
The gnu Binary Utilities
(Sourcery G++ Lite 2009q3-67)

Version 2.19.51

October 2009

Roland H. Pesch
Jeffrey M. Osier
Cygnus Support

Cygnus Support
Texinfo 2009-03-28.05

Copyright c© 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

i

Table of Contents

Introduction . 1

1 ar . 2
1.1 Controlling ar on the Command Line . 3
1.2 Controlling ar with a Script . 5

2 ld . 8

3 nm . 9

4 objcopy . 13

5 objdump . 24

6 ranlib . 33

7 size . 34

8 strings . 36

9 strip . 38

10 c++filt . 41

11 addr2line . 44

12 nlmconv . 46

13 windmc . 48

14 windres . 51

15 dlltool . 54
15.1 The format of the dlltool ‘.def’ file . 58

16 readelf . 60

ii

17 Common Options . 63

18 Selecting the Target System 64
18.1 Target Selection . 64
18.2 Architecture Selection . 65

19 Reporting Bugs . 66
19.1 Have You Found a Bug? . 66
19.2 How to Report Bugs . 66

Appendix A GNU Free Documentation License
. 69

Binutils Index . 77

Introduction 1

Introduction

This brief manual contains documentation for the gnu binary utilities (Sourcery G++ Lite
2009q3-67) version 2.19.51:

ar Create, modify, and extract from archives

nm List symbols from object files

objcopy Copy and translate object files

objdump Display information from object files

ranlib Generate index to archive contents

readelf Display the contents of ELF format files.

size List file section sizes and total size

strings List printable strings from files

strip Discard symbols

c++filt Demangle encoded C++ symbols (on MS-DOS, this program is named cxxfilt)

addr2line
Convert addresses into file names and line numbers

nlmconv Convert object code into a Netware Loadable Module

windres Manipulate Windows resources

windmc Genertor for Windows message resources

dlltool Create the files needed to build and use Dynamic Link Libraries

This document is distributed under the terms of the GNU Free Documentation License
version 1.3. A copy of the license is included in the section entitled “GNU Free Documen-
tation License”.

Chapter 1: ar 2

1 ar

ar [‘--plugin’ name] [-]p[mod [relpos] [count]] archive [member...]

ar -M [<mri-script]

The gnu ar program creates, modifies, and extracts from archives. An archive is a single
file holding a collection of other files in a structure that makes it possible to retrieve the
original individual files (called members of the archive).

The original files’ contents, mode (permissions), timestamp, owner, and group are pre-
served in the archive, and can be restored on extraction.

gnu ar can maintain archives whose members have names of any length; however, de-
pending on how ar is configured on your system, a limit on member-name length may be
imposed for compatibility with archive formats maintained with other tools. If it exists, the
limit is often 15 characters (typical of formats related to a.out) or 16 characters (typical of
formats related to coff).

ar is considered a binary utility because archives of this sort are most often used as
libraries holding commonly needed subroutines.

ar creates an index to the symbols defined in relocatable object modules in the archive
when you specify the modifier ‘s’. Once created, this index is updated in the archive
whenever ar makes a change to its contents (save for the ‘q’ update operation). An archive
with such an index speeds up linking to the library, and allows routines in the library to
call each other without regard to their placement in the archive.

You may use ‘nm -s’ or ‘nm --print-armap’ to list this index table. If an archive lacks
the table, another form of ar called ranlib can be used to add just the table.

gnu ar can optionally create a thin archive, which contains a symbol index and references
to the original copies of the member files of the archives. Such an archive is useful for
building libraries for use within a local build, where the relocatable objects are expected to
remain available, and copying the contents of each object would only waste time and space.
Thin archives are also flattened, so that adding one or more archives to a thin archive will
add the elements of the nested archive individually. The paths to the elements of the archive
are stored relative to the archive itself.

gnu ar is designed to be compatible with two different facilities. You can control its
activity using command-line options, like the different varieties of ar on Unix systems; or,
if you specify the single command-line option ‘-M’, you can control it with a script supplied
via standard input, like the MRI “librarian” program.

Chapter 1: ar 3

1.1 Controlling ar on the Command Line
ar [‘--plugin’ name] [‘-X32_64’] [‘-’]p[mod [relpos] [count]] archive [member...]

When you use ar in the Unix style, ar insists on at least two arguments to execute: one
keyletter specifying the operation (optionally accompanied by other keyletters specifying
modifiers), and the archive name to act on.

Most operations can also accept further member arguments, specifying particular files
to operate on.

gnu ar allows you to mix the operation code p and modifier flags mod in any order,
within the first command-line argument.

If you wish, you may begin the first command-line argument with a dash.
The p keyletter specifies what operation to execute; it may be any of the following, but

you must specify only one of them:

‘d’ Delete modules from the archive. Specify the names of modules to be deleted
as member . . . ; the archive is untouched if you specify no files to delete.
If you specify the ‘v’ modifier, ar lists each module as it is deleted.

‘m’ Use this operation to move members in an archive.
The ordering of members in an archive can make a difference in how programs
are linked using the library, if a symbol is defined in more than one member.
If no modifiers are used with m, any members you name in the member ar-
guments are moved to the end of the archive; you can use the ‘a’, ‘b’, or ‘i’
modifiers to move them to a specified place instead.

‘p’ Print the specified members of the archive, to the standard output file. If the
‘v’ modifier is specified, show the member name before copying its contents to
standard output.
If you specify no member arguments, all the files in the archive are printed.

‘q’ Quick append ; Historically, add the files member . . . to the end of archive,
without checking for replacement.
The modifiers ‘a’, ‘b’, and ‘i’ do not affect this operation; new members are
always placed at the end of the archive.
The modifier ‘v’ makes ar list each file as it is appended.
Since the point of this operation is speed, the archive’s symbol table index is
not updated, even if it already existed; you can use ‘ar s’ or ranlib explicitly
to update the symbol table index.
However, too many different systems assume quick append rebuilds the index,
so gnu ar implements ‘q’ as a synonym for ‘r’.

‘r’ Insert the files member . . . into archive (with replacement). This operation
differs from ‘q’ in that any previously existing members are deleted if their
names match those being added.
If one of the files named in member . . . does not exist, ar displays an error
message, and leaves undisturbed any existing members of the archive matching
that name.

Chapter 1: ar 4

By default, new members are added at the end of the file; but you may use one
of the modifiers ‘a’, ‘b’, or ‘i’ to request placement relative to some existing
member.
The modifier ‘v’ used with this operation elicits a line of output for each file
inserted, along with one of the letters ‘a’ or ‘r’ to indicate whether the file was
appended (no old member deleted) or replaced.

‘t’ Display a table listing the contents of archive, or those of the files listed in
member . . . that are present in the archive. Normally only the member name
is shown; if you also want to see the modes (permissions), timestamp, owner,
group, and size, you can request that by also specifying the ‘v’ modifier.
If you do not specify a member, all files in the archive are listed.
If there is more than one file with the same name (say, ‘fie’) in an archive (say
‘b.a’), ‘ar t b.a fie’ lists only the first instance; to see them all, you must ask
for a complete listing—in our example, ‘ar t b.a’.

‘x’ Extract members (named member) from the archive. You can use the ‘v’ mod-
ifier with this operation, to request that ar list each name as it extracts it.
If you do not specify a member, all files in the archive are extracted.
Files cannot be extracted from a thin archive.

A number of modifiers (mod) may immediately follow the p keyletter, to specify varia-
tions on an operation’s behavior:

‘a’ Add new files after an existing member of the archive. If you use the modifier
‘a’, the name of an existing archive member must be present as the relpos
argument, before the archive specification.

‘b’ Add new files before an existing member of the archive. If you use the modifier
‘b’, the name of an existing archive member must be present as the relpos
argument, before the archive specification. (same as ‘i’).

‘c’ Create the archive. The specified archive is always created if it did not exist,
when you request an update. But a warning is issued unless you specify in
advance that you expect to create it, by using this modifier.

‘D’ Operate in deterministic mode. When adding files and the archive index use
zero for UIDs, GIDs, timestamps, and use consistent file modes for all files.
When this option is used, if ar is used with identical options and identical input
files, multiple runs will create identical output files regardless of the input files’
owners, groups, file modes, or modification times.

‘f’ Truncate names in the archive. gnu ar will normally permit file names of any
length. This will cause it to create archives which are not compatible with the
native ar program on some systems. If this is a concern, the ‘f’ modifier may
be used to truncate file names when putting them in the archive.

‘i’ Insert new files before an existing member of the archive. If you use the modifier
‘i’, the name of an existing archive member must be present as the relpos
argument, before the archive specification. (same as ‘b’).

‘l’ This modifier is accepted but not used.

Chapter 1: ar 5

‘N’ Uses the count parameter. This is used if there are multiple entries in the
archive with the same name. Extract or delete instance count of the given
name from the archive.

‘o’ Preserve the original dates of members when extracting them. If you do not
specify this modifier, files extracted from the archive are stamped with the time
of extraction.

‘P’ Use the full path name when matching names in the archive. gnu ar can
not create an archive with a full path name (such archives are not POSIX
complaint), but other archive creators can. This option will cause gnu ar to
match file names using a complete path name, which can be convenient when
extracting a single file from an archive created by another tool.

‘s’ Write an object-file index into the archive, or update an existing one, even if no
other change is made to the archive. You may use this modifier flag either with
any operation, or alone. Running ‘ar s’ on an archive is equivalent to running
‘ranlib’ on it.

‘S’ Do not generate an archive symbol table. This can speed up building a large
library in several steps. The resulting archive can not be used with the linker.
In order to build a symbol table, you must omit the ‘S’ modifier on the last
execution of ‘ar’, or you must run ‘ranlib’ on the archive.

‘T’ Make the specified archive a thin archive. If it already exists and is a regular
archive, the existing members must be present in the same directory as archive.

‘u’ Normally, ‘ar r’. . . inserts all files listed into the archive. If you would like
to insert only those of the files you list that are newer than existing members
of the same names, use this modifier. The ‘u’ modifier is allowed only for the
operation ‘r’ (replace). In particular, the combination ‘qu’ is not allowed, since
checking the timestamps would lose any speed advantage from the operation
‘q’.

‘v’ This modifier requests the verbose version of an operation. Many operations
display additional information, such as filenames processed, when the modifier
‘v’ is appended.

‘V’ This modifier shows the version number of ar.

ar ignores an initial option spelt ‘-X32_64’, for compatibility with AIX. The behaviour
produced by this option is the default for gnu ar. ar does not support any of the other
‘-X’ options; in particular, it does not support ‘-X32’ which is the default for AIX ar.

The optional command line switch ‘--plugin’ name causes ar to load the plugin called
name which adds support for more file formats. This option is only available if the toolchain
has been built with plugin support enabled.

1.2 Controlling ar with a Script
ar -M [<script]

If you use the single command-line option ‘-M’ with ar, you can control its operation
with a rudimentary command language. This form of ar operates interactively if standard

Chapter 1: ar 6

input is coming directly from a terminal. During interactive use, ar prompts for input (the
prompt is ‘AR >’), and continues executing even after errors. If you redirect standard input
to a script file, no prompts are issued, and ar abandons execution (with a nonzero exit
code) on any error.

The ar command language is not designed to be equivalent to the command-line options;
in fact, it provides somewhat less control over archives. The only purpose of the command
language is to ease the transition to gnu ar for developers who already have scripts written
for the MRI “librarian” program.

The syntax for the ar command language is straightforward:
• commands are recognized in upper or lower case; for example, LIST is the same as

list. In the following descriptions, commands are shown in upper case for clarity.
• a single command may appear on each line; it is the first word on the line.
• empty lines are allowed, and have no effect.
• comments are allowed; text after either of the characters ‘*’ or ‘;’ is ignored.
• Whenever you use a list of names as part of the argument to an ar command, you can

separate the individual names with either commas or blanks. Commas are shown in
the explanations below, for clarity.

• ‘+’ is used as a line continuation character; if ‘+’ appears at the end of a line, the text
on the following line is considered part of the current command.

Here are the commands you can use in ar scripts, or when using ar interactively. Three
of them have special significance:

OPEN or CREATE specify a current archive, which is a temporary file required for most of
the other commands.

SAVE commits the changes so far specified by the script. Prior to SAVE, commands affect
only the temporary copy of the current archive.

ADDLIB archive

ADDLIB archive (module, module, ... module)
Add all the contents of archive (or, if specified, each named module from
archive) to the current archive.
Requires prior use of OPEN or CREATE.

ADDMOD member, member, ... member

Add each named member as a module in the current archive.
Requires prior use of OPEN or CREATE.

CLEAR Discard the contents of the current archive, canceling the effect of any operations
since the last SAVE. May be executed (with no effect) even if no current archive
is specified.

CREATE archive

Creates an archive, and makes it the current archive (required for many other
commands). The new archive is created with a temporary name; it is not actu-
ally saved as archive until you use SAVE. You can overwrite existing archives;
similarly, the contents of any existing file named archive will not be destroyed
until SAVE.

Chapter 1: ar 7

DELETE module, module, ... module

Delete each listed module from the current archive; equivalent to ‘ar -d
archive module ... module ’.
Requires prior use of OPEN or CREATE.

DIRECTORY archive (module, ... module)
DIRECTORY archive (module, ... module) outputfile

List each named module present in archive. The separate command VERBOSE
specifies the form of the output: when verbose output is off, output is like that
of ‘ar -t archive module...’. When verbose output is on, the listing is like
‘ar -tv archive module...’.
Output normally goes to the standard output stream; however, if you specify
outputfile as a final argument, ar directs the output to that file.

END Exit from ar, with a 0 exit code to indicate successful completion. This com-
mand does not save the output file; if you have changed the current archive
since the last SAVE command, those changes are lost.

EXTRACT module, module, ... module

Extract each named module from the current archive, writing them into the
current directory as separate files. Equivalent to ‘ar -x archive module...’.
Requires prior use of OPEN or CREATE.

