to set DECL_VISIBILITY and
DECL_VISIBILITY_SPECIFIED.

[Target Hook]bool TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT (void)
This hook returns true (the default) if virtual tables and other similar implicit class
data objects are always COMDAT if they have external linkage. If this hook returns
false, then class data for classes whose virtual table will be emitted in only one
translation unit will not be COMDAT.

[Target Hook]bool TARGET_CXX_LIBRARY_RTTI_COMDAT (void)
This hook returns true (the default) if the RTTI information for the basic types which
is defined in the C++ runtime should always be COMDAT, false if it should not be
COMDAT.

[Target Hook]bool TARGET_CXX_USE_AEABI_ATEXIT (void)
This hook returns true if __aeabi_atexit (as defined by the ARM EABI) should be
used to register static destructors when ‘-fuse-cxa-atexit’ is in effect. The default
is to return false to use __cxa_atexit.

[Target Hook]bool TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT (void)
This hook returns true if the target atexit function can be used in the same man-
ner as __cxa_atexit to register C++ static destructors. This requires that atexit-
registered functions in shared libraries are run in the correct order when the libraries
are unloaded. The default is to return false.

[Target Hook]void TARGET_CXX_ADJUST_CLASS_AT_DEFINITION (tree type)
type is a C++ class (i.e., RECORD TYPE or UNION TYPE) that has just been
defined. Use this hook to make adjustments to the class (eg, tweak visibility or
perform any other required target modifications).

508 GNU Compiler Collection (GCC) Internals

17.30 Miscellaneous Parameters

Here are several miscellaneous parameters.

[Macro]HAS_LONG_COND_BRANCH
Define this boolean macro to indicate whether or not your architecture has conditional
branches that can span all of memory. It is used in conjunction with an optimization
that partitions hot and cold basic blocks into separate sections of the executable. If
this macro is set to false, gcc will convert any conditional branches that attempt to
cross between sections into unconditional branches or indirect jumps.

[Macro]HAS_LONG_UNCOND_BRANCH
Define this boolean macro to indicate whether or not your architecture has uncon-
ditional branches that can span all of memory. It is used in conjunction with an
optimization that partitions hot and cold basic blocks into separate sections of the
executable. If this macro is set to false, gcc will convert any unconditional branches
that attempt to cross between sections into indirect jumps.

[Macro]CASE_VECTOR_MODE
An alias for a machine mode name. This is the machine mode that elements of a
jump-table should have.

[Macro]CASE_VECTOR_SHORTEN_MODE (min_offset, max_offset, body)
Optional: return the preferred mode for an addr_diff_vec when the minimum and
maximum offset are known. If you define this, it enables extra code in branch short-
ening to deal with addr_diff_vec. To make this work, you also have to define INSN_
ALIGN and make the alignment for addr_diff_vec explicit. The body argument is
provided so that the offset unsigned and scale flags can be updated.

[Macro]CASE_VECTOR_PC_RELATIVE
Define this macro to be a C expression to indicate when jump-tables should contain
relative addresses. You need not define this macro if jump-tables never contain relative
addresses, or jump-tables should contain relative addresses only when ‘-fPIC’ or
‘-fPIC’ is in effect.

[Macro]CASE_VALUES_THRESHOLD
Define this to be the smallest number of different values for which it is best to use a
jump-table instead of a tree of conditional branches. The default is four for machines
with a casesi instruction and five otherwise. This is best for most machines.

[Macro]CASE_USE_BIT_TESTS
Define this macro to be a C expression to indicate whether C switch statements may
be implemented by a sequence of bit tests. This is advantageous on processors that
can efficiently implement left shift of 1 by the number of bits held in a register, but
inappropriate on targets that would require a loop. By default, this macro returns
true if the target defines an ashlsi3 pattern, and false otherwise.

[Macro]WORD_REGISTER_OPERATIONS
Define this macro if operations between registers with integral mode smaller than a
word are always performed on the entire register. Most RISC machines have this
property and most CISC machines do not.

Chapter 17: Target Description Macros and Functions 509

[Macro]LOAD_EXTEND_OP (mem_mode)
Define this macro to be a C expression indicating when insns that read memory in
mem mode, an integral mode narrower than a word, set the bits outside of mem mode
to be either the sign-extension or the zero-extension of the data read. Return SIGN_
EXTEND for values of mem mode for which the insn sign-extends, ZERO_EXTEND for
which it zero-extends, and UNKNOWN for other modes.
This macro is not called with mem mode non-integral or with a width greater than or
equal to BITS_PER_WORD, so you may return any value in this case. Do not define this
macro if it would always return UNKNOWN. On machines where this macro is defined,
you will normally define it as the constant SIGN_EXTEND or ZERO_EXTEND.
You may return a non-UNKNOWN value even if for some hard registers the sign extension
is not performed, if for the REGNO_REG_CLASS of these hard registers CANNOT_CHANGE_
MODE_CLASS returns nonzero when the from mode is mem mode and the to mode is
any integral mode larger than this but not larger than word_mode.
You must return UNKNOWN if for some hard registers that allow this mode, CANNOT_
CHANGE_MODE_CLASS says that they cannot change to word_mode, but that they can
change to another integral mode that is larger then mem mode but still smaller than
word_mode.

[Macro]SHORT_IMMEDIATES_SIGN_EXTEND
Define this macro if loading short immediate values into registers sign extends.

[Macro]FIXUNS_TRUNC_LIKE_FIX_TRUNC
Define this macro if the same instructions that convert a floating point number to a
signed fixed point number also convert validly to an unsigned one.

[Target Hook]int TARGET_MIN_DIVISIONS_FOR_RECIP_MUL (enum machine mode
mode)

When ‘-ffast-math’ is in effect, GCC tries to optimize divisions by the same divisor,
by turning them into multiplications by the reciprocal. This target hook specifies
the minimum number of divisions that should be there for GCC to perform the
optimization for a variable of mode mode. The default implementation returns 3 if
the machine has an instruction for the division, and 2 if it does not.

[Macro]MOVE_MAX
The maximum number of bytes that a single instruction can move quickly between
memory and registers or between two memory locations.

[Macro]MAX_MOVE_MAX
The maximum number of bytes that a single instruction can move quickly between
memory and registers or between two memory locations. If this is undefined, the
default is MOVE_MAX. Otherwise, it is the constant value that is the largest value that
MOVE_MAX can have at run-time.

[Macro]SHIFT_COUNT_TRUNCATED
A C expression that is nonzero if on this machine the number of bits actually used
for the count of a shift operation is equal to the number of bits needed to represent
the size of the object being shifted. When this macro is nonzero, the compiler will

510 GNU Compiler Collection (GCC) Internals

assume that it is safe to omit a sign-extend, zero-extend, and certain bitwise ‘and’
instructions that truncates the count of a shift operation. On machines that have
instructions that act on bit-fields at variable positions, which may include ‘bit test’
instructions, a nonzero SHIFT_COUNT_TRUNCATED also enables deletion of truncations
of the values that serve as arguments to bit-field instructions.
If both types of instructions truncate the count (for shifts) and position (for bit-field
operations), or if no variable-position bit-field instructions exist, you should define
this macro.
However, on some machines, such as the 80386 and the 680x0, truncation only applies
to shift operations and not the (real or pretended) bit-field operations. Define SHIFT_
COUNT_TRUNCATED to be zero on such machines. Instead, add patterns to the ‘md’ file
that include the implied truncation of the shift instructions.
You need not define this macro if it would always have the value of zero.

[Target Hook]int TARGET_SHIFT_TRUNCATION_MASK (enum machine mode mode)
This function describes how the standard shift patterns for mode deal with shifts
by negative amounts or by more than the width of the mode. See [shift patterns],
page 316.
On many machines, the shift patterns will apply a mask m to the shift count, meaning
that a fixed-width shift of x by y is equivalent to an arbitrary-width shift of x by y
& m. If this is true for mode mode, the function should return m, otherwise it should
return 0. A return value of 0 indicates that no particular behavior is guaranteed.
Note that, unlike SHIFT_COUNT_TRUNCATED, this function does not apply to general
shift rtxes; it applies only to instructions that are generated by the named shift
patterns.
The default implementation of this function returns GET_MODE_BITSIZE (mode) - 1
if SHIFT_COUNT_TRUNCATED and 0 otherwise. This definition is always safe, but if
SHIFT_COUNT_TRUNCATED is false, and some shift patterns nevertheless truncate the
shift count, you may get better code by overriding it.

[Macro]TRULY_NOOP_TRUNCATION (outprec, inprec)
A C expression which is nonzero if on this machine it is safe to “convert” an integer
of inprec bits to one of outprec bits (where outprec is smaller than inprec) by merely
operating on it as if it had only outprec bits.
On many machines, this expression can be 1.
When TRULY_NOOP_TRUNCATION returns 1 for a pair of sizes for modes for which
MODES_TIEABLE_P is 0, suboptimal code can result. If this is the case, making TRULY_
NOOP_TRUNCATION return 0 in such cases may improve things.

[Target Hook]int TARGET_MODE_REP_EXTENDED (enum machine mode mode, enum
machine mode rep_mode)

The representation of an integral mode can be such that the values are always ex-
tended to a wider integral mode. Return SIGN_EXTEND if values of mode are rep-
resented in sign-extended form to rep mode. Return UNKNOWN otherwise. (Cur-
rently, none of the targets use zero-extended representation this way so unlike LOAD_
EXTEND_OP, TARGET_MODE_REP_EXTENDED is expected to return either SIGN_EXTEND

Chapter 17: Target Description Macros and Functions 511

or UNKNOWN. Also no target extends mode to mode rep so that mode rep is not the
next widest integral mode and currently we take advantage of this fact.)
Similarly to LOAD_EXTEND_OP you may return a non-UNKNOWN value even if the exten-
sion is not performed on certain hard registers as long as for the REGNO_REG_CLASS
of these hard registers CANNOT_CHANGE_MODE_CLASS returns nonzero.
Note that TARGET_MODE_REP_EXTENDED and LOAD_EXTEND_OP describe two related
properties. If you define TARGET_MODE_REP_EXTENDED (mode, word_mode) you prob-
ably also want to define LOAD_EXTEND_OP (mode) to return the same type of extension.
In order to enforce the representation of mode, TRULY_NOOP_TRUNCATION should return
false when truncating to mode.

[Macro]STORE_FLAG_VALUE
A C expression describing the value returned by a comparison operator with an in-
tegral mode and stored by a store-flag instruction (‘scond ’) when the condition is
true. This description must apply to all the ‘scond ’ patterns and all the comparison
operators whose results have a MODE_INT mode.
A value of 1 or −1 means that the instruction implementing the comparison operator
returns exactly 1 or −1 when the comparison is true and 0 when the comparison is
false. Otherwise, the value indicates which bits of the result are guaranteed to be 1
when the comparison is true. This value is interpreted in the mode of the comparison
operation, which is given by the mode of the first operand in the ‘scond ’ pattern.
Either the low bit or the sign bit of STORE_FLAG_VALUE be on. Presently, only those
bits are used by the compiler.
If STORE_FLAG_VALUE is neither 1 or −1, the compiler will generate code that depends
only on the specified bits. It can also replace comparison operators with equivalent
operations if they cause the required bits to be set, even if the remaining bits are
undefined. For example, on a machine whose comparison operators return an SImode
value and where STORE_FLAG_VALUE is defined as ‘0x80000000’, saying that just the
sign bit is relevant, the expression

(ne:SI (and:SI x (const_int power-of-2)) (const_int 0))

can be converted to
(ashift:SI x (const_int n))

where n is the appropriate shift count to move the bit being tested into the sign bit.
There is no way to describe a machine that always sets the low-order bit for a true
value, but does not guarantee the value of any other bits, but we do not know of
any machine that has such an instruction. If you are trying to port GCC to such a
machine, include an instruction to perform a logical-and of the result with 1 in the
pattern for the comparison operators and let us know at gcc@gcc.gnu.org.
Often, a machine will have multiple instructions that obtain a value from a comparison
(or the condition codes). Here are rules to guide the choice of value for STORE_FLAG_
VALUE, and hence the instructions to be used:
• Use the shortest sequence that yields a valid definition for STORE_FLAG_VALUE. It

is more efficient for the compiler to “normalize” the value (convert it to, e.g., 1 or
0) than for the comparison operators to do so because there may be opportunities
to combine the normalization with other operations.

mailto:gcc@gcc.gnu.org

512 GNU Compiler Collection (GCC) Internals

• For equal-length sequences, use a value of 1 or −1, with −1 being slightly pre-
ferred on machines with expensive jumps and 1 preferred on other machines.

• As a second choice, choose a value of ‘0x80000001’ if instructions exist that set
both the sign and low-order bits but do not define the others.

• Otherwise, use a value of ‘0x80000000’.

Many machines can produce both the value chosen for STORE_FLAG_VALUE and its
negation in the same number of instructions. On those machines, you should also
define a pattern for those cases, e.g., one matching

(set A (neg:m (ne:m B C)))

Some machines can also perform and or plus operations on condition code values with
less instructions than the corresponding ‘scond ’ insn followed by and or plus. On
those machines, define the appropriate patterns. Use the names incscc and decscc,
respectively, for the patterns which perform plus or minus operations on condition
code values. See ‘rs6000.md’ for some examples. The GNU Superoptizer can be used
to find such instruction sequences on other machines.
If this macro is not defined, the default value, 1, is used. You need not define STORE_
FLAG_VALUE if the machine has no store-flag instructions, or if the value generated by
these instructions is 1.

[Macro]FLOAT_STORE_FLAG_VALUE (mode)
A C expression that gives a nonzero REAL_VALUE_TYPE value that is returned when
comparison operators with floating-point results are true. Define this macro on ma-
chines that have comparison operations that return floating-point values. If there are
no such operations, do not define this macro.

[Macro]VECTOR_STORE_FLAG_VALUE (mode)
A C expression that gives a rtx representing the nonzero true element for vector
comparisons. The returned rtx should be valid for the inner mode of mode which
is guaranteed to be a vector mode. Define this macro on machines that have vector
comparison operations that return a vector result. If there are no such operations, do
not define this macro. Typically, this macro is defined as const1_rtx or constm1_
rtx. This macro may return NULL_RTX to prevent the compiler optimizing such vector
comparison operations for the given mode.

[Macro]CLZ_DEFINED_VALUE_AT_ZERO (mode, value)
[Macro]CTZ_DEFINED_VALUE_AT_ZERO (mode, value)

A C expression that indicates whether the architecture defines a value for clz or ctz
with a zero operand. A result of 0 indicates the value is undefined. If the value
is defined for only the RTL expression, the macro should evaluate to 1; if the value
applies also to the corresponding optab entry (which is normally the case if it expands
directly into the corresponding RTL), then the macro should evaluate to 2. In the
cases where the value is defined, value should be set to this value.
If this macro is not defined, the value of clz or ctz at zero is assumed to be undefined.
This macro must be defined if the target’s expansion for ffs relies on a particular
value to get correct results. Otherwise it is not necessary, though it may be used to
optimize some corner cases, and to provide a default expansion for the ffs optab.

Chapter 17: Target Description Macros and Functions 513

Note that regardless of this macro the “definedness” of clz and ctz at zero do not
extend to the builtin functions visible to the user. Thus one may be free to adjust
the value at will to match the target expansion of these operations without fear of
breaking the API.

[Macro]Pmode
An alias for the machine mode for pointers. On most machines, define this to be the
integer mode corresponding to the width of a hardware pointer; SImode on 32-bit
machine or DImode on 64-bit machines. On some machines you must define this to
be one of the partial integer modes, such as PSImode.
The width of Pmode must be at least as large as the value of POINTER_SIZE. If it
is not equal, you must define the macro POINTERS_EXTEND_UNSIGNED to specify how
pointers are extended to Pmode.

[Macro]FUNCTION_MODE
An alias for the machine mode used for memory references to functions being called,
in call RTL expressions. On most CISC machines, where an instruction can begin
at any byte address, this should be QImode. On most RISC machines, where all
instructions have fixed size and alignment, this should be a mode with the same size
and alignment as the machine instruction words - typically SImode or HImode.

[Macro]STDC_0_IN_SYSTEM_HEADERS
In normal operation, the preprocessor expands __STDC__ to the constant 1, to signify
that GCC conforms to ISO Standard C. On some hosts, like Solaris, the system
compiler uses a different convention, where __STDC__ is normally 0, but is 1 if the
user specifies strict conformance to the C Standard.
Defining STDC_0_IN_SYSTEM_HEADERS makes GNU CPP follows the host convention
when processing system header files, but when processing user files __STDC__ will
always expand to 1.

[Macro]NO_IMPLICIT_EXTERN_C
Define this macro if the system header files support C++ as well as C. This macro
inhibits the usual method of using system header files in C++, which is to pretend
that the file’s contents are enclosed in ‘extern "C" {...}’.

[Macro]REGISTER_TARGET_PRAGMAS ()
Define this macro if you want to implement any target-specific pragmas. If defined, it
is a C expression which makes a series of calls to c_register_pragma or c_register_
pragma_with_expansion for each pragma. The macro may also do any setup required
for the pragmas.
The primary reason to define this macro is to provide compatibility with other compil-
ers for the same target. In general, we discourage definition of target-specific pragmas
for GCC.
If the pragma can be implemented by attributes then you should consider defining
the target hook ‘TARGET_INSERT_ATTRIBUTES’ as well.
Preprocessor macros that appear on pragma lines are not expanded. All ‘#pragma’
directives that do not match any registered pragma are silently ignored, unless the
user specifies ‘-Wunknown-pragmas’.

514 GNU Compiler Collection (GCC) Internals

[Function]void c_register_pragma (const char *space, const char *name, void
(*callback) (struct cpp reader *))

[Function]void c_register_pragma_with_expansion (const char *space, const
char *name, void (*callback) (struct cpp reader *))

Each call to c_register_pragma or c_register_pragma_with_expansion estab-
lishes one pragma. The callback routine will be called when the preprocessor en-
counters a pragma of the form

#pragma [space] name ...

space is the case-sensitive namespace of the pragma, or NULL to put the pragma in the
global namespace. The callback routine receives pfile as its first argument, which can
be passed on to cpplib’s functions if necessary. You can lex tokens after the name by
calling pragma_lex. Tokens that are not read by the callback will be silently ignored.
The end of the line is indicated by a token of type CPP_EOF. Macro expansion occurs
on the arguments of pragmas registered with c_register_pragma_with_expansion
but not on the arguments of pragmas registered with c_register_pragma.

Note that the use of pragma_lex is specific to the C and C++ compilers. It will
not work in the Java or Fortran compilers, or any other language compilers for that
matter. Thus if pragma_lex is going to be called from target-specific code, it must
only be done so when building the C and C++ compilers. This can be done by
defining the variables c_target_objs and cxx_target_objs in the target entry in
the ‘config.gcc’ file. These variables should name the target-specific, language-
specific object file which contains the code that uses pragma_lex. Note it will also
be necessary to add a rule to the makefile fragment pointed to by tmake_file that
shows how to build this object file.

[Macro]HANDLE_SYSV_PRAGMA
Define this macro (to a value of 1) if you want the System V style pragmas ‘#pragma
pack(<n>)’ and ‘#pragma weak <name> [=<value>]’ to be supported by gcc.

The pack pragma specifies the maximum alignment (in bytes) of fields within a struc-
ture, in much the same way as the ‘__aligned__’ and ‘__packed__’ __attribute__s
do. A pack value of zero resets the behavior to the default.

A subtlety for Microsoft Visual C/C++ style bit-field packing (e.g. -mms-bitfields) for
targets that support it: When a bit-field is inserted into a packed record, the whole
size of the underlying type is used by one or more same-size adjacent bit-fields (that
is, if its long:3, 32 bits is used in the record, and any additional adjacent long bit-fields
are packed into the same chunk of 32 bits. However, if the size changes, a new field
of that size is allocated).

If both MS bit-fields and ‘__attribute__((packed))’ are used, the latter will take
precedence. If ‘__attribute__((packed))’ is used on a single field when MS bit-
fields are in use, it will take precedence for that field, but the alignment of the rest
of the structure may affect its placement.

The weak pragma only works if SUPPORTS_WEAK and ASM_WEAKEN_LABEL are defined.
If enabled it allows the creation of specifically named weak labels, optionally with a
value.

Chapter 17: Target Description Macros and Functions 515

[Macro]HANDLE_PRAGMA_PACK_PUSH_POP
Define this macro (to a value of 1) if you want to support the Win32 style prag-
mas ‘#pragma pack(push[,n])’ and ‘#pragma pack(pop)’. The ‘pack(push,[n])’
pragma specifies the maximum alignment (in bytes) of fields within a structure, in
much the same way as the ‘__aligned__’ and ‘__packed__’ __attribute__s do.
A pack value of zero resets the behavior to the default. Successive invocations of
this pragma cause the previous values to be stacked, so that invocations of ‘#pragma
pack(pop)’ will return to the previous value.

[Macro]HANDLE_PRAGMA_PACK_WITH_EXPANSION
Define this macro, as well as HANDLE_SYSV_PRAGMA, if macros should be expanded in
the arguments of ‘#pragma pack’.

[Macro]TARGET_DEFAULT_PACK_STRUCT
If your target requires a structure packing default other than 0 (meaning the machine
default), define this macro to the necessary value (in bytes). This must be a value
that would also be valid to use with ‘#pragma pack()’ (that is, a small power of two).

[Macro]HANDLE_PRAGMA_PUSH_POP_MACRO
Define this macro if you want to support the Win32 style prag-
mas ‘#pragma push_macro(macro-name-as-string)’ and ‘#pragma
pop_macro(macro-name-as-string)’. The ‘#pragma push_macro(
macro-name-as-string)’ pragma saves the named macro and via ‘#pragma
pop_macro(macro-name-as-string)’ it will return to the previous value.

[Macro]DOLLARS_IN_IDENTIFIERS
Define this macro to control use of the character ‘$’ in identifier names for the C
family of languages. 0 means ‘$’ is not allowed by default; 1 means it is allowed. 1 is
the default; there is no need to define this macro in that case.

[Macro]NO_DOLLAR_IN_LABEL
Define this macro if the assembler does not accept the character ‘$’ in label names.
By default constructors and destructors in G++ have ‘$’ in the identifiers. If this
macro is defined, ‘.’ is used instead.

[Macro]NO_DOT_IN_LABEL
Define this macro if the assembler does not accept the character ‘.’ in label names.
By default constructors and destructors in G++ have names that use ‘.’. If this macro
is defined, these names are rewritten to avoid ‘.’.

[Macro]INSN_SETS_ARE_DELAYED (insn)
Define this macro as a C expression that is nonzero if it is safe for the delay slot
scheduler to place instructions in the delay slot of insn, even if they appear to use
a resource set or clobbered in insn. insn is always a jump_insn or an insn; GCC
knows that every call_insn has this behavior. On machines where some insn or
jump_insn is really a function call and hence has this behavior, you should define
this macro.

You need not define this macro if it would always return zero.

516 GNU Compiler Collection (GCC) Internals

[Macro]INSN_REFERENCES_ARE_DELAYED (insn)
Define this macro as a C expression that is nonzero if it is safe for the delay slot
scheduler to place instructions in the delay slot of insn, even if they appear to set or
clobber a resource referenced in insn. insn is always a jump_insn or an insn. On
machines where some insn or jump_insn is really a function call and its operands are
registers whose use is actually in the subroutine it calls, you should define this macro.
Doing so allows the delay slot scheduler to move instructions which copy arguments
into the argument registers into the delay slot of insn.
You need not define this macro if it would always return zero.

[Macro]MULTIPLE_SYMBOL_SPACES
Define this macro as a C expression that is nonzero if, in some cases, global symbols
from one translation unit may not be bound to undefined symbols in another transla-
tion unit without user intervention. For instance, under Microsoft Windows symbols
must be explicitly imported from shared libraries (DLLs).
You need not define this macro if it would always evaluate to zero.

[Target Hook]tree TARGET_MD_ASM_CLOBBERS (tree outputs, tree inputs, tree
clobbers)

This target hook should add to clobbers STRING_CST trees for any hard regs the
port wishes to automatically clobber for an asm. It should return the result of the
last tree_cons used to add a clobber. The outputs, inputs and clobber lists are
the corresponding parameters to the asm and may be inspected to avoid clobbering
a register that is an input or output of the asm. You can use tree_overlaps_
hard_reg_set, declared in ‘tree.h’, to test for overlap with regards to asm-declared
registers.

[Macro]MATH_LIBRARY
Define this macro as a C string constant for the linker argument to link in the system
math library, or ‘""’ if the target does not have a separate math library.
You need only define this macro if the default of ‘"-lm"’ is wrong.

[Macro]LIBRARY_PATH_ENV
Define this macro as a C string constant for the environment variable that specifies
where the linker should look for libraries.
You need only define this macro if the default of ‘"LIBRARY_PATH"’ is wrong.

[Macro]TARGET_POSIX_IO
Define this macro if the target supports the following POSIX file functions, access,
mkdir and file locking with fcntl / F SETLKW. Defining TARGET_POSIX_IO will
enable the test coverage code to use file locking when exiting a program, which avoids
race conditions if the program has forked. It will also create directories at run-time
for cross-profiling.

[Macro]MAX_CONDITIONAL_EXECUTE
A C expression for the maximum number of instructions to execute via conditional
execution instructions instead of a branch. A value of BRANCH_COST+1 is the default
if the machine does not use cc0, and 1 if it does use cc0.

Chapter 17: Target Description Macros and Functions 517

[Macro]IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr)
Used if the target needs to perform machine-dependent modifications on the condi-
tionals used for turning basic blocks into conditionally executed code. ce info points
to a data structure, struct ce_if_block, which contains information about the cur-
rently processed blocks. true expr and false expr are the tests that are used for
converting the then-block and the else-block, respectively. Set either true expr or
false expr to a null pointer if the tests cannot be converted.

[Macro]IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, true_expr,
false_expr)

Like IFCVT_MODIFY_TESTS, but used when converting more complicated if-statements
into conditions combined by and and or operations. bb contains the basic block that
contains the test that is currently being processed and about to be turned into a
condition.

[Macro]IFCVT_MODIFY_INSN (ce_info, pattern, insn)
A C expression to modify the PATTERN of an INSN that is to be converted to
conditional execution format. ce info points to a data structure, struct ce_if_
block, which contains information about the currently processed blocks.

[Macro]IFCVT_MODIFY_FINAL (ce_info)
A C expression to perform any final machine dependent modifications in converting
code to conditional execution. The involved basic blocks can be found in the struct
ce_if_block structure that is pointed to by ce info.

[Macro]IFCVT_MODIFY_CANCEL (ce_info)
A C expression to cancel any machine dependent modifications in converting code to
conditional execution. The involved basic blocks can be found in the struct ce_if_
block structure that is pointed to by ce info.

[Macro]IFCVT_INIT_EXTRA_FIELDS (ce_info)
A C expression to initialize any extra fields in a struct ce_if_block structure, which
are defined by the IFCVT_EXTRA_FIELDS macro.

[Macro]IFCVT_EXTRA_FIELDS
If defined, it should expand to a set of field declarations that will be added to the
struct ce_if_block structure. These should be initialized by the IFCVT_INIT_
EXTRA_FIELDS macro.

[Target Hook]void TARGET_MACHINE_DEPENDENT_REORG ()
If non-null, this hook performs a target-specific pass over the instruction stream.
The compiler will run it at all optimization levels, just before the point at which it
normally does delayed-branch scheduling.
The exact purpose of the hook varies from target to target. Some use it to do trans-
formations that are necessary for correctness, such as laying out in-function constant
pools or avoiding hardware hazards. Others use it as an opportunity to do some
machine-dependent optimizations.
You need not implement the hook if it has nothing to do. The default definition is
null.

518 GNU Compiler Collection (GCC) Internals

[Target Hook]void TARGET_INIT_BUILTINS ()
Define this hook if you have any machine-specific built-in functions that need to be
defined. It should be a function that performs the necessary setup.

Machine specific built-in functions can be useful to expand special machine instruc-
tions that would otherwise not normally be generated because they have no equivalent
in the source language (for example, SIMD vector instructions or prefetch instruc-
tions).

To create a built-in function, call the function lang_hooks.builtin_function which
is defined by the language front end. You can use any type nodes set up by build_
common_tree_nodes and build_common_tree_nodes_2; only language front ends
that use those two functions will call ‘TARGET_INIT_BUILTINS’.

[Target Hook]rtx TARGET_EXPAND_BUILTIN (tree exp, rtx target, rtx
subtarget, enum machine mode mode, int ignore)

Expand a call to a machine specific built-in function that was set up by
‘TARGET_INIT_BUILTINS’. exp is the expression for the function call; the result
should go to target if that is convenient, and have mode mode if that is convenient.
subtarget may be used as the target for computing one of exp’s operands. ignore is
nonzero if the value is to be ignored. This function should return the result of the
call to the built-in function.

[Target Hook]tree TARGET_RESOLVE_OVERLOADED_BUILTIN (tree fndecl, tree
arglist)

Select a replacement for a machine specific built-in function that was set up by
‘TARGET_INIT_BUILTINS’. This is done before regular type checking, and so allows
the target to implement a crude form of function overloading. fndecl is the decla-
ration of the built-in function. arglist is the list of arguments passed to the built-in
function. The result is a complete expression that implements the operation, usually
another CALL_EXPR.

[Target Hook]tree TARGET_FOLD_BUILTIN (tree fndecl, tree arglist, bool
ignore)

Fold a call to a machine specific built-in function that was set up by
‘TARGET_INIT_BUILTINS’. fndecl is the declaration of the built-in function. arglist
is the list of arguments passed to the built-in function. The result is another tree
containing a simplified expression for the call’s result. If ignore is true the value will
be ignored.

[Target Hook]const char * TARGET INVALID WITHIN DOLOOP (rtx insn)
Take an instruction in insn and return NULL if it is valid within a low-overhead loop,
otherwise return a string why doloop could not be applied.

Many targets use special registers for low-overhead looping. For any instruction that
clobbers these this function should return a string indicating the reason why the
doloop could not be applied. By default, the RTL loop optimizer does not use a
present doloop pattern for loops containing function calls or branch on table instruc-
tions.

Chapter 17: Target Description Macros and Functions 519

[Macro]MD_CAN_REDIRECT_BRANCH (branch1, branch2)
Take a branch insn in branch1 and another in branch2. Return true if redirecting
branch1 to the destination of branch2 is possible.
On some targets, branches may have a limited range. Optimizing the filling of delay
slots can result in branches being redirected, and this may in turn cause a branch
offset to overflow.

[Target Hook]bool TARGET_COMMUTATIVE_P (rtx x, outer_code)
This target hook returns true if x is considered to be commutative. Usually, this
is just COMMUTATIVE P (x), but the HP PA doesn’t consider PLUS to be com-
mutative inside a MEM. outer code is the rtx code of the enclosing rtl, if known,
otherwise it is UNKNOWN.

[Target Hook]rtx TARGET_ALLOCATE_INITIAL_VALUE (rtx hard_reg)
When the initial value of a hard register has been copied in a pseudo register, it
is often not necessary to actually allocate another register to this pseudo register,
because the original hard register or a stack slot it has been saved into can be used.
TARGET_ALLOCATE_INITIAL_VALUE is called at the start of register allocation once
for each hard register that had its initial value copied by using get_func_hard_reg_
initial_val or get_hard_reg_initial_val. Possible values are NULL_RTX, if you
don’t want to do any special allocation, a REG rtx—that would typically be the hard
register itself, if it is known not to be clobbered—or a MEM. If you are returning a MEM,
this is only a hint for the allocator; it might decide to use another register anyways.
You may use current_function_leaf_function in the hook, functions that use
REG_N_SETS, to determine if the hard register in question will not be clobbered. The
default value of this hook is NULL, which disables any special allocation.

[Target Hook]int TARGET_UNSPEC_MAY_TRAP_P (const rtx x, unsigned flags)
This target hook returns nonzero if x, an unspec or unspec_volatile operation,
might cause a trap. Targets can use this hook to enhance precision of analysis for
unspec and unspec_volatile operations. You may call may_trap_p_1 to analyze
inner elements of x in which case flags should be passed along.

[Target Hook]int TARGET_COMMUTATIVE_OPERAND_PRECEDENCE (const rtx op, int
value)

This target hook returns a value indicating whether OP, an operand of a commu-
tative operation, is preferred as the first or second operand. The higher the value,
the stronger the preference for being the first operand. Negative values are used to
indicate a preference for the first operand and positive values for the second operand.
Usually the hook will return VALUE, which is the default precedence for OP (see
‘rtlanal.c’:commutative_operand_precedence()), but sometimes backends may
wish certain operands to appear at the right places within instructions.

[Target Hook]void TARGET_SET_CURRENT_FUNCTION (tree decl)
The compiler invokes this hook whenever it changes its current function context
(cfun). You can define this function if the back end needs to perform any initial-
ization or reset actions on a per-function basis. For example, it may be used to
implement function attributes that affect register usage or code generation patterns.

520 GNU Compiler Collection (GCC) Internals

The argument decl is the declaration for the new function context, and may be null
to indicate that the compiler has left a function context and is returning to processing
at the top level. The default hook function does nothing.
GCC sets cfun to a dummy function context during initialization of some parts of the
back end. The hook function is not invoked in this situation; you need not worry about
the hook being invoked recursively, or when the back end is in a partially-initialized
state.

[Macro]TARGET_OBJECT_SUFFIX
Define this macro to be a C string representing the suffix for object files on your
target machine. If you do not define this macro, GCC will use ‘.o’ as the suffix for
object files.

[Macro]TARGET_EXECUTABLE_SUFFIX
Define this macro to be a C string representing the suffix to be automatically added
to executable files on your target machine. If you do not define this macro, GCC will
use the null string as the suffix for executable files.

[Macro]COLLECT_EXPORT_LIST
If defined, collect2 will scan the individual object files specified on its command line
and create an export list for the linker. Define this macro for systems like AIX, where
the linker discards object files that are not referenced from main and uses export lists.

[Macro]MODIFY_JNI_METHOD_CALL (mdecl)
Define this macro to a C expression representing a variant of the method call mdecl, if
Java Native Interface (JNI) methods must be invoked differently from other methods
on your target. For example, on 32-bit Microsoft Windows, JNI methods must be
invoked using the stdcall calling convention and this macro is then defined as this
expression:

build_type_attribute_variant (mdecl,

build_tree_list

(get_identifier ("stdcall"),

NULL))

[Target Hook]bool TARGET_CANNOT_MODIFY_JUMPS_P (void)
This target hook returns true past the point in which new jump instructions could
be created. On machines that require a register for every jump such as the SHmedia
ISA of SH5, this point would typically be reload, so this target hook should be defined
to a function such as:

static bool

cannot_modify_jumps_past_reload_p ()

{

return (reload_completed || reload_in_progress);

}

[Target Hook]int TARGET_BRANCH_TARGET_REGISTER_CLASS (void)
This target hook returns a register class for which branch target register optimizations
should be applied. All registers in this class should be usable interchangeably. After
reload, registers in this class will be re-allocated and loads will be hoisted out of loops
and be subjected to inter-block scheduling.