LIST Display full contents of the current archive, in “verbose” style regardless of the
state of VERBOSE. The effect is like ‘ar tv archive ’. (This single command is
a gnu ar enhancement, rather than present for MRI compatibility.)
Requires prior use of OPEN or CREATE.

OPEN archive

Opens an existing archive for use as the current archive (required for many
other commands). Any changes as the result of subsequent commands will not
actually affect archive until you next use SAVE.

REPLACE module, module, ... module

In the current archive, replace each existing module (named in the REPLACE ar-
guments) from files in the current working directory. To execute this command
without errors, both the file, and the module in the current archive, must exist.
Requires prior use of OPEN or CREATE.

VERBOSE Toggle an internal flag governing the output from DIRECTORY. When the flag
is on, DIRECTORY output matches output from ‘ar -tv ’. . . .

SAVE Commit your changes to the current archive, and actually save it as a file with
the name specified in the last CREATE or OPEN command.
Requires prior use of OPEN or CREATE.

Chapter 2: ld 8

2 ld

The gnu linker ld is now described in a separate manual. See Section “Overview” in Using
LD: the gnu linker.

Chapter 3: nm 9

3 nm
nm [‘-a’|‘--debug-syms’]

[‘-g’|‘--extern-only’][‘--plugin’ name]

[‘-B’] [‘-C’|‘--demangle’[=style]] [‘-D’|‘--dynamic’]

[‘-S’|‘--print-size’] [‘-s’|‘--print-armap’]

[‘-A’|‘-o’|‘--print-file-name’][‘--special-syms’]

[‘-n’|‘-v’|‘--numeric-sort’] [‘-p’|‘--no-sort’]

[‘-r’|‘--reverse-sort’] [‘--size-sort’] [‘-u’|‘--undefined-only’]

[‘-t’ radix|‘--radix=’radix] [‘-P’|‘--portability’]

[‘--target=’bfdname] [‘-f’format|‘--format=’format]

[‘--defined-only’] [‘-l’|‘--line-numbers’] [‘--no-demangle’]

[‘-V’|‘--version’] [‘-X 32_64’] [‘--help’] [objfile...]

gnu nm lists the symbols from object files objfile If no object files are listed as
arguments, nm assumes the file ‘a.out’.

For each symbol, nm shows:
• The symbol value, in the radix selected by options (see below), or hexadecimal by

default.
• The symbol type. At least the following types are used; others are, as well, depending

on the object file format. If lowercase, the symbol is local; if uppercase, the symbol is
global (external).

A The symbol’s value is absolute, and will not be changed by further linking.

B
b The symbol is in the uninitialized data section (known as BSS).

C The symbol is common. Common symbols are uninitialized data. When
linking, multiple common symbols may appear with the same name. If the
symbol is defined anywhere, the common symbols are treated as undefined
references. For more details on common symbols, see the discussion of
–warn-common in Section “Linker options” in The GNU linker.

D
d The symbol is in the initialized data section.

G
g The symbol is in an initialized data section for small objects. Some object

file formats permit more efficient access to small data objects, such as a
global int variable as opposed to a large global array.

i The symbol is in a section specific to the implementation of DLLs.

N The symbol is a debugging symbol.

p The symbols is in a stack unwind section.

R
r The symbol is in a read only data section.

S
s The symbol is in an uninitialized data section for small objects.

T
t The symbol is in the text (code) section.

Chapter 3: nm 10

U The symbol is undefined.

V
v The symbol is a weak object. When a weak defined symbol is linked with

a normal defined symbol, the normal defined symbol is used with no error.
When a weak undefined symbol is linked and the symbol is not defined, the
value of the weak symbol becomes zero with no error. On some systems,
uppercase indicates that a default value has been specified.

W
w The symbol is a weak symbol that has not been specifically tagged as a

weak object symbol. When a weak defined symbol is linked with a normal
defined symbol, the normal defined symbol is used with no error. When a
weak undefined symbol is linked and the symbol is not defined, the value
of the symbol is determined in a system-specific manner without error. On
some systems, uppercase indicates that a default value has been specified.

- The symbol is a stabs symbol in an a.out object file. In this case, the next
values printed are the stabs other field, the stabs desc field, and the stab
type. Stabs symbols are used to hold debugging information. For more
information, see Section “Stabs Overview” in The “stabs” debug format.

? The symbol type is unknown, or object file format specific.

• The symbol name.

The long and short forms of options, shown here as alternatives, are equivalent.

-A
-o
--print-file-name

Precede each symbol by the name of the input file (or archive member) in which
it was found, rather than identifying the input file once only, before all of its
symbols.

-a
--debug-syms

Display all symbols, even debugger-only symbols; normally these are not listed.

-B The same as ‘--format=bsd’ (for compatibility with the MIPS nm).

-C
--demangle[=style]

Decode (demangle) low-level symbol names into user-level names. Besides re-
moving any initial underscore prepended by the system, this makes C++ func-
tion names readable. Different compilers have different mangling styles. The
optional demangling style argument can be used to choose an appropriate de-
mangling style for your compiler. See Chapter 10 [c++filt], page 41, for more
information on demangling.

--no-demangle
Do not demangle low-level symbol names. This is the default.

Chapter 3: nm 11

-D
--dynamic

Display the dynamic symbols rather than the normal symbols. This is only
meaningful for dynamic objects, such as certain types of shared libraries.

-f format

--format=format
Use the output format format, which can be bsd, sysv, or posix. The default
is bsd. Only the first character of format is significant; it can be either upper
or lower case.

-g
--extern-only

Display only external symbols.

--plugin name

Load the plugin called name to add support for extra target types. This option
is only available if the toolchain has been built with plugin support enabled.

-l
--line-numbers

For each symbol, use debugging information to try to find a filename and line
number. For a defined symbol, look for the line number of the address of the
symbol. For an undefined symbol, look for the line number of a relocation entry
which refers to the symbol. If line number information can be found, print it
after the other symbol information.

-n
-v
--numeric-sort

Sort symbols numerically by their addresses, rather than alphabetically by their
names.

-p
--no-sort

Do not bother to sort the symbols in any order; print them in the order en-
countered.

-P
--portability

Use the POSIX.2 standard output format instead of the default format. Equiv-
alent to ‘-f posix’.

-S
--print-size

Print both value and size of defined symbols for the bsd output style. This
option has no effect for object formats that do not record symbol sizes, unless
‘--size-sort’ is also used in which case a calculated size is displayed.

Chapter 3: nm 12

-s
--print-armap

When listing symbols from archive members, include the index: a mapping
(stored in the archive by ar or ranlib) of which modules contain definitions
for which names.

-r
--reverse-sort

Reverse the order of the sort (whether numeric or alphabetic); let the last come
first.

--size-sort
Sort symbols by size. The size is computed as the difference between the value
of the symbol and the value of the symbol with the next higher value. If the
bsd output format is used the size of the symbol is printed, rather than the
value, and ‘-S’ must be used in order both size and value to be printed.

--special-syms
Display symbols which have a target-specific special meaning. These symbols
are usually used by the target for some special processing and are not nor-
mally helpful when included included in the normal symbol lists. For example
for ARM targets this option would skip the mapping symbols used to mark
transitions between ARM code, THUMB code and data.

-t radix

--radix=radix
Use radix as the radix for printing the symbol values. It must be ‘d’ for decimal,
‘o’ for octal, or ‘x’ for hexadecimal.

--target=bfdname
Specify an object code format other than your system’s default format. See
Section 18.1 [Target Selection], page 64, for more information.

-u
--undefined-only

Display only undefined symbols (those external to each object file).

--defined-only
Display only defined symbols for each object file.

-V
--version

Show the version number of nm and exit.

-X This option is ignored for compatibility with the AIX version of nm. It takes
one parameter which must be the string ‘32_64’. The default mode of AIX nm
corresponds to ‘-X 32’, which is not supported by gnu nm.

--help Show a summary of the options to nm and exit.

Chapter 4: objcopy 13

4 objcopy
objcopy [‘-F’ bfdname|‘--target=’bfdname]

[‘-I’ bfdname|‘--input-target=’bfdname]

[‘-O’ bfdname|‘--output-target=’bfdname]

[‘-B’ bfdarch|‘--binary-architecture=’bfdarch]

[‘-S’|‘--strip-all’]

[‘-g’|‘--strip-debug’]

[‘-K’ symbolname|‘--keep-symbol=’symbolname]

[‘-N’ symbolname|‘--strip-symbol=’symbolname]

[‘--strip-unneeded-symbol=’symbolname]

[‘-G’ symbolname|‘--keep-global-symbol=’symbolname]

[‘--localize-hidden’]

[‘-L’ symbolname|‘--localize-symbol=’symbolname]

[‘--globalize-symbol=’symbolname]

[‘-W’ symbolname|‘--weaken-symbol=’symbolname]

[‘-w’|‘--wildcard’]

[‘-x’|‘--discard-all’]

[‘-X’|‘--discard-locals’]

[‘-b’ byte|‘--byte=’byte]

[‘-i’ interleave|‘--interleave=’interleave]

[‘-j’ sectionname|‘--only-section=’sectionname]

[‘-R’ sectionname|‘--remove-section=’sectionname]

[‘-p’|‘--preserve-dates’]

[‘--debugging’]

[‘--gap-fill=’val]

[‘--pad-to=’address]

[‘--set-start=’val]

[‘--adjust-start=’incr]

[‘--change-addresses=’incr]

[‘--change-section-address’ section{=,+,-}val]

[‘--change-section-lma’ section{=,+,-}val]

[‘--change-section-vma’ section{=,+,-}val]

[‘--change-warnings’] [‘--no-change-warnings’]

[‘--set-section-flags’ section=flags]

[‘--add-section’ sectionname=filename]

[‘--rename-section’ oldname=newname[,flags]]

[‘--long-section-names’ {enable,disable,keep}]

[‘--change-leading-char’] [‘--remove-leading-char’]

[‘--reverse-bytes=’num]

[‘--srec-len=’ival] [‘--srec-forceS3’]

[‘--redefine-sym’ old=new]

[‘--redefine-syms=’filename]

[‘--weaken’]

[‘--keep-symbols=’filename]

[‘--strip-symbols=’filename]

[‘--strip-unneeded-symbols=’filename]

[‘--keep-global-symbols=’filename]

[‘--localize-symbols=’filename]

[‘--globalize-symbols=’filename]

[‘--weaken-symbols=’filename]

[‘--alt-machine-code=’index]

[‘--prefix-symbols=’string]

[‘--prefix-sections=’string]

[‘--prefix-alloc-sections=’string]

[‘--add-gnu-debuglink=’path-to-file]

[‘--keep-file-symbols’]

[‘--only-keep-debug’]

[‘--extract-symbol’]

Chapter 4: objcopy 14

[‘--writable-text’]

[‘--readonly-text’]

[‘--pure’]

[‘--impure’]

[‘--file-alignment=’num]

[‘--heap=’size]

[‘--image-base=’address]

[‘--section-alignment=’num]

[‘--stack=’size]

[‘--subsystem=’which:major.minor]

[‘-v’|‘--verbose’]

[‘-V’|‘--version’]

[‘--help’] [‘--info’]

infile [outfile]

The gnu objcopy utility copies the contents of an object file to another. objcopy uses
the gnu bfd Library to read and write the object files. It can write the destination object
file in a format different from that of the source object file. The exact behavior of objcopy
is controlled by command-line options. Note that objcopy should be able to copy a fully
linked file between any two formats. However, copying a relocatable object file between any
two formats may not work as expected.

objcopy creates temporary files to do its translations and deletes them afterward.
objcopy uses bfd to do all its translation work; it has access to all the formats described
in bfd and thus is able to recognize most formats without being told explicitly. See Section
“BFD” in Using LD.

objcopy can be used to generate S-records by using an output target of ‘srec’ (e.g., use
‘-O srec’).

objcopy can be used to generate a raw binary file by using an output target of ‘binary’
(e.g., use ‘-O binary’). When objcopy generates a raw binary file, it will essentially pro-
duce a memory dump of the contents of the input object file. All symbols and relocation
information will be discarded. The memory dump will start at the load address of the
lowest section copied into the output file.

When generating an S-record or a raw binary file, it may be helpful to use ‘-S’ to
remove sections containing debugging information. In some cases ‘-R’ will be useful to
remove sections which contain information that is not needed by the binary file.

Note—objcopy is not able to change the endianness of its input files. If the input format
has an endianness (some formats do not), objcopy can only copy the inputs into file formats
that have the same endianness or which have no endianness (e.g., ‘srec’). (However, see
the ‘--reverse-bytes’ option.)

infile

outfile The input and output files, respectively. If you do not specify outfile, objcopy
creates a temporary file and destructively renames the result with the name of
infile.

-I bfdname

--input-target=bfdname
Consider the source file’s object format to be bfdname, rather than attempting
to deduce it. See Section 18.1 [Target Selection], page 64, for more information.

Chapter 4: objcopy 15

-O bfdname

--output-target=bfdname
Write the output file using the object format bfdname. See Section 18.1 [Target
Selection], page 64, for more information.

-F bfdname

--target=bfdname
Use bfdname as the object format for both the input and the output file;
i.e., simply transfer data from source to destination with no translation. See
Section 18.1 [Target Selection], page 64, for more information.

-B bfdarch

--binary-architecture=bfdarch
Useful when transforming a raw binary input file into an object file. In this
case the output architecture can be set to bfdarch. This option will be ignored
if the input file has a known bfdarch. You can access this binary data inside a
program by referencing the special symbols that are created by the conversion
process. These symbols are called binary objfile start, binary objfile end
and binary objfile size. e.g. you can transform a picture file into an object
file and then access it in your code using these symbols.

-j sectionname

--only-section=sectionname
Copy only the named section from the input file to the output file. This option
may be given more than once. Note that using this option inappropriately may
make the output file unusable.

-R sectionname

--remove-section=sectionname
Remove any section named sectionname from the output file. This option may
be given more than once. Note that using this option inappropriately may make
the output file unusable.

-S
--strip-all

Do not copy relocation and symbol information from the source file.

-g
--strip-debug

Do not copy debugging symbols or sections from the source file.

--strip-unneeded
Strip all symbols that are not needed for relocation processing.

-K symbolname

--keep-symbol=symbolname
When stripping symbols, keep symbol symbolname even if it would normally
be stripped. This option may be given more than once.

-N symbolname

--strip-symbol=symbolname
Do not copy symbol symbolname from the source file. This option may be
given more than once.

Chapter 4: objcopy 16

--strip-unneeded-symbol=symbolname
Do not copy symbol symbolname from the source file unless it is needed by a
relocation. This option may be given more than once.

-G symbolname

--keep-global-symbol=symbolname
Keep only symbol symbolname global. Make all other symbols local to the file,
so that they are not visible externally. This option may be given more than
once.

--localize-hidden
In an ELF object, mark all symbols that have hidden or internal visibility as
local. This option applies on top of symbol-specific localization options such as
‘-L’.

-L symbolname

--localize-symbol=symbolname
Make symbol symbolname local to the file, so that it is not visible externally.
This option may be given more than once.

-W symbolname

--weaken-symbol=symbolname
Make symbol symbolname weak. This option may be given more than once.

--globalize-symbol=symbolname
Give symbol symbolname global scoping so that it is visible outside of the file
in which it is defined. This option may be given more than once.

-w
--wildcard

Permit regular expressions in symbolnames used in other command line options.
The question mark (?), asterisk (*), backslash (\) and square brackets ([])
operators can be used anywhere in the symbol name. If the first character of
the symbol name is the exclamation point (!) then the sense of the switch is
reversed for that symbol. For example:

-w -W !foo -W fo*

would cause objcopy to weaken all symbols that start with “fo” except for the
symbol “foo”.

-x
--discard-all

Do not copy non-global symbols from the source file.

-X
--discard-locals

Do not copy compiler-generated local symbols. (These usually start with ‘L’ or
‘.’.)

-b byte

--byte=byte
Keep only every byteth byte of the input file (header data is not affected). byte
can be in the range from 0 to interleave-1, where interleave is given by the ‘-i’

Chapter 4: objcopy 17

or ‘--interleave’ option, or the default of 4. This option is useful for creating
files to program rom. It is typically used with an srec output target.

-i interleave

--interleave=interleave
Only copy one out of every interleave bytes. Select which byte to copy with the
‘-b’ or ‘--byte’ option. The default is 4. objcopy ignores this option if you do
not specify either ‘-b’ or ‘--byte’.

-p
--preserve-dates

Set the access and modification dates of the output file to be the same as those
of the input file.

--debugging
Convert debugging information, if possible. This is not the default because
only certain debugging formats are supported, and the conversion process can
be time consuming.

--gap-fill val

Fill gaps between sections with val. This operation applies to the load address
(LMA) of the sections. It is done by increasing the size of the section with the
lower address, and filling in the extra space created with val.

--pad-to address

Pad the output file up to the load address address. This is done by increasing
the size of the last section. The extra space is filled in with the value specified
by ‘--gap-fill’ (default zero).

--set-start val

Set the start address of the new file to val. Not all object file formats support
setting the start address.

--change-start incr

--adjust-start incr

Change the start address by adding incr. Not all object file formats support
setting the start address.

--change-addresses incr

--adjust-vma incr

Change the VMA and LMA addresses of all sections, as well as the start address,
by adding incr. Some object file formats do not permit section addresses to be
changed arbitrarily. Note that this does not relocate the sections; if the program
expects sections to be loaded at a certain address, and this option is used to
change the sections such that they are loaded at a different address, the program
may fail.

--change-section-address section{=,+,-}val
--adjust-section-vma section{=,+,-}val

Set or change both the VMA address and the LMA address of the named
section. If ‘=’ is used, the section address is set to val. Otherwise, val is
added to or subtracted from the section address. See the comments under

Chapter 4: objcopy 18

‘--change-addresses’, above. If section does not exist in the input file, a
warning will be issued, unless ‘--no-change-warnings’ is used.

--change-section-lma section{=,+,-}val
Set or change the LMA address of the named section. The LMA address is
the address where the section will be loaded into memory at program load
time. Normally this is the same as the VMA address, which is the address
of the section at program run time, but on some systems, especially those
where a program is held in ROM, the two can be different. If ‘=’ is used, the
section address is set to val. Otherwise, val is added to or subtracted from
the section address. See the comments under ‘--change-addresses’, above.
If section does not exist in the input file, a warning will be issued, unless
‘--no-change-warnings’ is used.

--change-section-vma section{=,+,-}val
Set or change the VMA address of the named section. The VMA address is
the address where the section will be located once the program has started
executing. Normally this is the same as the LMA address, which is the address
where the section will be loaded into memory, but on some systems, especially
those where a program is held in ROM, the two can be different. If ‘=’ is used,
the section address is set to val. Otherwise, val is added to or subtracted from
the section address. See the comments under ‘--change-addresses’, above.
If section does not exist in the input file, a warning will be issued, unless
‘--no-change-warnings’ is used.

--change-warnings
--adjust-warnings

If ‘--change-section-address’ or ‘--change-section-lma’ or
‘--change-section-vma’ is used, and the named section does not exist, issue
a warning. This is the default.

--no-change-warnings
--no-adjust-warnings

Do not issue a warning if ‘--change-section-address’ or
‘--adjust-section-lma’ or ‘--adjust-section-vma’ is used, even if
the named section does not exist.

--set-section-flags section=flags
Set the flags for the named section. The flags argument is a comma separated
string of flag names. The recognized names are ‘alloc’, ‘contents’, ‘load’,
‘noload’, ‘readonly’, ‘code’, ‘data’, ‘rom’, ‘share’, and ‘debug’. You can set
the ‘contents’ flag for a section which does not have contents, but it is not
meaningful to clear the ‘contents’ flag of a section which does have contents–
just remove the section instead. Not all flags are meaningful for all object file
formats.

--add-section sectionname=filename
Add a new section named sectionname while copying the file. The contents of
the new section are taken from the file filename. The size of the section will be
the size of the file. This option only works on file formats which can support
sections with arbitrary names.

Chapter 4: objcopy 19

--rename-section oldname=newname[,flags]
Rename a section from oldname to newname, optionally changing the section’s
flags to flags in the process. This has the advantage over usng a linker script
to perform the rename in that the output stays as an object file and does not
become a linked executable.

This option is particularly helpful when the input format is binary, since this
will always create a section called .data. If for example, you wanted instead
to create a section called .rodata containing binary data you could use the
following command line to achieve it:

objcopy -I binary -O <output_format> -B <architecture> \

--rename-section .data=.rodata,alloc,load,readonly,data,contents \

<input_binary_file> <output_object_file>

--long-section-names {enable,disable,keep}
Controls the handling of long section names when processing COFF and PE-
COFF object formats. The default behaviour, ‘keep’, is to preserve long section
names if any are present in the input file. The ‘enable’ and ‘disable’ options
forcibly enable or disable the use of long section names in the output object;
when ‘disable’ is in effect, any long section names in the input object will be
truncated. The ‘enable’ option will only emit long section names if any are
present in the inputs; this is mostly the same as ‘keep’, but it is left undefined
whether the ‘enable’ option might force the creation of an empty string table
in the output file.

--change-leading-char
Some object file formats use special characters at the start of symbols. The
most common such character is underscore, which compilers often add before
every symbol. This option tells objcopy to change the leading character of every
symbol when it converts between object file formats. If the object file formats
use the same leading character, this option has no effect. Otherwise, it will add
a character, or remove a character, or change a character, as appropriate.

--remove-leading-char
If the first character of a global symbol is a special symbol leading character
used by the object file format, remove the character. The most common symbol
leading character is underscore. This option will remove a leading underscore
from all global symbols. This can be useful if you want to link together objects
of different file formats with different conventions for symbol names. This is
different from ‘--change-leading-char’ because it always changes the symbol
name when appropriate, regardless of the object file format of the output file.

--reverse-bytes=num
Reverse the bytes in a section with output contents. A section length must be
evenly divisible by the value given in order for the swap to be able to take place.
Reversing takes place before the interleaving is performed.

This option is used typically in generating ROM images for problematic target
systems. For example, on some target boards, the 32-bit words fetched from
8-bit ROMs are re-assembled in little-endian byte order regardless of the CPU

Chapter 4: objcopy 20

byte order. Depending on the programming model, the endianness of the ROM
may need to be modified.
Consider a simple file with a section containing the following eight bytes:
12345678.
Using ‘--reverse-bytes=2’ for the above example, the bytes in the output file
would be ordered 21436587.
Using ‘--reverse-bytes=4’ for the above example, the bytes in the output file
would be ordered 43218765.
By using ‘--reverse-bytes=2’ for the above example, followed by
‘--reverse-bytes=4’ on the output file, the bytes in the second output file
would be ordered 34127856.

--srec-len=ival
Meaningful only for srec output. Set the maximum length of the Srecords being
produced to ival. This length covers both address, data and crc fields.

--srec-forceS3
Meaningful only for srec output. Avoid generation of S1/S2 records, creating
S3-only record format.

--redefine-sym old=new
Change the name of a symbol old, to new . This can be useful when one is
trying link two things together for which you have no source, and there are
name collisions.

--redefine-syms=filename
Apply ‘--redefine-sym’ to each symbol pair "old new" listed in the file file-
name. filename is simply a flat file, with one symbol pair per line. Line com-
ments may be introduced by the hash character. This option may be given
more than once.

--weaken Change all global symbols in the file to be weak. This can be useful when
building an object which will be linked against other objects using the ‘-R’
option to the linker. This option is only effective when using an object file
format which supports weak symbols.

--keep-symbols=filename
Apply ‘--keep-symbol’ option to each symbol listed in the file filename. file-
name is simply a flat file, with one symbol name per line. Line comments may
be introduced by the hash character. This option may be given more than once.

--strip-symbols=filename
Apply ‘--strip-symbol’ option to each symbol listed in the file filename. file-
name is simply a flat file, with one symbol name per line. Line comments may
be introduced by the hash character. This option may be given more than once.

--strip-unneeded-symbols=filename
Apply ‘--strip-unneeded-symbol’ option to each symbol listed in the file file-
name. filename is simply a flat file, with one symbol name per line. Line
comments may be introduced by the hash character. This option may be given
more than once.

Chapter 4: objcopy 21

--keep-global-symbols=filename
Apply ‘--keep-global-symbol’ option to each symbol listed in the file file-
name. filename is simply a flat file, with one symbol name per line. Line
comments may be introduced by the hash character. This option may be given
more than once.

--localize-symbols=filename
Apply ‘--localize-symbol’ option to each symbol listed in the file filename.
filename is simply a flat file, with one symbol name per line. Line comments
may be introduced by the hash character. This option may be given more than
once.

--globalize-symbols=filename
Apply ‘--globalize-symbol’ option to each symbol listed in the file filename.
filename is simply a flat file, with one symbol name per line. Line comments
may be introduced by the hash character. This option may be given more than
once.

--weaken-symbols=filename
Apply ‘--weaken-symbol’ option to each symbol listed in the file filename.
filename is simply a flat file, with one symbol name per line. Line comments
may be introduced by the hash character. This option may be given more than
once.

--alt-machine-code=index
If the output architecture has alternate machine codes, use the indexth code
instead of the default one. This is useful in case a machine is assigned an
official code and the tool-chain adopts the new code, but other applications
still depend on the original code being used. For ELF based architectures if the
index alternative does not exist then the value is treated as an absolute number
to be stored in the e machine field of the ELF header.

--writable-text
Mark the output text as writable. This option isn’t meaningful for all object
file formats.

--readonly-text
Make the output text write protected. This option isn’t meaningful for all
object file formats.

--pure Mark the output file as demand paged. This option isn’t meaningful for all
object file formats.

--impure Mark the output file as impure. This option isn’t meaningful for all object file
formats.

--prefix-symbols=string
Prefix all symbols in the output file with string .

--prefix-sections=string
Prefix all section names in the output file with string .

--prefix-alloc-sections=string
Prefix all the names of all allocated sections in the output file with string .

Chapter 4: objcopy 22

--add-gnu-debuglink=path-to-file
Creates a .gnu debuglink section which contains a reference to path-to-file and
adds it to the output file.

--keep-file-symbols
When stripping a file, perhaps with ‘--strip-debug’ or ‘--strip-unneeded’,
retain any symbols specifying source file names, which would otherwise get
stripped.

--only-keep-debug
Strip a file, removing contents of any sections that would not be stripped by
‘--strip-debug’ and leaving the debugging sections intact. In ELF files, this
preserves all note sections in the output.
The intention is that this option will be used in conjunction with
‘--add-gnu-debuglink’ to create a two part executable. One a stripped
binary which will occupy less space in RAM and in a distribution and the
second a debugging information file which is only needed if debugging abilities
are required. The suggested procedure to create these files is as follows:

--file-alignment num

Specify the file alignment. Sections in the file will always begin at file offsets
which are multiples of this number. This defaults to 512. [This option is specific
to PE targets.]

--heap reserve

--heap reserve,commit
Specify the number of bytes of memory to reserve (and optionally commit) to
be used as heap for this program. [This option is specific to PE targets.]

--image-base value

Use value as the base address of your program or dll. This is the lowest memory
location that will be used when your program or dll is loaded. To reduce the
need to relocate and improve performance of your dlls, each should have a
unique base address and not overlap any other dlls. The default is 0x400000 for
executables, and 0x10000000 for dlls. [This option is specific to PE targets.]

--section-alignment num

Sets the section alignment. Sections in memory will always begin at addresses
which are a multiple of this number. Defaults to 0x1000. [This option is specific
to PE targets.]

--stack reserve

--stack reserve,commit
Specify the number of bytes of memory to reserve (and optionally commit) to
be used as stack for this program. [This option is specific to PE targets.]