Chapter 17: Target Description Macros and Functions 521

[Target Hook]bool TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED (bool
after_prologue_epilogue_gen)

Branch target register optimization will by default exclude callee-saved registers that
are not already live during the current function; if this target hook returns true,
they will be included. The target code must than make sure that all target regis-
ters in the class returned by ‘TARGET_BRANCH_TARGET_REGISTER_CLASS’ that might
need saving are saved. after prologue epilogue gen indicates if prologues and epi-
logues have already been generated. Note, even if you only return true when af-
ter prologue epilogue gen is false, you still are likely to have to make special provi-
sions in INITIAL_ELIMINATION_OFFSET to reserve space for caller-saved target regis-
ters.

[Macro]POWI_MAX_MULTS
If defined, this macro is interpreted as a signed integer C expression that specifies
the maximum number of floating point multiplications that should be emitted when
expanding exponentiation by an integer constant inline. When this value is defined,
exponentiation requiring more than this number of multiplications is implemented by
calling the system library’s pow, powf or powl routines. The default value places no
upper bound on the multiplication count.

[Macro]void TARGET_EXTRA_INCLUDES (const char *sysroot, const char
*iprefix, int stdinc)

This target hook should register any extra include files for the target. The parameter
stdinc indicates if normal include files are present. The parameter sysroot is the
system root directory. The parameter iprefix is the prefix for the gcc directory.

[Macro]void TARGET_EXTRA_PRE_INCLUDES (const char *sysroot, const char
*iprefix, int stdinc)

This target hook should register any extra include files for the target before any
standard headers. The parameter stdinc indicates if normal include files are present.
The parameter sysroot is the system root directory. The parameter iprefix is the
prefix for the gcc directory.

[Macro]void TARGET_OPTF (char *path)
This target hook should register special include paths for the target. The parameter
path is the include to register. On Darwin systems, this is used for Framework
includes, which have semantics that are different from ‘-I’.

[Target Hook]bool TARGET_USE_LOCAL_THUNK_ALIAS_P (tree fndecl)
This target hook returns true if it is safe to use a local alias for a virtual function
fndecl when constructing thunks, false otherwise. By default, the hook returns true
for all functions, if a target supports aliases (i.e. defines ASM_OUTPUT_DEF), false
otherwise,

[Macro]TARGET_FORMAT_TYPES
If defined, this macro is the name of a global variable containing target-specific format
checking information for the ‘-Wformat’ option. The default is to have no target-
specific format checks.

522 GNU Compiler Collection (GCC) Internals

[Macro]TARGET_N_FORMAT_TYPES
If defined, this macro is the number of entries in TARGET_FORMAT_TYPES.

[Macro]TARGET_OVERRIDES_FORMAT_ATTRIBUTES
If defined, this macro is the name of a global variable containing target-specific format
overrides for the ‘-Wformat’ option. The default is to have no target-specific format
overrides. If defined, TARGET_FORMAT_TYPES must be defined, too.

[Macro]TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT
If defined, this macro specifies the number of entries in TARGET_OVERRIDES_FORMAT_
ATTRIBUTES.

[Macro]TARGET_OVERRIDES_FORMAT_INIT
If defined, this macro specifies the optional initialization routine for target specific
customizations of the system printf and scanf formatter settings.

[Target Hook]bool TARGET_RELAXED_ORDERING
If set to true, means that the target’s memory model does not guarantee that loads
which do not depend on one another will access main memory in the order of the
instruction stream; if ordering is important, an explicit memory barrier must be
used. This is true of many recent processors which implement a policy of “relaxed,”
“weak,” or “release” memory consistency, such as Alpha, PowerPC, and ia64. The
default is false.

[Target Hook]const char
*TARGET INVALID ARG FOR UNPROTOTYPED FN (tree typelist,
tree funcdecl, tree val)

If defined, this macro returns the diagnostic message when it is illegal to pass argument
val to function funcdecl with prototype typelist.

[Target Hook]const char * TARGET_INVALID_CONVERSION (tree fromtype, tree
totype)

If defined, this macro returns the diagnostic message when it is invalid to convert
from fromtype to totype, or NULL if validity should be determined by the front end.

[Target Hook]const char * TARGET_INVALID_UNARY_OP (int op, tree type)
If defined, this macro returns the diagnostic message when it is invalid to apply
operation op (where unary plus is denoted by CONVERT_EXPR) to an operand of type
type, or NULL if validity should be determined by the front end.

[Target Hook]const char * TARGET_INVALID_BINARY_OP (int op, tree type1,
tree type2)

If defined, this macro returns the diagnostic message when it is invalid to apply
operation op to operands of types type1 and type2, or NULL if validity should be
determined by the front end.

[Target Hook]const char * TARGET_INVALID_PARAMETER_TYPE (tree type)
If defined, this macro returns the diagnostic message when it is invalid for functions
to include parameters of type type, or NULL if validity should be determined by the
front end. This is currently used only by the C and C++ front ends.

Chapter 17: Target Description Macros and Functions 523

[Target Hook]const char * TARGET_INVALID_RETURN_TYPE (tree type)
If defined, this macro returns the diagnostic message when it is invalid for functions
to have return type type, or NULL if validity should be determined by the front end.
This is currently used only by the C and C++ front ends.

[Target Hook]tree TARGET_PROMOTED_TYPE (tree type)
If defined, this target hook returns the type to which values of type should be pro-
moted when they appear in expressions, analogous to the integer promotions, or
NULL_TREE to use the front end’s normal promotion rules. This hook is useful when
there are target-specific types with special promotion rules. This is currently used
only by the C and C++ front ends.

[Target Hook]tree TARGET_CONVERT_TO_TYPE (tree type, tree expr)
If defined, this hook returns the result of converting expr to type. It should return
the converted expression, or NULL_TREE to apply the front end’s normal conversion
rules. This hook is useful when there are target-specific types with special conversion
rules. This is currently used only by the C and C++ front ends.

[Macro]TARGET_USE_JCR_SECTION
This macro determines whether to use the JCR section to register Java classes. By
default, TARGET USE JCR SECTION is defined to 1 if both SUPPORTS WEAK
and TARGET HAVE NAMED SECTIONS are true, else 0.

[Macro]OBJC_JBLEN
This macro determines the size of the objective C jump buffer for the NeXT runtime.
By default, OBJC JBLEN is defined to an innocuous value.

[Macro]LIBGCC2_UNWIND_ATTRIBUTE
Define this macro if any target-specific attributes need to be attached to the functions
in ‘libgcc’ that provide low-level support for call stack unwinding. It is used in
declarations in ‘unwind-generic.h’ and the associated definitions of those functions.

[Target Hook]void TARGET_UPDATE_STACK_BOUNDARY (void)
Define this macro to update the current function stack boundary if necessary.

[Target Hook]rtx TARGET_GET_DRAP_RTX (void)
Define this macro to an rtx for Dynamic Realign Argument Pointer if a different
argument pointer register is needed to access the function’s argument list when stack
is aligned.

[Target Hook]bool TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS (void)
When optimization is disabled, this hook indicates whether or not arguments should
be allocated to stack slots. Normally, GCC allocates stacks slots for arguments when
not optimizing in order to make debugging easier. However, when a function is
declared with __attribute__((naked)), there is no stack frame, and the compiler
cannot safely move arguments from the registers in which they are passed to the stack.
Therefore, this hook should return true in general, but false for naked functions. The
default implementation always returns true.

Chapter 18: Host Configuration 525

18 Host Configuration

Most details about the machine and system on which the compiler is actually running are
detected by the configure script. Some things are impossible for configure to detect;
these are described in two ways, either by macros defined in a file named ‘xm-machine.h’ or
by hook functions in the file specified by the out host hook obj variable in ‘config.gcc’.
(The intention is that very few hosts will need a header file but nearly every fully supported
host will need to override some hooks.)

If you need to define only a few macros, and they have simple definitions, consider using
the xm_defines variable in your ‘config.gcc’ entry instead of creating a host configuration
header. See Section 6.3.2.2 [System Config], page 64.

18.1 Host Common

Some things are just not portable, even between similar operating systems, and are too
difficult for autoconf to detect. They get implemented using hook functions in the file
specified by the host hook obj variable in ‘config.gcc’.

[Host Hook]void HOST_HOOKS_EXTRA_SIGNALS (void)
This host hook is used to set up handling for extra signals. The most common thing
to do in this hook is to detect stack overflow.

[Host Hook]void * HOST HOOKS GT PCH GET ADDRESS (size t size, int fd)
This host hook returns the address of some space that is likely to be free in some
subsequent invocation of the compiler. We intend to load the PCH data at this
address such that the data need not be relocated. The area should be able to hold
size bytes. If the host uses mmap, fd is an open file descriptor that can be used for
probing.

[Host Hook]int HOST_HOOKS_GT_PCH_USE_ADDRESS (void * address, size t
size, int fd, size t offset)

This host hook is called when a PCH file is about to be loaded. We want to load
size bytes from fd at offset into memory at address. The given address will be the
result of a previous invocation of HOST_HOOKS_GT_PCH_GET_ADDRESS. Return −1 if
we couldn’t allocate size bytes at address. Return 0 if the memory is allocated but
the data is not loaded. Return 1 if the hook has performed everything.

If the implementation uses reserved address space, free any reserved space beyond
size, regardless of the return value. If no PCH will be loaded, this hook may be called
with size zero, in which case all reserved address space should be freed.

Do not try to handle values of address that could not have been returned by this
executable; just return −1. Such values usually indicate an out-of-date PCH file
(built by some other GCC executable), and such a PCH file won’t work.

[Host Hook]size_t HOST_HOOKS_GT_PCH_ALLOC_GRANULARITY (void);
This host hook returns the alignment required for allocating virtual memory. Usually
this is the same as getpagesize, but on some hosts the alignment for reserving memory
differs from the pagesize for committing memory.

526 GNU Compiler Collection (GCC) Internals

18.2 Host Filesystem

GCC needs to know a number of things about the semantics of the host machine’s filesys-
tem. Filesystems with Unix and MS-DOS semantics are automatically detected. For other
systems, you can define the following macros in ‘xm-machine.h’.

HAVE_DOS_BASED_FILE_SYSTEM
This macro is automatically defined by ‘system.h’ if the host file system obeys
the semantics defined by MS-DOS instead of Unix. DOS file systems are case
insensitive, file specifications may begin with a drive letter, and both forward
slash and backslash (‘/’ and ‘\’) are directory separators.

DIR_SEPARATOR
DIR_SEPARATOR_2

If defined, these macros expand to character constants specifying separators for
directory names within a file specification. ‘system.h’ will automatically give
them appropriate values on Unix and MS-DOS file systems. If your file system
is neither of these, define one or both appropriately in ‘xm-machine.h’.
However, operating systems like VMS, where constructing a pathname is more
complicated than just stringing together directory names separated by a special
character, should not define either of these macros.

PATH_SEPARATOR
If defined, this macro should expand to a character constant specifying the
separator for elements of search paths. The default value is a colon (‘:’). DOS-
based systems usually, but not always, use semicolon (‘;’).

VMS Define this macro if the host system is VMS.

HOST_OBJECT_SUFFIX
Define this macro to be a C string representing the suffix for object files on
your host machine. If you do not define this macro, GCC will use ‘.o’ as the
suffix for object files.

HOST_EXECUTABLE_SUFFIX
Define this macro to be a C string representing the suffix for executable files
on your host machine. If you do not define this macro, GCC will use the null
string as the suffix for executable files.

HOST_BIT_BUCKET
A pathname defined by the host operating system, which can be opened as a file
and written to, but all the information written is discarded. This is commonly
known as a bit bucket or null device. If you do not define this macro, GCC will
use ‘/dev/null’ as the bit bucket. If the host does not support a bit bucket,
define this macro to an invalid filename.

UPDATE_PATH_HOST_CANONICALIZE (path)
If defined, a C statement (sans semicolon) that performs host-dependent canon-
icalization when a path used in a compilation driver or preprocessor is canoni-
calized. path is a malloc-ed path to be canonicalized. If the C statement does
canonicalize path into a different buffer, the old path should be freed and the
new buffer should have been allocated with malloc.

Chapter 18: Host Configuration 527

DUMPFILE_FORMAT
Define this macro to be a C string representing the format to use for constructing
the index part of debugging dump file names. The resultant string must fit in
fifteen bytes. The full filename will be the concatenation of: the prefix of the
assembler file name, the string resulting from applying this format to an index
number, and a string unique to each dump file kind, e.g. ‘rtl’.
If you do not define this macro, GCC will use ‘.%02d.’. You should define this
macro if using the default will create an invalid file name.

DELETE_IF_ORDINARY
Define this macro to be a C statement (sans semicolon) that performs host-
dependent removal of ordinary temp files in the compilation driver.
If you do not define this macro, GCC will use the default version. You should
define this macro if the default version does not reliably remove the temp file
as, for example, on VMS which allows multiple versions of a file.

HOST_LACKS_INODE_NUMBERS
Define this macro if the host filesystem does not report meaningful inode num-
bers in struct stat.

18.3 Host Misc

FATAL_EXIT_CODE
A C expression for the status code to be returned when the compiler exits after
serious errors. The default is the system-provided macro ‘EXIT_FAILURE’, or ‘1’
if the system doesn’t define that macro. Define this macro only if these defaults
are incorrect.

SUCCESS_EXIT_CODE
A C expression for the status code to be returned when the compiler exits
without serious errors. (Warnings are not serious errors.) The default is the
system-provided macro ‘EXIT_SUCCESS’, or ‘0’ if the system doesn’t define that
macro. Define this macro only if these defaults are incorrect.

USE_C_ALLOCA
Define this macro if GCC should use the C implementation of alloca provided
by ‘libiberty.a’. This only affects how some parts of the compiler itself
allocate memory. It does not change code generation.
When GCC is built with a compiler other than itself, the C alloca is always
used. This is because most other implementations have serious bugs. You
should define this macro only on a system where no stack-based alloca can
possibly work. For instance, if a system has a small limit on the size of the
stack, GCC’s builtin alloca will not work reliably.

COLLECT2_HOST_INITIALIZATION
If defined, a C statement (sans semicolon) that performs host-dependent ini-
tialization when collect2 is being initialized.

GCC_DRIVER_HOST_INITIALIZATION
If defined, a C statement (sans semicolon) that performs host-dependent ini-
tialization when a compilation driver is being initialized.

528 GNU Compiler Collection (GCC) Internals

HOST_LONG_LONG_FORMAT
If defined, the string used to indicate an argument of type long long to func-
tions like printf. The default value is "ll".

In addition, if configure generates an incorrect definition of any of the macros in
‘auto-host.h’, you can override that definition in a host configuration header. If you
need to do this, first see if it is possible to fix configure.

Chapter 19: Makefile Fragments 529

19 Makefile Fragments

When you configure GCC using the ‘configure’ script, it will construct the file ‘Makefile’
from the template file ‘Makefile.in’. When it does this, it can incorporate makefile frag-
ments from the ‘config’ directory. These are used to set Makefile parameters that are
not amenable to being calculated by autoconf. The list of fragments to incorporate is set
by ‘config.gcc’ (and occasionally ‘config.build’ and ‘config.host’); See Section 6.3.2.2
[System Config], page 64.

Fragments are named either ‘t-target ’ or ‘x-host ’, depending on whether they are
relevant to configuring GCC to produce code for a particular target, or to configuring GCC
to run on a particular host. Here target and host are mnemonics which usually have some
relationship to the canonical system name, but no formal connection.

If these files do not exist, it means nothing needs to be added for a given target or host.
Most targets need a few ‘t-target ’ fragments, but needing ‘x-host ’ fragments is rare.

19.1 Target Makefile Fragments

Target makefile fragments can set these Makefile variables.

LIBGCC2_CFLAGS
Compiler flags to use when compiling ‘libgcc2.c’.

LIB2FUNCS_EXTRA
A list of source file names to be compiled or assembled and inserted into
‘libgcc.a’.

Floating Point Emulation
To have GCC include software floating point libraries in ‘libgcc.a’ define
FPBIT and DPBIT along with a few rules as follows:

We want fine grained libraries, so use the new code

to build the floating point emulation libraries.

FPBIT = fp-bit.c

DPBIT = dp-bit.c

fp-bit.c: $(srcdir)/config/fp-bit.c

echo ’#define FLOAT’ > fp-bit.c

cat $(srcdir)/config/fp-bit.c >> fp-bit.c

dp-bit.c: $(srcdir)/config/fp-bit.c

cat $(srcdir)/config/fp-bit.c > dp-bit.c

You may need to provide additional #defines at the beginning of ‘fp-bit.c’
and ‘dp-bit.c’ to control target endianness and other options.

CRTSTUFF_T_CFLAGS
Special flags used when compiling ‘crtstuff.c’. See Section 17.21.5 [Initial-
ization], page 481.

CRTSTUFF_T_CFLAGS_S
Special flags used when compiling ‘crtstuff.c’ for shared linking. Used if
you use ‘crtbeginS.o’ and ‘crtendS.o’ in EXTRA-PARTS. See Section 17.21.5
[Initialization], page 481.

530 GNU Compiler Collection (GCC) Internals

MULTILIB_OPTIONS
For some targets, invoking GCC in different ways produces objects that can not
be linked together. For example, for some targets GCC produces both big and
little endian code. For these targets, you must arrange for multiple versions
of ‘libgcc.a’ to be compiled, one for each set of incompatible options. When
GCC invokes the linker, it arranges to link in the right version of ‘libgcc.a’,
based on the command line options used.
The MULTILIB_OPTIONS macro lists the set of options for which special versions
of ‘libgcc.a’ must be built. Write options that are mutually incompatible side
by side, separated by a slash. Write options that may be used together separated
by a space. The build procedure will build all combinations of compatible
options.
For example, if you set MULTILIB_OPTIONS to ‘m68000/m68020 msoft-float’,
‘Makefile’ will build special versions of ‘libgcc.a’ using the following sets of
options: ‘-m68000’, ‘-m68020’, ‘-msoft-float’, ‘-m68000 -msoft-float’, and
‘-m68020 -msoft-float’.

MULTILIB_DIRNAMES
If MULTILIB_OPTIONS is used, this variable specifies the directory names that
should be used to hold the various libraries. Write one element in MULTILIB_
DIRNAMES for each element in MULTILIB_OPTIONS. If MULTILIB_DIRNAMES is
not used, the default value will be MULTILIB_OPTIONS, with all slashes treated
as spaces.
For example, if MULTILIB_OPTIONS is set to ‘m68000/m68020 msoft-float’,
then the default value of MULTILIB_DIRNAMES is ‘m68000 m68020 msoft-float’.
You may specify a different value if you desire a different set of directory names.

MULTILIB_MATCHES
Sometimes the same option may be written in two different ways. If an option is
listed in MULTILIB_OPTIONS, GCC needs to know about any synonyms. In that
case, set MULTILIB_MATCHES to a list of items of the form ‘option=option’ to de-
scribe all relevant synonyms. For example, ‘m68000=mc68000 m68020=mc68020’.

MULTILIB_EXCEPTIONS
Sometimes when there are multiple sets of MULTILIB_OPTIONS being specified,
there are combinations that should not be built. In that case, set MULTILIB_
EXCEPTIONS to be all of the switch exceptions in shell case syntax that should
not be built.
For example the ARM processor cannot execute both hardware floating point
instructions and the reduced size THUMB instructions at the same time, so
there is no need to build libraries with both of these options enabled. Therefore
MULTILIB_EXCEPTIONS is set to:

*mthumb/*mhard-float*

MULTILIB_ALIASES
Sometimes it is desirable to support a large set of multilib options, but only
build libraries for a subset of those multilibs. The remaining combinations use
a sutiable alternative multilb. In that case, set MULTILIB_ALIASES to a list of
the form ‘realname=aliasname’.

Chapter 19: Makefile Fragments 531

For example, consider a little-endian ARM toolchain with big-endian and
Thumb multilibs. If a big-endian Thumb multilib is not wanted, then setting
MULTILIB_ALIASES to ‘mbig-endian=mbig-endian/mthumb’ makes this
combination use the big-endian ARM libraries instead.
If the multilib is instead excluded by setting MULTILIB_EXCEPTIONS then big-
endian Thumb code uses the default multilib as none of the remaining multilibs
match.

MULTILIB_EXTRA_OPTS
Sometimes it is desirable that when building multiple versions of ‘libgcc.a’
certain options should always be passed on to the compiler. In that case, set
MULTILIB_EXTRA_OPTS to be the list of options to be used for all builds. If you
set this, you should probably set CRTSTUFF_T_CFLAGS to a dash followed by it.

NATIVE_SYSTEM_HEADER_DIR
If the default location for system headers is not ‘/usr/include’, you must set
this to the directory containing the headers. This value should match the value
of the SYSTEM_INCLUDE_DIR macro.

SPECS Unfortunately, setting MULTILIB_EXTRA_OPTS is not enough, since it does not
affect the build of target libraries, at least not the build of the default multilib.
One possible work-around is to use DRIVER_SELF_SPECS to bring options from
the ‘specs’ file as if they had been passed in the compiler driver command
line. However, you don’t want to be adding these options after the toolchain is
installed, so you can instead tweak the ‘specs’ file that will be used during the
toolchain build, while you still install the original, built-in ‘specs’. The trick is
to set SPECS to some other filename (say ‘specs.install’), that will then be
created out of the built-in specs, and introduce a ‘Makefile’ rule to generate the
‘specs’ file that’s going to be used at build time out of your ‘specs.install’.

T_CFLAGS These are extra flags to pass to the C compiler. They are used both when build-
ing GCC, and when compiling things with the just-built GCC. This variable is
deprecated and should not be used.

19.2 Host Makefile Fragments

The use of ‘x-host ’ fragments is discouraged. You should only use it for makefile depen-
dencies.

Chapter 20: collect2 533

20 collect2

GCC uses a utility called collect2 on nearly all systems to arrange to call various initial-
ization functions at start time.

The program collect2 works by linking the program once and looking through the linker
output file for symbols with particular names indicating they are constructor functions. If
it finds any, it creates a new temporary ‘.c’ file containing a table of them, compiles it, and
links the program a second time including that file.

The actual calls to the constructors are carried out by a subroutine called __main, which
is called (automatically) at the beginning of the body of main (provided main was compiled
with GNU CC). Calling __main is necessary, even when compiling C code, to allow linking
C and C++ object code together. (If you use ‘-nostdlib’, you get an unresolved reference
to __main, since it’s defined in the standard GCC library. Include ‘-lgcc’ at the end of
your compiler command line to resolve this reference.)

The program collect2 is installed as ld in the directory where the passes of the compiler
are installed. When collect2 needs to find the real ld, it tries the following file names:
• ‘real-ld’ in the directories listed in the compiler’s search directories.
• ‘real-ld’ in the directories listed in the environment variable PATH.
• The file specified in the REAL_LD_FILE_NAME configuration macro, if specified.
• ‘ld’ in the compiler’s search directories, except that collect2 will not execute itself

recursively.
• ‘ld’ in PATH.

“The compiler’s search directories” means all the directories where gcc searches for passes
of the compiler. This includes directories that you specify with ‘-B’.

Cross-compilers search a little differently:
• ‘real-ld’ in the compiler’s search directories.
• ‘target-real-ld’ in PATH.
• The file specified in the REAL_LD_FILE_NAME configuration macro, if specified.
• ‘ld’ in the compiler’s search directories.
• ‘target-ld’ in PATH.

collect2 explicitly avoids running ld using the file name under which collect2 itself
was invoked. In fact, it remembers up a list of such names—in case one copy of collect2
finds another copy (or version) of collect2 installed as ld in a second place in the search
path.
collect2 searches for the utilities nm and strip using the same algorithm as above for

ld.

Chapter 21: Standard Header File Directories 535

21 Standard Header File Directories

GCC_INCLUDE_DIR means the same thing for native and cross. It is where GCC stores its
private include files, and also where GCC stores the fixed include files. A cross compiled
GCC runs fixincludes on the header files in ‘$(tooldir)/include’. (If the cross compi-
lation header files need to be fixed, they must be installed before GCC is built. If the cross
compilation header files are already suitable for GCC, nothing special need be done).
GPLUSPLUS_INCLUDE_DIR means the same thing for native and cross. It is where g++

looks first for header files. The C++ library installs only target independent header files in
that directory.
LOCAL_INCLUDE_DIR is used only by native compilers. GCC doesn’t install anything

there. It is normally ‘/usr/local/include’. This is where local additions to a packaged
system should place header files.
CROSS_INCLUDE_DIR is used only by cross compilers. GCC doesn’t install anything there.
TOOL_INCLUDE_DIR is used for both native and cross compilers. It is the place for other

packages to install header files that GCC will use. For a cross-compiler, this is the equivalent
of ‘/usr/include’. When you build a cross-compiler, fixincludes processes any header
files in this directory.

Chapter 22: Memory Management and Type Information 537

22 Memory Management and Type Information

GCC uses some fairly sophisticated memory management techniques, which involve deter-
mining information about GCC’s data structures from GCC’s source code and using this
information to perform garbage collection and implement precompiled headers.

A full C parser would be too complicated for this task, so a limited subset of C is
interpreted and special markers are used to determine what parts of the source to look
at. All struct and union declarations that define data structures that are allocated under
control of the garbage collector must be marked. All global variables that hold pointers to
garbage-collected memory must also be marked. Finally, all global variables that need to
be saved and restored by a precompiled header must be marked. (The precompiled header
mechanism can only save static variables if they’re scalar. Complex data structures must
be allocated in garbage-collected memory to be saved in a precompiled header.)

The full format of a marker is
GTY (([option] [(param)], [option] [(param)] ...))

but in most cases no options are needed. The outer double parentheses are still necessary,
though: GTY(()). Markers can appear:
• In a structure definition, before the open brace;
• In a global variable declaration, after the keyword static or extern; and
• In a structure field definition, before the name of the field.

Here are some examples of marking simple data structures and globals.
struct tag GTY(())

{

fields...

};

typedef struct tag GTY(())

{

fields...

} *typename;

static GTY(()) struct tag *list; /* points to GC memory */

static GTY(()) int counter; /* save counter in a PCH */

The parser understands simple typedefs such as typedef struct tag *name; and
typedef int name;. These don’t need to be marked.

22.1 The Inside of a GTY(())

Sometimes the C code is not enough to fully describe the type structure. Extra information
can be provided with GTY options and additional markers. Some options take a parameter,
which may be either a string or a type name, depending on the parameter. If an option
takes no parameter, it is acceptable either to omit the parameter entirely, or to provide
an empty string as a parameter. For example, GTY ((skip)) and GTY ((skip (""))) are
equivalent.

When the parameter is a string, often it is a fragment of C code. Four special escapes
may be used in these strings, to refer to pieces of the data structure being marked:

%h The current structure.

538 GNU Compiler Collection (GCC) Internals

%1 The structure that immediately contains the current structure.

%0 The outermost structure that contains the current structure.

%a A partial expression of the form [i1][i2]... that indexes the array item cur-
rently being marked.

For instance, suppose that you have a structure of the form
struct A {

...

};

struct B {

struct A foo[12];

};

and b is a variable of type struct B. When marking ‘b.foo[11]’, %h would expand to
‘b.foo[11]’, %0 and %1 would both expand to ‘b’, and %a would expand to ‘[11]’.

As in ordinary C, adjacent strings will be concatenated; this is helpful when you have a
complicated expression.

GTY ((chain_next ("TREE_CODE (&%h.generic) == INTEGER_TYPE"

" ? TYPE_NEXT_VARIANT (&%h.generic)"

" : TREE_CHAIN (&%h.generic)")))

The available options are:

length ("expression")
There are two places the type machinery will need to be explicitly told the
length of an array. The first case is when a structure ends in a variable-length
array, like this:

struct rtvec_def GTY(()) {

int num_elem; /* number of elements */

rtx GTY ((length ("%h.num_elem"))) elem[1];

};

In this case, the length option is used to override the specified array length
(which should usually be 1). The parameter of the option is a fragment of C
code that calculates the length.
The second case is when a structure or a global variable contains a pointer to
an array, like this:

tree *

GTY ((length ("%h.regno_pointer_align_length"))) regno_decl;

In this case, regno_decl has been allocated by writing something like
x->regno_decl =

ggc_alloc (x->regno_pointer_align_length * sizeof (tree));

and the length provides the length of the field.
This second use of length also works on global variables, like:

static GTY((length ("reg_base_value_size")))
rtx *reg_base_value;

skip

If skip is applied to a field, the type machinery will ignore it. This is somewhat
dangerous; the only safe use is in a union when one field really isn’t ever used.

Chapter 22: Memory Management and Type Information 539

desc ("expression")
tag ("constant")
default

The type machinery needs to be told which field of a union is currently active.
This is done by giving each field a constant tag value, and then specifying a
discriminator using desc. The value of the expression given by desc is compared
against each tag value, each of which should be different. If no tag is matched,
the field marked with default is used if there is one, otherwise no field in the
union will be marked.
In the desc option, the “current structure” is the union that it discriminates.
Use %1 to mean the structure containing it. There are no escapes available to
the tag option, since it is a constant.
For example,

struct tree_binding GTY(())

{

struct tree_common common;

union tree_binding_u {

tree GTY ((tag ("0"))) scope;

struct cp_binding_level * GTY ((tag ("1"))) level;

} GTY ((desc ("BINDING_HAS_LEVEL_P ((tree)&%0)"))) xscope;

tree value;

};

In this example, the value of BINDING HAS LEVEL P when applied to a
struct tree_binding * is presumed to be 0 or 1. If 1, the type mechanism
will treat the field level as being present and if 0, will treat the field scope as
being present.

param_is (type)
use_param

Sometimes it’s convenient to define some data structure to work on generic
pointers (that is, PTR) and then use it with a specific type. param_is specifies
the real type pointed to, and use_param says where in the generic data structure
that type should be put.
For instance, to have a htab_t that points to trees, one would write the defini-
tion of htab_t like this:

typedef struct GTY(()) {

...

void ** GTY ((use_param, ...)) entries;

...

} htab_t;

and then declare variables like this:
static htab_t GTY ((param_is (union tree_node))) ict;

paramn_is (type)
use_paramn

In more complicated cases, the data structure might need to work on several
different types, which might not necessarily all be pointers. For this, param1_is
through param9_is may be used to specify the real type of a field identified by
use_param1 through use_param9.

540 GNU Compiler Collection (GCC) Internals

use_params
When a structure contains another structure that is parameterized, there’s no
need to do anything special, the inner structure inherits the parameters of the
outer one. When a structure contains a pointer to a parameterized structure,
the type machinery won’t automatically detect this (it could, it just doesn’t
yet), so it’s necessary to tell it that the pointed-to structure should use the
same parameters as the outer structure. This is done by marking the pointer
with the use_params option.

deletable
deletable, when applied to a global variable, indicates that when garbage
collection runs, there’s no need to mark anything pointed to by this variable,
it can just be set to NULL instead. This is used to keep a list of free structures
around for re-use.

if_marked ("expression")
Suppose you want some kinds of object to be unique, and so you put them in a
hash table. If garbage collection marks the hash table, these objects will never
be freed, even if the last other reference to them goes away. GGC has special
handling to deal with this: if you use the if_marked option on a global hash
table, GGC will call the routine whose name is the parameter to the option on
each hash table entry. If the routine returns nonzero, the hash table entry will
be marked as usual. If the routine returns zero, the hash table entry will be
deleted.

The routine ggc_marked_p can be used to determine if an element has been
marked already; in fact, the usual case is to use if_marked ("ggc_marked_p").

mark_hook ("hook-routine-name")
If provided for a structure or union type, the given hook-routine-name (between
double-quotes) is the name of a routine called when the garbage collector has
just marked the data as reachable. This routine should not change the data, or
call any ggc routine. Its only argument is a pointer to the just marked (const)
structure or union.

maybe_undef
When applied to a field, maybe_undef indicates that it’s OK if the structure
that this fields points to is never defined, so long as this field is always NULL.
This is used to avoid requiring backends to define certain optional structures.
It doesn’t work with language frontends.

nested_ptr (type, "to expression", "from expression")
The type machinery expects all pointers to point to the start of an object.
Sometimes for abstraction purposes it’s convenient to have a pointer which
points inside an object. So long as it’s possible to convert the original object
to and from the pointer, such pointers can still be used. type is the type of the
original object, the to expression returns the pointer given the original object,
and the from expression returns the original object given the pointer. The
pointer will be available using the %h escape.

Chapter 22: Memory Management and Type Information 541

chain_next ("expression")
chain_prev ("expression")
chain_circular ("expression")

It’s helpful for the type machinery to know if objects are often chained together
in long lists; this lets it generate code that uses less stack space by iterating
along the list instead of recursing down it. chain_next is an expression for the
next item in the list, chain_prev is an expression for the previous item. For
singly linked lists, use only chain_next; for doubly linked lists, use both. The
machinery requires that taking the next item of the previous item gives the
original item. chain_circular is similar to chain_next, but can be used for
circular single linked lists.

reorder ("function name")
Some data structures depend on the relative ordering of pointers. If
the precompiled header machinery needs to change that ordering, it
will call the function referenced by the reorder option, before changing
the pointers in the object that’s pointed to by the field the option
applies to. The function must take four arguments, with the signature
‘void *, void *, gt_pointer_operator, void *’. The first parameter is a
pointer to the structure that contains the object being updated, or the object
itself if there is no containing structure. The second parameter is a cookie that
should be ignored. The third parameter is a routine that, given a pointer, will
update it to its correct new value. The fourth parameter is a cookie that must
be passed to the second parameter.
PCH cannot handle data structures that depend on the absolute values of point-
ers. reorder functions can be expensive. When possible, it is better to depend
on properties of the data, like an ID number or the hash of a string instead.

special ("name")
The special option is used to mark types that have to be dealt with by
special case machinery. The parameter is the name of the special case. See
‘gengtype.c’ for further details. Avoid adding new special cases unless there
is no other alternative.

22.2 Marking Roots for the Garbage Collector

In addition to keeping track of types, the type machinery also locates the global variables
(roots) that the garbage collector starts at. Roots must be declared using one of the
following syntaxes:

• extern GTY(([options])) type name;

• static GTY(([options])) type name;

The syntax

• GTY(([options])) type name;

is not accepted. There should be an extern declaration of such a variable in a header
somewhere—mark that, not the definition. Or, if the variable is only used in one file, make
it static.

542 GNU Compiler Collection (GCC) Internals

22.3 Source Files Containing Type Information

Whenever you add GTY markers to a source file that previously had none, or create a new
source file containing GTY markers, there are three things you need to do:
1. You need to add the file to the list of source files the type machinery scans. There are

four cases:
a. For a back-end file, this is usually done automatically; if not, you should add it to

target_gtfiles in the appropriate port’s entries in ‘config.gcc’.
b. For files shared by all front ends, add the filename to the GTFILES variable in

‘Makefile.in’.
c. For files that are part of one front end, add the filename to the gtfiles variable de-

fined in the appropriate ‘config-lang.in’. For C, the file is ‘c-config-lang.in’.
Headers should appear before non-headers in this list.

d. For files that are part of some but not all front ends, add the filename to the
gtfiles variable of all the front ends that use it.

2. If the file was a header file, you’ll need to check that it’s included in the right place to be
visible to the generated files. For a back-end header file, this should be done automati-
cally. For a front-end header file, it needs to be included by the same file that includes
‘gtype-lang.h’. For other header files, it needs to be included in ‘gtype-desc.c’,
which is a generated file, so add it to ifiles in open_base_file in ‘gengtype.c’.
For source files that aren’t header files, the machinery will generate a header file
that should be included in the source file you just changed. The file will be called
‘gt-path.h’ where path is the pathname relative to the ‘gcc’ directory with slashes
replaced by -, so for example the header file to be included in ‘cp/parser.c’ is called
‘gt-cp-parser.c’. The generated header file should be included after everything else
in the source file. Don’t forget to mention this file as a dependency in the ‘Makefile’!

For language frontends, there is another file that needs to be included somewhere. It
will be called ‘gtype-lang.h’, where lang is the name of the subdirectory the language is
contained in.

22.4 How to invoke the garbage collector

The GCC garbage collector GGC is only invoked explicitly. In contrast with many other
garbage collectors, it is not implicitly invoked by allocation routines when a lot of memory
has been consumed. So the only way to have GGC reclaim storage it to call the ggc_
collect function explicitly. This call is an expensive operation, as it may have to scan the
entire heap. Beware that local variables (on the GCC call stack) are not followed by such an
invocation (as many other garbage collectors do): you should reference all your data from
static or external GTY-ed variables, and it is advised to call ggc_collect with a shallow
call stack. The GGC is an exact mark and sweep garbage collector (so it does not scan the
call stack for pointers). In practice GCC passes don’t often call ggc_collect themselves,
because it is called by the pass manager between passes.

Funding Free Software 543

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to
help encourage people to contribute funds for its development. The most effective approach
known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-
fee distributors to donate part of their selling price to free software developers—the Free
Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied
with a vague promise, such as “A portion of the profits are donated,” since it doesn’t give
a basis for comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since creative
accounting and unrelated business decisions can greatly alter what fraction of the sales price
counts as profit. If the price you pay is $50, ten percent of the profit is probably less than
a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep
everyone honest, you need to inquire how much they do, and what kind. Some kinds of
development make much more long-term difference than others. For example, maintaining
a separate version of a program contributes very little; maintaining the standard version
of a program for the whole community contributes much. Easy new ports contribute little,
since someone else would surely do them; difficult ports such as adding a new CPU to the
GNU Compiler Collection contribute more; major new features or packages contribute the
most.

By establishing the idea that supporting further development is “the proper thing to
do” when distributing free software for a fee, we can assure a steady flow of resources into
making more free software.

Copyright c© 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

The GNU Project and GNU/Linux 545

The GNU Project and GNU/Linux

The GNU Project was launched in 1984 to develop a complete Unix-like operating system
which is free software: the GNU system. (GNU is a recursive acronym for “GNU’s Not
Unix”; it is pronounced “guh-NEW”.) Variants of the GNU operating system, which use the
kernel Linux, are now widely used; though these systems are often referred to as “Linux”,
they are more accurately called GNU/Linux systems.

For more information, see:
http://www.gnu.org/

http://www.gnu.org/gnu/linux-and-gnu.html

http://www.gnu.org/
http://www.gnu.org/gnu/linux-and-gnu.html

GNU General Public License 547

GNU General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program–to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright
on the software, and (2) offer you this License giving you legal permission to copy, distribute
and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

http://fsf.org/

548 GNU Compiler Collection (GCC) Internals

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

GNU General Public License 549

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

550 GNU Compiler Collection (GCC) Internals

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:
a. The work must carry prominent notices stating that you modified it, and giving a

relevant date.
b. The work must carry prominent notices stating that it is released under this Li-

cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

GNU General Public License 551

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.
A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.
“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

552 GNU Compiler Collection (GCC) Internals

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.
If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).
The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.
“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.
When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:
a. Disclaiming warranty or limiting liability differently from the terms of sections 15

and 16 of this License; or
b. Requiring preservation of specified reasonable legal notices or author attributions

in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

GNU General Public License 553

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.
Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

554 GNU Compiler Collection (GCC) Internals

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.
An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.
A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.
A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.
In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

GNU General Public License 555

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

556 GNU Compiler Collection (GCC) Internals

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

GNU General Public License 557

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like this when it

starts in an interactive mode:
program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

GNU Free Documentation License 559

GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

560 GNU Compiler Collection (GCC) Internals

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

GNU Free Documentation License 561

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

562 GNU Compiler Collection (GCC) Internals

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

GNU Free Documentation License 563

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

564 GNU Compiler Collection (GCC) Internals

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

GNU Free Documentation License 565

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Contributors to GCC 567

Contributors to GCC

The GCC project would like to thank its many contributors. Without them the project
would not have been nearly as successful as it has been. Any omissions in this list are
accidental. Feel free to contact law@redhat.com or gerald@pfeifer.com if you have been
left out or some of your contributions are not listed. Please keep this list in alphabetical
order.
• Analog Devices helped implement the support for complex data types and iterators.
• John David Anglin for threading-related fixes and improvements to libstdc++-v3, and

the HP-UX port.
• James van Artsdalen wrote the code that makes efficient use of the Intel 80387 register

stack.
• Abramo and Roberto Bagnara for the SysV68 Motorola 3300 Delta Series port.
• Alasdair Baird for various bug fixes.
• Giovanni Bajo for analyzing lots of complicated C++ problem reports.
• Peter Barada for his work to improve code generation for new ColdFire cores.
• Gerald Baumgartner added the signature extension to the C++ front end.
• Godmar Back for his Java improvements and encouragement.
• Scott Bambrough for help porting the Java compiler.
• Wolfgang Bangerth for processing tons of bug reports.
• Jon Beniston for his Microsoft Windows port of Java.
• Daniel Berlin for better DWARF2 support, faster/better optimizations, improved alias

analysis, plus migrating GCC to Bugzilla.
• Geoff Berry for his Java object serialization work and various patches.
• Uros Bizjak for the implementation of x87 math built-in functions and for various

middle end and i386 back end improvements and bug fixes.
• Eric Blake for helping to make GCJ and libgcj conform to the specifications.
• Janne Blomqvist for contributions to GNU Fortran.
• Segher Boessenkool for various fixes.
• Hans-J. Boehm for his garbage collector, IA-64 libffi port, and other Java work.
• Neil Booth for work on cpplib, lang hooks, debug hooks and other miscellaneous clean-

ups.
• Steven Bosscher for integrating the GNU Fortran front end into GCC and for con-

tributing to the tree-ssa branch.
• Eric Botcazou for fixing middle- and backend bugs left and right.
• Per Bothner for his direction via the steering committee and various improvements

to the infrastructure for supporting new languages. Chill front end implementation.
Initial implementations of cpplib, fix-header, config.guess, libio, and past C++ library
(libg++) maintainer. Dreaming up, designing and implementing much of GCJ.

• Devon Bowen helped port GCC to the Tahoe.
• Don Bowman for mips-vxworks contributions.

mailto:law@redhat.com
mailto:gerald@pfeifer.com
http://www.hpl.hp.com/personal/Hans_Boehm/gc/

568 GNU Compiler Collection (GCC) Internals

• Dave Brolley for work on cpplib and Chill.
• Paul Brook for work on the ARM architecture and maintaining GNU Fortran.
• Robert Brown implemented the support for Encore 32000 systems.
• Christian Bruel for improvements to local store elimination.
• Herman A.J. ten Brugge for various fixes.
• Joerg Brunsmann for Java compiler hacking and help with the GCJ FAQ.
• Joe Buck for his direction via the steering committee.
• Craig Burley for leadership of the G77 Fortran effort.
• Stephan Buys for contributing Doxygen notes for libstdc++.
• Paolo Carlini for libstdc++ work: lots of efficiency improvements to the C++ strings,

streambufs and formatted I/O, hard detective work on the frustrating localization
issues, and keeping up with the problem reports.

• John Carr for his alias work, SPARC hacking, infrastructure improvements, previous
contributions to the steering committee, loop optimizations, etc.

• Stephane Carrez for 68HC11 and 68HC12 ports.
• Steve Chamberlain for support for the Renesas SH and H8 processors and the PicoJava

processor, and for GCJ config fixes.
• Glenn Chambers for help with the GCJ FAQ.
• John-Marc Chandonia for various libgcj patches.
• Scott Christley for his Objective-C contributions.
• Eric Christopher for his Java porting help and clean-ups.
• Branko Cibej for more warning contributions.
• The GNU Classpath project for all of their merged runtime code.
• Nick Clifton for arm, mcore, fr30, v850, m32r work, ‘--help’, and other random hack-

ing.
• Michael Cook for libstdc++ cleanup patches to reduce warnings.
• R. Kelley Cook for making GCC buildable from a read-only directory as well as other

miscellaneous build process and documentation clean-ups.
• Ralf Corsepius for SH testing and minor bug fixing.
• Stan Cox for care and feeding of the x86 port and lots of behind the scenes hacking.
• Alex Crain provided changes for the 3b1.
• Ian Dall for major improvements to the NS32k port.
• Paul Dale for his work to add uClinux platform support to the m68k backend.
• Dario Dariol contributed the four varieties of sample programs that print a copy of

their source.
• Russell Davidson for fstream and stringstream fixes in libstdc++.
• Bud Davis for work on the G77 and GNU Fortran compilers.
• Mo DeJong for GCJ and libgcj bug fixes.
• DJ Delorie for the DJGPP port, build and libiberty maintenance, various bug fixes,

and the M32C port.

http://www.gnu.org/software/classpath/

Contributors to GCC 569

• Arnaud Desitter for helping to debug GNU Fortran.

• Gabriel Dos Reis for contributions to G++, contributions and maintenance of GCC
diagnostics infrastructure, libstdc++-v3, including valarray<>, complex<>, maintain-
ing the numerics library (including that pesky <limits> :-) and keeping up-to-date
anything to do with numbers.

• Ulrich Drepper for his work on glibc, testing of GCC using glibc, ISO C99 support,
CFG dumping support, etc., plus support of the C++ runtime libraries including for all
kinds of C interface issues, contributing and maintaining complex<>, sanity checking
and disbursement, configuration architecture, libio maintenance, and early math work.

• Zdenek Dvorak for a new loop unroller and various fixes.

• Richard Earnshaw for his ongoing work with the ARM.

• David Edelsohn for his direction via the steering committee, ongoing work with the
RS6000/PowerPC port, help cleaning up Haifa loop changes, doing the entire AIX
port of libstdc++ with his bare hands, and for ensuring GCC properly keeps working
on AIX.

• Kevin Ediger for the floating point formatting of num put::do put in libstdc++.

• Phil Edwards for libstdc++ work including configuration hackery, documentation main-
tainer, chief breaker of the web pages, the occasional iostream bug fix, and work on
shared library symbol versioning.

• Paul Eggert for random hacking all over GCC.

• Mark Elbrecht for various DJGPP improvements, and for libstdc++ configuration sup-
port for locales and fstream-related fixes.

• Vadim Egorov for libstdc++ fixes in strings, streambufs, and iostreams.

• Christian Ehrhardt for dealing with bug reports.

• Ben Elliston for his work to move the Objective-C runtime into its own subdirectory
and for his work on autoconf.

• Revital Eres for work on the PowerPC 750CL port.

• Marc Espie for OpenBSD support.

• Doug Evans for much of the global optimization framework, arc, m32r, and SPARC
work.

• Christopher Faylor for his work on the Cygwin port and for caring and feeding the
gcc.gnu.org box and saving its users tons of spam.

• Fred Fish for BeOS support and Ada fixes.

• Ivan Fontes Garcia for the Portuguese translation of the GCJ FAQ.

• Peter Gerwinski for various bug fixes and the Pascal front end.

• Kaveh R. Ghazi for his direction via the steering committee, amazing work to make ‘-W
-Wall -W* -Werror’ useful, and continuously testing GCC on a plethora of platforms.
Kaveh extends his gratitude to the CAIP Center at Rutgers University for providing
him with computing resources to work on Free Software since the late 1980s.

• John Gilmore for a donation to the FSF earmarked improving GNU Java.

• Judy Goldberg for c++ contributions.

http://www.caip.rutgers.edu

570 GNU Compiler Collection (GCC) Internals

• Torbjorn Granlund for various fixes and the c-torture testsuite, multiply- and divide-
by-constant optimization, improved long long support, improved leaf function register
allocation, and his direction via the steering committee.

• Anthony Green for his ‘-Os’ contributions and Java front end work.
• Stu Grossman for gdb hacking, allowing GCJ developers to debug Java code.
• Michael K. Gschwind contributed the port to the PDP-11.
• Ron Guilmette implemented the protoize and unprotoize tools, the support for

Dwarf symbolic debugging information, and much of the support for System V Re-
lease 4. He has also worked heavily on the Intel 386 and 860 support.

• Mostafa Hagog for Swing Modulo Scheduling (SMS) and post reload GCSE.
• Bruno Haible for improvements in the runtime overhead for EH, new warnings and

assorted bug fixes.
• Andrew Haley for his amazing Java compiler and library efforts.
• Chris Hanson assisted in making GCC work on HP-UX for the 9000 series 300.
• Michael Hayes for various thankless work he’s done trying to get the c30/c40 ports

functional. Lots of loop and unroll improvements and fixes.
• Dara Hazeghi for wading through myriads of target-specific bug reports.
• Kate Hedstrom for staking the G77 folks with an initial testsuite.
• Richard Henderson for his ongoing SPARC, alpha, ia32, and ia64 work, loop opts, and

generally fixing lots of old problems we’ve ignored for years, flow rewrite and lots of
further stuff, including reviewing tons of patches.

• Aldy Hernandez for working on the PowerPC port, SIMD support, and various fixes.
• Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed the support for

the Sony NEWS machine.
• Kazu Hirata for caring and feeding the Renesas H8/300 port and various fixes.
• Katherine Holcomb for work on GNU Fortran.
• Manfred Hollstein for his ongoing work to keep the m88k alive, lots of testing and bug

fixing, particularly of GCC configury code.
• Steve Holmgren for MachTen patches.
• Jan Hubicka for his x86 port improvements.
• Falk Hueffner for working on C and optimization bug reports.
• Bernardo Innocenti for his m68k work, including merging of ColdFire improvements

and uClinux support.
• Christian Iseli for various bug fixes.
• Kamil Iskra for general m68k hacking.
• Lee Iverson for random fixes and MIPS testing.
• Andreas Jaeger for testing and benchmarking of GCC and various bug fixes.
• Jakub Jelinek for his SPARC work and sibling call optimizations as well as lots of bug

fixes and test cases, and for improving the Java build system.
• Janis Johnson for ia64 testing and fixes, her quality improvement sidetracks, and web

page maintenance.

Contributors to GCC 571

• Kean Johnston for SCO OpenServer support and various fixes.
• Tim Josling for the sample language treelang based originally on Richard Kenner’s

“toy” language.
• Nicolai Josuttis for additional libstdc++ documentation.
• Klaus Kaempf for his ongoing work to make alpha-vms a viable target.
• Steven G. Kargl for work on GNU Fortran.
• David Kashtan of SRI adapted GCC to VMS.
• Ryszard Kabatek for many, many libstdc++ bug fixes and optimizations of strings,

especially member functions, and for auto ptr fixes.
• Geoffrey Keating for his ongoing work to make the PPC work for GNU/Linux and his

automatic regression tester.
• Brendan Kehoe for his ongoing work with G++ and for a lot of early work in just about

every part of libstdc++.
• Oliver M. Kellogg of Deutsche Aerospace contributed the port to the MIL-STD-1750A.
• Richard Kenner of the New York University Ultracomputer Research Laboratory wrote

the machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and
the IBM RS/6000 as well as the support for instruction attributes. He also made
changes to better support RISC processors including changes to common subexpression
elimination, strength reduction, function calling sequence handling, and condition code
support, in addition to generalizing the code for frame pointer elimination and delay
slot scheduling. Richard Kenner was also the head maintainer of GCC for several years.

• Mumit Khan for various contributions to the Cygwin and Mingw32 ports and main-
taining binary releases for Microsoft Windows hosts, and for massive libstdc++ porting
work to Cygwin/Mingw32.

• Robin Kirkham for cpu32 support.
• Mark Klein for PA improvements.
• Thomas Koenig for various bug fixes.
• Bruce Korb for the new and improved fixincludes code.
• Benjamin Kosnik for his G++ work and for leading the libstdc++-v3 effort.
• Charles LaBrec contributed the support for the Integrated Solutions 68020 system.
• Asher Langton and Mike Kumbera for contributing Cray pointer support to GNU

Fortran, and for other GNU Fortran improvements.
• Jeff Law for his direction via the steering committee, coordinating the entire egcs

project and GCC 2.95, rolling out snapshots and releases, handling merges from GCC2,
reviewing tons of patches that might have fallen through the cracks else, and random
but extensive hacking.

• Marc Lehmann for his direction via the steering committee and helping with analysis
and improvements of x86 performance.

• Victor Leikehman for work on GNU Fortran.
• Ted Lemon wrote parts of the RTL reader and printer.
• Kriang Lerdsuwanakij for C++ improvements including template as template parameter

support, and many C++ fixes.

572 GNU Compiler Collection (GCC) Internals

• Warren Levy for tremendous work on libgcj (Java Runtime Library) and random work
on the Java front end.

• Alain Lichnewsky ported GCC to the MIPS CPU.
• Oskar Liljeblad for hacking on AWT and his many Java bug reports and patches.
• Robert Lipe for OpenServer support, new testsuites, testing, etc.
• Chen Liqin for various S+core related fixes/improvement, and for maintaining the

S+core port.
• Weiwen Liu for testing and various bug fixes.
• Manuel López-Ibá~nez for improving ‘-Wconversion’ and many other diagnostics fixes

and improvements.
• Dave Love for his ongoing work with the Fortran front end and runtime libraries.
• Martin von Löwis for internal consistency checking infrastructure, various C++ improve-

ments including namespace support, and tons of assistance with libstdc++/compiler
merges.

• H.J. Lu for his previous contributions to the steering committee, many x86 bug reports,
prototype patches, and keeping the GNU/Linux ports working.

• Greg McGary for random fixes and (someday) bounded pointers.
• Andrew MacLeod for his ongoing work in building a real EH system, various code

generation improvements, work on the global optimizer, etc.
• Vladimir Makarov for hacking some ugly i960 problems, PowerPC hacking improve-

ments to compile-time performance, overall knowledge and direction in the area of
instruction scheduling, and design and implementation of the automaton based in-
struction scheduler.

• Bob Manson for his behind the scenes work on dejagnu.
• Philip Martin for lots of libstdc++ string and vector iterator fixes and improvements,

and string clean up and testsuites.
• All of the Mauve project contributors, for Java test code.
• Bryce McKinlay for numerous GCJ and libgcj fixes and improvements.
• Adam Megacz for his work on the Microsoft Windows port of GCJ.
• Michael Meissner for LRS framework, ia32, m32r, v850, m88k, MIPS, powerpc, haifa,

ECOFF debug support, and other assorted hacking.
• Jason Merrill for his direction via the steering committee and leading the G++ effort.
• Martin Michlmayr for testing GCC on several architectures using the entire Debian

archive.
• David Miller for his direction via the steering committee, lots of SPARC work, im-

provements in jump.c and interfacing with the Linux kernel developers.
• Gary Miller ported GCC to Charles River Data Systems machines.
• Alfred Minarik for libstdc++ string and ios bug fixes, and turning the entire libstdc++

testsuite namespace-compatible.
• Mark Mitchell for his direction via the steering committee, mountains of C++ work,

load/store hoisting out of loops, alias analysis improvements, ISO C restrict support,
and serving as release manager for GCC 3.x.

http://sourceware.org/cgi-bin/cvsweb.cgi/~checkout~/mauve/THANKS?rev=1.2&cvsroot=mauve&only_with_tag=HEAD

Contributors to GCC 573

• Alan Modra for various GNU/Linux bits and testing.
• Toon Moene for his direction via the steering committee, Fortran maintenance, and his

ongoing work to make us make Fortran run fast.
• Jason Molenda for major help in the care and feeding of all the services on the

gcc.gnu.org (formerly egcs.cygnus.com) machine—mail, web services, ftp services, etc
etc. Doing all this work on scrap paper and the backs of envelopes would have been. . .
difficult.

• Catherine Moore for fixing various ugly problems we have sent her way, including the
haifa bug which was killing the Alpha & PowerPC Linux kernels.

• Mike Moreton for his various Java patches.
• David Mosberger-Tang for various Alpha improvements, and for the initial IA-64 port.
• Stephen Moshier contributed the floating point emulator that assists in cross-

compilation and permits support for floating point numbers wider than 64 bits and
for ISO C99 support.

• Bill Moyer for his behind the scenes work on various issues.
• Philippe De Muyter for his work on the m68k port.
• Joseph S. Myers for his work on the PDP-11 port, format checking and ISO C99

support, and continuous emphasis on (and contributions to) documentation.
• Nathan Myers for his work on libstdc++-v3: architecture and authorship through the

first three snapshots, including implementation of locale infrastructure, string, shadow
C headers, and the initial project documentation (DESIGN, CHECKLIST, and so
forth). Later, more work on MT-safe string and shadow headers.

• Felix Natter for documentation on porting libstdc++.
• Nathanael Nerode for cleaning up the configuration/build process.
• NeXT, Inc. donated the front end that supports the Objective-C language.
• Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the search engine

setup, various documentation fixes and other small fixes.
• Geoff Noer for his work on getting cygwin native builds working.
• Diego Novillo for his work on Tree SSA, OpenMP, SPEC performance tracking web

pages, GIMPLE tuples, and assorted fixes.
• David O’Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, FreeBSD/ARM,

FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related infrastructure
improvements.

• Alexandre Oliva for various build infrastructure improvements, scripts and amazing
testing work, including keeping libtool issues sane and happy.

• Stefan Olsson for work on mt alloc.
• Melissa O’Neill for various NeXT fixes.
• Rainer Orth for random MIPS work, including improvements to GCC’s o32 ABI sup-

port, improvements to dejagnu’s MIPS support, Java configuration clean-ups and port-
ing work, etc.

• Hartmut Penner for work on the s390 port.
• Paul Petersen wrote the machine description for the Alliant FX/8.

574 GNU Compiler Collection (GCC) Internals

• Alexandre Petit-Bianco for implementing much of the Java compiler and continued
Java maintainership.

• Matthias Pfaller for major improvements to the NS32k port.
• Gerald Pfeifer for his direction via the steering committee, pointing out lots of problems

we need to solve, maintenance of the web pages, and taking care of documentation
maintenance in general.

• Andrew Pinski for processing bug reports by the dozen.
• Ovidiu Predescu for his work on the Objective-C front end and runtime libraries.
• Jerry Quinn for major performance improvements in C++ formatted I/O.
• Ken Raeburn for various improvements to checker, MIPS ports and various cleanups

in the compiler.
• Rolf W. Rasmussen for hacking on AWT.
• David Reese of Sun Microsystems contributed to the Solaris on PowerPC port.
• Volker Reichelt for keeping up with the problem reports.
• Joern Rennecke for maintaining the sh port, loop, regmove & reload hacking.
• Loren J. Rittle for improvements to libstdc++-v3 including the FreeBSD port, threading

fixes, thread-related configury changes, critical threading documentation, and solutions
to really tricky I/O problems, as well as keeping GCC properly working on FreeBSD
and continuous testing.

• Craig Rodrigues for processing tons of bug reports.
• Ola Rönnerup for work on mt alloc.
• Gavin Romig-Koch for lots of behind the scenes MIPS work.
• David Ronis inspired and encouraged Craig to rewrite the G77 documentation in texinfo

format by contributing a first pass at a translation of the old ‘g77-0.5.16/f/DOC’ file.
• Ken Rose for fixes to GCC’s delay slot filling code.
• Paul Rubin wrote most of the preprocessor.
• Pétur Runólfsson for major performance improvements in C++ formatted I/O and large

file support in C++ filebuf.
• Chip Salzenberg for libstdc++ patches and improvements to locales, traits, Makefiles,

libio, libtool hackery, and “long long” support.
• Juha Sarlin for improvements to the H8 code generator.
• Greg Satz assisted in making GCC work on HP-UX for the 9000 series 300.
• Roger Sayle for improvements to constant folding and GCC’s RTL optimizers as well

as for fixing numerous bugs.
• Bradley Schatz for his work on the GCJ FAQ.
• Peter Schauer wrote the code to allow debugging to work on the Alpha.
• William Schelter did most of the work on the Intel 80386 support.
• Tobias Schlüter for work on GNU Fortran.
• Bernd Schmidt for various code generation improvements and major work in the reload

pass as well a serving as release manager for GCC 2.95.3.

Contributors to GCC 575

• Peter Schmid for constant testing of libstdc++—especially application testing, going
above and beyond what was requested for the release criteria—and libstdc++ header
file tweaks.

• Jason Schroeder for jcf-dump patches.
• Andreas Schwab for his work on the m68k port.
• Lars Segerlund for work on GNU Fortran.
• Joel Sherrill for his direction via the steering committee, RTEMS contributions and

RTEMS testing.
• Nathan Sidwell for many C++ fixes/improvements.
• Jeffrey Siegal for helping RMS with the original design of GCC, some code which

handles the parse tree and RTL data structures, constant folding and help with the
original VAX & m68k ports.

• Kenny Simpson for prompting libstdc++ fixes due to defect reports from the LWG
(thereby keeping GCC in line with updates from the ISO).

• Franz Sirl for his ongoing work with making the PPC port stable for GNU/Linux.
• Andrey Slepuhin for assorted AIX hacking.
• Trevor Smigiel for contributing the SPU port.
• Christopher Smith did the port for Convex machines.
• Danny Smith for his major efforts on the Mingw (and Cygwin) ports.
• Randy Smith finished the Sun FPA support.
• Scott Snyder for queue, iterator, istream, and string fixes and libstdc++ testsuite en-

tries. Also for providing the patch to G77 to add rudimentary support for INTEGER*1,
INTEGER*2, and LOGICAL*1.

• Brad Spencer for contributions to the GLIBCPP FORCE NEW technique.
• Richard Stallman, for writing the original GCC and launching the GNU project.
• Jan Stein of the Chalmers Computer Society provided support for Genix, as well as

part of the 32000 machine description.
• Nigel Stephens for various mips16 related fixes/improvements.
• Jonathan Stone wrote the machine description for the Pyramid computer.
• Graham Stott for various infrastructure improvements.
• John Stracke for his Java HTTP protocol fixes.
• Mike Stump for his Elxsi port, G++ contributions over the years and more recently his

vxworks contributions
• Jeff Sturm for Java porting help, bug fixes, and encouragement.
• Shigeya Suzuki for this fixes for the bsdi platforms.
• Ian Lance Taylor for his mips16 work, general configury hacking, fixincludes, etc.
• Holger Teutsch provided the support for the Clipper CPU.
• Gary Thomas for his ongoing work to make the PPC work for GNU/Linux.
• Philipp Thomas for random bug fixes throughout the compiler
• Jason Thorpe for thread support in libstdc++ on NetBSD.

576 GNU Compiler Collection (GCC) Internals

• Kresten Krab Thorup wrote the run time support for the Objective-C language and
the fantastic Java bytecode interpreter.

• Michael Tiemann for random bug fixes, the first instruction scheduler, initial C++
support, function integration, NS32k, SPARC and M88k machine description work,
delay slot scheduling.

• Andreas Tobler for his work porting libgcj to Darwin.
• Teemu Torma for thread safe exception handling support.
• Leonard Tower wrote parts of the parser, RTL generator, and RTL definitions, and of

the VAX machine description.
• Daniel Towner and Hariharan Sandanagobalane contributed and maintain the picoChip

port.
• Tom Tromey for internationalization support and for his many Java contributions and

libgcj maintainership.
• Lassi Tuura for improvements to config.guess to determine HP processor types.
• Petter Urkedal for libstdc++ CXXFLAGS, math, and algorithms fixes.
• Andy Vaught for the design and initial implementation of the GNU Fortran front end.
• Brent Verner for work with the libstdc++ cshadow files and their associated configure

steps.
• Todd Vierling for contributions for NetBSD ports.
• Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML guidance.
• Dean Wakerley for converting the install documentation from HTML to texinfo in time

for GCC 3.0.
• Krister Walfridsson for random bug fixes.
• Feng Wang for contributions to GNU Fortran.
• Stephen M. Webb for time and effort on making libstdc++ shadow files work with the

tricky Solaris 8+ headers, and for pushing the build-time header tree.
• John Wehle for various improvements for the x86 code generator, related infrastructure

improvements to help x86 code generation, value range propagation and other work,
WE32k port.

• Ulrich Weigand for work on the s390 port.
• Zack Weinberg for major work on cpplib and various other bug fixes.
• Matt Welsh for help with Linux Threads support in GCJ.
• Urban Widmark for help fixing java.io.
• Mark Wielaard for new Java library code and his work integrating with Classpath.
• Dale Wiles helped port GCC to the Tahoe.
• Bob Wilson from Tensilica, Inc. for the Xtensa port.
• Jim Wilson for his direction via the steering committee, tackling hard problems in

various places that nobody else wanted to work on, strength reduction and other loop
optimizations.

• Paul Woegerer and Tal Agmon for the CRX port.
• Carlo Wood for various fixes.

Contributors to GCC 577

• Tom Wood for work on the m88k port.
• Canqun Yang for work on GNU Fortran.
• Masanobu Yuhara of Fujitsu Laboratories implemented the machine description for the

Tron architecture (specifically, the Gmicro).
• Kevin Zachmann helped port GCC to the Tahoe.
• Ayal Zaks for Swing Modulo Scheduling (SMS).
• Xiaoqiang Zhang for work on GNU Fortran.
• Gilles Zunino for help porting Java to Irix.

The following people are recognized for their contributions to GNAT, the Ada front end
of GCC:
• Bernard Banner
• Romain Berrendonner
• Geert Bosch
• Emmanuel Briot
• Joel Brobecker
• Ben Brosgol
• Vincent Celier
• Arnaud Charlet
• Chien Chieng
• Cyrille Comar
• Cyrille Crozes
• Robert Dewar
• Gary Dismukes
• Robert Duff
• Ed Falis
• Ramon Fernandez
• Sam Figueroa
• Vasiliy Fofanov
• Michael Friess
• Franco Gasperoni
• Ted Giering
• Matthew Gingell
• Laurent Guerby
• Jerome Guitton
• Olivier Hainque
• Jerome Hugues
• Hristian Kirtchev
• Jerome Lambourg
• Bruno Leclerc

578 GNU Compiler Collection (GCC) Internals

• Albert Lee
• Sean McNeil
• Javier Miranda
• Laurent Nana
• Pascal Obry
• Dong-Ik Oh
• Laurent Pautet
• Brett Porter
• Thomas Quinot
• Nicolas Roche
• Pat Rogers
• Jose Ruiz
• Douglas Rupp
• Sergey Rybin
• Gail Schenker
• Ed Schonberg
• Nicolas Setton
• Samuel Tardieu

The following people are recognized for their contributions of new features, bug reports,
testing and integration of classpath/libgcj for GCC version 4.1:
• Lillian Angel for JTree implementation and lots Free Swing additions and bug fixes.
• Wolfgang Baer for GapContent bug fixes.
• Anthony Balkissoon for JList, Free Swing 1.5 updates and mouse event fixes, lots of

Free Swing work including JTable editing.
• Stuart Ballard for RMI constant fixes.
• Goffredo Baroncelli for HTTPURLConnection fixes.
• Gary Benson for MessageFormat fixes.
• Daniel Bonniot for Serialization fixes.
• Chris Burdess for lots of gnu.xml and http protocol fixes, StAX and DOM xml:id support.
• Ka-Hing Cheung for TreePath and TreeSelection fixes.
• Archie Cobbs for build fixes, VM interface updates, URLClassLoader updates.
• Kelley Cook for build fixes.
• Martin Cordova for Suggestions for better SocketTimeoutException.
• David Daney for BitSet bug fixes, HttpURLConnection rewrite and improvements.
• Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo 2D support.

Lots of imageio framework additions, lots of AWT and Free Swing bug fixes.
• Jeroen Frijters for ClassLoader and nio cleanups, serialization fixes, better Proxy

support, bug fixes and IKVM integration.
• Santiago Gala for AccessControlContext fixes.

Contributors to GCC 579

• Nicolas Geoffray for VMClassLoader and AccessController improvements.
• David Gilbert for basic and metal icon and plaf support and lots of documenting,

Lots of Free Swing and metal theme additions. MetalIconFactory implementation.
• Anthony Green for MIDI framework, ALSA and DSSI providers.
• Andrew Haley for Serialization and URLClassLoader fixes, gcj build speedups.
• Kim Ho for JFileChooser implementation.
• Andrew John Hughes for Locale and net fixes, URI RFC2986 updates, Serialization

fixes, Properties XML support and generic branch work, VMIntegration guide update.
• Bastiaan Huisman for TimeZone bug fixing.
• Andreas Jaeger for mprec updates.
• Paul Jenner for better ‘-Werror’ support.
• Ito Kazumitsu for NetworkInterface implementation and updates.
• Roman Kennke for BoxLayout, GrayFilter and SplitPane, plus bug fixes all over.

Lots of Free Swing work including styled text.
• Simon Kitching for String cleanups and optimization suggestions.
• Michael Koch for configuration fixes, Locale updates, bug and build fixes.
• Guilhem Lavaux for configuration, thread and channel fixes and Kaffe integration. JCL

native Pointer updates. Logger bug fixes.
• David Lichteblau for JCL support library global/local reference cleanups.
• Aaron Luchko for JDWP updates and documentation fixes.
• Ziga Mahkovec for Graphics2D upgraded to Cairo 0.5 and new regex features.
• Sven de Marothy for BMP imageio support, CSS and TextLayout fixes. GtkImage

rewrite, 2D, awt, free swing and date/time fixes and implementing the Qt4 peers.
• Casey Marshall for crypto algorithm fixes, FileChannel lock, SystemLogger and

FileHandler rotate implementations, NIO FileChannel.map support, security and
policy updates.

• Bryce McKinlay for RMI work.
• Audrius Meskauskas for lots of Free Corba, RMI and HTML work plus testing and

documenting.
• Kalle Olavi Niemitalo for build fixes.
• Rainer Orth for build fixes.
• Andrew Overholt for File locking fixes.
• Ingo Proetel for Image, Logger and URLClassLoader updates.
• Olga Rodimina for MenuSelectionManager implementation.
• Jan Roehrich for BasicTreeUI and JTree fixes.
• Julian Scheid for documentation updates and gjdoc support.
• Christian Schlichtherle for zip fixes and cleanups.
• Robert Schuster for documentation updates and beans fixes, TreeNode enumerations

and ActionCommand and various fixes, XML and URL, AWT and Free Swing bug fixes.
• Keith Seitz for lots of JDWP work.

580 GNU Compiler Collection (GCC) Internals

• Christian Thalinger for 64-bit cleanups, Configuration and VM interface fixes and
CACAO integration, fdlibm updates.