--subsystem which

--subsystem which:major
--subsystem which:major.minor

Specifies the subsystem under which your program will execute. The legal
values for which are native, windows, console, posix, efi-app, efi-bsd,

Chapter 4: objcopy 23

efi-rtd, sal-rtd, and xbox. You may optionally set the subsystem version
also. Numeric values are also accepted for which. [This option is specific to PE
targets.]
1. Link the executable as normal. Assuming that is is called foo then...
2. Run objcopy --only-keep-debug foo foo.dbg to create a file containing

the debugging info.
3. Run objcopy --strip-debug foo to create a stripped executable.
4. Run objcopy --add-gnu-debuglink=foo.dbg foo to add a link to the

debugging info into the stripped executable.

Note—the choice of .dbg as an extension for the debug info file is arbitrary.
Also the --only-keep-debug step is optional. You could instead do this:
1. Link the executable as normal.
2. Copy foo to foo.full

3. Run objcopy --strip-debug foo

4. Run objcopy --add-gnu-debuglink=foo.full foo

i.e., the file pointed to by the ‘--add-gnu-debuglink’ can be the full executable.
It does not have to be a file created by the ‘--only-keep-debug’ switch.
Note—this switch is only intended for use on fully linked files. It does not make
sense to use it on object files where the debugging information may be incom-
plete. Besides the gnu debuglink feature currently only supports the presence
of one filename containing debugging information, not multiple filenames on a
one-per-object-file basis.

--extract-symbol
Keep the file’s section flags and symbols but remove all section data. Specifi-
cally, the option:
• removes the contents of all sections;
• sets the size of every section to zero; and
• sets the file’s start address to zero.

This option is used to build a ‘.sym’ file for a VxWorks kernel. It can also be
a useful way of reducing the size of a ‘--just-symbols’ linker input file.

-V
--version

Show the version number of objcopy.

-v
--verbose

Verbose output: list all object files modified. In the case of archives, ‘objcopy
-V’ lists all members of the archive.

--help Show a summary of the options to objcopy.

--info Display a list showing all architectures and object formats available.

Chapter 5: objdump 24

5 objdump

objdump [‘-a’|‘--archive-headers’]

[‘-b’ bfdname|‘--target=bfdname’]

[‘-C’|‘--demangle’[=style]]

[‘-d’|‘--disassemble’]

[‘-D’|‘--disassemble-all’]

[‘-z’|‘--disassemble-zeroes’]

[‘-EB’|‘-EL’|‘--endian=’{big | little }]

[‘-f’|‘--file-headers’]

[‘-F’|‘--file-offsets’]

[‘--file-start-context’]

[‘-g’|‘--debugging’]

[‘-e’|‘--debugging-tags’]

[‘-h’|‘--section-headers’|‘--headers’]

[‘-i’|‘--info’]

[‘-j’ section|‘--section=’section]

[‘-l’|‘--line-numbers’]

[‘-S’|‘--source’]

[‘-m’ machine|‘--architecture=’machine]

[‘-M’ options|‘--disassembler-options=’options]

[‘-p’|‘--private-headers’]

[‘-r’|‘--reloc’]

[‘-R’|‘--dynamic-reloc’]

[‘-s’|‘--full-contents’]

[‘-W[lLiaprmfFsoR]’|

‘--dwarf’[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,=frames-

interp,=str,=loc,=Ranges]]

[‘-G’|‘--stabs’]

[‘-t’|‘--syms’]

[‘-T’|‘--dynamic-syms’]

[‘-x’|‘--all-headers’]

[‘-w’|‘--wide’]

[‘--start-address=’address]

[‘--stop-address=’address]

[‘--prefix-addresses’]

[‘--[no-]show-raw-insn’]

[‘--adjust-vma=’offset]

[‘--special-syms’]

[‘--prefix=’prefix]

[‘--prefix-strip=’level]

[‘-V’|‘--version’]

[‘-H’|‘--help’]

objfile...

objdump displays information about one or more object files. The options control what
particular information to display. This information is mostly useful to programmers who are
working on the compilation tools, as opposed to programmers who just want their program
to compile and work.

objfile . . . are the object files to be examined. When you specify archives, objdump shows
information on each of the member object files.

The long and short forms of options, shown here as alternatives, are equivalent. At least
one option from the list ‘-a,-d,-D,-e,-f,-g,-G,-h,-H,-p,-r,-R,-s,-S,-t,-T,-V,-x’
must be given.

Chapter 5: objdump 25

-a
--archive-header

If any of the objfile files are archives, display the archive header information
(in a format similar to ‘ls -l’). Besides the information you could list with ‘ar
tv’, ‘objdump -a’ shows the object file format of each archive member.

--adjust-vma=offset
When dumping information, first add offset to all the section addresses. This
is useful if the section addresses do not correspond to the symbol table, which
can happen when putting sections at particular addresses when using a format
which can not represent section addresses, such as a.out.

-b bfdname

--target=bfdname
Specify that the object-code format for the object files is bfdname. This option
may not be necessary; objdump can automatically recognize many formats.

For example,

objdump -b oasys -m vax -h fu.o

displays summary information from the section headers (‘-h’) of ‘fu.o’, which
is explicitly identified (‘-m’) as a VAX object file in the format produced by
Oasys compilers. You can list the formats available with the ‘-i’ option. See
Section 18.1 [Target Selection], page 64, for more information.

-C
--demangle[=style]

Decode (demangle) low-level symbol names into user-level names. Besides re-
moving any initial underscore prepended by the system, this makes C++ func-
tion names readable. Different compilers have different mangling styles. The
optional demangling style argument can be used to choose an appropriate de-
mangling style for your compiler. See Chapter 10 [c++filt], page 41, for more
information on demangling.

-g
--debugging

Display debugging information. This attempts to parse STABS and IEEE de-
bugging format information stored in the file and print it out using a C like
syntax. If neither of these formats are found this option falls back on the ‘-W’
option to print any DWARF information in the file.

-e
--debugging-tags

Like ‘-g’, but the information is generated in a format compatible with ctags
tool.

-d
--disassemble

Display the assembler mnemonics for the machine instructions from objfile.
This option only disassembles those sections which are expected to contain
instructions.

Chapter 5: objdump 26

-D
--disassemble-all

Like ‘-d’, but disassemble the contents of all sections, not just those expected
to contain instructions.
If the target is an ARM architecture this switch also has the effect of forcing
the disassembler to decode pieces of data found in code sections as if they were
instructions.

--prefix-addresses
When disassembling, print the complete address on each line. This is the older
disassembly format.

-EB
-EL
--endian={big|little}

Specify the endianness of the object files. This only affects disassembly. This
can be useful when disassembling a file format which does not describe endian-
ness information, such as S-records.

-f
--file-headers

Display summary information from the overall header of each of the objfile files.

-F
--file-offsets

When disassembling sections, whenever a symbol is displayed, also display the
file offset of the region of data that is about to be dumped. If zeroes are being
skipped, then when disassembly resumes, tell the user how many zeroes were
skipped and the file offset of the location from where the disassembly resumes.
When dumping sections, display the file offset of the location from where the
dump starts.

--file-start-context
Specify that when displaying interlisted source code/disassembly (assumes ‘-S’)
from a file that has not yet been displayed, extend the context to the start of
the file.

-h
--section-headers
--headers

Display summary information from the section headers of the object file.
File segments may be relocated to nonstandard addresses, for example by using
the ‘-Ttext’, ‘-Tdata’, or ‘-Tbss’ options to ld. However, some object file
formats, such as a.out, do not store the starting address of the file segments.
In those situations, although ld relocates the sections correctly, using ‘objdump
-h’ to list the file section headers cannot show the correct addresses. Instead,
it shows the usual addresses, which are implicit for the target.

-H
--help Print a summary of the options to objdump and exit.

Chapter 5: objdump 27

-i
--info Display a list showing all architectures and object formats available for specifi-

cation with ‘-b’ or ‘-m’.

-j name

--section=name
Display information only for section name.

-l
--line-numbers

Label the display (using debugging information) with the filename and source
line numbers corresponding to the object code or relocs shown. Only useful
with ‘-d’, ‘-D’, or ‘-r’.

-m machine

--architecture=machine
Specify the architecture to use when disassembling object files. This can be
useful when disassembling object files which do not describe architecture infor-
mation, such as S-records. You can list the available architectures with the ‘-i’
option.
If the target is an ARM architecture then this switch has an additional effect.
It restricts the disassembly to only those instructions supported by the archi-
tecture specified by machine. If it is necessary to use this switch because the
input file does not contain any architecture information, but it is also desired
to disassemble all the instructions use ‘-marm’.

-M options

--disassembler-options=options
Pass target specific information to the disassembler. Only supported on some
targets. If it is necessary to specify more than one disassembler option then
multiple ‘-M’ options can be used or can be placed together into a comma
separated list.
If the target is an ARM architecture then this switch can be used to select which
register name set is used during disassembler. Specifying ‘-M reg-names-std’
(the default) will select the register names as used in ARM’s instruction set
documentation, but with register 13 called ’sp’, register 14 called ’lr’ and register
15 called ’pc’. Specifying ‘-M reg-names-apcs’ will select the name set used by
the ARM Procedure Call Standard, whilst specifying ‘-M reg-names-raw’ will
just use ‘r’ followed by the register number.
There are also two variants on the APCS register naming scheme enabled
by ‘-M reg-names-atpcs’ and ‘-M reg-names-special-atpcs’ which use the
ARM/Thumb Procedure Call Standard naming conventions. (Either with the
normal register names or the special register names).
This option can also be used for ARM architectures to force the disassem-
bler to interpret all instructions as Thumb instructions by using the switch
‘--disassembler-options=force-thumb’. This can be useful when attempt-
ing to disassemble thumb code produced by other compilers.
For the x86, some of the options duplicate functions of the ‘-m’ switch, but allow
finer grained control. Multiple selections from the following may be specified

Chapter 5: objdump 28

as a comma separated string. ‘x86-64’, ‘i386’ and ‘i8086’ select disassem-
bly for the given architecture. ‘intel’ and ‘att’ select between intel syntax
mode and AT&T syntax mode. ‘intel-mnemonic’ and ‘att-mnemonic’ select
between intel mnemonic mode and AT&T mnemonic mode. ‘intel-mnemonic’
implies ‘intel’ and ‘att-mnemonic’ implies ‘att’. ‘addr64’, ‘addr32’, ‘addr16’,
‘data32’ and ‘data16’ specify the default address size and operand size. These
four options will be overridden if ‘x86-64’, ‘i386’ or ‘i8086’ appear later in the
option string. Lastly, ‘suffix’, when in AT&T mode, instructs the disassem-
bler to print a mnemonic suffix even when the suffix could be inferred by the
operands.

For PowerPC, ‘booke’ controls the disassembly of BookE instructions. ‘32’ and
‘64’ select PowerPC and PowerPC64 disassembly, respectively. ‘e300’ selects
disassembly for the e300 family. ‘440’ selects disassembly for the PowerPC 440.
‘ppcps’ selects disassembly for the paired single instructions of the PPC750CL.

For MIPS, this option controls the printing of instruction mnemonic names
and register names in disassembled instructions. Multiple selections from the
following may be specified as a comma separated string, and invalid options are
ignored:

no-aliases
Print the ’raw’ instruction mnemonic instead of some pseudo in-
struction mnemonic. I.e., print ’daddu’ or ’or’ instead of ’move’,
’sll’ instead of ’nop’, etc.

gpr-names=ABI
Print GPR (general-purpose register) names as appropriate for the
specified ABI. By default, GPR names are selected according to
the ABI of the binary being disassembled.

fpr-names=ABI
Print FPR (floating-point register) names as appropriate for the
specified ABI. By default, FPR numbers are printed rather than
names.

cp0-names=ARCH
Print CP0 (system control coprocessor; coprocessor 0) register
names as appropriate for the CPU or architecture specified by
ARCH . By default, CP0 register names are selected according to
the architecture and CPU of the binary being disassembled.

hwr-names=ARCH
Print HWR (hardware register, used by the rdhwr instruction)
names as appropriate for the CPU or architecture specified by
ARCH . By default, HWR names are selected according to the ar-
chitecture and CPU of the binary being disassembled.

reg-names=ABI
Print GPR and FPR names as appropriate for the selected ABI.

Chapter 5: objdump 29

reg-names=ARCH
Print CPU-specific register names (CP0 register and HWR names)
as appropriate for the selected CPU or architecture.

For any of the options listed above, ABI or ARCH may be specified as ‘numeric’
to have numbers printed rather than names, for the selected types of registers.
You can list the available values of ABI and ARCH using the ‘--help’ option.

For VAX, you can specify function entry addresses with ‘-M entry:0xf00ba’.
You can use this multiple times to properly disassemble VAX binary files that
don’t contain symbol tables (like ROM dumps). In these cases, the function
entry mask would otherwise be decoded as VAX instructions, which would
probably lead the rest of the function being wrongly disassembled.

-p
--private-headers

Print information that is specific to the object file format. The exact informa-
tion printed depends upon the object file format. For some object file formats,
no additional information is printed.

-r
--reloc Print the relocation entries of the file. If used with ‘-d’ or ‘-D’, the relocations

are printed interspersed with the disassembly.

-R
--dynamic-reloc

Print the dynamic relocation entries of the file. This is only meaningful for
dynamic objects, such as certain types of shared libraries. As for ‘-r’, if used
with ‘-d’ or ‘-D’, the relocations are printed interspersed with the disassembly.

-s
--full-contents

Display the full contents of any sections requested. By default all non-empty
sections are displayed.

-S
--source Display source code intermixed with disassembly, if possible. Implies ‘-d’.

--prefix=prefix
Specify prefix to add to the absolute paths when used with ‘-S’.

--prefix-strip=level
Indicate how many initial directory names to strip off the hardwired absolute
paths. It has no effect without ‘--prefix=’prefix.

--show-raw-insn
When disassembling instructions, print the instruction in hex as well as in
symbolic form. This is the default except when ‘--prefix-addresses’ is used.

--no-show-raw-insn
When disassembling instructions, do not print the instruction bytes. This is
the default when ‘--prefix-addresses’ is used.

Chapter 5: objdump 30

-W[lLiaprmfFsoR]
--dwarf[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,=frames-interp,=str,=loc,=Ranges]

Displays the contents of the debug sections in the file, if any are present. If one
of the optional letters or words follows the switch then only data found in those
specific sections will be dumped.

-G
--stabs Display the full contents of any sections requested. Display the contents of the

.stab and .stab.index and .stab.excl sections from an ELF file. This is only
useful on systems (such as Solaris 2.0) in which .stab debugging symbol-table
entries are carried in an ELF section. In most other file formats, debugging
symbol-table entries are interleaved with linkage symbols, and are visible in the
‘--syms’ output. For more information on stabs symbols, see Section “Stabs
Overview” in The “stabs” debug format.

--start-address=address
Start displaying data at the specified address. This affects the output of the
‘-d’, ‘-r’ and ‘-s’ options.

--stop-address=address
Stop displaying data at the specified address. This affects the output of the
‘-d’, ‘-r’ and ‘-s’ options.

-t
--syms Print the symbol table entries of the file. This is similar to the information

provided by the ‘nm’ program, although the display format is different. The
format of the output depends upon the format of the file being dumped, but
there are two main types. One looks like this:

[4](sec 3)(fl 0x00)(ty 0)(scl 3) (nx 1) 0x00000000 .bss

[6](sec 1)(fl 0x00)(ty 0)(scl 2) (nx 0) 0x00000000 fred

where the number inside the square brackets is the number of the entry in the
symbol table, the sec number is the section number, the fl value are the symbol’s
flag bits, the ty number is the symbol’s type, the scl number is the symbol’s
storage class and the nx value is the number of auxilary entries associated with
the symbol. The last two fields are the symbol’s value and its name.
The other common output format, usually seen with ELF based files, looks like
this:

00000000 l d .bss 00000000 .bss

00000000 g .text 00000000 fred

Here the first number is the symbol’s value (sometimes refered to as its address).
The next field is actually a set of characters and spaces indicating the flag bits
that are set on the symbol. These characters are described below. Next is the
section with which the symbol is associated or *ABS* if the section is absolute
(ie not connected with any section), or *UND* if the section is referenced in
the file being dumped, but not defined there.
After the section name comes another field, a number, which for common sym-
bols is the alignment and for other symbol is the size. Finally the symbol’s
name is displayed.
The flag characters are divided into 7 groups as follows:

Chapter 5: objdump 31

l
g
! The symbol is local (l), global (g), neither (a space) or both (!). A

symbol can be neither local or global for a variety of reasons, e.g.,
because it is used for debugging, but it is probably an indication of
a bug if it is ever both local and global.

w The symbol is weak (w) or strong (a space).

C The symbol denotes a constructor (C) or an ordinary symbol (a
space).

W The symbol is a warning (W) or a normal symbol (a space). A
warning symbol’s name is a message to be displayed if the symbol
following the warning symbol is ever referenced.

I

i The symbol is an indirect reference to another symbol (I), a function
to be evaluated during reloc processing (i) or a normal symbol (a
space).

d
D The symbol is a debugging symbol (d) or a dynamic symbol (D) or

a normal symbol (a space).

F

f

O The symbol is the name of a function (F) or a file (f) or an object
(O) or just a normal symbol (a space).

-T
--dynamic-syms

Print the dynamic symbol table entries of the file. This is only meaningful for
dynamic objects, such as certain types of shared libraries. This is similar to the
information provided by the ‘nm’ program when given the ‘-D’ (‘--dynamic’)
option.

--special-syms
When displaying symbols include those which the target considers to be special
in some way and which would not normally be of interest to the user.

-V
--version

Print the version number of objdump and exit.

-x
--all-headers

Display all available header information, including the symbol table and re-
location entries. Using ‘-x’ is equivalent to specifying all of ‘-a -f -h -p -r
-t’.

Chapter 5: objdump 32

-w
--wide Format some lines for output devices that have more than 80 columns. Also do

not truncate symbol names when they are displayed.

-z
--disassemble-zeroes

Normally the disassembly output will skip blocks of zeroes. This option directs
the disassembler to disassemble those blocks, just like any other data.

Chapter 6: ranlib 33

6 ranlib

ranlib [‘-vVt’] archive

ranlib generates an index to the contents of an archive and stores it in the archive. The
index lists each symbol defined by a member of an archive that is a relocatable object file.

You may use ‘nm -s’ or ‘nm --print-armap’ to list this index.
An archive with such an index speeds up linking to the library and allows routines in

the library to call each other without regard to their placement in the archive.
The gnu ranlib program is another form of gnu ar; running ranlib is completely

equivalent to executing ‘ar -s’. See Chapter 1 [ar], page 2.

-v
-V
--version

Show the version number of ranlib.

-t Update the timestamp of the symbol map of an archive.

Chapter 7: size 34

7 size
size [‘-A’|‘-B’|‘--format=’compatibility]

[‘--help’]

[‘-d’|‘-o’|‘-x’|‘--radix=’number]

[‘--common’]

[‘-t’|‘--totals’]

[‘--target=’bfdname] [‘-V’|‘--version’]

[objfile...]

The gnu size utility lists the section sizes—and the total size—for each of the object
or archive files objfile in its argument list. By default, one line of output is generated for
each object file or each module in an archive.

objfile . . . are the object files to be examined. If none are specified, the file a.out will
be used.

The command line options have the following meanings:

-A
-B
--format=compatibility

Using one of these options, you can choose whether the output from gnu size
resembles output from System V size (using ‘-A’, or ‘--format=sysv’), or
Berkeley size (using ‘-B’, or ‘--format=berkeley’). The default is the one-
line format similar to Berkeley’s.
Here is an example of the Berkeley (default) format of output from size:

$ size --format=Berkeley ranlib size

text data bss dec hex filename

294880 81920 11592 388392 5ed28 ranlib

294880 81920 11888 388688 5ee50 size

This is the same data, but displayed closer to System V conventions:
$ size --format=SysV ranlib size

ranlib :

section size addr

.text 294880 8192

.data 81920 303104

.bss 11592 385024

Total 388392

size :

section size addr

.text 294880 8192

.data 81920 303104

.bss 11888 385024

Total 388688

--help Show a summary of acceptable arguments and options.

-d
-o
-x
--radix=number

Using one of these options, you can control whether the size of each section is
given in decimal (‘-d’, or ‘--radix=10’); octal (‘-o’, or ‘--radix=8’); or hex-

Chapter 7: size 35

adecimal (‘-x’, or ‘--radix=16’). In ‘--radix=number ’, only the three values
(8, 10, 16) are supported. The total size is always given in two radices; decimal
and hexadecimal for ‘-d’ or ‘-x’ output, or octal and hexadecimal if you’re using
‘-o’.

--common Print total size of common symbols in each file. When using Berkeley format
these are included in the bss size.

-t
--totals Show totals of all objects listed (Berkeley format listing mode only).

--target=bfdname
Specify that the object-code format for objfile is bfdname. This option may not
be necessary; size can automatically recognize many formats. See Section 18.1
[Target Selection], page 64, for more information.

-V
--version

Display the version number of size.

Chapter 8: strings 36

8 strings
strings [‘-afovV’] [‘-’min-len]

[‘-n’ min-len] [‘--bytes=’min-len]

[‘-t’ radix] [‘--radix=’radix]

[‘-e’ encoding] [‘--encoding=’encoding]

[‘-’] [‘--all’] [‘--print-file-name’]

[‘-T’ bfdname] [‘--target=’bfdname]

[‘--help’] [‘--version’] file...

For each file given, gnu strings prints the printable character sequences that are at
least 4 characters long (or the number given with the options below) and are followed by an
unprintable character. By default, it only prints the strings from the initialized and loaded
sections of object files; for other types of files, it prints the strings from the whole file.

strings is mainly useful for determining the contents of non-text files.

-a
--all
- Do not scan only the initialized and loaded sections of object files; scan the

whole files.

-f
--print-file-name

Print the name of the file before each string.

--help Print a summary of the program usage on the standard output and exit.

-min-len
-n min-len

--bytes=min-len
Print sequences of characters that are at least min-len characters long, instead
of the default 4.

-o Like ‘-t o’. Some other versions of strings have ‘-o’ act like ‘-t d’ instead.
Since we can not be compatible with both ways, we simply chose one.

-t radix

--radix=radix
Print the offset within the file before each string. The single character argument
specifies the radix of the offset—‘o’ for octal, ‘x’ for hexadecimal, or ‘d’ for
decimal.

-e encoding

--encoding=encoding
Select the character encoding of the strings that are to be found. Possible
values for encoding are: ‘s’ = single-7-bit-byte characters (ASCII, ISO 8859,
etc., default), ‘S’ = single-8-bit-byte characters, ‘b’ = 16-bit bigendian, ‘l’ =
16-bit littleendian, ‘B’ = 32-bit bigendian, ‘L’ = 32-bit littleendian. Useful
for finding wide character strings. (‘l’ and ‘b’ apply to, for example, Unicode
UTF-16/UCS-2 encodings).

-T bfdname

--target=bfdname
Specify an object code format other than your system’s default format. See
Section 18.1 [Target Selection], page 64, for more information.

Chapter 8: strings 37

-v
-V
--version

Print the program version number on the standard output and exit.

Chapter 9: strip 38

9 strip

strip [‘-F’ bfdname |‘--target=’bfdname]

[‘-I’ bfdname |‘--input-target=’bfdname]

[‘-O’ bfdname |‘--output-target=’bfdname]

[‘-s’|‘--strip-all’]

[‘-S’|‘-g’|‘-d’|‘--strip-debug’]

[‘-K’ symbolname |‘--keep-symbol=’symbolname]

[‘-N’ symbolname |‘--strip-symbol=’symbolname]

[‘-w’|‘--wildcard’]

[‘-x’|‘--discard-all’] [‘-X’ |‘--discard-locals’]

[‘-R’ sectionname |‘--remove-section=’sectionname]

[‘-o’ file] [‘-p’|‘--preserve-dates’]

[‘--keep-file-symbols’]

[‘--only-keep-debug’]

[‘-v’ |‘--verbose’] [‘-V’|‘--version’]

[‘--help’] [‘--info’]

objfile...

gnu strip discards all symbols from object files objfile. The list of object files may
include archives. At least one object file must be given.

strip modifies the files named in its argument, rather than writing modified copies
under different names.

-F bfdname

--target=bfdname
Treat the original objfile as a file with the object code format bfdname, and
rewrite it in the same format. See Section 18.1 [Target Selection], page 64, for
more information.

--help Show a summary of the options to strip and exit.

--info Display a list showing all architectures and object formats available.

-I bfdname

--input-target=bfdname
Treat the original objfile as a file with the object code format bfdname. See
Section 18.1 [Target Selection], page 64, for more information.

-O bfdname

--output-target=bfdname
Replace objfile with a file in the output format bfdname. See Section 18.1
[Target Selection], page 64, for more information.

-R sectionname

--remove-section=sectionname
Remove any section named sectionname from the output file. This option may
be given more than once. Note that using this option inappropriately may make
the output file unusable.

-s
--strip-all

Remove all symbols.

Chapter 9: strip 39

-g
-S
-d
--strip-debug

Remove debugging symbols only.

--strip-unneeded
Remove all symbols that are not needed for relocation processing.

-K symbolname

--keep-symbol=symbolname
When stripping symbols, keep symbol symbolname even if it would normally
be stripped. This option may be given more than once.

-N symbolname

--strip-symbol=symbolname
Remove symbol symbolname from the source file. This option may be given
more than once, and may be combined with strip options other than ‘-K’.

-o file Put the stripped output in file, rather than replacing the existing file. When
this argument is used, only one objfile argument may be specified.

-p
--preserve-dates

Preserve the access and modification dates of the file.

-w
--wildcard

Permit regular expressions in symbolnames used in other command line options.
The question mark (?), asterisk (*), backslash (\) and square brackets ([])
operators can be used anywhere in the symbol name. If the first character of
the symbol name is the exclamation point (!) then the sense of the switch is
reversed for that symbol. For example:

-w -K !foo -K fo*

would cause strip to only keep symbols that start with the letters “fo”, but to
discard the symbol “foo”.

-x
--discard-all

Remove non-global symbols.

-X
--discard-locals

Remove compiler-generated local symbols. (These usually start with ‘L’ or ‘.’.)

--keep-file-symbols
When stripping a file, perhaps with ‘--strip-debug’ or ‘--strip-unneeded’,
retain any symbols specifying source file names, which would otherwise get
stripped.

Chapter 9: strip 40

--only-keep-debug
Strip a file, removing contents of any sections that would not be stripped by
‘--strip-debug’ and leaving the debugging sections intact. In ELF files, this
preserves all note sections in the output.
The intention is that this option will be used in conjunction with
‘--add-gnu-debuglink’ to create a two part executable. One a stripped
binary which will occupy less space in RAM and in a distribution and the
second a debugging information file which is only needed if debugging abilities
are required. The suggested procedure to create these files is as follows:
1. Link the executable as normal. Assuming that is is called foo then...
2. Run objcopy --only-keep-debug foo foo.dbg to create a file containing

the debugging info.
3. Run objcopy --strip-debug foo to create a stripped executable.
4. Run objcopy --add-gnu-debuglink=foo.dbg foo to add a link to the

debugging info into the stripped executable.

Note—the choice of .dbg as an extension for the debug info file is arbitrary.
Also the --only-keep-debug step is optional. You could instead do this:
1. Link the executable as normal.
2. Copy foo to foo.full

3. Run strip --strip-debug foo

4. Run objcopy --add-gnu-debuglink=foo.full foo

i.e., the file pointed to by the ‘--add-gnu-debuglink’ can be the full executable.
It does not have to be a file created by the ‘--only-keep-debug’ switch.
Note—this switch is only intended for use on fully linked files. It does not make
sense to use it on object files where the debugging information may be incom-
plete. Besides the gnu debuglink feature currently only supports the presence
of one filename containing debugging information, not multiple filenames on a
one-per-object-file basis.