• Gael Thomas for VMClassLoader boot packages support suggestions.
• Andreas Tobler for Darwin and Solaris testing and fixing, Qt4 support for Darwin/OS

X, Graphics2D support, gtk+ updates.
• Dalibor Topic for better DEBUG support, build cleanups and Kaffe integration. Qt4

build infrastructure, SHA1PRNG and GdkPixbugDecoder updates.
• Tom Tromey for Eclipse integration, generics work, lots of bug fixes and gcj integration

including coordinating The Big Merge.
• Mark Wielaard for bug fixes, packaging and release management, Clipboard imple-

mentation, system call interrupts and network timeouts and GdkPixpufDecoder fixes.

In addition to the above, all of which also contributed time and energy in testing GCC,
we would like to thank the following for their contributions to testing:
• Michael Abd-El-Malek
• Thomas Arend
• Bonzo Armstrong
• Steven Ashe
• Chris Baldwin
• David Billinghurst
• Jim Blandy
• Stephane Bortzmeyer
• Horst von Brand
• Frank Braun
• Rodney Brown
• Sidney Cadot
• Bradford Castalia
• Robert Clark
• Jonathan Corbet
• Ralph Doncaster
• Richard Emberson
• Levente Farkas
• Graham Fawcett
• Mark Fernyhough
• Robert A. French
• Jörgen Freyh
• Mark K. Gardner
• Charles-Antoine Gauthier
• Yung Shing Gene
• David Gilbert

Contributors to GCC 581

• Simon Gornall
• Fred Gray
• John Griffin
• Patrik Hagglund
• Phil Hargett
• Amancio Hasty
• Takafumi Hayashi
• Bryan W. Headley
• Kevin B. Hendricks
• Joep Jansen
• Christian Joensson
• Michel Kern
• David Kidd
• Tobias Kuipers
• Anand Krishnaswamy
• A. O. V. Le Blanc
• llewelly
• Damon Love
• Brad Lucier
• Matthias Klose
• Martin Knoblauch
• Rick Lutowski
• Jesse Macnish
• Stefan Morrell
• Anon A. Mous
• Matthias Mueller
• Pekka Nikander
• Rick Niles
• Jon Olson
• Magnus Persson
• Chris Pollard
• Richard Polton
• Derk Reefman
• David Rees
• Paul Reilly
• Tom Reilly
• Torsten Rueger
• Danny Sadinoff
• Marc Schifer

582 GNU Compiler Collection (GCC) Internals

• Erik Schnetter
• Wayne K. Schroll
• David Schuler
• Vin Shelton
• Tim Souder
• Adam Sulmicki
• Bill Thorson
• George Talbot
• Pedro A. M. Vazquez
• Gregory Warnes
• Ian Watson
• David E. Young
• And many others

And finally we’d like to thank everyone who uses the compiler, provides feedback and
generally reminds us why we’re doing this work in the first place.

Option Index 583

Option Index

GCC’s command line options are indexed here without any initial ‘-’ or ‘--’. Where an
option has both positive and negative forms (such as ‘-foption ’ and ‘-fno-option ’), rele-
vant entries in the manual are indexed under the most appropriate form; it may sometimes
be useful to look up both forms.

msoft-float . 12

Concept Index 585

Concept Index

!
‘!’ in constraint . 286

#
‘#’ in constraint . 288
in template . 275
#pragma . 513, 514, 515

%
‘%’ in constraint . 287
% in GTY option . 537
‘%’ in template . 275

&
‘&’ in constraint . 287

(
(gimple 209, 210, 212, 213, 216
(nil) . 148
(tree . 209
(void) . 464

*
* . 460, 525
‘*’ in constraint . 288
* in template . 276
*gimple_assign_lhs_ptr . 214
*gimple_assign_rhs1_ptr 214
*gimple_assign_rhs2_ptr 214, 215
*gimple_call_arg_ptr . 216
*gimple_call_lhs_ptr . 216
*gimple_catch_types_ptr 217
*gimple_cdt_location_ptr 218
*gimple_cdt_new_type_ptr 218
*gimple_eh_filter_types_ptr 219
*gimple_omp_critical_name_ptr 221
*gimple_omp_for_clauses_ptr 222
*gimple_omp_for_final_ptr 222
*gimple_omp_for_incr_ptr 223
*gimple_omp_for_index_ptr 222
*gimple_omp_for_initial_ptr 222
*gimple_omp_parallel_child_fn_ptr 224
*gimple_omp_parallel_clauses_ptr 224
*gimple_omp_parallel_data_arg_ptr 224
*gimple_omp_sections_clauses_ptr 225
*gimple_omp_sections_control_ptr 225
*gimple_omp_single_clauses_ptr 226
*gimple_op_ptr . 211

*gimple_ops . 208, 211
*gimple_phi_result_ptr . 226
*gsi_stmt_ptr . 231
*TARGET_GET_PCH_VALIDITY 506

+
‘+’ in constraint . 287

-
‘-fsection-anchors’ . 153, 448

/
‘/c’ in RTL dump . 157
‘/f’ in RTL dump . 157
‘/i’ in RTL dump . 158
‘/j’ in RTL dump . 158
‘/s’ in RTL dump . 157
‘/u’ in RTL dump . 158
‘/v’ in RTL dump . 159

<
‘<’ in constraint . 282

=
‘=’ in constraint . 287

>
‘>’ in constraint . 282

?
‘?’ in constraint . 286

__absvdi2 . 11
__absvsi2 . 11
__addda3 . 22
__adddf3 . 12
__adddq3 . 22
__addha3 . 22
__addhq3 . 22
__addqq3 . 22
__addsa3 . 22
__addsf3 . 12
__addsq3 . 22
__addta3 . 22
__addtf3 . 12

586 GNU Compiler Collection (GCC) Internals

__adduda3 . 23
__addudq3 . 22
__adduha3 . 22
__adduhq3 . 22
__adduqq3 . 22
__addusa3 . 23
__addusq3 . 22
__adduta3 . 23
__addvdi3 . 11
__addvsi3 . 11
__addxf3 . 12
__ashlda3 . 28
__ashldi3 . 9
__ashldq3 . 28
__ashlha3 . 28
__ashlhq3 . 28
__ashlqq3 . 28
__ashlsa3 . 28
__ashlsi3 . 9
__ashlsq3 . 28
__ashlta3 . 28
__ashlti3 . 9
__ashluda3 . 28
__ashludq3 . 28
__ashluha3 . 28
__ashluhq3 . 28
__ashluqq3 . 28
__ashlusa3 . 28
__ashlusq3 . 28
__ashluta3 . 28
__ashrda3 . 29
__ashrdi3 . 9
__ashrdq3 . 29
__ashrha3 . 29
__ashrhq3 . 29
__ashrqq3 . 29
__ashrsa3 . 29
__ashrsi3 . 9
__ashrsq3 . 29
__ashrta3 . 29
__ashrti3 . 9
__bid_adddd3 . 17
__bid_addsd3 . 17
__bid_addtd3 . 17
__bid_divdd3 . 17
__bid_divsd3 . 17
__bid_divtd3 . 17
__bid_eqdd2 . 21
__bid_eqsd2 . 21
__bid_eqtd2 . 21
__bid_extendddtd2 . 18
__bid_extendddtf . 18
__bid_extendddxf . 18
__bid_extenddfdd . 19
__bid_extenddftd . 18
__bid_extendsddd2 . 17
__bid_extendsddf . 18
__bid_extendsdtd2 . 17

__bid_extendsdtf . 18
__bid_extendsdxf . 18
__bid_extendsfdd . 18
__bid_extendsfsd . 19
__bid_extendsftd . 18
__bid_extendtftd . 19
__bid_extendxftd . 18
__bid_fixdddi . 19
__bid_fixddsi . 19
__bid_fixsddi . 19
__bid_fixsdsi . 19
__bid_fixtddi . 19
__bid_fixtdsi . 19
__bid_fixunsdddi . 19
__bid_fixunsddsi . 19
__bid_fixunssddi . 19
__bid_fixunssdsi . 19
__bid_fixunstddi . 19
__bid_fixunstdsi . 19
__bid_floatdidd . 20
__bid_floatdisd . 20
__bid_floatditd . 20
__bid_floatsidd . 20
__bid_floatsisd . 20
__bid_floatsitd . 20
__bid_floatunsdidd . 20
__bid_floatunsdisd . 20
__bid_floatunsditd . 20
__bid_floatunssidd . 20
__bid_floatunssisd . 20
__bid_floatunssitd . 20
__bid_gedd2 . 21
__bid_gesd2 . 21
__bid_getd2 . 21
__bid_gtdd2 . 22
__bid_gtsd2 . 22
__bid_gttd2 . 22
__bid_ledd2 . 21
__bid_lesd2 . 21
__bid_letd2 . 21
__bid_ltdd2 . 21
__bid_ltsd2 . 21
__bid_lttd2 . 21
__bid_muldd3 . 17
__bid_mulsd3 . 17
__bid_multd3 . 17
__bid_nedd2 . 21
__bid_negdd2 . 17
__bid_negsd2 . 17
__bid_negtd2 . 17
__bid_nesd2 . 21
__bid_netd2 . 21
__bid_subdd3 . 17
__bid_subsd3 . 17
__bid_subtd3 . 17
__bid_truncdddf . 19
__bid_truncddsd2 . 18
__bid_truncddsf . 18

Concept Index 587

__bid_truncdfsd . 18
__bid_truncsdsf . 19
__bid_trunctddd2 . 18
__bid_trunctddf . 18
__bid_trunctdsd2 . 18
__bid_trunctdsf . 18
__bid_trunctdtf . 19
__bid_trunctdxf . 18
__bid_trunctfdd . 18
__bid_trunctfsd . 18
__bid_truncxfdd . 18
__bid_truncxfsd . 18
__bid_unorddd2 . 20
__bid_unordsd2 . 20
__bid_unordtd2 . 20
__bswapdi2 . 12
__bswapsi2 . 12
__builtin_args_info . 438
__builtin_classify_type 438
__builtin_next_arg . 438
__builtin_saveregs . 437
__clear_cache . 57
__clzdi2 . 11
__clzsi2 . 11
__clzti2 . 11
__cmpda2 . 30
__cmpdf2 . 15
__cmpdi2 . 10
__cmpdq2 . 30
__cmpha2 . 30
__cmphq2 . 30
__cmpqq2 . 30
__cmpsa2 . 30
__cmpsf2 . 15
__cmpsq2 . 30
__cmpta2 . 30
__cmptf2 . 15
__cmpti2 . 10
__cmpuda2 . 30
__cmpudq2 . 30
__cmpuha2 . 30
__cmpuhq2 . 30
__cmpuqq2 . 30
__cmpusa2 . 30
__cmpusq2 . 30
__cmputa2 . 30
__CTOR_LIST__ . 481
__ctzdi2 . 11
__ctzsi2 . 11
__ctzti2 . 11
__divda3 . 26
__divdc3 . 16
__divdf3 . 12
__divdi3 . 9
__divdq3 . 26
__divha3 . 26
__divhq3 . 26
__divqq3 . 26

__divsa3 . 26
__divsc3 . 16
__divsf3 . 12
__divsi3 . 9
__divsq3 . 26
__divta3 . 26
__divtc3 . 16
__divtf3 . 12
__divti3 . 9
__divxc3 . 16
__divxf3 . 12
__dpd_adddd3 . 17
__dpd_addsd3 . 17
__dpd_addtd3 . 17
__dpd_divdd3 . 17
__dpd_divsd3 . 17
__dpd_divtd3 . 17
__dpd_eqdd2 . 21
__dpd_eqsd2 . 21
__dpd_eqtd2 . 21
__dpd_extendddtd2 . 17
__dpd_extendddtf . 18
__dpd_extendddxf . 18
__dpd_extenddfdd . 19
__dpd_extenddftd . 18
__dpd_extendsddd2 . 17
__dpd_extendsddf . 18
__dpd_extendsdtd2 . 17
__dpd_extendsdtf . 18
__dpd_extendsdxf . 18
__dpd_extendsfdd . 18
__dpd_extendsfsd . 19
__dpd_extendsftd . 18
__dpd_extendtftd . 19
__dpd_extendxftd . 18
__dpd_fixdddi . 19
__dpd_fixddsi . 19
__dpd_fixsddi . 19
__dpd_fixsdsi . 19
__dpd_fixtddi . 19
__dpd_fixtdsi . 19
__dpd_fixunsdddi . 19
__dpd_fixunsddsi . 19
__dpd_fixunssddi . 19
__dpd_fixunssdsi . 19
__dpd_fixunstddi . 19
__dpd_fixunstdsi . 19
__dpd_floatdidd . 20
__dpd_floatdisd . 20
__dpd_floatditd . 20
__dpd_floatsidd . 20
__dpd_floatsisd . 20
__dpd_floatsitd . 20
__dpd_floatunsdidd . 20
__dpd_floatunsdisd . 20
__dpd_floatunsditd . 20
__dpd_floatunssidd . 20
__dpd_floatunssisd . 20

588 GNU Compiler Collection (GCC) Internals

__dpd_floatunssitd . 20
__dpd_gedd2 . 21
__dpd_gesd2 . 21
__dpd_getd2 . 21
__dpd_gtdd2 . 22
__dpd_gtsd2 . 22
__dpd_gttd2 . 22
__dpd_ledd2 . 21
__dpd_lesd2 . 21
__dpd_letd2 . 21
__dpd_ltdd2 . 21
__dpd_ltsd2 . 21
__dpd_lttd2 . 21
__dpd_muldd3 . 17
__dpd_mulsd3 . 17
__dpd_multd3 . 17
__dpd_nedd2 . 21
__dpd_negdd2 . 17
__dpd_negsd2 . 17
__dpd_negtd2 . 17
__dpd_nesd2 . 21
__dpd_netd2 . 21
__dpd_subdd3 . 17
__dpd_subsd3 . 17
__dpd_subtd3 . 17
__dpd_truncdddf . 19
__dpd_truncddsd2 . 18
__dpd_truncddsf . 18
__dpd_truncdfsd . 18
__dpd_truncsdsf . 19
__dpd_trunctddd2 . 18
__dpd_trunctddf . 18
__dpd_trunctdsd2 . 18
__dpd_trunctdsf . 18
__dpd_trunctdtf . 19
__dpd_trunctdxf . 18
__dpd_trunctfdd . 18
__dpd_trunctfsd . 18
__dpd_truncxfdd . 18
__dpd_truncxfsd . 18
__dpd_unorddd2 . 20
__dpd_unordsd2 . 20
__dpd_unordtd2 . 20
__DTOR_LIST__ . 481
__eqdf2 . 15
__eqsf2 . 15
__eqtf2 . 15
__extenddftf2 . 13
__extenddfxf2 . 13
__extendsfdf2 . 13
__extendsftf2 . 13
__extendsfxf2 . 13
__ffsdi2 . 11
__ffsti2 . 11
__fixdfdi . 13
__fixdfsi . 13
__fixdfti . 13
__fixsfdi . 13

__fixsfsi . 13
__fixsfti . 13
__fixtfdi . 13
__fixtfsi . 13
__fixtfti . 13
__fixunsdfdi . 13
__fixunsdfsi . 13
__fixunsdfti . 14
__fixunssfdi . 13
__fixunssfsi . 13
__fixunssfti . 14
__fixunstfdi . 13
__fixunstfsi . 13
__fixunstfti . 14
__fixunsxfdi . 13
__fixunsxfsi . 13
__fixunsxfti . 14
__fixxfdi . 13
__fixxfsi . 13
__fixxfti . 13
__floatdidf . 14
__floatdisf . 14
__floatditf . 14
__floatdixf . 14
__floatsidf . 14
__floatsisf . 14
__floatsitf . 14
__floatsixf . 14
__floattidf . 14
__floattisf . 14
__floattitf . 14
__floattixf . 14
__floatundidf . 14
__floatundisf . 14
__floatunditf . 14
__floatundixf . 14
__floatunsidf . 14
__floatunsisf . 14
__floatunsitf . 14
__floatunsixf . 14
__floatuntidf . 14
__floatuntisf . 14
__floatuntitf . 14
__floatuntixf . 14
__fractdadf . 34
__fractdadi . 34
__fractdadq . 33
__fractdaha2 . 33
__fractdahi . 33
__fractdahq . 33
__fractdaqi . 33
__fractdaqq . 33
__fractdasa2 . 33
__fractdasf . 34
__fractdasi . 34
__fractdasq . 33
__fractdata2 . 33
__fractdati . 34

Concept Index 589

__fractdauda . 33
__fractdaudq . 33
__fractdauha . 33
__fractdauhq . 33
__fractdauqq . 33
__fractdausa . 33
__fractdausq . 33
__fractdauta . 33
__fractdfda . 41
__fractdfdq . 41
__fractdfha . 41
__fractdfhq . 41
__fractdfqq . 41
__fractdfsa . 41
__fractdfsq . 41
__fractdfta . 41
__fractdfuda . 41
__fractdfudq . 41
__fractdfuha . 41
__fractdfuhq . 41
__fractdfuqq . 41
__fractdfusa . 41
__fractdfusq . 41
__fractdfuta . 41
__fractdida . 40
__fractdidq . 40
__fractdiha . 40
__fractdihq . 40
__fractdiqq . 40
__fractdisa . 40
__fractdisq . 40
__fractdita . 40
__fractdiuda . 40
__fractdiudq . 40
__fractdiuha . 40
__fractdiuhq . 40
__fractdiuqq . 40
__fractdiusa . 40
__fractdiusq . 40
__fractdiuta . 40
__fractdqda . 32
__fractdqdf . 32
__fractdqdi . 32
__fractdqha . 32
__fractdqhi . 32
__fractdqhq2 . 32
__fractdqqi . 32
__fractdqqq2 . 32
__fractdqsa . 32
__fractdqsf . 32
__fractdqsi . 32
__fractdqsq2 . 32
__fractdqta . 32
__fractdqti . 32
__fractdquda . 32
__fractdqudq . 32
__fractdquha . 32
__fractdquhq . 32

__fractdquqq . 32
__fractdqusa . 32
__fractdqusq . 32
__fractdquta . 32
__fracthada2 . 32
__fracthadf . 33
__fracthadi . 33
__fracthadq . 32
__fracthahi . 33
__fracthahq . 32
__fracthaqi . 33
__fracthaqq . 32
__fracthasa2 . 32
__fracthasf . 33
__fracthasi . 33
__fracthasq . 32
__fracthata2 . 32
__fracthati . 33
__fracthauda . 32
__fracthaudq . 32
__fracthauha . 32
__fracthauhq . 32
__fracthauqq . 32
__fracthausa . 32
__fracthausq . 32
__fracthauta . 33
__fracthida . 39
__fracthidq . 39
__fracthiha . 39
__fracthihq . 39
__fracthiqq . 39
__fracthisa . 39
__fracthisq . 39
__fracthita . 39
__fracthiuda . 39
__fracthiudq . 39
__fracthiuha . 39
__fracthiuhq . 39
__fracthiuqq . 39
__fracthiusa . 39
__fracthiusq . 39
__fracthiuta . 39
__fracthqda . 31
__fracthqdf . 31
__fracthqdi . 31
__fracthqdq2 . 31
__fracthqha . 31
__fracthqhi . 31
__fracthqqi . 31
__fracthqqq2 . 31
__fracthqsa . 31
__fracthqsf . 31
__fracthqsi . 31
__fracthqsq2 . 31
__fracthqta . 31
__fracthqti . 31
__fracthquda . 31
__fracthqudq . 31

590 GNU Compiler Collection (GCC) Internals

__fracthquha . 31
__fracthquhq . 31
__fracthquqq . 31
__fracthqusa . 31
__fracthqusq . 31
__fracthquta . 31
__fractqida . 39
__fractqidq . 39
__fractqiha . 39
__fractqihq . 39
__fractqiqq . 39
__fractqisa . 39
__fractqisq . 39
__fractqita . 39
__fractqiuda . 39
__fractqiudq . 39
__fractqiuha . 39
__fractqiuhq . 39
__fractqiuqq . 39
__fractqiusa . 39
__fractqiusq . 39
__fractqiuta . 39
__fractqqda . 30
__fractqqdf . 31
__fractqqdi . 31
__fractqqdq2 . 30
__fractqqha . 30
__fractqqhi . 31
__fractqqhq2 . 30
__fractqqqi . 31
__fractqqsa . 30
__fractqqsf . 31
__fractqqsi . 31
__fractqqsq2 . 30
__fractqqta . 30
__fractqqti . 31
__fractqquda . 31
__fractqqudq . 31
__fractqquha . 31
__fractqquhq . 30
__fractqquqq . 30
__fractqqusa . 31
__fractqqusq . 30
__fractqquta . 31
__fractsada2 . 33
__fractsadf . 33
__fractsadi . 33
__fractsadq . 33
__fractsaha2 . 33
__fractsahi . 33
__fractsahq . 33
__fractsaqi . 33
__fractsaqq . 33
__fractsasf . 33
__fractsasi . 33
__fractsasq . 33
__fractsata2 . 33
__fractsati . 33

__fractsauda . 33
__fractsaudq . 33
__fractsauha . 33
__fractsauhq . 33
__fractsauqq . 33
__fractsausa . 33
__fractsausq . 33
__fractsauta . 33
__fractsfda . 41
__fractsfdq . 40
__fractsfha . 41
__fractsfhq . 40
__fractsfqq . 40
__fractsfsa . 41
__fractsfsq . 40
__fractsfta . 41
__fractsfuda . 41
__fractsfudq . 41
__fractsfuha . 41
__fractsfuhq . 41
__fractsfuqq . 41
__fractsfusa . 41
__fractsfusq . 41
__fractsfuta . 41
__fractsida . 40
__fractsidq . 39
__fractsiha . 39
__fractsihq . 39
__fractsiqq . 39
__fractsisa . 40
__fractsisq . 39
__fractsita . 40
__fractsiuda . 40
__fractsiudq . 40
__fractsiuha . 40
__fractsiuhq . 40
__fractsiuqq . 40
__fractsiusa . 40
__fractsiusq . 40
__fractsiuta . 40
__fractsqda . 31
__fractsqdf . 32
__fractsqdi . 32
__fractsqdq2 . 31
__fractsqha . 31
__fractsqhi . 32
__fractsqhq2 . 31
__fractsqqi . 32
__fractsqqq2 . 31
__fractsqsa . 31
__fractsqsf . 32
__fractsqsi . 32
__fractsqta . 31
__fractsqti . 32
__fractsquda . 32
__fractsqudq . 31
__fractsquha . 31
__fractsquhq . 31

Concept Index 591

__fractsquqq . 31
__fractsqusa . 31
__fractsqusq . 31
__fractsquta . 32
__fracttada2 . 34
__fracttadf . 34
__fracttadi . 34
__fracttadq . 34
__fracttaha2 . 34
__fracttahi . 34
__fracttahq . 34
__fracttaqi . 34
__fracttaqq . 34
__fracttasa2 . 34
__fracttasf . 34
__fracttasi . 34
__fracttasq . 34
__fracttati . 34
__fracttauda . 34
__fracttaudq . 34
__fracttauha . 34
__fracttauhq . 34
__fracttauqq . 34
__fracttausa . 34
__fracttausq . 34
__fracttauta . 34
__fracttida . 40
__fracttidq . 40
__fracttiha . 40
__fracttihq . 40
__fracttiqq . 40
__fracttisa . 40
__fracttisq . 40
__fracttita . 40
__fracttiuda . 40
__fracttiudq . 40
__fracttiuha . 40
__fracttiuhq . 40
__fracttiuqq . 40
__fracttiusa . 40
__fracttiusq . 40
__fracttiuta . 40
__fractudada . 38
__fractudadf . 38
__fractudadi . 38
__fractudadq . 38
__fractudaha . 38
__fractudahi . 38
__fractudahq . 38
__fractudaqi . 38
__fractudaqq . 37
__fractudasa . 38
__fractudasf . 38
__fractudasi . 38
__fractudasq . 38
__fractudata . 38
__fractudati . 38
__fractudaudq . 38

__fractudauha2 . 38
__fractudauhq . 38
__fractudauqq . 38
__fractudausa2 . 38
__fractudausq . 38
__fractudauta2 . 38
__fractudqda . 36
__fractudqdf . 36
__fractudqdi . 36
__fractudqdq . 36
__fractudqha . 36
__fractudqhi . 36
__fractudqhq . 36
__fractudqqi . 36
__fractudqqq . 36
__fractudqsa . 36
__fractudqsf . 36
__fractudqsi . 36
__fractudqsq . 36
__fractudqta . 36
__fractudqti . 36
__fractudquda . 36
__fractudquha . 36
__fractudquhq2 . 36
__fractudquqq2 . 36
__fractudqusa . 36
__fractudqusq2 . 36
__fractudquta . 36
__fractuhada . 37
__fractuhadf . 37
__fractuhadi . 37
__fractuhadq . 36
__fractuhaha . 36
__fractuhahi . 37
__fractuhahq . 36
__fractuhaqi . 37
__fractuhaqq . 36
__fractuhasa . 37
__fractuhasf . 37
__fractuhasi . 37
__fractuhasq . 36
__fractuhata . 37
__fractuhati . 37
__fractuhauda2 . 37
__fractuhaudq . 37
__fractuhauhq . 37
__fractuhauqq . 37
__fractuhausa2 . 37
__fractuhausq . 37
__fractuhauta2 . 37
__fractuhqda . 35
__fractuhqdf . 35
__fractuhqdi . 35
__fractuhqdq . 35
__fractuhqha . 35
__fractuhqhi . 35
__fractuhqhq . 35
__fractuhqqi . 35

592 GNU Compiler Collection (GCC) Internals

__fractuhqqq . 35
__fractuhqsa . 35
__fractuhqsf . 35
__fractuhqsi . 35
__fractuhqsq . 35
__fractuhqta . 35
__fractuhqti . 35
__fractuhquda . 35
__fractuhqudq2 . 35
__fractuhquha . 35
__fractuhquqq2 . 35
__fractuhqusa . 35
__fractuhqusq2 . 35
__fractuhquta . 35
__fractunsdadi . 51
__fractunsdahi . 51
__fractunsdaqi . 51
__fractunsdasi . 51
__fractunsdati . 51
__fractunsdida . 53
__fractunsdidq . 53
__fractunsdiha . 53
__fractunsdihq . 53
__fractunsdiqq . 53
__fractunsdisa . 53
__fractunsdisq . 53
__fractunsdita . 53
__fractunsdiuda . 54
__fractunsdiudq . 54
__fractunsdiuha . 54
__fractunsdiuhq . 54
__fractunsdiuqq . 54
__fractunsdiusa . 54
__fractunsdiusq . 54
__fractunsdiuta . 54
__fractunsdqdi . 51
__fractunsdqhi . 51
__fractunsdqqi . 51
__fractunsdqsi . 51
__fractunsdqti . 51
__fractunshadi . 51
__fractunshahi . 51
__fractunshaqi . 51
__fractunshasi . 51
__fractunshati . 51
__fractunshida . 53
__fractunshidq . 53
__fractunshiha . 53
__fractunshihq . 53
__fractunshiqq . 53
__fractunshisa . 53
__fractunshisq . 53
__fractunshita . 53
__fractunshiuda . 53
__fractunshiudq . 53
__fractunshiuha . 53
__fractunshiuhq . 53
__fractunshiuqq . 53

__fractunshiusa . 53
__fractunshiusq . 53
__fractunshiuta . 53
__fractunshqdi . 50
__fractunshqhi . 50
__fractunshqqi . 50
__fractunshqsi . 50
__fractunshqti . 50
__fractunsqida . 52
__fractunsqidq . 52
__fractunsqiha . 52
__fractunsqihq . 52
__fractunsqiqq . 52
__fractunsqisa . 52
__fractunsqisq . 52
__fractunsqita . 52
__fractunsqiuda . 53
__fractunsqiudq . 52
__fractunsqiuha . 52
__fractunsqiuhq . 52
__fractunsqiuqq . 52
__fractunsqiusa . 52
__fractunsqiusq . 52
__fractunsqiuta . 53
__fractunsqqdi . 50
__fractunsqqhi . 50
__fractunsqqqi . 50
__fractunsqqsi . 50
__fractunsqqti . 50
__fractunssadi . 51
__fractunssahi . 51
__fractunssaqi . 51
__fractunssasi . 51
__fractunssati . 51
__fractunssida . 53
__fractunssidq . 53
__fractunssiha . 53
__fractunssihq . 53
__fractunssiqq . 53
__fractunssisa . 53
__fractunssisq . 53
__fractunssita . 53
__fractunssiuda . 53
__fractunssiudq . 53
__fractunssiuha . 53
__fractunssiuhq . 53
__fractunssiuqq . 53
__fractunssiusa . 53
__fractunssiusq . 53
__fractunssiuta . 53
__fractunssqdi . 51
__fractunssqhi . 50
__fractunssqqi . 50
__fractunssqsi . 50
__fractunssqti . 51
__fractunstadi . 51
__fractunstahi . 51
__fractunstaqi . 51

Concept Index 593

__fractunstasi . 51
__fractunstati . 51
__fractunstida . 54
__fractunstidq . 54
__fractunstiha . 54
__fractunstihq . 54
__fractunstiqq . 54
__fractunstisa . 54
__fractunstisq . 54
__fractunstita . 54
__fractunstiuda . 54
__fractunstiudq . 54
__fractunstiuha . 54
__fractunstiuhq . 54
__fractunstiuqq . 54
__fractunstiusa . 54
__fractunstiusq . 54
__fractunstiuta . 54
__fractunsudadi . 52
__fractunsudahi . 52
__fractunsudaqi . 52
__fractunsudasi . 52
__fractunsudati . 52
__fractunsudqdi . 52
__fractunsudqhi . 51
__fractunsudqqi . 51
__fractunsudqsi . 52
__fractunsudqti . 52
__fractunsuhadi . 52
__fractunsuhahi . 52
__fractunsuhaqi . 52
__fractunsuhasi . 52
__fractunsuhati . 52
__fractunsuhqdi . 51
__fractunsuhqhi . 51
__fractunsuhqqi . 51
__fractunsuhqsi . 51
__fractunsuhqti . 51
__fractunsuqqdi . 51
__fractunsuqqhi . 51
__fractunsuqqqi . 51
__fractunsuqqsi . 51
__fractunsuqqti . 51
__fractunsusadi . 52
__fractunsusahi . 52
__fractunsusaqi . 52
__fractunsusasi . 52
__fractunsusati . 52
__fractunsusqdi . 51
__fractunsusqhi . 51
__fractunsusqqi . 51
__fractunsusqsi . 51
__fractunsusqti . 51
__fractunsutadi . 52
__fractunsutahi . 52
__fractunsutaqi . 52
__fractunsutasi . 52
__fractunsutati . 52

__fractuqqda . 34
__fractuqqdf . 35
__fractuqqdi . 35
__fractuqqdq . 34
__fractuqqha . 34
__fractuqqhi . 35
__fractuqqhq . 34
__fractuqqqi . 35
__fractuqqqq . 34
__fractuqqsa . 34
__fractuqqsf . 35
__fractuqqsi . 35
__fractuqqsq . 34
__fractuqqta . 34
__fractuqqti . 35
__fractuqquda . 34
__fractuqqudq2 . 34
__fractuqquha . 34
__fractuqquhq2 . 34
__fractuqqusa . 34
__fractuqqusq2 . 34
__fractuqquta . 35
__fractusada . 37
__fractusadf . 37
__fractusadi . 37
__fractusadq . 37
__fractusaha . 37
__fractusahi . 37
__fractusahq . 37
__fractusaqi . 37
__fractusaqq . 37
__fractusasa . 37
__fractusasf . 37
__fractusasi . 37
__fractusasq . 37
__fractusata . 37
__fractusati . 37
__fractusauda2 . 37
__fractusaudq . 37
__fractusauha2 . 37
__fractusauhq . 37
__fractusauqq . 37
__fractusausq . 37
__fractusauta2 . 37
__fractusqda . 35
__fractusqdf . 36
__fractusqdi . 36
__fractusqdq . 35
__fractusqha . 35
__fractusqhi . 36
__fractusqhq . 35
__fractusqqi . 36
__fractusqqq . 35
__fractusqsa . 35
__fractusqsf . 36
__fractusqsi . 36
__fractusqsq . 35
__fractusqta . 35

594 GNU Compiler Collection (GCC) Internals

__fractusqti . 36
__fractusquda . 36
__fractusqudq2 . 35
__fractusquha . 36
__fractusquhq2 . 35
__fractusquqq2 . 35
__fractusqusa . 36
__fractusquta . 36
__fractutada . 38
__fractutadf . 39
__fractutadi . 39
__fractutadq . 38
__fractutaha . 38
__fractutahi . 39
__fractutahq . 38
__fractutaqi . 39
__fractutaqq . 38
__fractutasa . 38
__fractutasf . 39
__fractutasi . 39
__fractutasq . 38
__fractutata . 38
__fractutati . 39
__fractutauda2 . 39
__fractutaudq . 38
__fractutauha2 . 38
__fractutauhq . 38
__fractutauqq . 38
__fractutausa2 . 38
__fractutausq . 38
__gedf2 . 15
__gesf2 . 15
__getf2 . 15
__gtdf2 . 16
__gtsf2 . 16
__gttf2 . 16
__ledf2 . 16
__lesf2 . 16
__letf2 . 16
__lshrdi3 . 9
__lshrsi3 . 9
__lshrti3 . 9
__lshruda3 . 29
__lshrudq3 . 29
__lshruha3 . 29
__lshruhq3 . 29
__lshruqq3 . 29
__lshrusa3 . 29
__lshrusq3 . 29
__lshruta3 . 29
__ltdf2 . 15
__ltsf2 . 15
__lttf2 . 15
__main . 533
__moddi3 . 10
__modsi3 . 10
__modti3 . 10
__mulda3 . 25

__muldc3 . 16
__muldf3 . 12
__muldi3 . 10
__muldq3 . 25
__mulha3 . 25
__mulhq3 . 25
__mulqq3 . 25
__mulsa3 . 25
__mulsc3 . 16
__mulsf3 . 12
__mulsi3 . 10
__mulsq3 . 25
__multa3 . 25
__multc3 . 16
__multf3 . 12
__multi3 . 10
__muluda3 . 25
__muludq3 . 25
__muluha3 . 25
__muluhq3 . 25
__muluqq3 . 25
__mulusa3 . 25
__mulusq3 . 25
__muluta3 . 25
__mulvdi3 . 11
__mulvsi3 . 11
__mulxc3 . 16
__mulxf3 . 12
__nedf2 . 15
__negda2 . 27
__negdf2 . 12
__negdi2 . 10
__negdq2 . 27
__negha2 . 27
__neghq2 . 27
__negqq2 . 27
__negsa2 . 27
__negsf2 . 12
__negsq2 . 27
__negta2 . 27
__negtf2 . 12
__negti2 . 10
__neguda2 . 27
__negudq2 . 27
__neguha2 . 27
__neguhq2 . 27
__neguqq2 . 27
__negusa2 . 27
__negusq2 . 27
__neguta2 . 27
__negvdi2 . 11
__negvsi2 . 11
__negxf2 . 12
__nesf2 . 15
__netf2 . 15
__paritydi2 . 11
__paritysi2 . 11
__parityti2 . 11