-V
--version

Show the version number for strip.

-v
--verbose

Verbose output: list all object files modified. In the case of archives, ‘strip
-v’ lists all members of the archive.

Chapter 10: c++filt 41

10 c++filt

c++filt [‘-_’|‘--strip-underscores’]

[‘-n’|‘--no-strip-underscores’]

[‘-p’|‘--no-params’]

[‘-t’|‘--types’]

[‘-i’|‘--no-verbose’]

[‘-s’ format|‘--format=’format]

[‘--help’] [‘--version’] [symbol...]

The C++ and Java languages provide function overloading, which means that you can
write many functions with the same name, providing that each function takes parameters of
different types. In order to be able to distinguish these similarly named functions C++ and
Java encode them into a low-level assembler name which uniquely identifies each different
version. This process is known as mangling. The c++filt1 program does the inverse
mapping: it decodes (demangles) low-level names into user-level names so that they can be
read.

Every alphanumeric word (consisting of letters, digits, underscores, dollars, or periods)
seen in the input is a potential mangled name. If the name decodes into a C++ name, the
C++ name replaces the low-level name in the output, otherwise the original word is output.
In this way you can pass an entire assembler source file, containing mangled names, through
c++filt and see the same source file containing demangled names.

You can also use c++filt to decipher individual symbols by passing them on the com-
mand line:

c++filt symbol

If no symbol arguments are given, c++filt reads symbol names from the standard
input instead. All the results are printed on the standard output. The difference between
reading names from the command line versus reading names from the standard input is
that command line arguments are expected to be just mangled names and no checking is
performed to separate them from surrounding text. Thus for example:

c++filt -n _Z1fv

will work and demangle the name to “f()” whereas:
c++filt -n _Z1fv,

will not work. (Note the extra comma at the end of the mangled name which makes it
invalid). This command however will work:

echo _Z1fv, | c++filt -n

and will display “f(),”, i.e., the demangled name followed by a trailing comma. This
behaviour is because when the names are read from the standard input it is expected that
they might be part of an assembler source file where there might be extra, extraneous
characters trailing after a mangled name. For example:

.type _Z1fv, @function

-_
--strip-underscores

On some systems, both the C and C++ compilers put an underscore in front
of every name. For example, the C name foo gets the low-level name _foo.

1 MS-DOS does not allow + characters in file names, so on MS-DOS this program is named CXXFILT.

Chapter 10: c++filt 42

This option removes the initial underscore. Whether c++filt removes the
underscore by default is target dependent.

-j
--java Prints demangled names using Java syntax. The default is to use C++ syntax.

-n
--no-strip-underscores

Do not remove the initial underscore.

-p
--no-params

When demangling the name of a function, do not display the types of the
function’s parameters.

-t
--types Attempt to demangle types as well as function names. This is disabled by

default since mangled types are normally only used internally in the compiler,
and they can be confused with non-mangled names. For example, a function
called “a” treated as a mangled type name would be demangled to “signed
char”.

-i
--no-verbose

Do not include implementation details (if any) in the demangled output.

-s format

--format=format
c++filt can decode various methods of mangling, used by different compilers.
The argument to this option selects which method it uses:

auto Automatic selection based on executable (the default method)

gnu the one used by the gnu C++ compiler (g++)

lucid the one used by the Lucid compiler (lcc)

arm the one specified by the C++ Annotated Reference Manual

hp the one used by the HP compiler (aCC)

edg the one used by the EDG compiler

gnu-v3 the one used by the gnu C++ compiler (g++) with the V3 ABI.

java the one used by the gnu Java compiler (gcj)

gnat the one used by the gnu Ada compiler (GNAT).

--help Print a summary of the options to c++filt and exit.

--version
Print the version number of c++filt and exit.

Warning: c++filt is a new utility, and the details of its user interface are
subject to change in future releases. In particular, a command-line option may
be required in the future to decode a name passed as an argument on the
command line; in other words,

Chapter 10: c++filt 43

c++filt symbol

may in a future release become
c++filt option symbol

Chapter 11: addr2line 44

11 addr2line

addr2line [‘-b’ bfdname|‘--target=’bfdname]

[‘-C’|‘--demangle’[=style]]

[‘-e’ filename|‘--exe=’filename]

[‘-f’|‘--functions’] [‘-s’|‘--basename’]

[‘-i’|‘--inlines’]

[‘-j’|‘--section=’name]

[‘-H’|‘--help’] [‘-V’|‘--version’]

[addr addr ...]

addr2line translates addresses into file names and line numbers. Given an address in an
executable or an offset in a section of a relocatable object, it uses the debugging information
to figure out which file name and line number are associated with it.

The executable or relocatable object to use is specified with the ‘-e’ option. The default
is the file ‘a.out’. The section in the relocatable object to use is specified with the ‘-j’
option.

addr2line has two modes of operation.

In the first, hexadecimal addresses are specified on the command line, and addr2line
displays the file name and line number for each address.

In the second, addr2line reads hexadecimal addresses from standard input, and prints
the file name and line number for each address on standard output. In this mode, addr2line
may be used in a pipe to convert dynamically chosen addresses.

The format of the output is ‘FILENAME:LINENO’. The file name and line number for each
address is printed on a separate line. If the -f option is used, then each ‘FILENAME:LINENO’
line is preceded by a ‘FUNCTIONNAME’ line which is the name of the function containing the
address.

If the file name or function name can not be determined, addr2line will print two
question marks in their place. If the line number can not be determined, addr2line will
print 0.

The long and short forms of options, shown here as alternatives, are equivalent.

-b bfdname

--target=bfdname
Specify that the object-code format for the object files is bfdname.

-C
--demangle[=style]

Decode (demangle) low-level symbol names into user-level names. Besides re-
moving any initial underscore prepended by the system, this makes C++ func-
tion names readable. Different compilers have different mangling styles. The
optional demangling style argument can be used to choose an appropriate de-
mangling style for your compiler. See Chapter 10 [c++filt], page 41, for more
information on demangling.

-e filename

--exe=filename
Specify the name of the executable for which addresses should be translated.
The default file is ‘a.out’.

Chapter 11: addr2line 45

-f
--functions

Display function names as well as file and line number information.

-s
--basenames

Display only the base of each file name.

-i
--inlines

If the address belongs to a function that was inlined, the source information for
all enclosing scopes back to the first non-inlined function will also be printed.
For example, if main inlines callee1 which inlines callee2, and address is from
callee2, the source information for callee1 and main will also be printed.

-j
--section

Read offsets relative to the specified section instead of absolute addresses.

Chapter 12: nlmconv 46

12 nlmconv

nlmconv converts a relocatable object file into a NetWare Loadable Module.
Warning: nlmconv is not always built as part of the binary utilities, since it is
only useful for NLM targets.
nlmconv [‘-I’ bfdname|‘--input-target=’bfdname]

[‘-O’ bfdname|‘--output-target=’bfdname]

[‘-T’ headerfile|‘--header-file=’headerfile]

[‘-d’|‘--debug’] [‘-l’ linker|‘--linker=’linker]

[‘-h’|‘--help’] [‘-V’|‘--version’]

infile outfile

nlmconv converts the relocatable ‘i386’ object file infile into the NetWare Loadable
Module outfile, optionally reading headerfile for NLM header information. For instructions
on writing the NLM command file language used in header files, see the ‘linkers’ section,
‘NLMLINK’ in particular, of the NLM Development and Tools Overview, which is part of the
NLM Software Developer’s Kit (“NLM SDK”), available from Novell, Inc. nlmconv uses
the gnu Binary File Descriptor library to read infile; see Section “BFD” in Using LD, for
more information.

nlmconv can perform a link step. In other words, you can list more than one object file
for input if you list them in the definitions file (rather than simply specifying one input file
on the command line). In this case, nlmconv calls the linker for you.

-I bfdname

--input-target=bfdname
Object format of the input file. nlmconv can usually determine the format of
a given file (so no default is necessary). See Section 18.1 [Target Selection],
page 64, for more information.

-O bfdname

--output-target=bfdname
Object format of the output file. nlmconv infers the output format based on
the input format, e.g. for a ‘i386’ input file the output format is ‘nlm32-i386’.
See Section 18.1 [Target Selection], page 64, for more information.

-T headerfile

--header-file=headerfile
Reads headerfile for NLM header information. For instructions on writing the
NLM command file language used in header files, see see the ‘linkers’ sec-
tion, of the NLM Development and Tools Overview, which is part of the NLM
Software Developer’s Kit, available from Novell, Inc.

-d
--debug Displays (on standard error) the linker command line used by nlmconv.

-l linker

--linker=linker
Use linker for any linking. linker can be an absolute or a relative pathname.

-h
--help Prints a usage summary.

Chapter 12: nlmconv 47

-V
--version

Prints the version number for nlmconv.

Chapter 13: windmc 48

13 windmc

windmc may be used to generator Windows message resources.
Warning: windmc is not always built as part of the binary utilities, since it is
only useful for Windows targets.
windmc [options] input-file

windmc reads message definitions from an input file (.mc) and translate them into a set
of output files. The output files may be of four kinds:

h A C header file containing the message definitions.

rc A resource file compilable by the windres tool.

bin One or more binary files containing the resource data for a specific message
language.

dbg A C include file that maps message id’s to their symbolic name.

The exact description of these different formats is available in documentation from Mi-
crosoft.

When windmc converts from the mc format to the bin format, rc, h, and optional dbg it
is acting like the Windows Message Compiler.

-a
--ascii_in

Specifies that the input file specified is ANSI. This is the default behaviour.

-A
--ascii_out

Specifies that messages in the output bin files should be in ANSI format.

-b
--binprefix

Specifies that bin filenames should have to be prefixed by the basename of the
source file.

-c
--customflag

Sets the customer bit in all message id’s.

-C codepage

--codepage_in codepage

Sets the default codepage to be used to convert input file to UTF16. The default
is ocdepage 1252.

-d
--decimal_values

Outputs the constants in the header file in decimal. Default is using hexadeci-
mal output.

-e ext

--extension ext

The extension for the header file. The default is .h extension.

Chapter 13: windmc 49

-F target

--target target

Specify the BFD format to use for a bin file as output. This is a BFD target
name; you can use the ‘--help’ option to see a list of supported targets. Nor-
mally windmc will use the default format, which is the first one listed by the
‘--help’ option. Section 18.1 [Target Selection], page 64.

-h path

--headerdir path

The target directory of the generated header file. The default is the current
directory.

-H
--help Displays a list of command line options and then exits.

-m characters

--maxlength characters

Instructs windmc to generate a warning if the length of any message exceeds
the number specified.

-n
--nullterminate

Terminate message text in bin files by zero. By default they are terminated by
CR/LF.

-o
--hresult_use

Not yet implemented. Instructs windmc to generate an OLE2 header file, using
HRESULT definitions. Status codes are used if the flag is not specified.

-O codepage

--codepage_out codepage

Sets the default codepage to be used to output text files. The default is ocdepage
1252.

-r path

--rcdir path

The target directory for the generated rc script and the generated bin files that
the resource compiler script includes. The default is the current directory.

-u
--unicode_in

Specifies that the input file is UTF16.

-U
--unicode_out

Specifies that messages in the output bin file should be in UTF16 format. This
is the default behaviour.

-v

--verbose
Enable verbose mode.

Chapter 13: windmc 50

-V

--version
Prints the version number for windmc.

-x path

--xdgb path

The path of the dbg C include file that maps message id’s to the symbolic name.
No such file is generated without specifying the switch.

Chapter 14: windres 51

14 windres

windres may be used to manipulate Windows resources.
Warning: windres is not always built as part of the binary utilities, since it is
only useful for Windows targets.
windres [options] [input-file] [output-file]

windres reads resources from an input file and copies them into an output file. Either
file may be in one of three formats:

rc A text format read by the Resource Compiler.

res A binary format generated by the Resource Compiler.

coff A COFF object or executable.

The exact description of these different formats is available in documentation from Mi-
crosoft.

When windres converts from the rc format to the res format, it is acting like the
Windows Resource Compiler. When windres converts from the res format to the coff
format, it is acting like the Windows CVTRES program.

When windres generates an rc file, the output is similar but not identical to the format
expected for the input. When an input rc file refers to an external filename, an output rc
file will instead include the file contents.

If the input or output format is not specified, windres will guess based on the file name,
or, for the input file, the file contents. A file with an extension of ‘.rc’ will be treated as
an rc file, a file with an extension of ‘.res’ will be treated as a res file, and a file with an
extension of ‘.o’ or ‘.exe’ will be treated as a coff file.

If no output file is specified, windres will print the resources in rc format to standard
output.

The normal use is for you to write an rc file, use windres to convert it to a COFF
object file, and then link the COFF file into your application. This will make the resources
described in the rc file available to Windows.

-i filename

--input filename

The name of the input file. If this option is not used, then windres will use
the first non-option argument as the input file name. If there are no non-option
arguments, then windres will read from standard input. windres can not read
a COFF file from standard input.

-o filename

--output filename

The name of the output file. If this option is not used, then windres will use
the first non-option argument, after any used for the input file name, as the
output file name. If there is no non-option argument, then windres will write
to standard output. windres can not write a COFF file to standard output.
Note, for compatibility with rc the option ‘-fo’ is also accepted, but its use is
not recommended.

Chapter 14: windres 52

-J format

--input-format format

The input format to read. format may be ‘res’, ‘rc’, or ‘coff’. If no input
format is specified, windres will guess, as described above.

-O format

--output-format format

The output format to generate. format may be ‘res’, ‘rc’, or ‘coff’. If no
output format is specified, windres will guess, as described above.