Concept Index 595

__popcountdi2 . 12
__popcountsi2 . 12
__popcountti2 . 12
__powidf2 . 16
__powisf2 . 16
__powitf2 . 16
__powixf2 . 16
__satfractdadq . 43
__satfractdaha2 . 43
__satfractdahq . 43
__satfractdaqq . 43
__satfractdasa2 . 43
__satfractdasq . 43
__satfractdata2 . 43
__satfractdauda . 44
__satfractdaudq . 43
__satfractdauha . 43
__satfractdauhq . 43
__satfractdauqq . 43
__satfractdausa . 43
__satfractdausq . 43
__satfractdauta . 44
__satfractdfda . 50
__satfractdfdq . 50
__satfractdfha . 50
__satfractdfhq . 50
__satfractdfqq . 50
__satfractdfsa . 50
__satfractdfsq . 50
__satfractdfta . 50
__satfractdfuda . 50
__satfractdfudq . 50
__satfractdfuha . 50
__satfractdfuhq . 50
__satfractdfuqq . 50
__satfractdfusa . 50
__satfractdfusq . 50
__satfractdfuta . 50
__satfractdida . 49
__satfractdidq . 49
__satfractdiha . 49
__satfractdihq . 49
__satfractdiqq . 49
__satfractdisa . 49
__satfractdisq . 49
__satfractdita . 49
__satfractdiuda . 49
__satfractdiudq . 49
__satfractdiuha . 49
__satfractdiuhq . 49
__satfractdiuqq . 49
__satfractdiusa . 49
__satfractdiusq . 49
__satfractdiuta . 49
__satfractdqda . 42
__satfractdqha . 42
__satfractdqhq2 . 42
__satfractdqqq2 . 42

__satfractdqsa . 42
__satfractdqsq2 . 42
__satfractdqta . 42
__satfractdquda . 42
__satfractdqudq . 42
__satfractdquha . 42
__satfractdquhq . 42
__satfractdquqq . 42
__satfractdqusa . 42
__satfractdqusq . 42
__satfractdquta . 42
__satfracthada2 . 43
__satfracthadq . 43
__satfracthahq . 43
__satfracthaqq . 43
__satfracthasa2 . 43
__satfracthasq . 43
__satfracthata2 . 43
__satfracthauda . 43
__satfracthaudq . 43
__satfracthauha . 43
__satfracthauhq . 43
__satfracthauqq . 43
__satfracthausa . 43
__satfracthausq . 43
__satfracthauta . 43
__satfracthida . 48
__satfracthidq . 48
__satfracthiha . 48
__satfracthihq . 48
__satfracthiqq . 48
__satfracthisa . 48
__satfracthisq . 48
__satfracthita . 48
__satfracthiuda . 48
__satfracthiudq . 48
__satfracthiuha . 48
__satfracthiuhq . 48
__satfracthiuqq . 48
__satfracthiusa . 48
__satfracthiusq . 48
__satfracthiuta . 48
__satfracthqda . 42
__satfracthqdq2 . 42
__satfracthqha . 42
__satfracthqqq2 . 42
__satfracthqsa . 42
__satfracthqsq2 . 42
__satfracthqta . 42
__satfracthquda . 42
__satfracthqudq . 42
__satfracthquha . 42
__satfracthquhq . 42
__satfracthquqq . 42
__satfracthqusa . 42
__satfracthqusq . 42
__satfracthquta . 42
__satfractqida . 48

596 GNU Compiler Collection (GCC) Internals

__satfractqidq . 48
__satfractqiha . 48
__satfractqihq . 48
__satfractqiqq . 48
__satfractqisa . 48
__satfractqisq . 48
__satfractqita . 48
__satfractqiuda . 48
__satfractqiudq . 48
__satfractqiuha . 48
__satfractqiuhq . 48
__satfractqiuqq . 48
__satfractqiusa . 48
__satfractqiusq . 48
__satfractqiuta . 48
__satfractqqda . 41
__satfractqqdq2 . 41
__satfractqqha . 41
__satfractqqhq2 . 41
__satfractqqsa . 41
__satfractqqsq2 . 41
__satfractqqta . 41
__satfractqquda . 41
__satfractqqudq . 41
__satfractqquha . 41
__satfractqquhq . 41
__satfractqquqq . 41
__satfractqqusa . 41
__satfractqqusq . 41
__satfractqquta . 41
__satfractsada2 . 43
__satfractsadq . 43
__satfractsaha2 . 43
__satfractsahq . 43
__satfractsaqq . 43
__satfractsasq . 43
__satfractsata2 . 43
__satfractsauda . 43
__satfractsaudq . 43
__satfractsauha . 43
__satfractsauhq . 43
__satfractsauqq . 43
__satfractsausa . 43
__satfractsausq . 43
__satfractsauta . 43
__satfractsfda . 50
__satfractsfdq . 50
__satfractsfha . 50
__satfractsfhq . 50
__satfractsfqq . 49
__satfractsfsa . 50
__satfractsfsq . 50
__satfractsfta . 50
__satfractsfuda . 50
__satfractsfudq . 50
__satfractsfuha . 50
__satfractsfuhq . 50
__satfractsfuqq . 50

__satfractsfusa . 50
__satfractsfusq . 50
__satfractsfuta . 50
__satfractsida . 49
__satfractsidq . 49
__satfractsiha . 49
__satfractsihq . 48
__satfractsiqq . 48
__satfractsisa . 49
__satfractsisq . 49
__satfractsita . 49
__satfractsiuda . 49
__satfractsiudq . 49
__satfractsiuha . 49
__satfractsiuhq . 49
__satfractsiuqq . 49
__satfractsiusa . 49
__satfractsiusq . 49
__satfractsiuta . 49
__satfractsqda . 42
__satfractsqdq2 . 42
__satfractsqha . 42
__satfractsqhq2 . 42
__satfractsqqq2 . 42
__satfractsqsa . 42
__satfractsqta . 42
__satfractsquda . 42
__satfractsqudq . 42
__satfractsquha . 42
__satfractsquhq . 42
__satfractsquqq . 42
__satfractsqusa . 42
__satfractsqusq . 42
__satfractsquta . 42
__satfracttada2 . 44
__satfracttadq . 44
__satfracttaha2 . 44
__satfracttahq . 44
__satfracttaqq . 44
__satfracttasa2 . 44
__satfracttasq . 44
__satfracttauda . 44
__satfracttaudq . 44
__satfracttauha . 44
__satfracttauhq . 44
__satfracttauqq . 44
__satfracttausa . 44
__satfracttausq . 44
__satfracttauta . 44
__satfracttida . 49
__satfracttidq . 49
__satfracttiha . 49
__satfracttihq . 49
__satfracttiqq . 49
__satfracttisa . 49
__satfracttisq . 49
__satfracttita . 49
__satfracttiuda . 49

Concept Index 597

__satfracttiudq . 49
__satfracttiuha . 49
__satfracttiuhq . 49
__satfracttiuqq . 49
__satfracttiusa . 49
__satfracttiusq . 49
__satfracttiuta . 49
__satfractudada . 47
__satfractudadq . 47
__satfractudaha . 47
__satfractudahq . 47
__satfractudaqq . 47
__satfractudasa . 47
__satfractudasq . 47
__satfractudata . 47
__satfractudaudq . 47
__satfractudauha2 . 47
__satfractudauhq . 47
__satfractudauqq . 47
__satfractudausa2 . 47
__satfractudausq . 47
__satfractudauta2 . 47
__satfractudqda . 45
__satfractudqdq . 45
__satfractudqha . 45
__satfractudqhq . 45
__satfractudqqq . 45
__satfractudqsa . 45
__satfractudqsq . 45
__satfractudqta . 45
__satfractudquda . 46
__satfractudquha . 46
__satfractudquhq2 . 46
__satfractudquqq2 . 45
__satfractudqusa . 46
__satfractudqusq2 . 46
__satfractudquta . 46
__satfractuhada . 46
__satfractuhadq . 46
__satfractuhaha . 46
__satfractuhahq . 46
__satfractuhaqq . 46
__satfractuhasa . 46
__satfractuhasq . 46
__satfractuhata . 46
__satfractuhauda2 . 46
__satfractuhaudq . 46
__satfractuhauhq . 46
__satfractuhauqq . 46
__satfractuhausa2 . 46
__satfractuhausq . 46
__satfractuhauta2 . 46
__satfractuhqda . 45
__satfractuhqdq . 44
__satfractuhqha . 44
__satfractuhqhq . 44
__satfractuhqqq . 44
__satfractuhqsa . 45

__satfractuhqsq . 44
__satfractuhqta . 45
__satfractuhquda . 45
__satfractuhqudq2 . 45
__satfractuhquha . 45
__satfractuhquqq2 . 45
__satfractuhqusa . 45
__satfractuhqusq2 . 45
__satfractuhquta . 45
__satfractunsdida . 56
__satfractunsdidq . 56
__satfractunsdiha . 56
__satfractunsdihq . 56
__satfractunsdiqq . 56
__satfractunsdisa . 56
__satfractunsdisq . 56
__satfractunsdita . 56
__satfractunsdiuda . 56
__satfractunsdiudq . 56
__satfractunsdiuha . 56
__satfractunsdiuhq . 56
__satfractunsdiuqq . 56
__satfractunsdiusa . 56
__satfractunsdiusq . 56
__satfractunsdiuta . 56
__satfractunshida . 55
__satfractunshidq . 55
__satfractunshiha . 55
__satfractunshihq . 55
__satfractunshiqq . 55
__satfractunshisa . 55
__satfractunshisq . 55
__satfractunshita . 55
__satfractunshiuda . 55
__satfractunshiudq . 55
__satfractunshiuha . 55
__satfractunshiuhq . 55
__satfractunshiuqq . 55
__satfractunshiusa . 55
__satfractunshiusq . 55
__satfractunshiuta . 55
__satfractunsqida . 54
__satfractunsqidq . 54
__satfractunsqiha . 54
__satfractunsqihq . 54
__satfractunsqiqq . 54
__satfractunsqisa . 54
__satfractunsqisq . 54
__satfractunsqita . 54
__satfractunsqiuda . 55
__satfractunsqiudq . 55
__satfractunsqiuha . 55
__satfractunsqiuhq . 54
__satfractunsqiuqq . 54
__satfractunsqiusa . 55
__satfractunsqiusq . 54
__satfractunsqiuta . 55
__satfractunssida . 55

598 GNU Compiler Collection (GCC) Internals

__satfractunssidq . 55
__satfractunssiha . 55
__satfractunssihq . 55
__satfractunssiqq . 55
__satfractunssisa . 55
__satfractunssisq . 55
__satfractunssita . 55
__satfractunssiuda . 56
__satfractunssiudq . 55
__satfractunssiuha . 56
__satfractunssiuhq . 55
__satfractunssiuqq . 55
__satfractunssiusa . 56
__satfractunssiusq . 55
__satfractunssiuta . 56
__satfractunstida . 56
__satfractunstidq . 56
__satfractunstiha . 56
__satfractunstihq . 56
__satfractunstiqq . 56
__satfractunstisa . 56
__satfractunstisq . 56
__satfractunstita . 56
__satfractunstiuda . 57
__satfractunstiudq . 56
__satfractunstiuha . 56
__satfractunstiuhq . 56
__satfractunstiuqq . 56
__satfractunstiusa . 57
__satfractunstiusq . 56
__satfractunstiuta . 57
__satfractuqqda . 44
__satfractuqqdq . 44
__satfractuqqha . 44
__satfractuqqhq . 44
__satfractuqqqq . 44
__satfractuqqsa . 44
__satfractuqqsq . 44
__satfractuqqta . 44
__satfractuqquda . 44
__satfractuqqudq2 . 44
__satfractuqquha . 44
__satfractuqquhq2 . 44
__satfractuqqusa . 44
__satfractuqqusq2 . 44
__satfractuqquta . 44
__satfractusada . 46
__satfractusadq . 46
__satfractusaha . 46
__satfractusahq . 46
__satfractusaqq . 46
__satfractusasa . 46
__satfractusasq . 46
__satfractusata . 46
__satfractusauda2 . 47
__satfractusaudq . 47
__satfractusauha2 . 47
__satfractusauhq . 47

__satfractusauqq . 46
__satfractusausq . 47
__satfractusauta2 . 47
__satfractusqda . 45
__satfractusqdq . 45
__satfractusqha . 45
__satfractusqhq . 45
__satfractusqqq . 45
__satfractusqsa . 45
__satfractusqsq . 45
__satfractusqta . 45
__satfractusquda . 45
__satfractusqudq2 . 45
__satfractusquha . 45
__satfractusquhq2 . 45
__satfractusquqq2 . 45
__satfractusqusa . 45
__satfractusquta . 45
__satfractutada . 47
__satfractutadq . 47
__satfractutaha . 47
__satfractutahq . 47
__satfractutaqq . 47
__satfractutasa . 47
__satfractutasq . 47
__satfractutata . 47
__satfractutauda2 . 48
__satfractutaudq . 48
__satfractutauha2 . 48
__satfractutauhq . 47
__satfractutauqq . 47
__satfractutausa2 . 48
__satfractutausq . 48
__ssaddda3 . 23
__ssadddq3 . 23
__ssaddha3 . 23
__ssaddhq3 . 23
__ssaddqq3 . 23
__ssaddsa3 . 23
__ssaddsq3 . 23
__ssaddta3 . 23
__ssashlda3 . 29
__ssashldq3 . 29
__ssashlha3 . 29
__ssashlhq3 . 29
__ssashlsa3 . 29
__ssashlsq3 . 29
__ssashlta3 . 29
__ssdivda3 . 27
__ssdivdq3 . 27
__ssdivha3 . 27
__ssdivhq3 . 27
__ssdivqq3 . 27
__ssdivsa3 . 27
__ssdivsq3 . 27
__ssdivta3 . 27
__ssmulda3 . 25
__ssmuldq3 . 25

Concept Index 599

__ssmulha3 . 25
__ssmulhq3 . 25
__ssmulqq3 . 25
__ssmulsa3 . 25
__ssmulsq3 . 25
__ssmulta3 . 25
__ssnegda2 . 28
__ssnegdq2 . 28
__ssnegha2 . 28
__ssneghq2 . 28
__ssnegqq2 . 28
__ssnegsa2 . 28
__ssnegsq2 . 28
__ssnegta2 . 28
__sssubda3 . 24
__sssubdq3 . 24
__sssubha3 . 24
__sssubhq3 . 24
__sssubqq3 . 24
__sssubsa3 . 24
__sssubsq3 . 24
__sssubta3 . 24
__subda3 . 24
__subdf3 . 12
__subdq3 . 23
__subha3 . 24
__subhq3 . 23
__subqq3 . 23
__subsa3 . 24
__subsf3 . 12
__subsq3 . 23
__subta3 . 24
__subtf3 . 12
__subuda3 . 24
__subudq3 . 24
__subuha3 . 24
__subuhq3 . 23
__subuqq3 . 23
__subusa3 . 24
__subusq3 . 24
__subuta3 . 24
__subvdi3 . 11
__subvsi3 . 11
__subxf3 . 12
__truncdfsf2 . 13
__trunctfdf2 . 13
__trunctfsf2 . 13
__truncxfdf2 . 13
__truncxfsf2 . 13
__ucmpdi2 . 10
__ucmpti2 . 10
__udivdi3 . 10
__udivmoddi3 . 10
__udivsi3 . 10
__udivti3 . 10
__udivuda3 . 26
__udivudq3 . 26
__udivuha3 . 26

__udivuhq3 . 26
__udivuqq3 . 26
__udivusa3 . 26
__udivusq3 . 26
__udivuta3 . 26
__umoddi3 . 10
__umodsi3 . 10
__umodti3 . 10
__unorddf2 . 15
__unordsf2 . 15
__unordtf2 . 15
__usadduda3 . 23
__usaddudq3 . 23
__usadduha3 . 23
__usadduhq3 . 23
__usadduqq3 . 23
__usaddusa3 . 23
__usaddusq3 . 23
__usadduta3 . 23
__usashluda3 . 30
__usashludq3 . 29
__usashluha3 . 29
__usashluhq3 . 29
__usashluqq3 . 29
__usashlusa3 . 29
__usashlusq3 . 29
__usashluta3 . 30
__usdivuda3 . 27
__usdivudq3 . 27
__usdivuha3 . 27
__usdivuhq3 . 27
__usdivuqq3 . 27
__usdivusa3 . 27
__usdivusq3 . 27
__usdivuta3 . 27
__usmuluda3 . 26
__usmuludq3 . 26
__usmuluha3 . 26
__usmuluhq3 . 26
__usmuluqq3 . 26
__usmulusa3 . 26
__usmulusq3 . 26
__usmuluta3 . 26
__usneguda2 . 28
__usnegudq2 . 28
__usneguha2 . 28
__usneguhq2 . 28
__usneguqq2 . 28
__usnegusa2 . 28
__usnegusq2 . 28
__usneguta2 . 28
__ussubuda3 . 24
__ussubudq3 . 24
__ussubuha3 . 24
__ussubuhq3 . 24
__ussubuqq3 . 24
__ussubusa3 . 24
__ussubusq3 . 24

600 GNU Compiler Collection (GCC) Internals

__ussubuta3 . 24

\
\ . 275

0
‘0’ in constraint . 283

A
abort . 5
abs . 175
abs and attributes . 352
ABS_EXPR . 131
absence_set . 361
absm2 instruction pattern . 316
absolute value . 175
access to operands . 150
access to special operands . 151
accessors . 150
ACCUM_TYPE_SIZE . 391
ACCUMULATE_OUTGOING_ARGS 422
ACCUMULATE_OUTGOING_ARGS and stack frames

. 434
ADA_LONG_TYPE_SIZE . 390
Adding a new GIMPLE statement code 233
ADDITIONAL_REGISTER_NAMES 485
addm3 instruction pattern . 312
addmodecc instruction pattern 323
addr_diff_vec . 185
addr_diff_vec, length of . 356
ADDR_EXPR . 131
addr_vec . 185
addr_vec, length of . 356
address constraints . 284
address_operand . 279, 284
addressing modes . 443
ADJUST_FIELD_ALIGN . 384
ADJUST_INSN_LENGTH . 356
AGGR_INIT_EXPR . 131
aggregates as return values 430
alias . 245
ALL_COP_ADDITIONAL_REGISTER_NAMES 505
ALL_REGS . 401
allocate_stack instruction pattern 328
alternate entry points . 189
anchored addresses . 448
and . 174
and and attributes . 351
and, canonicalization of . 338
andm3 instruction pattern . 312
annotations . 235
APPLY_RESULT_SIZE . 430
ARG_POINTER_CFA_OFFSET . 414
ARG_POINTER_REGNUM . 419
ARG_POINTER_REGNUM and virtual registers 167

arg_pointer_rtx . 419
ARGS_GROW_DOWNWARD . 411
argument passing . 7
arguments in registers . 424
arguments on stack . 422
arithmetic library . 12
arithmetic shift . 174
arithmetic shift with signed saturation 174
arithmetic shift with unsigned saturation 174
arithmetic, in RTL . 172
ARITHMETIC_TYPE_P . 111
array . 109
ARRAY_RANGE_REF . 131
ARRAY_REF . 131
ARRAY_TYPE . 109
AS_NEEDS_DASH_FOR_PIPED_INPUT 372
ashift . 174
ashift and attributes . 352
ashiftrt . 175
ashiftrt and attributes . 352
ashlm3 instruction pattern 316
ashrm3 instruction pattern 316
ASM_APP_OFF . 468
ASM_APP_ON . 468
ASM_COMMENT_START . 468
ASM_DECLARE_CLASS_REFERENCE 481
ASM_DECLARE_CONSTANT_NAME 476
ASM_DECLARE_FUNCTION_NAME 475
ASM_DECLARE_FUNCTION_SIZE 476
ASM_DECLARE_OBJECT_NAME 476
ASM_DECLARE_REGISTER_GLOBAL 476
ASM_DECLARE_UNRESOLVED_REFERENCE 481
ASM_FINAL_SPEC . 372
ASM_FINISH_DECLARE_OBJECT 476
ASM_FORMAT_PRIVATE_NAME 479
asm_fprintf . 487
ASM_FPRINTF_EXTENSIONS . 487
ASM_GENERATE_INTERNAL_LABEL 479
asm_input . 185
asm_input and ‘/v’ . 155
ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX 416
ASM_NO_SKIP_IN_TEXT . 492
asm_noperands . 191
asm_operands and ‘/v’ . 155
asm_operands, RTL sharing 196
asm_operands, usage . 187
ASM_OUTPUT_ADDR_DIFF_ELT 488
ASM_OUTPUT_ADDR_VEC_ELT 488
ASM_OUTPUT_ALIGN . 492
ASM_OUTPUT_ALIGN_WITH_NOP 492
ASM_OUTPUT_ALIGNED_BSS . 473
ASM_OUTPUT_ALIGNED_COMMON 473
ASM_OUTPUT_ALIGNED_DECL_COMMON 473
ASM_OUTPUT_ALIGNED_DECL_LOCAL 474
ASM_OUTPUT_ALIGNED_LOCAL 474
ASM_OUTPUT_ASCII . 471
ASM_OUTPUT_BSS . 473
ASM_OUTPUT_CASE_END . 488

Concept Index 601

ASM_OUTPUT_CASE_LABEL . 488
ASM_OUTPUT_COMMON . 472
ASM_OUTPUT_DEBUG_LABEL . 479
ASM_OUTPUT_DEF . 480
ASM_OUTPUT_DEF_FROM_DECLS 480
ASM_OUTPUT_DWARF_DELTA . 498
ASM_OUTPUT_DWARF_OFFSET 498
ASM_OUTPUT_DWARF_PCREL . 498
ASM_OUTPUT_EXTERNAL . 478
ASM_OUTPUT_FDESC . 471
ASM_OUTPUT_IDENT . 468
ASM_OUTPUT_INTERNAL_LABEL 474
ASM_OUTPUT_LABEL . 474
ASM_OUTPUT_LABEL_REF . 479
ASM_OUTPUT_LABELREF . 478
ASM_OUTPUT_LOCAL . 474
ASM_OUTPUT_MAX_SKIP_ALIGN 492
ASM_OUTPUT_MEASURED_SIZE 475
ASM_OUTPUT_OPCODE . 485
ASM_OUTPUT_POOL_EPILOGUE 471
ASM_OUTPUT_POOL_PROLOGUE 471
ASM_OUTPUT_REG_POP . 488
ASM_OUTPUT_REG_PUSH . 487
ASM_OUTPUT_SIZE_DIRECTIVE 475
ASM_OUTPUT_SKIP . 492
ASM_OUTPUT_SOURCE_FILENAME 468
ASM_OUTPUT_SPECIAL_POOL_ENTRY 471
ASM_OUTPUT_SYMBOL_REF . 478
ASM_OUTPUT_TYPE_DIRECTIVE 475
ASM_OUTPUT_WEAK_ALIAS . 480
ASM_OUTPUT_WEAKREF . 477
ASM_PREFERRED_EH_DATA_FORMAT 416
ASM_SPEC . 371
ASM_STABD_OP . 494
ASM_STABN_OP . 494
ASM_STABS_OP . 494
ASM_WEAKEN_DECL . 477
ASM_WEAKEN_LABEL . 477
assemble_name . 474
assemble_name_raw . 474
assembler format . 467
assembler instructions in RTL 187
ASSEMBLER_DIALECT . 487
assigning attribute values to insns 353
assignment operator . 124
asterisk in template . 276
atan2m3 instruction pattern 317
attr . 353, 354
attr_flag . 352
attribute expressions . 351
attribute specifications . 354
attribute specifications example 354
ATTRIBUTE_ALIGNED_VALUE 384
attributes . 131
attributes, defining . 350
attributes, target-specific . 502
autoincrement addressing, availability 5
autoincrement/decrement addressing 282

automata_option . 362
automaton based pipeline description 358
automaton based scheduler 358
AVOID_CCMODE_COPIES . 399

B
backslash . 275
barrier . 189
barrier and ‘/f’ . 155
barrier and ‘/v’ . 154
BASE_REG_CLASS . 402
basic block . 259
basic-block.h . 259
basic_block . 259
BASIC_BLOCK . 259
BB_HEAD, BB_END . 266
bb_seq . 230
bcond instruction pattern . 323
BIGGEST_ALIGNMENT . 383
BIGGEST_FIELD_ALIGNMENT 384
BImode . 159
BIND_EXPR . 131
BINFO_TYPE . 116
bit-fields . 177
BIT_AND_EXPR . 131
BIT_IOR_EXPR . 131
BIT_NOT_EXPR . 131
BIT_XOR_EXPR . 131
BITFIELD_NBYTES_LIMITED 387
BITS_BIG_ENDIAN . 381
BITS_BIG_ENDIAN, effect on sign_extract 177
BITS_PER_UNIT . 381
BITS_PER_WORD . 381
bitwise complement . 174
bitwise exclusive-or . 174
bitwise inclusive-or . 174
bitwise logical-and . 174
BLKmode . 161
BLKmode, and function return values 195
block statement iterators 260, 265
BLOCK_FOR_INSN, bb_for_stmt 265
BLOCK_REG_PADDING . 427
blockage instruction pattern 331
Blocks . 199
bool . 466, 490
BOOL_TYPE_SIZE . 390
BOOLEAN_TYPE . 109
branch prediction . 263
BRANCH_COST . 452
break_out_memory_refs . 445
BREAK_STMT . 127
bsi_commit_edge_inserts 266
bsi_end_p . 265
bsi_insert_after . 265
bsi_insert_before . 266
bsi_insert_on_edge . 266
bsi_last . 265

602 GNU Compiler Collection (GCC) Internals

bsi_next . 265
bsi_prev . 265
bsi_remove . 266
bsi_start . 265
BSS_SECTION_ASM_OP . 463
bswap . 176
btruncm2 instruction pattern 317
builtin_longjmp instruction pattern 329
builtin_setjmp_receiver instruction pattern

. 329
builtin_setjmp_setup instruction pattern 329
byte_mode . 164
BYTES_BIG_ENDIAN . 381
BYTES_BIG_ENDIAN, effect on subreg 169

C
C statements for assembler output 276
C/C++ Internal Representation 107
C_COMMON_OVERRIDE_OPTIONS 379
c_register_pragma . 514
c_register_pragma_with_expansion 514
C99 math functions, implicit usage 443
call . 157, 182
call instruction pattern . 324
call usage . 195
call, in call_insn . 154
call, in mem . 155
call-clobbered register . 395
call-saved register . 395
call-used register . 395
CALL_EXPR . 131
call_insn . 188
call_insn and ‘/c’ . 154
call_insn and ‘/f’ . 155
call_insn and ‘/i’ . 154
call_insn and ‘/j’ . 156
call_insn and ‘/s’ . 154, 156
call_insn and ‘/u’ . 153, 154
call_insn and ‘/u’ or ‘/i’ . 154
call_insn and ‘/v’ . 154
CALL_INSN_FUNCTION_USAGE 188
call_pop instruction pattern 324
CALL_POPS_ARGS . 423
CALL_REALLY_USED_REGISTERS 395
CALL_USED_REGISTERS . 395
call_used_regs . 395
call_value instruction pattern 324
call_value_pop instruction pattern 324
CALLER_SAVE_PROFITABLE . 432
calling conventions . 411
calling functions in RTL . 195
can_create_pseudo_p . 310
CAN_DEBUG_WITHOUT_FP . 380
CAN_ELIMINATE . 421
can_fallthru . 259
canadian . 61
CANNOT_CHANGE_MODE_CLASS 408

CANNOT_CHANGE_MODE_CLASS and subreg semantics
. 170

canonicalization of instructions 338
CANONICALIZE_COMPARISON 450
canonicalize_funcptr_for_compare instruction

pattern . 327
CASE_USE_BIT_TESTS . 508
CASE_VALUES_THRESHOLD . 508
CASE_VECTOR_MODE . 508
CASE_VECTOR_PC_RELATIVE 508
CASE_VECTOR_SHORTEN_MODE 508
casesi instruction pattern . 325
cbranchmode4 instruction pattern 324
cc_status . 449
CC_STATUS_MDEP . 449
CC_STATUS_MDEP_INIT . 449
cc0 . 170
cc0, RTL sharing . 196
cc0_rtx . 171
CC1_SPEC . 371
CC1PLUS_SPEC . 371
CCmode . 161
CDImode . 162
CEIL_DIV_EXPR . 131
CEIL_MOD_EXPR . 131
ceilm2 instruction pattern 318
CFA_FRAME_BASE_OFFSET . 414
CFG, Control Flow Graph . 259
cfghooks.h . 264
cgraph_finalize_function 93
chain_circular . 540
chain_next . 540
chain_prev . 540
change_address . 310
CHANGE_DYNAMIC_TYPE_EXPR 131
char . 213, 466, 506, 518, 522
CHAR_TYPE_SIZE . 390
check_stack instruction pattern 328
CHImode . 162
class . 116
class definitions, register . 400
class preference constraints 287
CLASS_LIKELY_SPILLED_P . 408
CLASS_MAX_NREGS . 408
CLASS_TYPE_P . 111
classes of RTX codes . 148
CLASSTYPE_DECLARED_CLASS 116
CLASSTYPE_HAS_MUTABLE . 118
CLASSTYPE_NON_POD_P . 118
CLEANUP_DECL . 127
CLEANUP_EXPR . 127
CLEANUP_POINT_EXPR . 131
CLEANUP_STMT . 127
Cleanups . 200
CLEAR_BY_PIECES_P . 454
clear_cache instruction pattern 333
CLEAR_INSN_CACHE . 441
CLEAR_RATIO . 454

Concept Index 603

clobber . 182
clz . 175
CLZ_DEFINED_VALUE_AT_ZERO 512
clzm2 instruction pattern . 318
cmpm instruction pattern . 319
cmpmemm instruction pattern 321
cmpstrm instruction pattern 320
cmpstrnm instruction pattern 320
code generation RTL sequences 339
code iterators in ‘.md’ files . 367
code_label . 189
code_label and ‘/i’ . 154
code_label and ‘/v’ . 154
CODE_LABEL_NUMBER . 189
codes, RTL expression . 147
COImode . 162
COLLECT_EXPORT_LIST . 520
COLLECT_SHARED_FINI_FUNC 483
COLLECT_SHARED_INIT_FUNC 483
COLLECT2_HOST_INITIALIZATION 527
commit_edge_insertions . 266
compare . 172
compare, canonicalization of 338
comparison_operator . 279
compiler passes and files . 93
complement, bitwise . 174
COMPLEX_CST . 131
COMPLEX_EXPR . 131
COMPLEX_TYPE . 109
COMPONENT_REF . 131
Compound Expressions . 207
Compound Lvalues . 207
COMPOUND_EXPR . 131
COMPOUND_LITERAL_EXPR . 131
COMPOUND_LITERAL_EXPR_DECL 141
COMPOUND_LITERAL_EXPR_DECL_STMT 141
computed jump . 262
computing the length of an insn 355
concat . 172
concatn . 172
cond . 177
cond and attributes . 351
cond_exec . 184
COND_EXPR . 131
condition code register . 170
condition code status . 449
condition codes . 176
conditional execution . 363
Conditional Expressions . 207
CONDITIONAL_REGISTER_USAGE 395
conditional_trap instruction pattern 330
conditions, in patterns . 270
configuration file . 526, 527
configure terms . 61
CONJ_EXPR . 131
const . 165
CONST_DECL . 118
const_double . 164

const_double, RTL sharing 196
CONST_DOUBLE_LOW . 164
CONST_DOUBLE_OK_FOR_CONSTRAINT_P 410
CONST_DOUBLE_OK_FOR_LETTER_P 409
const_double_operand . 278
const_fixed . 165
const_int . 164
const_int and attribute tests 351
const_int and attributes . 351
const_int, RTL sharing . 196
const_int_operand . 278
CONST_OK_FOR_CONSTRAINT_P 409
CONST_OK_FOR_LETTER_P . 409
const_string . 165
const_string and attributes 351
const_true_rtx . 164
const_vector . 165
const_vector, RTL sharing 196
const0_rtx . 164
CONST0_RTX . 166
const1_rtx . 164
CONST1_RTX . 166
const2_rtx . 164
CONST2_RTX . 166
constant attributes . 356
constant definitions . 364
CONSTANT_ADDRESS_P . 444
CONSTANT_ALIGNMENT . 384
CONSTANT_P . 444
CONSTANT_POOL_ADDRESS_P 153
CONSTANT_POOL_BEFORE_FUNCTION 471
constants in constraints . 282
constm1_rtx . 164
constraint modifier characters 287
constraint, matching . 283
CONSTRAINT_LEN . 409
constraint_num . 308
constraint_satisfied_p . 309
constraints . 282
constraints, defining . 306
constraints, defining, obsolete method 409
constraints, machine specific 288
constraints, testing . 308
constructor . 124
CONSTRUCTOR . 131
constructors, automatic calls 533
constructors, output of . 481
container . 109
CONTINUE_STMT . 127
contributors . 567
controlling register usage . 395
controlling the compilation driver 369
conventions, run-time . 7
conversions . 178
CONVERT_EXPR . 131
copy constructor . 124
copy_rtx . 446
copy_rtx_if_shared . 196

604 GNU Compiler Collection (GCC) Internals

copysignm3 instruction pattern 318
cosm2 instruction pattern . 317
costs of instructions . 452
CP_INTEGRAL_TYPE . 111
cp_namespace_decls . 116
CP_TYPE_CONST_NON_VOLATILE_P 110
CP_TYPE_CONST_P . 110
CP_TYPE_QUALS . 109, 110
CP_TYPE_RESTRICT_P . 110
CP_TYPE_VOLATILE_P . 110
CPLUSPLUS_CPP_SPEC . 371
CPP_SPEC . 371
CQImode . 162
cross compilation and floating point 499
CRT_CALL_STATIC_FUNCTION 463
CRTSTUFF_T_CFLAGS . 529
CRTSTUFF_T_CFLAGS_S . 529
CSImode . 162
CTImode . 162
ctz . 175
CTZ_DEFINED_VALUE_AT_ZERO 512
ctzm2 instruction pattern . 319
CUMULATIVE_ARGS . 426
current_function_epilogue_delay_list 435
current_function_is_leaf 400
current_function_outgoing_args_size 422
current_function_pops_args 433
current_function_pretend_args_size 434
current_function_uses_only_leaf_regs 400
current_insn_predicate . 364

D
DAmode . 161
data bypass . 359, 361
data dependence delays . 358
Data Dependency Analysis 255
data structures . 380
DATA_ALIGNMENT . 384
DATA_SECTION_ASM_OP . 462
DBR_OUTPUT_SEQEND . 486
dbr_sequence_length . 486
DBX_BLOCKS_FUNCTION_RELATIVE 495
DBX_CONTIN_CHAR . 495
DBX_CONTIN_LENGTH . 494
DBX_DEBUGGING_INFO . 494
DBX_FUNCTION_FIRST . 495
DBX_LINES_FUNCTION_RELATIVE 495
DBX_NO_XREFS . 494
DBX_OUTPUT_LBRAC . 496
DBX_OUTPUT_MAIN_SOURCE_FILE_END 497
DBX_OUTPUT_MAIN_SOURCE_FILENAME 496
DBX_OUTPUT_NFUN . 496
DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_

END . 497
DBX_OUTPUT_RBRAC . 496
DBX_OUTPUT_SOURCE_LINE . 496
DBX_REGISTER_NUMBER . 493

DBX_REGPARM_STABS_CODE . 495
DBX_REGPARM_STABS_LETTER 495
DBX_STATIC_CONST_VAR_CODE 495
DBX_STATIC_STAB_DATA_SECTION 495
DBX_TYPE_DECL_STABS_CODE 495
DBX_USE_BINCL . 495
DCmode . 161
DDmode . 160
De Morgan’s law . 338
dead_or_set_p . 347
DEBUG_SYMS_TEXT . 494
DEBUGGER_ARG_OFFSET . 493
DEBUGGER_AUTO_OFFSET . 493
decimal float library . 16
DECL_ALIGN . 118
DECL_ANTICIPATED . 124
DECL_ARGUMENTS . 126
DECL_ARRAY_DELETE_OPERATOR_P 126
DECL_ARTIFICIAL 118, 124, 126
DECL_ASSEMBLER_NAME . 124
DECL_ATTRIBUTES . 131
DECL_BASE_CONSTRUCTOR_P 125
DECL_CLASS_SCOPE_P . 119
DECL_COMPLETE_CONSTRUCTOR_P 125
DECL_COMPLETE_DESTRUCTOR_P 125
DECL_CONST_MEMFUNC_P . 125
DECL_CONSTRUCTOR_P . 124, 125
DECL_CONTEXT . 116
DECL_CONV_FN_P . 124, 125
DECL_COPY_CONSTRUCTOR_P 125
DECL_DESTRUCTOR_P . 124, 125
DECL_EXTERN_C_FUNCTION_P 124
DECL_EXTERNAL . 118, 124
DECL_FUNCTION_MEMBER_P 124, 125
DECL_FUNCTION_SCOPE_P . 119
DECL_FUNCTION_SPECIFIC_OPTIMIZATION 124,

127
DECL_FUNCTION_SPECIFIC_TARGET 124, 127
DECL_GLOBAL_CTOR_P . 124, 125
DECL_GLOBAL_DTOR_P . 124, 125
DECL_INITIAL . 118
DECL_LINKONCE_P . 124
DECL_LOCAL_FUNCTION_P . 124
DECL_MAIN_P . 124
DECL_NAME . 116, 118, 124
DECL_NAMESPACE_ALIAS . 116
DECL_NAMESPACE_SCOPE_P . 119
DECL_NAMESPACE_STD_P . 116
DECL_NON_THUNK_FUNCTION_P 126
DECL_NONCONVERTING_P . 125
DECL_NONSTATIC_MEMBER_FUNCTION_P 125
DECL_OVERLOADED_OPERATOR_P 124, 125
DECL_RESULT . 126
DECL_SIZE . 118
DECL_STATIC_FUNCTION_P . 125
DECL_STMT . 127
DECL_STMT_DECL . 127
DECL_THUNK_P . 125

Concept Index 605

DECL_VOLATILE_MEMFUNC_P 125
declaration . 118
declarations, RTL . 180
DECLARE_LIBRARY_RENAMES 442
decrement_and_branch_until_zero instruction

pattern . 326
def_optype_d . 211
default . 538
default_file_start . 467
DEFAULT_GDB_EXTENSIONS . 494
DEFAULT_PCC_STRUCT_RETURN 431
DEFAULT_SIGNED_CHAR . 392
define_address_constraint 307
define_asm_attributes . 354
define_attr . 350
define_automaton . 358
define_bypass . 361
define_code_attr . 367
define_code_iterator . 367
define_cond_exec . 363
define_constants . 364
define_constraint . 306
define_cpu_unit . 359
define_delay . 357
define_expand . 339
define_insn . 269
define_insn example . 270
define_insn_and_split . 344
define_insn_reservation 359
define_memory_constraint 307
define_mode_attr . 366
define_mode_iterator . 365
define_peephole . 346
define_peephole2 . 348
define_predicate . 280
define_query_cpu_unit . 359
define_register_constraint 306
define_reservation . 360
define_special_predicate 280
define_split . 342
defining attributes and their values 350
defining constraints . 306
defining constraints, obsolete method 409
defining jump instruction patterns 334
defining looping instruction patterns 336
defining peephole optimizers 346
defining predicates . 280
defining RTL sequences for code generation . . . 339
delay slots, defining . 357
DELAY_SLOTS_FOR_EPILOGUE 434
deletable . 540
DELETE_IF_ORDINARY . 527
Dependent Patterns . 333
desc . 538
destructor . 124
destructors, output of . 481
deterministic finite state automaton 358, 362
DF_SIZE . 392

DFmode . 160
digits in constraint . 283
DImode . 159
DIR_SEPARATOR . 526
DIR_SEPARATOR_2 . 526
directory options .md . 346
disabling certain registers . 395
dispatch table . 488
div . 174
div and attributes . 352
division . 174
divm3 instruction pattern . 312
divmodm4 instruction pattern 316
DO_BODY . 127
DO_COND . 127
DO_STMT . 127
DOLLARS_IN_IDENTIFIERS . 515
doloop_begin instruction pattern 326
doloop_end instruction pattern 326
DONE . 340
DONT_USE_BUILTIN_SETJMP 490
DOUBLE_TYPE_SIZE . 390
DQmode . 160
driver . 369
DRIVER_SELF_SPECS . 370
DUMPFILE_FORMAT . 527
DWARF_ALT_FRAME_RETURN_COLUMN 413
DWARF_CIE_DATA_ALIGNMENT 490
DWARF_FRAME_REGISTERS . 420
DWARF_FRAME_REGNUM . 420
DWARF_REG_TO_UNWIND_COLUMN 420
DWARF_ZERO_REG . 413
DWARF2_ASM_LINE_DEBUG_INFO 498
DWARF2_DEBUGGING_INFO . 497
DWARF2_FRAME_INFO . 497
DWARF2_FRAME_REG_OUT . 420
DWARF2_UNWIND_INFO . 490
DYNAMIC_CHAIN_ADDRESS . 412

E
‘E’ in constraint . 283
earlyclobber operand . 287
edge . 260
edge in the flow graph . 260
edge iterators . 260
edge splitting . 266
EDGE_ABNORMAL . 262
EDGE_ABNORMAL, EDGE_ABNORMAL_CALL 263
EDGE_ABNORMAL, EDGE_EH . 261
EDGE_ABNORMAL, EDGE_SIBCALL 262
EDGE_FALLTHRU, force_nonfallthru 261
EDOM, implicit usage . 442
EH_FRAME_IN_DATA_SECTION 489
EH_FRAME_SECTION_NAME . 489
eh_return instruction pattern 329
EH_RETURN_DATA_REGNO . 415
EH_RETURN_HANDLER_RTX . 415

606 GNU Compiler Collection (GCC) Internals

EH_RETURN_STACKADJ_RTX . 415
EH_TABLES_CAN_BE_READ_ONLY 489
EH_USES . 434
ei_edge . 261
ei_end_p . 260
ei_last . 260
ei_next . 260
ei_one_before_end_p . 260
ei_prev . 261
ei_safe_safe . 261
ei_start . 260
ELIGIBLE_FOR_EPILOGUE_DELAY 435
ELIMINABLE_REGS . 421
ELSE_CLAUSE . 127
Embedded C . 22
EMIT_MODE_SET . 502
Empty Statements . 200
EMPTY_CLASS_EXPR . 127
EMPTY_FIELD_BOUNDARY . 385
Emulated TLS . 504
ENABLE_EXECUTE_STACK . 441
enabled . 305
ENDFILE_SPEC . 373
endianness . 5
ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR 259
enum machine_mode . 159
enum reg_class . 401
ENUMERAL_TYPE . 109
epilogue . 432
epilogue instruction pattern 330
EPILOGUE_USES . 434
eq . 176
eq and attributes . 352
eq_attr . 352
EQ_EXPR . 131
equal . 176
errno, implicit usage . 443
EXACT_DIV_EXPR . 131
examining SSA NAMEs . 244
exception handling . 261, 415
exception_receiver instruction pattern 329
exclamation point . 286
exclusion_set . 361
exclusive-or, bitwise . 174
EXIT_EXPR . 131
EXIT_IGNORE_STACK . 434
expander definitions . 339
expm2 instruction pattern . 317
expr_list . 195
EXPR_STMT . 127
EXPR_STMT_EXPR . 127
expression . 131
expression codes . 147
extendmn2 instruction pattern 322
extensible constraints . 284
EXTRA_ADDRESS_CONSTRAINT 411
EXTRA_CONSTRAINT . 410
EXTRA_CONSTRAINT_STR . 410

EXTRA_MEMORY_CONSTRAINT 410
EXTRA_SPECS . 373
extv instruction pattern . 322
extzv instruction pattern . 322

F
‘F’ in constraint . 283
FAIL . 340
fall-thru . 261
FATAL_EXIT_CODE . 527
FDL, GNU Free Documentation License 559
features, optional, in system conventions 378
ffs . 175
ffsm2 instruction pattern . 318
FIELD_DECL . 118
file_end_indicate_exec_stack 468
files and passes of the compiler 93
files, generated . 542
final_absence_set . 361
FINAL_PRESCAN_INSN . 485
final_presence_set . 361
final_scan_insn . 435
final_sequence . 486
FIND_BASE_TERM . 445
FINI_ARRAY_SECTION_ASM_OP 463
FINI_SECTION_ASM_OP . 463
finite state automaton minimization 362
FIRST_PARM_OFFSET . 412
FIRST_PARM_OFFSET and virtual registers 167
FIRST_PSEUDO_REGISTER . 394
FIRST_STACK_REG . 400
FIRST_VIRTUAL_REGISTER . 167
fix . 179
FIX_TRUNC_EXPR . 131
fix_truncmn2 instruction pattern 321
fixed register . 395
fixed-point fractional library 22
FIXED_CONVERT_EXPR . 131
FIXED_CST . 131
FIXED_POINT_TYPE . 109
FIXED_REGISTERS . 395
fixed_regs . 395
fixmn2 instruction pattern 321
FIXUNS_TRUNC_LIKE_FIX_TRUNC 509
fixuns_truncmn2 instruction pattern 321
fixunsmn2 instruction pattern 321
flags in RTL expression . 153
float . 179
FLOAT_EXPR . 131
float_extend . 179
FLOAT_LIB_COMPARE_RETURNS_BOOL 442
FLOAT_STORE_FLAG_VALUE . 512
float_truncate . 179
FLOAT_TYPE_SIZE . 390
FLOAT_WORDS_BIG_ENDIAN . 381
FLOAT_WORDS_BIG_ENDIAN, (lack of) effect on

subreg . 169

Concept Index 607

floating point and cross compilation 499
Floating Point Emulation 529
floating point emulation library, US Software

GOFAST . 442
floatmn2 instruction pattern 321
floatunsmn2 instruction pattern 321
FLOOR_DIV_EXPR . 131
FLOOR_MOD_EXPR . 131
floorm2 instruction pattern 317
flow-insensitive alias analysis 245
flow-sensitive alias analysis 245
fmodm3 instruction pattern 316
FOR_BODY . 127
FOR_COND . 127
FOR_EXPR . 127
FOR_INIT_STMT . 127
FOR_STMT . 127
FORCE_CODE_SECTION_ALIGN 464
force_reg . 310
fract_convert . 180
FRACT_TYPE_SIZE . 391
fractional types . 22
fractmn2 instruction pattern 322
fractunsmn2 instruction pattern 322
frame layout . 411
FRAME_ADDR_RTX . 413
FRAME_GROWS_DOWNWARD . 411
FRAME_GROWS_DOWNWARD and virtual registers . . 167
FRAME_POINTER_CFA_OFFSET 414
frame_pointer_needed . 432
FRAME_POINTER_REGNUM . 418
FRAME_POINTER_REGNUM and virtual registers . . 167
FRAME_POINTER_REQUIRED . 420
frame_pointer_rtx . 419
frame_related . 157
frame_related, in insn, call_insn, jump_insn,

barrier, and set . 155
frame_related, in mem . 155
frame_related, in reg . 155
frame_related, in symbol_ref 156
frequency, count, BB_FREQ_BASE 263
ftruncm2 instruction pattern 321
function . 123
function body . 127
function call conventions . 7
function entry and exit . 432
function entry point, alternate function entry point

. 263
function-call insns . 195
FUNCTION_ARG . 424
FUNCTION_ARG_ADVANCE . 427
FUNCTION_ARG_BOUNDARY . 427
FUNCTION_ARG_OFFSET . 427
FUNCTION_ARG_PADDING . 427
FUNCTION_ARG_REGNO_P . 427
FUNCTION_BOUNDARY . 383
FUNCTION_DECL . 123
FUNCTION_INCOMING_ARG . 425

FUNCTION_MODE . 513
FUNCTION_OUTGOING_VALUE 429
FUNCTION_PROFILER . 436
FUNCTION_TYPE . 109
FUNCTION_VALUE . 429
FUNCTION_VALUE_REGNO_P . 430
functions, leaf . 399
fundamental type . 109

G
‘g’ in constraint . 283
‘G’ in constraint . 283
garbage collector, invocation 542
GCC and portability . 5
GCC_DRIVER_HOST_INITIALIZATION 527
gcov_type . 264
ge . 177
ge and attributes . 352
GE_EXPR . 131
GEN_ERRNO_RTX . 443
gencodes . 101
general_operand . 279
GENERAL_REGS . 401
generated files . 542
generating assembler output 276
generating insns . 271
GENERIC . 93, 94, 199
generic predicates . 278
genflags . 101
get_attr . 352
get_attr_length . 356
GET_CLASS_NARROWEST_MODE 164
GET_CODE . 147
get_frame_size . 421
get_insns . 187
get_last_insn . 187
GET_MODE . 163
GET_MODE_ALIGNMENT . 163
GET_MODE_BITSIZE . 163
GET_MODE_CLASS . 163
GET_MODE_FBIT . 163
GET_MODE_IBIT . 163
GET_MODE_MASK . 163
GET_MODE_NAME . 163
GET_MODE_NUNITS . 164
GET_MODE_SIZE . 163
GET_MODE_UNIT_SIZE . 164
GET_MODE_WIDER_MODE . 163
GET_RTX_CLASS . 148
GET_RTX_FORMAT . 150
GET_RTX_LENGTH . 150
geu . 177
geu and attributes . 352
GGC . 537
ggc_collect . 542
GIMPLE . 93, 94, 201
GIMPLE Exception Handling 205

608 GNU Compiler Collection (GCC) Internals

GIMPLE instruction set . 205
GIMPLE sequences . 229
gimple_addresses_taken . 211
GIMPLE_ASM . 212
gimple_asm_clear_volatile 213
gimple_asm_clobber_op . 213
gimple_asm_input_op . 213
gimple_asm_output_op . 213
gimple_asm_set_clobber_op 213
gimple_asm_set_input_op 213
gimple_asm_set_output_op 213
gimple_asm_set_volatile 213
gimple_asm_volatile_p . 213
GIMPLE_ASSIGN . 213
gimple_assign_cast_p . 215
gimple_assign_lhs . 214
gimple_assign_rhs1 . 214
gimple_assign_rhs2 . 214
gimple_assign_set_lhs . 214
gimple_assign_set_rhs1 . 214
gimple_assign_set_rhs2 . 215
gimple_bb . 210
GIMPLE_BIND . 215
gimple_bind_add_seq . 215
gimple_bind_add_stmt . 215
gimple_bind_append_vars 215
gimple_bind_block . 215
gimple_bind_body . 215
gimple_bind_set_block . 215
gimple_bind_set_body . 215
gimple_bind_set_vars . 215
gimple_bind_vars . 215
gimple_block . 210
gimple_build_asm . 212
gimple_build_asm_vec . 212
gimple_build_assign . 213
gimple_build_assign_with_ops 214
gimple_build_bind . 215
gimple_build_call . 215
gimple_build_call_from_tree 216
gimple_build_call_vec . 216
gimple_build_catch . 217
gimple_build_cdt . 218
gimple_build_cond . 218
gimple_build_cond_from_tree 218
gimple_build_eh_filter . 219
gimple_build_goto . 220
gimple_build_label . 220
gimple_build_nop . 220
gimple_build_omp_atomic_load 220
gimple_build_omp_atomic_store 221
gimple_build_omp_continue 221
gimple_build_omp_critical 221
gimple_build_omp_for . 222
gimple_build_omp_master 223
gimple_build_omp_ordered 223
gimple_build_omp_parallel 223
gimple_build_omp_return 224

gimple_build_omp_section 225
gimple_build_omp_sections 225
gimple_build_omp_sections_switch 225
gimple_build_omp_single 225
gimple_build_resx . 226
gimple_build_return . 227
gimple_build_switch . 227
gimple_build_switch_vec 227
gimple_build_try . 228
gimple_build_wce . 228
GIMPLE_CALL . 215
gimple_call_arg . 216
gimple_call_cannot_inline_p 217
gimple_call_chain . 216
gimple_call_copy_skip_args 217
gimple_call_fn . 216
gimple_call_fndecl . 216
gimple_call_lhs . 216
gimple_call_mark_uninlinable 217
gimple_call_noreturn_p . 217
gimple_call_return_type 216
gimple_call_set_arg . 217
gimple_call_set_chain . 216
gimple_call_set_fn . 216
gimple_call_set_fndecl . 216
gimple_call_set_lhs . 216
gimple_call_set_tail . 217
gimple_call_tail_p . 217
GIMPLE_CATCH . 217
gimple_catch_handler . 217
gimple_catch_set_handler 217
gimple_catch_set_types . 217
gimple_catch_types . 217
gimple_cdt_location . 218
gimple_cdt_new_type . 218
gimple_cdt_set_location 218
gimple_cdt_set_new_type 218
GIMPLE_CHANGE_DYNAMIC_TYPE 218
gimple_code . 210
GIMPLE_COND . 218
gimple_cond_false_label 219
gimple_cond_lhs . 218
gimple_cond_make_false . 219
gimple_cond_make_true . 219
gimple_cond_rhs . 219
gimple_cond_set_code . 218
gimple_cond_set_false_label 219
gimple_cond_set_lhs . 218
gimple_cond_set_rhs . 219
gimple_cond_set_true_label 219
gimple_cond_true_label . 219
gimple_copy . 212
GIMPLE_EH_FILTER . 219
gimple_eh_filter_failure 219
gimple_eh_filter_must_not_throw 219
gimple_eh_filter_set_failure 219
gimple_eh_filter_set_must_not_throw 220
gimple_eh_filter_set_types 219

Concept Index 609

gimple_eh_filter_types . 219
gimple_expr_type . 210
gimple_goto_dest . 220
gimple_goto_set_dest . 220
gimple_has_mem_ops . 211
gimple_has_ops . 211
gimple_has_volatile_ops 212
GIMPLE_LABEL . 220
gimple_label_label . 220
gimple_label_set_label . 220
gimple_loaded_syms . 212
gimple_locus . 210
gimple_locus_empty_p . 210
gimple_modified_p . 212
gimple_no_warning_p . 210
GIMPLE_NOP . 220
gimple_nop_p . 220
gimple_num_ops . 208, 211
GIMPLE_OMP_ATOMIC_LOAD . 220
gimple_omp_atomic_load_lhs 220
gimple_omp_atomic_load_rhs 220
gimple_omp_atomic_load_set_lhs 220
gimple_omp_atomic_load_set_rhs 220
GIMPLE_OMP_ATOMIC_STORE 221
gimple_omp_atomic_store_set_val 221
gimple_omp_atomic_store_val 221
gimple_omp_body . 223
GIMPLE_OMP_CONTINUE . 221
gimple_omp_continue_control_def 221
gimple_omp_continue_control_def_ptr 221
gimple_omp_continue_control_use 221
gimple_omp_continue_control_use_ptr 221
gimple_omp_continue_set_control_def 221
gimple_omp_continue_set_control_use 221
GIMPLE_OMP_CRITICAL . 221
gimple_omp_critical_name 221
gimple_omp_critical_set_name 221
GIMPLE_OMP_FOR . 222
gimple_omp_for_clauses . 222
gimple_omp_for_final . 222
gimple_omp_for_incr . 222
gimple_omp_for_index . 222
gimple_omp_for_initial . 222
gimple_omp_for_pre_body 223
gimple_omp_for_set_clauses 222
gimple_omp_for_set_cond 223
gimple_omp_for_set_final 222
gimple_omp_for_set_incr 223
gimple_omp_for_set_index 222
gimple_omp_for_set_initial 222
gimple_omp_for_set_pre_body 223
GIMPLE_OMP_MASTER . 223
GIMPLE_OMP_ORDERED . 223
GIMPLE_OMP_PARALLEL . 223
gimple_omp_parallel_child_fn 224
gimple_omp_parallel_clauses 224
gimple_omp_parallel_combined_p 223
gimple_omp_parallel_data_arg 224

gimple_omp_parallel_set_child_fn 224
gimple_omp_parallel_set_clauses 224
gimple_omp_parallel_set_combined_p 223
gimple_omp_parallel_set_data_arg 224
GIMPLE_OMP_RETURN . 224
gimple_omp_return_nowait_p 224
gimple_omp_return_set_nowait 224
GIMPLE_OMP_SECTION . 225
gimple_omp_section_last_p 225
gimple_omp_section_set_last 225
GIMPLE_OMP_SECTIONS . 225
gimple_omp_sections_clauses 225
gimple_omp_sections_control 225
gimple_omp_sections_set_clauses 225
gimple_omp_sections_set_control 225
gimple_omp_set_body . 224
GIMPLE_OMP_SINGLE . 225
gimple_omp_single_clauses 226
gimple_omp_single_set_clauses 226
gimple_op . 208, 211
GIMPLE_PHI . 226
gimple_phi_capacity . 226
gimple_phi_num_args . 226
gimple_phi_result . 226
gimple_phi_set_arg . 226
gimple_phi_set_result . 226
GIMPLE_RESX . 226
gimple_resx_region . 226
gimple_resx_set_region . 226
GIMPLE_RETURN . 227
gimple_return_retval . 227
gimple_return_set_retval 227
gimple_rhs_class . 214
gimple_seq_add_seq . 229
gimple_seq_add_stmt . 229
gimple_seq_alloc . 229
gimple_seq_copy . 229
gimple_seq_deep_copy . 229
gimple_seq_empty_p . 230
gimple_seq_first . 229
gimple_seq_init . 229
gimple_seq_last . 229
gimple_seq_reverse . 229
gimple_seq_set_first . 229
gimple_seq_set_last . 229
gimple_seq_singleton_p . 230
gimple_set_block . 210
gimple_set_def_ops . 211
gimple_set_has_volatile_ops 212
gimple_set_locus . 210
gimple_set_op . 211
gimple_set_plf . 211
gimple_set_use_ops . 211
gimple_set_vdef_ops . 212
gimple_set_visited . 210
gimple_set_vuse_ops . 211
gimple statement base . 202
gimple statement with ops 203

610 GNU Compiler Collection (GCC) Internals

gimple_stored_syms . 212
GIMPLE_SWITCH . 227
gimple_switch_default_label 227
gimple_switch_index . 227
gimple_switch_label . 227
gimple_switch_num_labels 227
gimple_switch_set_default_label 227
gimple_switch_set_index 227
gimple_switch_set_label 227
gimple_switch_set_num_labels 227
GIMPLE_TRY . 228
gimple_try_catch_is_cleanup 228
gimple_try_cleanup . 228
gimple_try_eval . 228
gimple_try_flags . 228
gimple_try_set_catch_is_cleanup 228
gimple_try_set_cleanup . 228
gimple_try_set_eval . 228
gimple_visited_p . 211
gimple_wce_cleanup . 228
gimple_wce_cleanup_eh_only 228
gimple_wce_set_cleanup . 228
gimple_wce_set_cleanup_eh_only 228
GIMPLE_WITH_CLEANUP_EXPR 228
gimplification . 93, 94
gimplifier . 93
gimplify_assign . 214
gimplify_expr . 94
gimplify_function_tree . 94
GLOBAL_INIT_PRIORITY 124, 126
global_regs . 395
GO_IF_LEGITIMATE_ADDRESS 444
GO_IF_MODE_DEPENDENT_ADDRESS 446
GOFAST, floating point emulation library 442
gofast_maybe_init_libfuncs 442
greater than . 176, 177
gsi_after_labels . 231
gsi_bb . 231
gsi_commit_edge_inserts 233
gsi_commit_one_edge_insert 233
gsi_end_p . 231
gsi_for_stmt . 232
gsi_insert_after . 232
gsi_insert_before . 232
gsi_insert_on_edge . 233
gsi_insert_on_edge_immediate 233
gsi_insert_seq_after . 232
gsi_insert_seq_before . 232
gsi_insert_seq_on_edge . 233
gsi_last . 230
gsi_last_bb . 230
gsi_link_after . 232
gsi_link_before . 231
gsi_link_seq_after . 231
gsi_link_seq_before . 231
gsi_move_after . 232
gsi_move_before . 232
gsi_move_to_bb_end . 232

gsi_next . 231
gsi_one_before_end_p . 231
gsi_prev . 231
gsi_remove . 231
gsi_replace . 232
gsi_seq . 231
gsi_split_seq_after . 232
gsi_split_seq_before . 232
gsi_start . 230
gsi_start_bb . 230
gsi_stmt . 231
gt . 176
gt and attributes . 352
GT_EXPR . 131
gtu . 177
gtu and attributes . 352
GTY . 537

H
‘H’ in constraint . 283
HAmode . 161
HANDLE_PRAGMA_PACK_PUSH_POP 515
HANDLE_PRAGMA_PACK_WITH_EXPANSION 515
HANDLE_PRAGMA_PUSH_POP_MACRO 515
HANDLE_SYSV_PRAGMA . 514
HANDLER . 127
HANDLER_BODY . 127
HANDLER_PARMS . 127
hard registers . 166
HARD_FRAME_POINTER_REGNUM 418
HARD_REGNO_CALL_PART_CLOBBERED 395
HARD_REGNO_CALLER_SAVE_MODE 432
HARD_REGNO_MODE_OK . 398
HARD_REGNO_NREGS . 397
HARD_REGNO_NREGS_HAS_PADDING 397
HARD_REGNO_NREGS_WITH_PADDING 397
HARD_REGNO_RENAME_OK . 399
HAS_INIT_SECTION . 483
HAS_LONG_COND_BRANCH . 508
HAS_LONG_UNCOND_BRANCH . 508
HAVE_DOS_BASED_FILE_SYSTEM 526
HAVE_POST_DECREMENT . 443
HAVE_POST_INCREMENT . 443
HAVE_POST_MODIFY_DISP . 443
HAVE_POST_MODIFY_REG . 443
HAVE_PRE_DECREMENT . 443
HAVE_PRE_INCREMENT . 443
HAVE_PRE_MODIFY_DISP . 443
HAVE_PRE_MODIFY_REG . 443
HCmode . 161
HFmode . 160
high . 166
HImode . 159
HImode, in insn . 190
host configuration . 525
host functions . 525
host hooks . 525

Concept Index 611

host makefile fragment . 531
HOST_BIT_BUCKET . 526
HOST_EXECUTABLE_SUFFIX . 526
HOST_HOOKS_EXTRA_SIGNALS 525
HOST_HOOKS_GT_PCH_ALLOC_GRANULARITY 525
HOST_HOOKS_GT_PCH_USE_ADDRESS 525
HOST_LACKS_INODE_NUMBERS 527
HOST_LONG_LONG_FORMAT . 528
HOST_OBJECT_SUFFIX . 526
HOST_WIDE_INT . 449
HOT_TEXT_SECTION_NAME . 462
HQmode . 160

I
‘i’ in constraint . 282
‘I’ in constraint . 283
identifier . 109
IDENTIFIER_LENGTH . 109
IDENTIFIER_NODE . 109
IDENTIFIER_OPNAME_P . 109
IDENTIFIER_POINTER . 109
IDENTIFIER_TYPENAME_P . 109
IEEE 754-2008 . 16
IF_COND . 127
if_marked . 540
IF_STMT . 127
if_then_else . 177
if_then_else and attributes 351
if_then_else usage . 181
IFCVT_EXTRA_FIELDS . 517
IFCVT_INIT_EXTRA_FIELDS 517
IFCVT_MODIFY_CANCEL . 517
IFCVT_MODIFY_FINAL . 517
IFCVT_MODIFY_INSN . 517
IFCVT_MODIFY_MULTIPLE_TESTS 517
IFCVT_MODIFY_TESTS . 517
IMAGPART_EXPR . 131
Immediate Uses . 239
immediate_operand . 278
IMMEDIATE_PREFIX . 487
in_struct . 157
in_struct, in code_label and note 154
in_struct, in insn and jump_insn and call_insn

. 154
in_struct, in insn, jump_insn and call_insn

. 156
in_struct, in mem . 154
in_struct, in subreg . 157
include . 345
INCLUDE_DEFAULTS . 376
inclusive-or, bitwise . 174
INCOMING_FRAME_SP_OFFSET 414
INCOMING_REGNO . 396
INCOMING_RETURN_ADDR_RTX 413
INCOMING_STACK_BOUNDARY 383
INDEX_REG_CLASS . 402
indirect_jump instruction pattern 325

indirect_operand . 279
INDIRECT_REF . 131
INIT_ARRAY_SECTION_ASM_OP 463
INIT_CUMULATIVE_ARGS . 426
INIT_CUMULATIVE_INCOMING_ARGS 426
INIT_CUMULATIVE_LIBCALL_ARGS 426
INIT_ENVIRONMENT . 375
INIT_EXPANDERS . 380
INIT_EXPR . 131
init_machine_status . 380
init_one_libfunc . 442
INIT_SECTION_ASM_OP 463, 483
INITIAL_ELIMINATION_OFFSET 421
INITIAL_FRAME_ADDRESS_RTX 412
INITIAL_FRAME_POINTER_OFFSET 421
initialization routines . 481
INITIALIZE_TRAMPOLINE . 440
inlining . 503
insert_insn_on_edge . 266
insn . 188
insn and ‘/f’ . 155
insn and ‘/j’ . 156
insn and ‘/s’ . 154, 156
insn and ‘/u’ . 154
insn and ‘/v’ . 154
insn attributes . 350
insn canonicalization . 338
insn includes . 345
insn lengths, computing . 355
insn splitting . 342
insn-attr.h . 350
INSN_ANNULLED_BRANCH_P . 154
INSN_CODE . 191
INSN_DELETED_P . 154
INSN_FROM_TARGET_P . 154
insn_list . 195
INSN_REFERENCES_ARE_DELAYED 516
INSN_SETS_ARE_DELAYED . 515
INSN_UID . 187
insns . 187
insns, generating . 271
insns, recognizing . 271
instruction attributes . 350
instruction latency time 358, 359, 361
instruction patterns . 269
instruction splitting . 342
insv instruction pattern . 322
int . 211, 378
INT_TYPE_SIZE . 390
INTEGER_CST . 131
INTEGER_TYPE . 109
Interdependence of Patterns 333
interfacing to GCC output . 7
interlock delays . 358
intermediate representation lowering 93
INTMAX_TYPE . 393
introduction . 1
INVOKE__main . 483

612 GNU Compiler Collection (GCC) Internals

ior . 174
ior and attributes . 351
ior, canonicalization of . 338
iorm3 instruction pattern . 312
IRA_COVER_CLASSES . 409
IRA_HARD_REGNO_ADD_COST_MULTIPLIER 397
IS_ASM_LOGICAL_LINE_SEPARATOR 472
is_gimple_omp . 224
iterators in ‘.md’ files . 365
IV analysis on GIMPLE . 253
IV analysis on RTL . 254

J
jump . 158
jump instruction pattern . 324
jump instruction patterns . 334
jump instructions and set . 181
jump, in call_insn . 156
jump, in insn . 156
jump, in mem . 154
JUMP_ALIGN . 491
jump_insn . 188
jump_insn and ‘/f’ . 155
jump_insn and ‘/s’ . 154, 156
jump_insn and ‘/u’ . 154
jump_insn and ‘/v’ . 154
JUMP_LABEL . 188
JUMP_TABLES_IN_TEXT_SECTION 464
Jumps . 200

L
LABEL_ALIGN . 492
LABEL_ALIGN_AFTER_BARRIER 491
LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 491
LABEL_ALIGN_MAX_SKIP . 492
LABEL_ALT_ENTRY_P . 189
LABEL_ALTERNATE_NAME . 263
LABEL_DECL . 118
LABEL_KIND . 189
LABEL_NUSES . 189
LABEL_PRESERVE_P . 154
label_ref . 165
label_ref and ‘/v’ . 154
label_ref, RTL sharing . 196
LABEL_REF_NONLOCAL_P . 154
lang_hooks.gimplify_expr 94
lang_hooks.parse_file . 93
language-independent intermediate representation

. 93
large return values . 430
LARGEST_EXPONENT_IS_NORMAL 388
LAST_STACK_REG . 400
LAST_VIRTUAL_REGISTER . 167
lceilmn2 . 318
LCSSA . 252
LD_FINI_SWITCH . 483

LD_INIT_SWITCH . 483
LDD_SUFFIX . 484
le . 177
le and attributes . 352
LE_EXPR . 131
leaf functions . 399
leaf_function_p . 325
LEAF_REG_REMAP . 400
LEAF_REGISTERS . 399
left rotate . 175
left shift . 174
LEGITIMATE_CONSTANT_P . 446
LEGITIMATE_PIC_OPERAND_P 467
LEGITIMIZE_ADDRESS . 445
LEGITIMIZE_RELOAD_ADDRESS 445
length . 538
less than . 177
less than or equal . 177
leu . 177
leu and attributes . 352
lfloormn2 . 318
LIB_SPEC . 372
LIB2FUNCS_EXTRA . 529
LIBCALL_VALUE . 429
‘libgcc.a’ . 442
LIBGCC_SPEC . 372
LIBGCC2_CFLAGS . 529
LIBGCC2_HAS_DF_MODE . 391
LIBGCC2_HAS_TF_MODE . 391
LIBGCC2_HAS_XF_MODE . 391
LIBGCC2_LONG_DOUBLE_TYPE_SIZE 391
LIBGCC2_UNWIND_ATTRIBUTE 523
LIBGCC2_WORDS_BIG_ENDIAN 381
library subroutine names . 442
LIBRARY_PATH_ENV . 516
LIMIT_RELOAD_CLASS . 404
Linear loop transformations framework 257
LINK_COMMAND_SPEC . 374
LINK_EH_SPEC . 373
LINK_ELIMINATE_DUPLICATE_LDIRECTORIES . . . 374
LINK_GCC_C_SEQUENCE_SPEC 374
LINK_LIBGCC_SPECIAL_1 . 374
LINK_SPEC . 372
linkage . 124
list . 109
Liveness representation . 266
lo_sum . 172
load address instruction . 284
LOAD_EXTEND_OP . 509
load_multiple instruction pattern 311
LOCAL_ALIGNMENT . 385
LOCAL_CLASS_P . 117
LOCAL_DECL_ALIGNMENT . 385
LOCAL_INCLUDE_DIR . 375
LOCAL_LABEL_PREFIX . 487
LOCAL_REGNO . 396
LOG_LINKS . 191
Logical Operators . 207