-F target

--target target

Specify the BFD format to use for a COFF file as input or output. This is a
BFD target name; you can use the ‘--help’ option to see a list of supported
targets. Normally windres will use the default format, which is the first one
listed by the ‘--help’ option. Section 18.1 [Target Selection], page 64.

--preprocessor program

When windres reads an rc file, it runs it through the C preprocessor first. This
option may be used to specify the preprocessor to use, including any leading
arguments. The default preprocessor argument is gcc -E -xc-header -DRC_
INVOKED.

-I directory

--include-dir directory

Specify an include directory to use when reading an rc file. windres will
pass this to the preprocessor as an ‘-I’ option. windres will also search this
directory when looking for files named in the rc file. If the argument passed to
this command matches any of the supported formats (as described in the ‘-J’
option), it will issue a deprecation warning, and behave just like the ‘-J’ option.
New programs should not use this behaviour. If a directory happens to match
a format, simple prefix it with ‘./’ to disable the backward compatibility.

-D target

--define sym[=val]
Specify a ‘-D’ option to pass to the preprocessor when reading an rc file.

-U target

--undefine sym

Specify a ‘-U’ option to pass to the preprocessor when reading an rc file.

-r Ignored for compatibility with rc.

-v Enable verbose mode. This tells you what the preprocessor is if you didn’t
specify one.

-c val

--codepage val

Specify the default codepage to use when reading an rc file. val should be
a hexadecimal prefixed by ‘0x’ or decimal codepage code. The valid range is
from zero up to 0xffff, but the validity of the codepage is host and configuration
dependent.

Chapter 14: windres 53

-l val

--language val

Specify the default language to use when reading an rc file. val should be a
hexadecimal language code. The low eight bits are the language, and the high
eight bits are the sublanguage.

--use-temp-file
Use a temporary file to instead of using popen to read the output of the pre-
processor. Use this option if the popen implementation is buggy on the host
(eg., certain non-English language versions of Windows 95 and Windows 98 are
known to have buggy popen where the output will instead go the console).

--no-use-temp-file
Use popen, not a temporary file, to read the output of the preprocessor. This
is the default behaviour.

-h

--help Prints a usage summary.

-V

--version
Prints the version number for windres.

--yydebug
If windres is compiled with YYDEBUG defined as 1, this will turn on parser
debugging.

Chapter 15: dlltool 54

15 dlltool

dlltool is used to create the files needed to create dynamic link libraries (DLLs) on systems
which understand PE format image files such as Windows. A DLL contains an export
table which contains information that the runtime loader needs to resolve references from
a referencing program.

The export table is generated by this program by reading in a ‘.def’ file or scanning the
‘.a’ and ‘.o’ files which will be in the DLL. A ‘.o’ file can contain information in special
‘.drectve’ sections with export information.

Note: dlltool is not always built as part of the binary utilities, since it is only
useful for those targets which support DLLs.
dlltool [‘-d’|‘--input-def’ def-file-name]

[‘-b’|‘--base-file’ base-file-name]

[‘-e’|‘--output-exp’ exports-file-name]

[‘-z’|‘--output-def’ def-file-name]

[‘-l’|‘--output-lib’ library-file-name]

[‘--export-all-symbols’] [‘--no-export-all-symbols’]

[‘--exclude-symbols’ list]

[‘--no-default-excludes’]

[‘-S’|‘--as’ path-to-assembler] [‘-f’|‘--as-flags’ options]

[‘-D’|‘--dllname’ name] [‘-m’|‘--machine’ machine]

[‘-a’|‘--add-indirect’]

[‘-U’|‘--add-underscore’] [‘--add-stdcall-underscore’]

[‘-k’|‘--kill-at’] [‘-A’|‘--add-stdcall-alias’]

[‘-p’|‘--ext-prefix-alias’ prefix]

[‘-x’|‘--no-idata4’] [‘-c’|‘--no-idata5’]

[‘--use-nul-prefixed-import-tables’]

[‘-I’|‘--identify’ library-file-name] [‘--identify-strict’]

[‘-i’|‘--interwork’]

[‘-n’|‘--nodelete’] [‘-t’|‘--temp-prefix’ prefix]

[‘-v’|‘--verbose’]

[‘-h’|‘--help’] [‘-V’|‘--version’]

[object-file ...]

dlltool reads its inputs, which can come from the ‘-d’ and ‘-b’ options as well as object
files specified on the command line. It then processes these inputs and if the ‘-e’ option
has been specified it creates a exports file. If the ‘-l’ option has been specified it creates a
library file and if the ‘-z’ option has been specified it creates a def file. Any or all of the
‘-e’, ‘-l’ and ‘-z’ options can be present in one invocation of dlltool.

When creating a DLL, along with the source for the DLL, it is necessary to have three
other files. dlltool can help with the creation of these files.

The first file is a ‘.def’ file which specifies which functions are exported from the DLL,
which functions the DLL imports, and so on. This is a text file and can be created by hand,
or dlltool can be used to create it using the ‘-z’ option. In this case dlltool will scan
the object files specified on its command line looking for those functions which have been
specially marked as being exported and put entries for them in the ‘.def’ file it creates.

In order to mark a function as being exported from a DLL, it needs to have an
‘-export:<name_of_function>’ entry in the ‘.drectve’ section of the object file. This
can be done in C by using the asm() operator:

asm (".section .drectve");

asm (".ascii \"-export:my_func\"");

Chapter 15: dlltool 55

int my_func (void) { ... }

The second file needed for DLL creation is an exports file. This file is linked with the
object files that make up the body of the DLL and it handles the interface between the
DLL and the outside world. This is a binary file and it can be created by giving the ‘-e’
option to dlltool when it is creating or reading in a ‘.def’ file.

The third file needed for DLL creation is the library file that programs will link with in
order to access the functions in the DLL (an ‘import library’). This file can be created by
giving the ‘-l’ option to dlltool when it is creating or reading in a ‘.def’ file.

dlltool builds the library file by hand, but it builds the exports file by creating tempo-
rary files containing assembler statements and then assembling these. The ‘-S’ command
line option can be used to specify the path to the assembler that dlltool will use, and the
‘-f’ option can be used to pass specific flags to that assembler. The ‘-n’ can be used to
prevent dlltool from deleting these temporary assembler files when it is done, and if ‘-n’ is
specified twice then this will prevent dlltool from deleting the temporary object files it used
to build the library.

Here is an example of creating a DLL from a source file ‘dll.c’ and also creating a
program (from an object file called ‘program.o’) that uses that DLL:

gcc -c dll.c

dlltool -e exports.o -l dll.lib dll.o

gcc dll.o exports.o -o dll.dll

gcc program.o dll.lib -o program

dlltool may also be used to query an existing import library to determine the name of
the DLL to which it is associated. See the description of the ‘-I’ or ‘--identify’ option.

The command line options have the following meanings:

-d filename

--input-def filename

Specifies the name of a ‘.def’ file to be read in and processed.

-b filename

--base-file filename

Specifies the name of a base file to be read in and processed. The contents of
this file will be added to the relocation section in the exports file generated by
dlltool.

-e filename

--output-exp filename

Specifies the name of the export file to be created by dlltool.

-z filename

--output-def filename

Specifies the name of the ‘.def’ file to be created by dlltool.

-l filename

--output-lib filename

Specifies the name of the library file to be created by dlltool.

--export-all-symbols
Treat all global and weak defined symbols found in the input object files as
symbols to be exported. There is a small list of symbols which are not exported

Chapter 15: dlltool 56

by default; see the ‘--no-default-excludes’ option. You may add to the list
of symbols to not export by using the ‘--exclude-symbols’ option.

--no-export-all-symbols
Only export symbols explicitly listed in an input ‘.def’ file or in ‘.drectve’
sections in the input object files. This is the default behaviour. The ‘.drectve’
sections are created by ‘dllexport’ attributes in the source code.

--exclude-symbols list

Do not export the symbols in list. This is a list of symbol names separated by
comma or colon characters. The symbol names should not contain a leading
underscore. This is only meaningful when ‘--export-all-symbols’ is used.

--no-default-excludes
When ‘--export-all-symbols’ is used, it will by default avoid exporting
certain special symbols. The current list of symbols to avoid exporting
is ‘DllMain@12’, ‘DllEntryPoint@0’, ‘impure_ptr’. You may use the
‘--no-default-excludes’ option to go ahead and export these special
symbols. This is only meaningful when ‘--export-all-symbols’ is used.

-S path

--as path

Specifies the path, including the filename, of the assembler to be used to create
the exports file.

-f options

--as-flags options

Specifies any specific command line options to be passed to the assembler when
building the exports file. This option will work even if the ‘-S’ option is not
used. This option only takes one argument, and if it occurs more than once
on the command line, then later occurrences will override earlier occurrences.
So if it is necessary to pass multiple options to the assembler they should be
enclosed in double quotes.

-D name

--dll-name name

Specifies the name to be stored in the ‘.def’ file as the name of the DLL when
the ‘-e’ option is used. If this option is not present, then the filename given to
the ‘-e’ option will be used as the name of the DLL.

-m machine

-machine machine

Specifies the type of machine for which the library file should be built. dlltool
has a built in default type, depending upon how it was created, but this option
can be used to override that. This is normally only useful when creating DLLs
for an ARM processor, when the contents of the DLL are actually encode using
Thumb instructions.

Chapter 15: dlltool 57

-a
--add-indirect

Specifies that when dlltool is creating the exports file it should add a section
which allows the exported functions to be referenced without using the import
library. Whatever the hell that means!

-U
--add-underscore

Specifies that when dlltool is creating the exports file it should prepend an
underscore to the names of all exported symbols.

--add-stdcall-underscore
Specifies that when dlltool is creating the exports file it should prepend an
underscore to the names of exported stdcall functions. Variable names and non-
stdcall function names are not modified. This option is useful when creating
GNU-compatible import libs for third party DLLs that were built with MS-
Windows tools.

-k
--kill-at

Specifies that when dlltool is creating the exports file it should not append
the string ‘@ <number>’. These numbers are called ordinal numbers and they
represent another way of accessing the function in a DLL, other than by name.

-A
--add-stdcall-alias

Specifies that when dlltool is creating the exports file it should add aliases
for stdcall symbols without ‘@ <number>’ in addition to the symbols with ‘@
<number>’.

-p
--ext-prefix-alias prefix

Causes dlltool to create external aliases for all DLL imports with the specified
prefix. The aliases are created for both external and import symbols with no
leading underscore.

-x
--no-idata4

Specifies that when dlltool is creating the exports and library files it should
omit the .idata4 section. This is for compatibility with certain operating
systems.

--use-nul-prefixed-import-tables
Specifies that when dlltool is creating the exports and library files it should
prefix the .idata4 and .idata5 by zero an element. This emulates old gnu
import library generation of dlltool. By default this option is turned off.

-c
--no-idata5

Specifies that when dlltool is creating the exports and library files it should
omit the .idata5 section. This is for compatibility with certain operating
systems.

Chapter 15: dlltool 58

-I filename

--identify filename

Specifies that dlltool should inspect the import library indicated by filename
and report, on stdout, the name(s) of the associated DLL(s). This can be
performed in addition to any other operations indicated by the other options
and arguments. dlltool fails if the import library does not exist or is not
actually an import library. See also ‘--identify-strict’.

--identify-strict
Modifies the behavior of the ‘--identify’ option, such that an error is reported
if filename is associated with more than one DLL.

-i
--interwork

Specifies that dlltool should mark the objects in the library file and exports
file that it produces as supporting interworking between ARM and Thumb code.

-n
--nodelete

Makes dlltool preserve the temporary assembler files it used to create the ex-
ports file. If this option is repeated then dlltool will also preserve the temporary
object files it uses to create the library file.

-t prefix

--temp-prefix prefix

Makes dlltool use prefix when constructing the names of temporary assembler
and object files. By default, the temp file prefix is generated from the pid.

-v
--verbose

Make dlltool describe what it is doing.

-h
--help Displays a list of command line options and then exits.

-V
--version

Displays dlltool’s version number and then exits.

15.1 The format of the dlltool ‘.def’ file

A ‘.def’ file contains any number of the following commands:

NAME name [, base]
The result is going to be named name.exe.

LIBRARY name [, base]
The result is going to be named name.dll.

EXPORTS (((name1 [= name2]) | (name1 = module-name . external-name))
[integer] [NONAME] [CONSTANT] [DATA] [PRIVATE]) *

Declares name1 as an exported symbol from the DLL, with optional ordinal
number integer, or declares name1 as an alias (forward) of the function external-
name in the DLL module-name.

Chapter 15: dlltool 59

IMPORTS ((internal-name = module-name . integer) | [internal-name =]
module-name . external-name)) *

Declares that external-name or the exported function whose ordinal number
is integer is to be imported from the file module-name. If internal-name is
specified then this is the name that the imported function will be referred to in
the body of the DLL.

DESCRIPTION string
Puts string into the output ‘.exp’ file in the .rdata section.

STACKSIZE number-reserve [, number-commit]
HEAPSIZE number-reserve [, number-commit]

Generates --stack or --heap number-reserve,number-commit in the output
.drectve section. The linker will see this and act upon it.

CODE attr +
DATA attr +
SECTIONS (section-name attr +) *

Generates --attr section-name attr in the output .drectve section, where
attr is one of READ, WRITE, EXECUTE or SHARED. The linker will see this and act
upon it.