Concept Index 613

logical-and, bitwise . 174
logm2 instruction pattern . 317
LONG_ACCUM_TYPE_SIZE . 391
LONG_DOUBLE_TYPE_SIZE . 390
LONG_FRACT_TYPE_SIZE . 391
LONG_LONG_ACCUM_TYPE_SIZE 391
LONG_LONG_FRACT_TYPE_SIZE 391
LONG_LONG_TYPE_SIZE . 390
LONG_TYPE_SIZE . 390
longjmp and automatic variables 7
Loop analysis . 249
Loop manipulation . 252
Loop querying . 251
Loop representation . 249
Loop-closed SSA form . 252
LOOP_ALIGN . 491
LOOP_ALIGN_MAX_SKIP . 492
LOOP_EXPR . 131
looping instruction patterns 336
lowering, language-dependent intermediate

representation . 93
lrintmn2 . 318
lroundmn2 . 318
LSHIFT_EXPR . 131
lshiftrt . 175
lshiftrt and attributes . 352
lshrm3 instruction pattern 316
lt . 177
lt and attributes . 352
LT_EXPR . 131
LTGT_EXPR . 131
ltu . 177

M
‘m’ in constraint . 282
machine attributes . 502
machine description macros 369
machine descriptions . 269
machine mode conversions . 178
machine modes . 159
machine specific constraints 288
machine-independent predicates 278
machine_mode . 452
macros, target description . 369
maddmn4 instruction pattern 315
MAKE_DECL_ONE_ONLY . 477
make_phi_node . 226
make_safe_from . 341
makefile fragment . 529
makefile targets . 65
MALLOC_ABI_ALIGNMENT . 383
Manipulating GIMPLE statements 210
mark_hook . 540
marking roots . 541
MASK_RETURN_ADDR . 489
match_dup . 272, 349
match_dup and attributes . 355

match_op_dup . 273
match_operand . 271
match_operand and attributes 351
match_operator . 272
match_par_dup . 274
match_parallel . 274
match_scratch . 272, 349
matching constraint . 283
matching operands . 275
math library . 12
math, in RTL . 172
MATH_LIBRARY . 516
matherr . 442
MAX_BITS_PER_WORD . 382
MAX_CONDITIONAL_EXECUTE 516
MAX_FIXED_MODE_SIZE . 387
MAX_MOVE_MAX . 509
MAX_OFILE_ALIGNMENT . 384
MAX_REGS_PER_ADDRESS . 444
MAX_STACK_ALIGNMENT . 384
maxm3 instruction pattern . 313
may_trap_p, tree_could_trap_p 262
maybe_undef . 540
mcount . 436
MD_CAN_REDIRECT_BRANCH . 519
MD_EXEC_PREFIX . 375
MD_FALLBACK_FRAME_STATE_FOR 416
MD_HANDLE_UNWABI . 416
MD_STARTFILE_PREFIX . 375
MD_STARTFILE_PREFIX_1 . 375
MD_UNWIND_SUPPORT . 416
mem . 171
mem and ‘/c’ . 155
mem and ‘/f’ . 155
mem and ‘/i’ . 155
mem and ‘/j’ . 154
mem and ‘/s’ . 154
mem and ‘/u’ . 156
mem and ‘/v’ . 155
mem, RTL sharing . 196
MEM_ALIAS_SET . 151
MEM_ALIGN . 152
MEM_EXPR . 151
MEM_IN_STRUCT_P . 154
MEM_KEEP_ALIAS_SET_P . 154
MEM_NOTRAP_P . 155
MEM_OFFSET . 151
MEM_POINTER . 155
MEM_READONLY_P . 156
MEM_SCALAR_P . 155
MEM_SIZE . 151
MEM_VOLATILE_P . 155
MEMBER_TYPE_FORCES_BLK . 387
memory reference, nonoffsettable 285
memory references in constraints 282
memory_barrier instruction pattern 331
MEMORY_MOVE_COST . 452
memory_operand . 279

614 GNU Compiler Collection (GCC) Internals

METHOD_TYPE . 109
MIN_UNITS_PER_WORD . 382
MINIMUM_ALIGNMENT . 385
MINIMUM_ATOMIC_ALIGNMENT 384
minm3 instruction pattern . 313
minus . 172
minus and attributes . 352
minus, canonicalization of . 338
MINUS_EXPR . 131
MIPS coprocessor-definition macros 505
mod . 174
mod and attributes . 352
mode classes . 162
mode iterators in ‘.md’ files 365
mode switching . 501
MODE_ACCUM . 162
MODE_AFTER . 501
MODE_BASE_REG_CLASS . 402
MODE_BASE_REG_REG_CLASS 402
MODE_CC . 163
MODE_CODE_BASE_REG_CLASS 402
MODE_COMPLEX_FLOAT . 163
MODE_COMPLEX_INT . 162
MODE_DECIMAL_FLOAT . 162
MODE_ENTRY . 501
MODE_EXIT . 501
MODE_FLOAT . 162
MODE_FRACT . 162
MODE_FUNCTION . 163
MODE_INDEX_REG_CLASS . 403
MODE_INT . 162
MODE_NEEDED . 501
MODE_PARTIAL_INT . 162
MODE_PRIORITY_TO_MODE . 502
MODE_RANDOM . 163
MODE_UACCUM . 162
MODE_UFRACT . 162
MODES_TIEABLE_P . 399
modifiers in constraints . 287
MODIFY_EXPR . 131
MODIFY_JNI_METHOD_CALL . 520
MODIFY_TARGET_NAME . 375
modm3 instruction pattern . 312
modulo scheduling . 103
MOVE_BY_PIECES_P . 453
MOVE_MAX . 509
MOVE_MAX_PIECES . 453
MOVE_RATIO . 453
movm instruction pattern . 309
movmemm instruction pattern 319
movmisalignm instruction pattern 311
movmodecc instruction pattern 323
movstr instruction pattern . 320
movstrictm instruction pattern 311
msubmn4 instruction pattern 315
mulhisi3 instruction pattern 314
mulm3 instruction pattern . 312
mulqihi3 instruction pattern 315

mulsidi3 instruction pattern 315
mult . 173
mult and attributes . 352
mult, canonicalization of . 338
MULT_EXPR . 131
MULTILIB_ALIASES . 530
MULTILIB_DEFAULTS . 374
MULTILIB_DIRNAMES . 530
MULTILIB_EXCEPTIONS . 530
MULTILIB_EXTRA_OPTS . 531
MULTILIB_MATCHES . 530
MULTILIB_OPTIONS . 529
multiple alternative constraints 286
MULTIPLE_SYMBOL_SPACES . 516
multiplication . 173
multiplication with signed saturation 173
multiplication with unsigned saturation 173
MUST_USE_SJLJ_EXCEPTIONS 490

N
‘n’ in constraint . 283
N_REG_CLASSES . 401
name . 109
named patterns and conditions 270
names, pattern . 309
namespace . 115
namespace, class, scope . 115
NAMESPACE_DECL . 115, 118
NATIVE_SYSTEM_HEADER_DIR 531
ne . 176
ne and attributes . 352
NE_EXPR . 131
nearbyintm2 instruction pattern 318
neg . 173
neg and attributes . 352
neg, canonicalization of . 338
NEGATE_EXPR . 131
negation . 173
negation with signed saturation 173
negation with unsigned saturation 173
negm2 instruction pattern . 316
nested functions, trampolines for 439
nested_ptr . 540
next_bb, prev_bb, FOR_EACH_BB 259
next_cc0_user . 335
NEXT_INSN . 187
NEXT_OBJC_RUNTIME . 443
nil . 148
NO_DBX_BNSYM_ENSYM . 496
NO_DBX_FUNCTION_END . 496
NO_DBX_GCC_MARKER . 497
NO_DBX_MAIN_SOURCE_DIRECTORY 497
NO_DOLLAR_IN_LABEL . 515
NO_DOT_IN_LABEL . 515
NO_FUNCTION_CSE . 455
NO_IMPLICIT_EXTERN_C . 513
NO_PROFILE_COUNTERS . 436

Concept Index 615

NO_REGS . 401
NON_LVALUE_EXPR . 131
nondeterministic finite state automaton 362
nonimmediate_operand . 279
nonlocal goto handler . 263
nonlocal_goto instruction pattern 328
nonlocal_goto_receiver instruction pattern

. 328
nonmemory_operand . 279
nonoffsettable memory reference 285
nop instruction pattern . 325
NOP_EXPR . 131
normal predicates . 277
not . 174
not and attributes . 351
not equal . 176
not, canonicalization of . 338
note . 189
note and ‘/i’ . 154
note and ‘/v’ . 154
NOTE_INSN_BASIC_BLOCK, CODE_LABEL, notes

. 259
NOTE_INSN_BLOCK_BEG . 190
NOTE_INSN_BLOCK_END . 190
NOTE_INSN_DELETED . 190
NOTE_INSN_DELETED_LABEL 190
NOTE_INSN_EH_REGION_BEG 190
NOTE_INSN_EH_REGION_END 190
NOTE_INSN_FUNCTION_BEG . 190
NOTE_INSN_LOOP_BEG . 190
NOTE_INSN_LOOP_CONT . 190
NOTE_INSN_LOOP_END . 190
NOTE_INSN_LOOP_VTOP . 190
NOTE_LINE_NUMBER . 189
NOTE_SOURCE_FILE . 189
NOTICE_UPDATE_CC . 449
NUM_MACHINE_MODES . 163
NUM_MODES_FOR_MODE_SWITCHING 501
Number of iterations analysis 254

O
‘o’ in constraint . 282
OBJC_GEN_METHOD_LABEL . 480
OBJC_JBLEN . 523
OBJECT_FORMAT_COFF . 484
OFFSET_TYPE . 109
offsettable address . 282
OImode . 160
Omega a solver for linear programming problems

. 257
OMP_ATOMIC . 131
OMP_CLAUSE . 131
OMP_CONTINUE . 131
OMP_CRITICAL . 131
OMP_FOR . 131
OMP_MASTER . 131
OMP_ORDERED . 131

OMP_PARALLEL . 131
OMP_RETURN . 131
OMP_SECTION . 131
OMP_SECTIONS . 131
OMP_SINGLE . 131
one_cmplm2 instruction pattern 319
operand access . 150
Operand Access Routines . 237
operand constraints . 282
Operand Iterators . 237
operand predicates . 277
operand substitution . 275
operands . 235
operands . 270
Operands . 206
operator predicates . 277
‘optc-gen.awk’ . 89
Optimization infrastructure for GIMPLE 235
OPTIMIZATION_OPTIONS . 379
OPTIMIZE_MODE_SWITCHING 501
option specification files . 89
OPTION_DEFAULT_SPECS . 371
optional hardware or system features 378
options, directory search . 346
order of register allocation . 396
ORDER_REGS_FOR_LOCAL_ALLOC 396
ORDERED_EXPR . 131
Ordering of Patterns . 333
ORIGINAL_REGNO . 152
other register constraints . 284
OUTGOING_REG_PARM_STACK_SPACE 423
OUTGOING_REGNO . 396
output of assembler code . 467
output statements . 276
output templates . 275
OUTPUT_ADDR_CONST_EXTRA 470
output_asm_insn . 276
OUTPUT_QUOTED_STRING . 468
OVERLOAD . 123
OVERRIDE_ABI_FORMAT . 426
OVERRIDE_OPTIONS . 379
OVL_CURRENT . 123
OVL_NEXT . 123

P
‘p’ in constraint . 284
PAD_VARARGS_DOWN . 427
parallel . 183
param_is . 539
parameters, c++ abi . 506
parameters, miscellaneous . 508
parameters, precompiled headers 506
paramn_is . 539
parity . 175
paritym2 instruction pattern 319
PARM_BOUNDARY . 383
PARM_DECL . 118

616 GNU Compiler Collection (GCC) Internals

PARSE_LDD_OUTPUT . 484
passes and files of the compiler 93
passing arguments . 7
PATH_SEPARATOR . 526
PATTERN . 191
pattern conditions . 270
pattern names . 309
Pattern Ordering . 333
patterns . 269
pc . 171
pc and attributes . 355
pc, RTL sharing . 196
PC_REGNUM . 396
pc_rtx . 171
PCC_BITFIELD_TYPE_MATTERS 386
PCC_STATIC_STRUCT_RETURN 431
PDImode . 159
peephole optimization, RTL representation 184
peephole optimizer definitions 346
per-function data . 380
percent sign . 275
PHI nodes . 241
phi_arg_d . 226
PHI_ARG_DEF . 242
PHI_ARG_EDGE . 242
PHI_ARG_ELT . 241
PHI_NUM_ARGS . 241
PHI_RESULT . 241
PIC . 466
PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 467
PIC_OFFSET_TABLE_REGNUM 467
pipeline hazard recognizer . 358
plus . 172
plus and attributes . 352
plus, canonicalization of . 338
PLUS_EXPR . 131
Pmode . 513
pmode_register_operand . 278
pointer . 109
POINTER_PLUS_EXPR . 131
POINTER_SIZE . 382
POINTER_TYPE . 109
POINTERS_EXTEND_UNSIGNED 382
pop_operand . 279
popcount . 175
popcountm2 instruction pattern 319
portability . 5
position independent code . 466
post_dec . 186
post_inc . 186
post_modify . 186
POSTDECREMENT_EXPR . 131
POSTINCREMENT_EXPR . 131
POWI_MAX_MULTS . 521
powm3 instruction pattern . 317
pragma . 513, 514, 515
pre_dec . 185
PRE_GCC3_DWARF_FRAME_REGISTERS 420

pre_inc . 186
pre_modify . 186
PREDECREMENT_EXPR . 131
predefined macros . 378
predicates . 277
predicates and machine modes 277
predication . 363
predict.def . 263
PREFERRED_DEBUGGING_TYPE 493
PREFERRED_OUTPUT_RELOAD_CLASS 404
PREFERRED_RELOAD_CLASS . 404
PREFERRED_STACK_BOUNDARY 383
prefetch . 185
prefetch instruction pattern 330
PREINCREMENT_EXPR . 131
presence_set . 361
preserving SSA form . 242
preserving virtual SSA form 243
prev_active_insn . 347
prev_cc0_setter . 335
PREV_INSN . 187
PRINT_OPERAND . 486
PRINT_OPERAND_ADDRESS . 486
PRINT_OPERAND_PUNCT_VALID_P 486
processor functional units 358, 359
processor pipeline description 358
product . 173
profile feedback . 263
profile representation . 263
PROFILE_BEFORE_PROLOGUE 436
PROFILE_HOOK . 436
profiling, code generation . 436
program counter . 171
prologue . 432
prologue instruction pattern 329
PROMOTE_FUNCTION_MODE . 383
PROMOTE_MODE . 382
pseudo registers . 166
PSImode . 159
PTRDIFF_TYPE . 392
PTRMEM_CST . 131
PTRMEM_CST_CLASS . 131
PTRMEM_CST_MEMBER . 131
purge_dead_edges . 261, 266
push address instruction . 284
PUSH_ARGS . 422
PUSH_ARGS_REVERSED . 422
push_operand . 279
push_reload . 446
PUSH_ROUNDING . 422
pushm1 instruction pattern 312
PUT_CODE . 147
PUT_MODE . 163
PUT_REG_NOTE_KIND . 192
PUT_SDB_... 498

Concept Index 617

Q
QCmode . 161
QFmode . 160
QImode . 159
QImode, in insn . 190
QQmode . 160
qualified type . 109
querying function unit reservations 359
question mark . 286
quotient . 174

R
‘r’ in constraint . 282
RANGE_TEST_NON_SHORT_CIRCUIT 455
RDIV_EXPR . 131
READONLY_DATA_SECTION_ASM_OP 463
real operands . 235
REAL_ARITHMETIC . 500
REAL_CST . 131
REAL_LIBGCC_SPEC . 372
REAL_NM_FILE_NAME . 484
REAL_TYPE . 109
REAL_VALUE_ABS . 500
REAL_VALUE_ATOF . 500
REAL_VALUE_FIX . 499
REAL_VALUE_FROM_INT . 500
REAL_VALUE_ISINF . 500
REAL_VALUE_ISNAN . 500
REAL_VALUE_NEGATE . 500
REAL_VALUE_NEGATIVE . 500
REAL_VALUE_TO_INT . 500
REAL_VALUE_TO_TARGET_DECIMAL128 472
REAL_VALUE_TO_TARGET_DECIMAL32 472
REAL_VALUE_TO_TARGET_DECIMAL64 472
REAL_VALUE_TO_TARGET_DOUBLE 472
REAL_VALUE_TO_TARGET_LONG_DOUBLE 472
REAL_VALUE_TO_TARGET_SINGLE 472
REAL_VALUE_TRUNCATE . 500
REAL_VALUE_TYPE . 499
REAL_VALUE_UNSIGNED_FIX 499
REAL_VALUES_EQUAL . 499
REAL_VALUES_LESS . 499
REALPART_EXPR . 131
recog_data.operand . 485
recognizing insns . 271
RECORD_TYPE . 109, 116
redirect_edge_and_branch 264
redirect_edge_and_branch, redirect_jump

. 266
reduc_smax_m instruction pattern 313
reduc_smin_m instruction pattern 313
reduc_splus_m instruction pattern 313
reduc_umax_m instruction pattern 313
reduc_umin_m instruction pattern 313
reduc_uplus_m instruction pattern 313
reference . 109
REFERENCE_TYPE . 109

reg . 166
reg and ‘/f’ . 155
reg and ‘/i’ . 155
reg and ‘/v’ . 155
reg, RTL sharing . 196
REG_ALLOC_ORDER . 396
REG_BR_PRED . 194
REG_BR_PROB . 194
REG_BR_PROB_BASE, BB_FREQ_BASE, count 264
REG_BR_PROB_BASE, EDGE_FREQUENCY 264
REG_CC_SETTER . 194
REG_CC_USER . 194
reg_class_contents . 395
REG_CLASS_CONTENTS . 402
REG_CLASS_FROM_CONSTRAINT 409
REG_CLASS_FROM_LETTER . 409
REG_CLASS_NAMES . 402
REG_CROSSING_JUMP . 192
REG_DEAD . 192
REG_DEAD, REG_UNUSED . 267
REG_DEP_ANTI . 194
REG_DEP_OUTPUT . 194
REG_DEP_TRUE . 194
REG_EH_REGION, EDGE_ABNORMAL_CALL 262
REG_EQUAL . 193
REG_EQUIV . 193
REG_EXPR . 152
REG_FRAME_RELATED_EXPR . 195
REG_FUNCTION_VALUE_P . 155
REG_INC . 192
reg_label and ‘/v’ . 154
REG_LABEL_OPERAND . 192
REG_LABEL_TARGET . 192
reg_names . 395, 486
REG_NONNEG . 192
REG_NOTE_KIND . 192
REG_NOTES . 191
REG_OFFSET . 152
REG_OK_STRICT . 444
REG_PARM_STACK_SPACE . 422
REG_PARM_STACK_SPACE, and FUNCTION_ARG . . . 424
REG_POINTER . 155
REG_SETJMP . 193
REG_UNUSED . 192
REG_USERVAR_P . 155
regclass_for_constraint 309
register allocation order . 396
register class definitions . 400
register class preference constraints 287
register pairs . 398
Register Transfer Language (RTL) 147
register usage . 394
REGISTER_MOVE_COST . 452
REGISTER_NAMES . 485
register_operand . 278
REGISTER_PREFIX . 487
REGISTER_TARGET_PRAGMAS 513
registers arguments . 424

618 GNU Compiler Collection (GCC) Internals

registers in constraints . 282
REGMODE_NATURAL_SIZE . 398
REGNO_MODE_CODE_OK_FOR_BASE_P 403
REGNO_MODE_OK_FOR_BASE_P 403
REGNO_MODE_OK_FOR_INDEX_P 404
REGNO_MODE_OK_FOR_REG_BASE_P 403
REGNO_OK_FOR_BASE_P . 403
REGNO_OK_FOR_INDEX_P . 403
REGNO_REG_CLASS . 402
regs_ever_live . 432
regular expressions . 358, 359
relative costs . 452
RELATIVE_PREFIX_NOT_LINKDIR 374
reload_completed . 325
reload_in instruction pattern 310
reload_in_progress . 310
reload_out instruction pattern 310
reloading . 104
remainder . 174
remainderm3 instruction pattern 316
reorder . 541
representation of RTL . 147
reservation delays . 358
rest_of_decl_compilation 93
rest_of_type_compilation 93
restore_stack_block instruction pattern 327
restore_stack_function instruction pattern

. 327
restore_stack_nonlocal instruction pattern

. 327
RESULT_DECL . 118
return . 181
return instruction pattern . 325
return values in registers . 429
RETURN_ADDR_IN_PREVIOUS_FRAME 413
RETURN_ADDR_OFFSET . 415
RETURN_ADDR_RTX . 413
RETURN_ADDRESS_POINTER_REGNUM 419
RETURN_EXPR . 127
RETURN_POPS_ARGS . 423
RETURN_STMT . 127
return_val . 158
return_val, in call_insn . 154
return_val, in mem . 155
return_val, in reg . 155
return_val, in symbol_ref 157
returning aggregate values . 430
returning structures and unions 7
reverse probability . 264
REVERSE_CONDEXEC_PREDICATES_P 451
REVERSE_CONDITION . 451
REVERSIBLE_CC_MODE . 451
right rotate . 175
right shift . 175
rintm2 instruction pattern 318
RISC . 358, 361
roots, marking . 541
rotate . 175

rotatert . 175
rotlm3 instruction pattern 316
rotrm3 instruction pattern 316
ROUND_DIV_EXPR . 131
ROUND_MOD_EXPR . 131
ROUND_TOWARDS_ZERO . 388
ROUND_TYPE_ALIGN . 387
roundm2 instruction pattern 317
RSHIFT_EXPR . 131
RTL addition . 172
RTL addition with signed saturation 172
RTL addition with unsigned saturation 172
RTL classes . 148
RTL comparison . 172
RTL comparison operations 176
RTL constant expression types 164
RTL constants . 164
RTL declarations . 180
RTL difference . 172
RTL expression . 147
RTL expressions for arithmetic 172
RTL format . 149
RTL format characters . 149
RTL function-call insns . 195
RTL insn template . 271
RTL integers . 147
RTL memory expressions . 166
RTL object types . 147
RTL postdecrement . 185
RTL postincrement . 185
RTL predecrement . 185
RTL preincrement . 185
RTL register expressions . 166
RTL representation . 147
RTL side effect expressions 180
RTL strings . 147
RTL structure sharing assumptions 196
RTL subtraction . 172
RTL subtraction with signed saturation 172
RTL subtraction with unsigned saturation 172
RTL sum . 172
RTL vectors . 147
RTL_CONST_CALL_P . 153
RTL_CONST_OR_PURE_CALL_P 154
RTL_LOOPING_CONST_OR_PURE_CALL_P 154
RTL_PURE_CALL_P . 154
RTX (See RTL) . 147
RTX codes, classes of . 148
RTX_FRAME_RELATED_P . 155
run-time conventions . 7
run-time target specification 378

S
‘s’ in constraint . 283
same_type_p . 112
SAmode . 161
sat_fract . 180

Concept Index 619

satfractmn2 instruction pattern 322
satfractunsmn2 instruction pattern 322
satisfies_constraint_m . 309
SAVE_EXPR . 131
save_stack_block instruction pattern 327
save_stack_function instruction pattern 327
save_stack_nonlocal instruction pattern 327
SBSS_SECTION_ASM_OP . 463
Scalar evolutions . 253
scalars, returned as values . 429
SCHED_GROUP_P . 156
SCmode . 161
scond instruction pattern . 323
scratch . 170
scratch operands . 170
scratch, RTL sharing . 196
scratch_operand . 278
SDATA_SECTION_ASM_OP . 463
SDB_ALLOW_FORWARD_REFERENCES 498
SDB_ALLOW_UNKNOWN_REFERENCES 498
SDB_DEBUGGING_INFO . 497
SDB_DELIM . 498
SDB_OUTPUT_SOURCE_LINE . 498
SDmode . 160
sdot_prodm instruction pattern 313
search options . 346
SECONDARY_INPUT_RELOAD_CLASS 406
SECONDARY_MEMORY_NEEDED 407
SECONDARY_MEMORY_NEEDED_MODE 407
SECONDARY_MEMORY_NEEDED_RTX 407
SECONDARY_OUTPUT_RELOAD_CLASS 406
SECONDARY_RELOAD_CLASS . 406
SELECT_CC_MODE . 450
sequence . 184
Sequence iterators . 230
set . 181
set and ‘/f’ . 155
SET_ASM_OP . 480
set_attr . 353
set_attr_alternative . 354
set_bb_seq . 230
SET_BY_PIECES_P . 454
SET_DEST . 181
SET_IS_RETURN_P . 156
SET_LABEL_KIND . 189
set_optab_libfunc . 442
SET_RATIO . 454
SET_SRC . 181
SET_TYPE_STRUCTURAL_EQUALITY 109, 112
setmemm instruction pattern 320
SETUP_FRAME_ADDRESSES . 412
SF_SIZE . 392
SFmode . 160
sharing of RTL components 196
shift . 174
SHIFT_COUNT_TRUNCATED . 509
SHLIB_SUFFIX . 485
SHORT_ACCUM_TYPE_SIZE . 391

SHORT_FRACT_TYPE_SIZE . 391
SHORT_IMMEDIATES_SIGN_EXTEND 509
SHORT_TYPE_SIZE . 390
sibcall_epilogue instruction pattern 330
sibling call . 262
SIBLING_CALL_P . 156
sign_extend . 179
sign_extract . 177
sign_extract, canonicalization of 339
signed division . 174
signed division with signed saturation 174
signed maximum . 174
signed minimum . 174
SImode . 159
simple constraints . 282
sincos math function, implicit usage 443
sinm2 instruction pattern . 317
SIZE_ASM_OP . 474
SIZE_TYPE . 392
skip . 538
SLOW_BYTE_ACCESS . 453
SLOW_UNALIGNED_ACCESS . 453
SMALL_REGISTER_CLASSES . 407
smax . 174
smin . 174
sms, swing, software pipelining 103
smulm3_highpart instruction pattern 315
soft float library . 12
special . 541
special predicates . 277
SPECS . 531
speed of instructions . 452
split_block . 266
splitting instructions . 342
SQmode . 160
sqrt . 175
sqrtm2 instruction pattern 316
square root . 175
ss_ashift . 174
ss_div . 174
ss_minus . 172
ss_mult . 173
ss_neg . 173
ss_plus . 172
ss_truncate . 179
SSA . 241
SSA_NAME_DEF_STMT . 244
SSA_NAME_VERSION . 244
ssaddm3 instruction pattern 312
ssashlm3 instruction pattern 316
ssdivm3 instruction pattern 312
ssmaddmn4 instruction pattern 315
ssmsubmn4 instruction pattern 315
ssmulm3 instruction pattern 312
ssnegm2 instruction pattern 316
sssubm3 instruction pattern 312
ssum_widenm3 instruction pattern 313
stack arguments . 422

620 GNU Compiler Collection (GCC) Internals

stack frame layout . 411
stack smashing protection . 437
STACK_ALIGNMENT_NEEDED . 412
STACK_BOUNDARY . 383
STACK_CHECK_BUILTIN . 417
STACK_CHECK_FIXED_FRAME_SIZE 418
STACK_CHECK_MAX_FRAME_SIZE 418
STACK_CHECK_MAX_VAR_SIZE 418
STACK_CHECK_PROBE_INTERVAL 417
STACK_CHECK_PROBE_LOAD . 417
STACK_CHECK_PROTECT . 418
STACK_CHECK_STATIC_BUILTIN 417
STACK_DYNAMIC_OFFSET . 412
STACK_DYNAMIC_OFFSET and virtual registers . . 167
STACK_GROWS_DOWNWARD . 411
STACK_PARMS_IN_REG_PARM_AREA 423
STACK_POINTER_OFFSET . 412
STACK_POINTER_OFFSET and virtual registers . . 167
STACK_POINTER_REGNUM . 418
STACK_POINTER_REGNUM and virtual registers . . 167
stack_pointer_rtx . 419
stack_protect_set instruction pattern 333
stack_protect_test instruction pattern 333
STACK_PUSH_CODE . 411
STACK_REGS . 400
STACK_SAVEAREA_MODE . 387
STACK_SIZE_MODE . 388
STACK_SLOT_ALIGNMENT . 385
standard pattern names . 309
STANDARD_INCLUDE_COMPONENT 376
STANDARD_INCLUDE_DIR . 376
STANDARD_STARTFILE_PREFIX 375
STANDARD_STARTFILE_PREFIX_1 375
STANDARD_STARTFILE_PREFIX_2 375
STARTFILE_SPEC . 373
STARTING_FRAME_OFFSET . 411
STARTING_FRAME_OFFSET and virtual registers

. 167
Statement and operand traversals 233
Statement Sequences . 200
statements . 127
Statements . 199
Static profile estimation . 263
static single assignment . 241
STATIC_CHAIN . 419
STATIC_CHAIN_INCOMING . 419
STATIC_CHAIN_INCOMING_REGNUM 419
STATIC_CHAIN_REGNUM . 419
‘stdarg.h’ and register arguments 424
STDC_0_IN_SYSTEM_HEADERS 513
STMT_EXPR . 131
STMT_IS_FULL_EXPR_P . 127
storage layout . 381
STORE_BY_PIECES_P . 454
STORE_FLAG_VALUE . 511
‘store_multiple’ instruction pattern 311
strcpy . 384
STRICT_ALIGNMENT . 386

strict_low_part . 180
strict_memory_address_p 446
STRING_CST . 131
STRING_POOL_ADDRESS_P . 156
strlenm instruction pattern 321
structure value address . 430
STRUCTURE_SIZE_BOUNDARY 385
structures, returning . 7
subm3 instruction pattern . 312
SUBOBJECT . 127
SUBOBJECT_CLEANUP . 127
subreg . 167
subreg and ‘/s’ . 157
subreg and ‘/u’ . 156
subreg and ‘/u’ and ‘/v’ . 156
subreg, in strict_low_part 180
SUBREG_BYTE . 170
SUBREG_PROMOTED_UNSIGNED_P 156
SUBREG_PROMOTED_UNSIGNED_SET 156
SUBREG_PROMOTED_VAR_P . 157
SUBREG_REG . 170
SUCCESS_EXIT_CODE . 527
SUPPORTS_INIT_PRIORITY . 483
SUPPORTS_ONE_ONLY . 477
SUPPORTS_WEAK . 477
SWITCH_BODY . 127
SWITCH_COND . 127
SWITCH_CURTAILS_COMPILATION 370
SWITCH_STMT . 127
SWITCH_TAKES_ARG . 369
SWITCHES_NEED_SPACES . 370
SYMBOL_FLAG_ANCHOR . 153
SYMBOL_FLAG_EXTERNAL . 152
SYMBOL_FLAG_FUNCTION . 152
SYMBOL_FLAG_HAS_BLOCK_INFO 153
SYMBOL_FLAG_LOCAL . 152
SYMBOL_FLAG_SMALL . 153
SYMBOL_FLAG_TLS_SHIFT . 153
symbol_ref . 165
symbol_ref and ‘/f’ . 156
symbol_ref and ‘/i’ . 157
symbol_ref and ‘/u’ . 153
symbol_ref and ‘/v’ . 157
symbol_ref, RTL sharing . 196
SYMBOL_REF_ANCHOR_P . 153
SYMBOL_REF_BLOCK . 153
SYMBOL_REF_BLOCK_OFFSET 153
SYMBOL_REF_CONSTANT . 152
SYMBOL_REF_DATA . 152
SYMBOL_REF_DECL . 152
SYMBOL_REF_EXTERNAL_P . 152
SYMBOL_REF_FLAG . 157
SYMBOL_REF_FLAG, in

TARGET_ENCODE_SECTION_INFO 466
SYMBOL_REF_FLAGS . 152
SYMBOL_REF_FUNCTION_P . 152
SYMBOL_REF_HAS_BLOCK_INFO_P 153
SYMBOL_REF_LOCAL_P . 152

Concept Index 621

SYMBOL_REF_SMALL_P . 153
SYMBOL_REF_TLS_MODEL . 153
SYMBOL_REF_USED . 157
SYMBOL_REF_WEAK . 157
symbolic label . 196
sync_addmode instruction pattern 331
sync_andmode instruction pattern 331
sync_compare_and_swap_ccmode instruction

pattern . 331
sync_compare_and_swapmode instruction pattern

. 331
sync_iormode instruction pattern 331
sync_lock_releasemode instruction pattern . . 332
sync_lock_test_and_setmode instruction pattern

. 332
sync_nandmode instruction pattern 331
sync_new_addmode instruction pattern 332
sync_new_andmode instruction pattern 332
sync_new_iormode instruction pattern 332
sync_new_nandmode instruction pattern 332
sync_new_submode instruction pattern 332
sync_new_xormode instruction pattern 332
sync_old_addmode instruction pattern 331
sync_old_andmode instruction pattern 331
sync_old_iormode instruction pattern 331
sync_old_nandmode instruction pattern 331
sync_old_submode instruction pattern 331
sync_old_xormode instruction pattern 331
sync_submode instruction pattern 331
sync_xormode instruction pattern 331
SYSROOT_HEADERS_SUFFIX_SPEC 373
SYSROOT_SUFFIX_SPEC . 373
SYSTEM_INCLUDE_DIR . 376

T
‘t-target ’ . 529
table jump . 259
tablejump instruction pattern 326
tag . 538
tagging insns . 353
tail calls . 436
TAmode . 161
target attributes . 502
target description macros . 369
target functions . 369
target hooks . 369
target makefile fragment . 529
target specifications . 378
TARGET_ADDRESS_COST . 455
TARGET_ALIGN_ANON_BITFIELD 387
TARGET_ALLOCATE_INITIAL_VALUE 519
TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS 523
TARGET_ARG_PARTIAL_BYTES 425
TARGET_ARM_EABI_UNWINDER 491
TARGET_ASM_ALIGNED_DI_OP 470
TARGET_ASM_ALIGNED_HI_OP 470
TARGET_ASM_ALIGNED_SI_OP 470

TARGET_ASM_ALIGNED_TI_OP 470
TARGET_ASM_ASSEMBLE_VISIBILITY 478
TARGET_ASM_BYTE_OP . 470
TARGET_ASM_CAN_OUTPUT_MI_THUNK 436
TARGET_ASM_CLOSE_PAREN . 472
TARGET_ASM_CONSTRUCTOR . 484
TARGET_ASM_DESTRUCTOR . 484
TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL 489
TARGET_ASM_EMIT_UNWIND_LABEL 489
TARGET_ASM_EXTERNAL_LIBCALL 478
TARGET_ASM_FILE_END . 468
TARGET_ASM_FILE_START . 467
TARGET_ASM_FILE_START_APP_OFF 467
TARGET_ASM_FILE_START_FILE_DIRECTIVE 467
TARGET_ASM_FUNCTION_BEGIN_EPILOGUE 433
TARGET_ASM_FUNCTION_END_PROLOGUE 433
TARGET_ASM_FUNCTION_EPILOGUE 433
TARGET_ASM_FUNCTION_EPILOGUE and trampolines

. 440
TARGET_ASM_FUNCTION_PROLOGUE 432
TARGET_ASM_FUNCTION_PROLOGUE and trampolines

. 440
TARGET_ASM_FUNCTION_RODATA_SECTION 465
TARGET_ASM_GLOBALIZE_DECL_NAME 477
TARGET_ASM_GLOBALIZE_LABEL 476
TARGET_ASM_INIT_SECTIONS 464
TARGET_ASM_INTEGER . 470
TARGET_ASM_INTERNAL_LABEL 479
TARGET_ASM_MARK_DECL_PRESERVED 478
TARGET_ASM_NAMED_SECTION 468
TARGET_ASM_OPEN_PAREN . 472
TARGET_ASM_OUTPUT_ANCHOR 449
TARGET_ASM_OUTPUT_DWARF_DTPREL 498
TARGET_ASM_OUTPUT_MI_THUNK 435
TARGET_ASM_RECORD_GCC_SWITCHES 469
TARGET_ASM_RECORD_GCC_SWITCHES_SECTION . . 470
TARGET_ASM_SELECT_RTX_SECTION 465
TARGET_ASM_SELECT_SECTION 464
TARGET_ASM_TTYPE . 491
TARGET_ASM_UNALIGNED_DI_OP 470
TARGET_ASM_UNALIGNED_HI_OP 470
TARGET_ASM_UNALIGNED_SI_OP 470
TARGET_ASM_UNALIGNED_TI_OP 470
TARGET_ASM_UNIQUE_SECTION 465
TARGET_ATTRIBUTE_TABLE . 502
TARGET_BINDS_LOCAL_P . 466
TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED

. 521
TARGET_BRANCH_TARGET_REGISTER_CLASS 520
TARGET_BUILD_BUILTIN_VA_LIST 428
TARGET_BUILTIN_RECIPROCAL 447
TARGET_BUILTIN_SETJMP_FRAME_VALUE 413
TARGET_C99_FUNCTIONS . 443
TARGET_CALLEE_COPIES . 425
TARGET_CAN_INLINE_P . 504
TARGET_CANNOT_FORCE_CONST_MEM 447
TARGET_CANNOT_MODIFY_JUMPS_P 520
TARGET_CANONICAL_VA_LIST_TYPE 428

622 GNU Compiler Collection (GCC) Internals

TARGET_COMMUTATIVE_OPERAND_PRECEDENCE . . . 519
TARGET_COMMUTATIVE_P . 519
TARGET_COMP_TYPE_ATTRIBUTES 502
TARGET_CONVERT_TO_TYPE . 523
TARGET_CPU_CPP_BUILTINS 378
TARGET_CXX_ADJUST_CLASS_AT_DEFINITION . . . 507
TARGET_CXX_CDTOR_RETURNS_THIS 507
TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT 507
TARGET_CXX_COOKIE_HAS_SIZE 506
TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY

. 507
TARGET_CXX_GET_COOKIE_SIZE 506
TARGET_CXX_GUARD_MASK_BIT 506
TARGET_CXX_GUARD_TYPE . 506
TARGET_CXX_IMPORT_EXPORT_CLASS 506
TARGET_CXX_KEY_METHOD_MAY_BE_INLINE 507
TARGET_CXX_LIBRARY_RTTI_COMDAT 507
TARGET_CXX_USE_AEABI_ATEXIT 507
TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT 507
TARGET_DECIMAL_FLOAT_SUPPORTED_P 389
TARGET_DECLSPEC . 503
TARGET_DEFAULT_PACK_STRUCT 515
TARGET_DEFAULT_SHORT_ENUMS 392
TARGET_DEFERRED_OUTPUT_DEFS 480
TARGET_DELEGITIMIZE_ADDRESS 446
TARGET_DLLIMPORT_DECL_ATTRIBUTES 502
TARGET_DWARF_CALLING_CONVENTION 497
TARGET_DWARF_HANDLE_FRAME_UNSPEC 414
TARGET_DWARF_REGISTER_SPAN 490
TARGET_EDOM . 442
TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS 505
TARGET_EMUTLS_GET_ADDRESS 504
TARGET_EMUTLS_REGISTER_COMMON 504
TARGET_EMUTLS_TMPL_PREFIX 504
TARGET_EMUTLS_TMPL_SECTION 504
TARGET_EMUTLS_VAR_ALIGN_FIXED 505
TARGET_EMUTLS_VAR_FIELDS 505
TARGET_EMUTLS_VAR_INIT . 505
TARGET_EMUTLS_VAR_PREFIX 504
TARGET_EMUTLS_VAR_SECTION 504
TARGET_ENCODE_SECTION_INFO 465
TARGET_ENCODE_SECTION_INFO and address

validation . 444
TARGET_ENCODE_SECTION_INFO usage 486
TARGET_ENUM_VA_LIST . 430
TARGET_EXECUTABLE_SUFFIX 520
TARGET_EXPAND_BUILTIN . 518
TARGET_EXPAND_BUILTIN_SAVEREGS 438
TARGET_EXPAND_TO_RTL_HOOK 389
TARGET_EXPR . 131
TARGET_EXTRA_INCLUDES . 521
TARGET_EXTRA_LIVE_ON_ENTRY 437
TARGET_EXTRA_PRE_INCLUDES 521
TARGET_FIXED_CONDITION_CODE_REGS 451
TARGET_FIXED_POINT_SUPPORTED_P 389
target_flags . 378
TARGET_FLT_EVAL_METHOD . 392
TARGET_FN_ABI_VA_LIST . 428

TARGET_FOLD_BUILTIN . 518
TARGET_FORMAT_TYPES . 521
TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P . . . 503
TARGET_FUNCTION_OK_FOR_SIBCALL 436
TARGET_FUNCTION_VALUE . 429
TARGET_GET_DRAP_RTX . 523
TARGET_GIMPLIFY_VA_ARG_EXPR 428
TARGET_HANDLE_C_OPTION . 379
TARGET_HANDLE_OPTION . 378
TARGET_HARD_REGNO_SCRATCH_OK 399
TARGET_HAS_SINCOS . 443
TARGET_HAVE_CTORS_DTORS 484
TARGET_HAVE_NAMED_SECTIONS 469
TARGET_HAVE_SWITCHABLE_BSS_SECTIONS 469
TARGET_HELP . 380
TARGET_IN_SMALL_DATA_P . 466
TARGET_INIT_BUILTINS . 518
TARGET_INIT_DWARF_REG_SIZES_EXTRA 491
TARGET_INIT_LIBFUNCS . 442
TARGET_INSERT_ATTRIBUTES 503
TARGET_INSTANTIATE_DECLS 389
TARGET_INVALID_BINARY_OP 522
TARGET_INVALID_CONVERSION 522
TARGET_INVALID_PARAMETER_TYPE 522
TARGET_INVALID_RETURN_TYPE 523
TARGET_INVALID_UNARY_OP 522
TARGET_IRA_COVER_CLASSES 408
TARGET_LIB_INT_CMP_BIASED 442
TARGET_LIBCALL_VALUE . 430
TARGET_LIBGCC_CMP_RETURN_MODE 388
TARGET_LIBGCC_SDATA_SECTION 464
TARGET_LIBGCC_SHIFT_COUNT_MODE 388
TARGET_MACHINE_DEPENDENT_REORG 517
TARGET_MANGLE_DECL_ASSEMBLER_NAME 465
TARGET_MANGLE_TYPE . 389
TARGET_MD_ASM_CLOBBERS . 516
TARGET_MEM_CONSTRAINT . 445
TARGET_MEM_REF . 131
TARGET_MERGE_DECL_ATTRIBUTES 502
TARGET_MERGE_TYPE_ATTRIBUTES 502
TARGET_MIN_DIVISIONS_FOR_RECIP_MUL 509
TARGET_MODE_REP_EXTENDED 510
TARGET_MS_BITFIELD_LAYOUT_P 388
TARGET_MUST_PASS_IN_STACK 425
TARGET_MUST_PASS_IN_STACK, and FUNCTION_ARG

. 424
TARGET_N_FORMAT_TYPES . 522
TARGET_NARROW_VOLATILE_BITFIELD 387
TARGET_OBJECT_SUFFIX . 520
TARGET_OBJFMT_CPP_BUILTINS 378
TARGET_OPTF . 521
TARGET_OPTION_PRAGMA_PARSE 504
TARGET_OPTION_PRINT . 504
TARGET_OPTION_RESTORE . 503
TARGET_OPTION_SAVE . 503
TARGET_OPTION_TRANSLATE_TABLE 370
TARGET_OS_CPP_BUILTINS . 378
TARGET_OVERRIDES_FORMAT_ATTRIBUTES 522

Concept Index 623

TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT

. 522
TARGET_OVERRIDES_FORMAT_INIT 522
TARGET_PASS_BY_REFERENCE 425
TARGET_POSIX_IO . 516
TARGET_PRETEND_OUTGOING_VARARGS_NAMED . . . 439
TARGET_PROMOTE_FUNCTION_ARGS 383
TARGET_PROMOTE_FUNCTION_RETURN 383
TARGET_PROMOTE_PROTOTYPES 422
TARGET_PROMOTED_TYPE . 523
TARGET_PTRMEMFUNC_VBIT_LOCATION 393
TARGET_RELAXED_ORDERING 522
TARGET_RESOLVE_OVERLOADED_BUILTIN 518
TARGET_RETURN_IN_MEMORY 431
TARGET_RETURN_IN_MSB . 430
TARGET_RTX_COSTS . 455
TARGET_SCALAR_MODE_SUPPORTED_P 428
TARGET_SCHED_ADJUST_COST 457
TARGET_SCHED_ADJUST_PRIORITY 457
TARGET_SCHED_CLEAR_SCHED_CONTEXT 460
TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK

. 457
TARGET_SCHED_DFA_NEW_CYCLE 459
TARGET_SCHED_DFA_POST_CYCLE_ADVANCE 459
TARGET_SCHED_DFA_POST_CYCLE_INSN 458
TARGET_SCHED_DFA_PRE_CYCLE_ADVANCE 458
TARGET_SCHED_DFA_PRE_CYCLE_INSN 458
TARGET_SCHED_FINISH . 458
TARGET_SCHED_FINISH_GLOBAL 458
TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_

LOOKAHEAD . 459
TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_

LOOKAHEAD_GUARD . 459
TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_

LOOKAHEAD_GUARD_SPEC 461
TARGET_SCHED_FREE_SCHED_CONTEXT 460, 461
TARGET_SCHED_GEN_CHECK . 461
TARGET_SCHED_H_I_D_EXTENDED 460
TARGET_SCHED_INIT . 458
TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN . . . 458
TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN 458
TARGET_SCHED_INIT_GLOBAL 458
TARGET_SCHED_INIT_SCHED_CONTEXT 460
TARGET_SCHED_IS_COSTLY_DEPENDENCE 459
TARGET_SCHED_ISSUE_RATE 456
TARGET_SCHED_NEEDS_BLOCK_P 461
TARGET_SCHED_REORDER . 457
TARGET_SCHED_REORDER2 . 457
TARGET_SCHED_SET_SCHED_CONTEXT 460
TARGET_SCHED_SET_SCHED_FLAGS 461
TARGET_SCHED_SMS_RES_MII 462
TARGET_SCHED_SPECULATE_INSN 461
TARGET_SCHED_VARIABLE_ISSUE 456
TARGET_SECONDARY_RELOAD 405
TARGET_SECTION_TYPE_FLAGS 469
TARGET_SET_CURRENT_FUNCTION 519
TARGET_SET_DEFAULT_TYPE_ATTRIBUTES 502
TARGET_SETUP_INCOMING_VARARGS 439

TARGET_SHIFT_TRUNCATION_MASK 510
TARGET_SPLIT_COMPLEX_ARG 428
TARGET_STACK_PROTECT_FAIL 437
TARGET_STACK_PROTECT_GUARD 437
TARGET_STRICT_ARGUMENT_NAMING 439
TARGET_STRUCT_VALUE_RTX 431
TARGET_UNSPEC_MAY_TRAP_P 519
TARGET_UNWIND_EMIT . 489
TARGET_UNWIND_INFO . 490
TARGET_UPDATE_STACK_BOUNDARY 523
TARGET_USE_ANCHORS_FOR_SYMBOL_P 449
TARGET_USE_BLOCKS_FOR_CONSTANT_P 447
TARGET_USE_JCR_SECTION . 523
TARGET_USE_LOCAL_THUNK_ALIAS_P 521
TARGET_USES_WEAK_UNWIND_INFO 417
TARGET_VALID_DLLIMPORT_ATTRIBUTE_P 503
TARGET_VALID_OPTION_ATTRIBUTE_P 503
TARGET_VALID_POINTER_MODE 428
TARGET_VECTOR_MODE_SUPPORTED_P 428
TARGET_VECTOR_OPAQUE_P . 388
TARGET_VECTORIZE_BUILTIN_CONVERSION 448
TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD . . 447
TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN

. 447
TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD . . 448
TARGET_VECTORIZE_BUILTIN_VECTORIZED_

FUNCTION . 448
TARGET_VERSION . 379
TARGET_VTABLE_DATA_ENTRY_DISTANCE 394
TARGET_VTABLE_ENTRY_ALIGN 394
TARGET_VTABLE_USES_DESCRIPTORS 394
TARGET_WEAK_NOT_IN_ARCHIVE_TOC 478
targetm . 369
targets, makefile . 65
TCmode . 161
TDmode . 160
TEMPLATE_DECL . 118
Temporaries . 206
termination routines . 481
testing constraints . 308
TEXT_SECTION_ASM_OP . 462
TF_SIZE . 392
TFmode . 160
THEN_CLAUSE . 127
THREAD_MODEL_SPEC . 373
THROW_EXPR . 131
THUNK_DECL . 118
THUNK_DELTA . 118
TImode . 160
TImode, in insn . 190
‘tm.h’ macros . 369
TQFmode . 160
TQmode . 160
TRAMPOLINE_ADJUST_ADDRESS 440
TRAMPOLINE_ALIGNMENT . 440
TRAMPOLINE_SECTION . 440
TRAMPOLINE_SIZE . 440
TRAMPOLINE_TEMPLATE . 440

624 GNU Compiler Collection (GCC) Internals

trampolines for nested functions 439
TRANSFER_FROM_TRAMPOLINE 441
trap instruction pattern . 330
tree . 107, 108
Tree SSA . 235
tree_code . 210, 214, 218, 223
TREE_CODE . 107
TREE_FILENAME . 118
tree_int_cst_equal . 131
TREE_INT_CST_HIGH . 131
TREE_INT_CST_LOW . 131
tree_int_cst_lt . 131
TREE_LINENO . 118
TREE_LIST . 109
TREE_OPERAND . 131
TREE_PUBLIC . 124
TREE_PURPOSE . 109
TREE_STRING_LENGTH . 131
TREE_STRING_POINTER . 131
TREE_TYPE . 109, 118, 126, 131
TREE_VALUE . 109
TREE_VEC . 109
TREE_VEC_ELT . 109
TREE_VEC_LENGTH . 109
Trees . 107
TRULY_NOOP_TRUNCATION . 510
TRUNC_DIV_EXPR . 131
TRUNC_MOD_EXPR . 131
truncate . 179
truncmn2 instruction pattern 321
TRUTH_AND_EXPR . 131
TRUTH_ANDIF_EXPR . 131
TRUTH_NOT_EXPR . 131
TRUTH_OR_EXPR . 131
TRUTH_ORIF_EXPR . 131
TRUTH_XOR_EXPR . 131
TRY_BLOCK . 127
TRY_HANDLERS . 127
TRY_STMTS . 127
tstm instruction pattern . 319
Tuple specific accessors . 212
tuples . 202
type . 109
type declaration . 118
TYPE_ALIGN . 109, 110
TYPE_ARG_TYPES . 109
TYPE_ASM_OP . 475
TYPE_ATTRIBUTES . 131
TYPE_BINFO . 116
TYPE_BUILT_IN . 111
TYPE_CANONICAL . 109, 111
TYPE_CONTEXT . 109
TYPE_DECL . 118
TYPE_FIELDS . 109, 116
TYPE_HAS_ARRAY_NEW_OPERATOR 118
TYPE_HAS_DEFAULT_CONSTRUCTOR 117
TYPE_HAS_MUTABLE_P . 118
TYPE_HAS_NEW_OPERATOR . 118

TYPE_MAIN_VARIANT . 109, 110
TYPE_MAX_VALUE . 109
TYPE_METHOD_BASETYPE . 109
TYPE_METHODS . 116
TYPE_MIN_VALUE . 109
TYPE_NAME . 109, 110
TYPE_NOTHROW_P . 126
TYPE_OFFSET_BASETYPE . 109
TYPE_OPERAND_FMT . 475
TYPE_OVERLOADS_ARRAY_REF 118
TYPE_OVERLOADS_ARROW . 118
TYPE_OVERLOADS_CALL_EXPR 118
TYPE_POLYMORPHIC_P . 117
TYPE_PRECISION . 109
TYPE_PTR_P . 111
TYPE_PTRFN_P . 111
TYPE_PTRMEM_P . 109, 111
TYPE_PTROB_P . 111
TYPE_PTROBV_P . 109
TYPE_QUAL_CONST . 109
TYPE_QUAL_RESTRICT . 109
TYPE_QUAL_VOLATILE . 109
TYPE_RAISES_EXCEPTIONS . 126
TYPE_SIZE . 109, 110
TYPE_STRUCTURAL_EQUALITY_P 109, 112
TYPE_UNQUALIFIED . 109
TYPE_VFIELD . 116
TYPENAME_TYPE . 109
TYPENAME_TYPE_FULLNAME . 109
TYPEOF_TYPE . 109

U
UDAmode . 161
udiv . 174
udivm3 instruction pattern 312
udivmodm4 instruction pattern 316
udot_prodm instruction pattern 313
UDQmode . 161
UHAmode . 161
UHQmode . 161
UINTMAX_TYPE . 393
umaddmn4 instruction pattern 315
umax . 174
umaxm3 instruction pattern 312
umin . 174
uminm3 instruction pattern 312
umod . 174
umodm3 instruction pattern 312
umsubmn4 instruction pattern 315
umulhisi3 instruction pattern 315
umulm3_highpart instruction pattern 315
umulqihi3 instruction pattern 315
umulsidi3 instruction pattern 315
unchanging . 158
unchanging, in call_insn . 153
unchanging, in jump_insn, call_insn and insn

. 154

Concept Index 625

unchanging, in mem . 156
unchanging, in subreg . 156
unchanging, in symbol_ref 153
UNEQ_EXPR . 131
UNGE_EXPR . 131
UNGT_EXPR . 131
UNION_TYPE . 109, 116
unions, returning . 7
UNITS_PER_SIMD_WORD . 382
UNITS_PER_WORD . 382
UNKNOWN_TYPE . 109
UNLE_EXPR . 131
UNLIKELY_EXECUTED_TEXT_SECTION_NAME 462
UNLT_EXPR . 131
UNORDERED_EXPR . 131
unshare_all_rtl . 196
unsigned division . 174
unsigned division with unsigned saturation 174
unsigned greater than . 177
unsigned less than . 177
unsigned minimum and maximum 174
unsigned_fix . 179
unsigned_float . 179
unsigned_fract_convert . 180
unsigned_sat_fract . 180
unspec . 185
unspec_volatile . 185
untyped_call instruction pattern 324
untyped_return instruction pattern 325
UPDATE_PATH_HOST_CANONICALIZE (path) 526
update_ssa . 242
update_stmt . 212, 235
update_stmt_if_modified 212
UQQmode . 160
US Software GOFAST, floating point emulation

library . 442
us_ashift . 174
us_minus . 172
us_mult . 173
us_neg . 173
us_plus . 172
US_SOFTWARE_GOFAST . 442
us_truncate . 179
usaddm3 instruction pattern 312
USAmode . 161
usashlm3 instruction pattern 316
usdivm3 instruction pattern 312
use . 183
USE_C_ALLOCA . 527
USE_LD_AS_NEEDED . 372
USE_LOAD_POST_DECREMENT 454
USE_LOAD_POST_INCREMENT 454
USE_LOAD_PRE_DECREMENT . 454
USE_LOAD_PRE_INCREMENT . 454
use_optype_d . 211
use_param . 539
use_paramn . 539
use_params . 539

USE_SELECT_SECTION_FOR_FUNCTIONS 465
USE_STORE_POST_DECREMENT 455
USE_STORE_POST_INCREMENT 454
USE_STORE_PRE_DECREMENT 455
USE_STORE_PRE_INCREMENT 455
used . 158
used, in symbol_ref . 157
USER_LABEL_PREFIX . 487
USING_DECL . 118
USING_STMT . 127
usmaddmn4 instruction pattern 315
usmsubmn4 instruction pattern 315
usmulhisi3 instruction pattern 315
usmulm3 instruction pattern 312
usmulqihi3 instruction pattern 315
usmulsidi3 instruction pattern 315
usnegm2 instruction pattern 316
USQmode . 161
ussubm3 instruction pattern 312
usum_widenm3 instruction pattern 313
UTAmode . 161
UTQmode . 161

V
‘V’ in constraint . 282
VA_ARG_EXPR . 131
values, returned by functions 429
VAR_DECL . 118, 131
varargs implementation . 437
variable . 118
vashlm3 instruction pattern 316
vashrm3 instruction pattern 316
vec_concat . 178
vec_duplicate . 178
VEC_EXTRACT_EVEN_EXPR . 131
vec_extract_evenm instruction pattern 312
VEC_EXTRACT_ODD_EXPR . 131
vec_extract_oddm instruction pattern 312
vec_extractm instruction pattern 312
vec_initm instruction pattern 312
VEC_INTERLEAVE_HIGH_EXPR 131
vec_interleave_highm instruction pattern . . . 312
VEC_INTERLEAVE_LOW_EXPR 131
vec_interleave_lowm instruction pattern 312
VEC_LSHIFT_EXPR . 131
vec_merge . 178
VEC_PACK_FIX_TRUNC_EXPR 131
VEC_PACK_SAT_EXPR . 131
vec_pack_sfix_trunc_m instruction pattern . . 314
vec_pack_ssat_m instruction pattern 314
VEC_PACK_TRUNC_EXPR . 131
vec_pack_trunc_m instruction pattern 314
vec_pack_ufix_trunc_m instruction pattern . . 314
vec_pack_usat_m instruction pattern 314
VEC_RSHIFT_EXPR . 131
vec_select . 178
vec_setm instruction pattern 312

626 GNU Compiler Collection (GCC) Internals

vec_shl_m instruction pattern 313
vec_shr_m instruction pattern 313
VEC_UNPACK_FLOAT_HI_EXPR 131
VEC_UNPACK_FLOAT_LO_EXPR 131
VEC_UNPACK_HI_EXPR . 131
VEC_UNPACK_LO_EXPR . 131
vec_unpacks_float_hi_m instruction pattern

. 314
vec_unpacks_float_lo_m instruction pattern

. 314
vec_unpacks_hi_m instruction pattern 314
vec_unpacks_lo_m instruction pattern 314
vec_unpacku_float_hi_m instruction pattern

. 314
vec_unpacku_float_lo_m instruction pattern

. 314
vec_unpacku_hi_m instruction pattern 314
vec_unpacku_lo_m instruction pattern 314
VEC_WIDEN_MULT_HI_EXPR . 131
VEC_WIDEN_MULT_LO_EXPR . 131
vec_widen_smult_hi_m instruction pattern . . . 314
vec_widen_smult_lo_m instruction pattern . . . 314
vec_widen_umult_hi_m instruction pattern . . . 314
vec_widen_umult_lo__m instruction pattern . . 314
vector . 109
vector operations . 178
VECTOR_CST . 131
VECTOR_STORE_FLAG_VALUE 512
virtual operands . 235
VIRTUAL_INCOMING_ARGS_REGNUM 167
VIRTUAL_OUTGOING_ARGS_REGNUM 167
VIRTUAL_STACK_DYNAMIC_REGNUM 167
VIRTUAL_STACK_VARS_REGNUM 167
VLIW . 358, 361
vlshrm3 instruction pattern 316
VMS . 526
VMS_DEBUGGING_INFO . 499
VOID_TYPE . 109
VOIDmode . 161
volatil . 159
volatil, in insn, call_insn, jump_insn,

code_label, barrier, and note 154
volatil, in label_ref and reg_label 154
volatil, in mem, asm_operands, and asm_input

. 155
volatil, in reg . 155
volatil, in subreg . 156
volatil, in symbol_ref . 157
volatile memory references . 159
voptype_d . 211, 212
voting between constraint alternatives 287

vrotlm3 instruction pattern 316
vrotrm3 instruction pattern 316

W
walk_dominator_tree . 244
walk_gimple_op . 234
walk_gimple_seq . 234
walk_gimple_stmt . 233
walk_use_def_chains . 244
WCHAR_TYPE . 393
WCHAR_TYPE_SIZE . 393
which_alternative . 276
WHILE_BODY . 127
WHILE_COND . 127
WHILE_STMT . 127
WIDEST_HARDWARE_FP_SIZE 392
WINT_TYPE . 393
word_mode . 164
WORD_REGISTER_OPERATIONS 508
WORD_SWITCH_TAKES_ARG . 370
WORDS_BIG_ENDIAN . 381
WORDS_BIG_ENDIAN, effect on subreg 169

X
‘X’ in constraint . 283
‘x-host ’ . 531
XCmode . 161
XCOFF_DEBUGGING_INFO . 494
XEXP . 150
XF_SIZE . 392
XFmode . 160
XINT . 150
‘xm-machine.h’ . 526, 527
xor . 174
xor, canonicalization of . 339
xorm3 instruction pattern . 312
XSTR . 150
XVEC . 151
XVECEXP . 151
XVECLEN . 151
XWINT . 150

Z
zero_extend . 179
zero_extendmn2 instruction pattern 322
zero_extract . 178
zero_extract, canonicalization of 339

	Introduction
	Contributing to GCC Development
	GCC and Portability
	Interfacing to GCC Output
	The GCC low-level runtime library
	Routines for integer arithmetic
	Arithmetic functions
	Comparison functions
	Trapping arithmetic functions
	Bit operations

	Routines for floating point emulation
	Arithmetic functions
	Conversion functions
	Comparison functions
	Other floating-point functions

	Routines for decimal floating point emulation
	Arithmetic functions
	Conversion functions
	Comparison functions

	Routines for fixed-point fractional emulation
	Arithmetic functions
	Comparison functions
	Conversion functions

	Language-independent routines for exception handling
	Miscellaneous runtime library routines
	Cache control functions

	Language Front Ends in GCC
	Source Tree Structure and Build System
	Configure Terms and History
	Top Level Source Directory
	The gcc Subdirectory
	Subdirectories of gcc
	Configuration in the gcc Directory
	Scripts Used by configure
	The config.build; config.host; and config.gcc Files
	Files Created by configure

	Build System in the gcc Directory
	Makefile Targets
	Library Source Files and Headers under the gcc Directory
	Headers Installed by GCC
	Building Documentation
	Texinfo Manuals
	Man Page Generation
	Miscellaneous Documentation

	Anatomy of a Language Front End
	The Front End language Directory
	The Front End config-lang.in File

	Anatomy of a Target Back End

	Testsuites
	Idioms Used in Testsuite Code
	Directives used within DejaGnu tests
	Ada Language Testsuites
	C Language Testsuites
	The Java library testsuites.
	Support for testing gcov
	Support for testing profile-directed optimizations
	Support for testing binary compatibility
	Support for torture testing using multiple options

	Option specification files
	Option file format
	Option properties

	Passes and Files of the Compiler
	Parsing pass
	Gimplification pass
	Pass manager
	Tree SSA passes
	RTL passes

	Trees: The intermediate representation used by the C and C++ front ends
	Deficiencies
	Overview
	Trees
	Identifiers
	Containers

	Types
	Scopes
	Namespaces
	Classes

	Declarations
	Working with declarations
	Internal structure
	Current structure hierarchy
	Adding new DECL node types

	Functions
	Function Basics
	Function Bodies
	Statements

	Attributes in trees
	Expressions

	RTL Representation
	RTL Object Types
	RTL Classes and Formats
	Access to Operands
	Access to Special Operands
	Flags in an RTL Expression
	Machine Modes
	Constant Expression Types
	Registers and Memory
	RTL Expressions for Arithmetic
	Comparison Operations
	Bit-Fields
	Vector Operations
	Conversions
	Declarations
	Side Effect Expressions
	Embedded Side-Effects on Addresses
	Assembler Instructions as Expressions
	Insns
	RTL Representation of Function-Call Insns
	Structure Sharing Assumptions
	Reading RTL

	GENERIC
	Statements
	Blocks
	Statement Sequences
	Empty Statements
	Jumps
	Cleanups

	GIMPLE
	Tuple representation
	gimple_statement_base (gsbase)
	gimple_statement_with_ops
	gimple_statement_with_memory_ops

	GIMPLE instruction set
	Exception Handling
	Temporaries
	Operands
	Compound Expressions
	Compound Lvalues
	Conditional Expressions
	Logical Operators
	Manipulating operands
	Operand vector allocation
	Operand validation
	Statement validation

	Manipulating GIMPLE statements
	Common accessors

	Tuple specific accessors
	GIMPLE_ASM
	GIMPLE_ASSIGN
	GIMPLE_BIND
	GIMPLE_CALL
	GIMPLE_CATCH
	GIMPLE_CHANGE_DYNAMIC_TYPE
	GIMPLE_COND
	GIMPLE_EH_FILTER
	GIMPLE_LABEL
	GIMPLE_NOP
	GIMPLE_OMP_ATOMIC_LOAD
	GIMPLE_OMP_ATOMIC_STORE
	GIMPLE_OMP_CONTINUE
	GIMPLE_OMP_CRITICAL
	GIMPLE_OMP_FOR
	GIMPLE_OMP_MASTER
	GIMPLE_OMP_ORDERED
	GIMPLE_OMP_PARALLEL
	GIMPLE_OMP_RETURN
	GIMPLE_OMP_SECTION
	GIMPLE_OMP_SECTIONS
	GIMPLE_OMP_SINGLE
	GIMPLE_PHI
	GIMPLE_RESX
	GIMPLE_RETURN
	GIMPLE_SWITCH
	GIMPLE_TRY
	GIMPLE_WITH_CLEANUP_EXPR

	GIMPLE sequences
	Sequence iterators
	Adding a new GIMPLE statement code
	Statement and operand traversals

	Analysis and Optimization of GIMPLE tuples
	Annotations
	SSA Operands
	Operand Iterators And Access Routines
	Immediate Uses

	Static Single Assignment
	Preserving the SSA form
	Preserving the virtual SSA form
	Examining SSA_NAME nodes
	Walking use-def chains
	Walking the dominator tree

	Alias analysis

	Analysis and Representation of Loops
	Loop representation
	Loop querying
	Loop manipulation
	Loop-closed SSA form
	Scalar evolutions
	IV analysis on RTL
	Number of iterations analysis
	Data Dependency Analysis
	Linear loop transformations framework
	Omega a solver for linear programming problems

	Control Flow Graph
	Basic Blocks
	Edges
	Profile information
	Maintaining the CFG
	Liveness information

	Machine Descriptions
	Overview of How the Machine Description is Used
	Everything about Instruction Patterns
	Example of define_insn
	RTL Template
	Output Templates and Operand Substitution
	C Statements for Assembler Output
	Predicates
	Machine-Independent Predicates
	Defining Machine-Specific Predicates

	Operand Constraints
	Simple Constraints
	Multiple Alternative Constraints
	Register Class Preferences
	Constraint Modifier Characters
	Constraints for Particular Machines
	Disable insn alternatives using the enabled attribute
	Defining Machine-Specific Constraints
	Testing constraints from C

	Standard Pattern Names For Generation
	When the Order of Patterns Matters
	Interdependence of Patterns
	Defining Jump Instruction Patterns
	Defining Looping Instruction Patterns
	Canonicalization of Instructions
	Defining RTL Sequences for Code Generation
	Defining How to Split Instructions
	Including Patterns in Machine Descriptions.
	RTL Generation Tool Options for Directory Search

	Machine-Specific Peephole Optimizers
	RTL to Text Peephole Optimizers
	RTL to RTL Peephole Optimizers

	Instruction Attributes
	Defining Attributes and their Values
	Attribute Expressions
	Assigning Attribute Values to Insns
	Example of Attribute Specifications
	Computing the Length of an Insn
	Constant Attributes
	Delay Slot Scheduling
	Specifying processor pipeline description

	Conditional Execution
	Constant Definitions
	Iterators
	Mode Iterators
	Defining Mode Iterators
	Substitution in Mode Iterators
	Mode Iterator Examples

	Code Iterators

	Target Description Macros and Functions
	The Global targetm Variable
	Controlling the Compilation Driver, gcc
	Run-time Target Specification
	Defining data structures for per-function information.
	Storage Layout
	Layout of Source Language Data Types
	Register Usage
	Basic Characteristics of Registers
	Order of Allocation of Registers
	How Values Fit in Registers
	Handling Leaf Functions
	Registers That Form a Stack

	Register Classes
	Obsolete Macros for Defining Constraints
	Stack Layout and Calling Conventions
	Basic Stack Layout
	Exception Handling Support
	Specifying How Stack Checking is Done
	Registers That Address the Stack Frame
	Eliminating Frame Pointer and Arg Pointer
	Passing Function Arguments on the Stack
	Passing Arguments in Registers
	How Scalar Function Values Are Returned
	How Large Values Are Returned
	Caller-Saves Register Allocation
	Function Entry and Exit
	Generating Code for Profiling
	Permitting tail calls
	Stack smashing protection

	Implementing the Varargs Macros
	Trampolines for Nested Functions
	Implicit Calls to Library Routines
	Addressing Modes
	Anchored Addresses
	Condition Code Status
	Describing Relative Costs of Operations
	Adjusting the Instruction Scheduler
	Dividing the Output into Sections (Texts, Data, ...{})
	Position Independent Code
	Defining the Output Assembler Language
	The Overall Framework of an Assembler File
	Output of Data
	Output of Uninitialized Variables
	Output and Generation of Labels
	How Initialization Functions Are Handled
	Macros Controlling Initialization Routines
	Output of Assembler Instructions
	Output of Dispatch Tables
	Assembler Commands for Exception Regions
	Assembler Commands for Alignment

	Controlling Debugging Information Format
	Macros Affecting All Debugging Formats
	Specific Options for DBX Output
	Open-Ended Hooks for DBX Format
	File Names in DBX Format
	Macros for SDB and DWARF Output
	Macros for VMS Debug Format

	Cross Compilation and Floating Point
	Mode Switching Instructions
	Defining target-specific uses of __attribute__
	Emulating TLS
	Defining coprocessor specifics for MIPS targets.
	Parameters for Precompiled Header Validity Checking
	C++ ABI parameters
	Miscellaneous Parameters

	Host Configuration
	Host Common
	Host Filesystem
	Host Misc

	Makefile Fragments
	Target Makefile Fragments
	Host Makefile Fragments

	collect2
	Standard Header File Directories
	Memory Management and Type Information
	The Inside of a GTY(())
	Marking Roots for the Garbage Collector
	Source Files Containing Type Information
	How to invoke the garbage collector

	Funding Free Software
	The GNU Project and GNU/Linux
	GNU General Public License
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Contributors to GCC
	Option Index
	Concept Index