Chapter 16: readelf 60

16 readelf

readelf [‘-a’|‘--all’]

[‘-h’|‘--file-header’]

[‘-l’|‘--program-headers’|‘--segments’]

[‘-S’|‘--section-headers’|‘--sections’]

[‘-g’|‘--section-groups’]

[‘-t’|‘--section-details’]

[‘-e’|‘--headers’]

[‘-s’|‘--syms’|‘--symbols’]

[‘-n’|‘--notes’]

[‘-r’|‘--relocs’]

[‘-u’|‘--unwind’]

[‘-d’|‘--dynamic’]

[‘-V’|‘--version-info’]

[‘-A’|‘--arch-specific’]

[‘-D’|‘--use-dynamic’]

[‘-x’ <number or name>|‘--hex-dump=’<number or name>]

[‘-p’ <number or name>|‘--string-dump=’<number or name>]

[‘-R’ <number or name>|‘--relocated-dump=’<number or name>]

[‘-c’|‘--archive-index’]

[‘-w[lLiaprmfFsoR]’|

‘--debug-dump’[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,=frames-

interp,=str,=loc,=Ranges]]

[‘-I’|‘-histogram’]

[‘-v’|‘--version’]

[‘-W’|‘--wide’]

[‘-H’|‘--help’]

elffile...

readelf displays information about one or more ELF format object files. The options
control what particular information to display.

elffile . . . are the object files to be examined. 32-bit and 64-bit ELF files are supported,
as are archives containing ELF files.

This program performs a similar function to objdump but it goes into more detail and
it exists independently of the bfd library, so if there is a bug in bfd then readelf will not
be affected.

The long and short forms of options, shown here as alternatives, are equivalent. At least
one option besides ‘-v’ or ‘-H’ must be given.

-a
--all Equivalent to specifying ‘--file-header’, ‘--program-headers’,

‘--sections’, ‘--symbols’, ‘--relocs’, ‘--dynamic’, ‘--notes’ and
‘--version-info’.

-h
--file-header

Displays the information contained in the ELF header at the start of the file.

-l
--program-headers
--segments

Displays the information contained in the file’s segment headers, if it has any.

Chapter 16: readelf 61

-S
--sections
--section-headers

Displays the information contained in the file’s section headers, if it has any.

-g
--section-groups

Displays the information contained in the file’s section groups, if it has any.

-t
--section-details

Displays the detailed section information. Implies ‘-S’.

-s
--symbols
--syms Displays the entries in symbol table section of the file, if it has one.

-e
--headers

Display all the headers in the file. Equivalent to ‘-h -l -S’.

-n
--notes Displays the contents of the NOTE segments and/or sections, if any.

-r
--relocs Displays the contents of the file’s relocation section, if it has one.

-u
--unwind Displays the contents of the file’s unwind section, if it has one. Only the unwind

sections for IA64 ELF files are currently supported.

-d
--dynamic

Displays the contents of the file’s dynamic section, if it has one.

-V
--version-info

Displays the contents of the version sections in the file, it they exist.

-A
--arch-specific

Displays architecture-specific information in the file, if there is any.

-D
--use-dynamic

When displaying symbols, this option makes readelf use the symbol table in
the file’s dynamic section, rather than the one in the symbols section.

-x <number or name>
--hex-dump=<number or name>

Displays the contents of the indicated section as a hexadecimal bytes. A number
identifies a particular section by index in the section table; any other string
identifies all sections with that name in the object file.

Chapter 16: readelf 62

-R <number or name>
--relocated-dump=<number or name>

Displays the contents of the indicated section as a hexadecimal bytes. A number
identifies a particular section by index in the section table; any other string
identifies all sections with that name in the object file. The contents of the
section will be relocated before they are displayed.

-p <number or name>
--string-dump=<number or name>

Displays the contents of the indicated section as printable strings. A number
identifies a particular section by index in the section table; any other string
identifies all sections with that name in the object file.

-c
--archive-index

Displays the file symbol index infomation contained in the header part of binary
archives. Performs the same function as the ‘t’ command to ar, but without
using the BFD library. See Chapter 1 [ar], page 2.

-w[lLiaprmfFsoR]
--debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,=frames-interp,=str,=loc,=Ranges]

Displays the contents of the debug sections in the file, if any are present. If one
of the optional letters or words follows the switch then only data found in those
specific sections will be dumped.
Note: the ‘=decodedline’ option will display the interpreted contents of a
.debug line section whereas the ‘=rawline’ option dumps the contents in a raw
format.

-I
--histogram

Display a histogram of bucket list lengths when displaying the contents of the
symbol tables.

-v
--version

Display the version number of readelf.

-W
--wide Don’t break output lines to fit into 80 columns. By default readelf breaks

section header and segment listing lines for 64-bit ELF files, so that they fit
into 80 columns. This option causes readelf to print each section header resp.
each segment one a single line, which is far more readable on terminals wider
than 80 columns.

-H
--help Display the command line options understood by readelf.

Chapter 17: Common Options 63

17 Common Options

The following command-line options are supported by all of the programs described in this
manual.

@file Read command-line options from file. The options read are inserted in place
of the original @file option. If file does not exist, or cannot be read, then the
option will be treated literally, and not removed.
Options in file are separated by whitespace. A whitespace character may be
included in an option by surrounding the entire option in either single or double
quotes. Any character (including a backslash) may be included by prefixing the
character to be included with a backslash. The file may itself contain additional
@file options; any such options will be processed recursively.

--help Display the command-line options supported by the program.

--version
Display the version number of the program.

Chapter 18: Selecting the Target System 64

18 Selecting the Target System

You can specify two aspects of the target system to the gnu binary file utilities, each in
several ways:

• the target

• the architecture

In the following summaries, the lists of ways to specify values are in order of decreasing
precedence. The ways listed first override those listed later.

The commands to list valid values only list the values for which the programs you
are running were configured. If they were configured with ‘--enable-targets=all’, the
commands list most of the available values, but a few are left out; not all targets can be
configured in at once because some of them can only be configured native (on hosts with
the same type as the target system).

18.1 Target Selection

A target is an object file format. A given target may be supported for multiple architec-
tures (see Section 18.2 [Architecture Selection], page 65). A target selection may also have
variations for different operating systems or architectures.

The command to list valid target values is ‘objdump -i’ (the first column of output
contains the relevant information).

Some sample values are: ‘a.out-hp300bsd’, ‘ecoff-littlemips’, ‘a.out-sunos-big’.

You can also specify a target using a configuration triplet. This is the same sort of name
that is passed to ‘configure’ to specify a target. When you use a configuration triplet as
an argument, it must be fully canonicalized. You can see the canonical version of a triplet
by running the shell script ‘config.sub’ which is included with the sources.

Some sample configuration triplets are: ‘m68k-hp-bsd’, ‘mips-dec-ultrix’,
‘sparc-sun-sunos’.

objdump Target

Ways to specify:

1. command line option: ‘-b’ or ‘--target’

2. environment variable GNUTARGET

3. deduced from the input file

objcopy and strip Input Target

Ways to specify:

1. command line options: ‘-I’ or ‘--input-target’, or ‘-F’ or ‘--target’

2. environment variable GNUTARGET

3. deduced from the input file

Chapter 18: Selecting the Target System 65

objcopy and strip Output Target

Ways to specify:
1. command line options: ‘-O’ or ‘--output-target’, or ‘-F’ or ‘--target’
2. the input target (see “objcopy and strip Input Target” above)
3. environment variable GNUTARGET

4. deduced from the input file

nm, size, and strings Target

Ways to specify:
1. command line option: ‘--target’
2. environment variable GNUTARGET

3. deduced from the input file

18.2 Architecture Selection

An architecture is a type of cpu on which an object file is to run. Its name may contain a
colon, separating the name of the processor family from the name of the particular cpu.

The command to list valid architecture values is ‘objdump -i’ (the second column con-
tains the relevant information).

Sample values: ‘m68k:68020’, ‘mips:3000’, ‘sparc’.

objdump Architecture

Ways to specify:
1. command line option: ‘-m’ or ‘--architecture’
2. deduced from the input file

objcopy, nm, size, strings Architecture

Ways to specify:
1. deduced from the input file

Chapter 19: Reporting Bugs 66

19 Reporting Bugs

Your bug reports play an essential role in making the binary utilities reliable.
Reporting a bug may help you by bringing a solution to your problem, or it may not. But

in any case the principal function of a bug report is to help the entire community by making
the next version of the binary utilities work better. Bug reports are your contribution to
their maintenance.

In order for a bug report to serve its purpose, you must include the information that
enables us to fix the bug.

19.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:
• If a binary utility gets a fatal signal, for any input whatever, that is a bug. Reliable

utilities never crash.
• If a binary utility produces an error message for valid input, that is a bug.
• If you are an experienced user of binary utilities, your suggestions for improvement are

welcome in any case.

19.2 How to Report Bugs

A number of companies and individuals offer support for gnu products. If you obtained the
binary utilities from a support organization, we recommend you contact that organization
first.

You can find contact information for many support companies and individuals in the file
‘etc/SERVICE’ in the gnu Emacs distribution.

In any event, we also recommend that you send bug reports for the binary utilities to
https://support.codesourcery.com/GNUToolchain/.

The fundamental principle of reporting bugs usefully is this: report all the facts. If you
are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and
assume that some details do not matter. Thus, you might assume that the name of a file
you use in an example does not matter. Well, probably it does not, but one cannot be sure.
Perhaps the bug is a stray memory reference which happens to fetch from the location where
that pathname is stored in memory; perhaps, if the pathname were different, the contents
of that location would fool the utility into doing the right thing despite the bug. Play it
safe and give a specific, complete example. That is the easiest thing for you to do, and the
most helpful.

Keep in mind that the purpose of a bug report is to enable us to fix the bug if it is new
to us. Therefore, always write your bug reports on the assumption that the bug has not
been reported previously.

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” This cannot
help us fix a bug, so it is basically useless. We respond by asking for enough details to
enable us to investigate. You might as well expedite matters by sending them to begin
with.

To enable us to fix the bug, you should include all these things:

https://support.codesourcery.com/GNUToolchain/

Chapter 19: Reporting Bugs 67

• The version of the utility. Each utility announces it if you start it with the ‘--version’
argument.

Without this, we will not know whether there is any point in looking for the bug in the
current version of the binary utilities.

• Any patches you may have applied to the source, including any patches made to the
BFD library.

• The type of machine you are using, and the operating system name and version number.

• What compiler (and its version) was used to compile the utilities—e.g. “gcc-2.7”.

• The command arguments you gave the utility to observe the bug. To guarantee you
will not omit something important, list them all. A copy of the Makefile (or the output
from make) is sufficient.

If we were to try to guess the arguments, we would probably guess wrong and then we
might not encounter the bug.

• A complete input file, or set of input files, that will reproduce the bug. If the utility is
reading an object file or files, then it is generally most helpful to send the actual object
files.

If the source files were produced exclusively using gnu programs (e.g., gcc, gas, and/or
the gnu ld), then it may be OK to send the source files rather than the object files. In
this case, be sure to say exactly what version of gcc, or whatever, was used to produce
the object files. Also say how gcc, or whatever, was configured.

• A description of what behavior you observe that you believe is incorrect. For example,
“It gets a fatal signal.”

Of course, if the bug is that the utility gets a fatal signal, then we will certainly notice
it. But if the bug is incorrect output, we might not notice unless it is glaringly wrong.
You might as well not give us a chance to make a mistake.

Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as your copy of the utility is out of sync,
or you have encountered a bug in the C library on your system. (This has happened!)
Your copy might crash and ours would not. If you told us to expect a crash, then when
ours fails to crash, we would know that the bug was not happening for us. If you had
not told us to expect a crash, then we would not be able to draw any conclusion from
our observations.

• If you wish to suggest changes to the source, send us context diffs, as generated by
diff with the ‘-u’, ‘-c’, or ‘-p’ option. Always send diffs from the old file to the new
file. If you wish to discuss something in the ld source, refer to it by context, not by
line number.

The line numbers in our development sources will not match those in your sources.
Your line numbers would convey no useful information to us.

Here are some things that are not necessary:

• A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to
the input file will make the bug go away and which changes will not affect it.

Chapter 19: Reporting Bugs 68

This is often time consuming and not very useful, because the way we will find the
bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples. We recommend that you save your time for
something else.
Of course, if you can find a simpler example to report instead of the original one, that
is a convenience for us. Errors in the output will be easier to spot, running under the
debugger will take less time, and so on.
However, simplification is not vital; if you do not want to do this, report the bug
anyway and send us the entire test case you used.

• A patch for the bug.
A patch for the bug does help us if it is a good one. But do not omit the necessary
information, such as the test case, on the assumption that a patch is all we need. We
might see problems with your patch and decide to fix the problem another way, or we
might not understand it at all.
Sometimes with programs as complicated as the binary utilities it is very hard to
construct an example that will make the program follow a certain path through the
code. If you do not send us the example, we will not be able to construct one, so we
will not be able to verify that the bug is fixed.
And if we cannot understand what bug you are trying to fix, or why your patch should
be an improvement, we will not install it. A test case will help us to understand.

• A guess about what the bug is or what it depends on.
Such guesses are usually wrong. Even we cannot guess right about such things without
first using the debugger to find the facts.

Appendix A: GNU Free Documentation License 69

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

Appendix A: GNU Free Documentation License 70

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: GNU Free Documentation License 71

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,

Appendix A: GNU Free Documentation License 72

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: GNU Free Documentation License 73

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: GNU Free Documentation License 74

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix A: GNU Free Documentation License 75

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.
An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 76

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Binutils Index 77

Binutils Index

.

.stab . 30

A
Add prefix to absolute paths 29
addr2line . 44
address to file name and line number 44
all header information, object file 31
ar . 2
ar compatibility . 2
architecture . 27
architectures available . 27
archive contents . 33
Archive file symbol index information 62
archive headers . 25
archives . 2

B
base files . 55
bug criteria . 66
bug reports . 66
bugs . 66
bugs, reporting . 66

C
c++filt . 41
changing object addresses . 17
changing section address . 17
changing section LMA . 18
changing section VMA . 18
changing start address . 17
collections of files . 2
compatibility, ar . 2
contents of archive . 4
crash . 66
creating archives . 4
creating thin archive . 5
cxxfilt . 41

D
dates in archive . 5
debug symbols . 30
debugging symbols . 10
deleting from archive . 3
demangling C++ symbols . 41
demangling in nm . 10
demangling in objdump . 25, 44
deterministic archives . 4
disassembling object code . 25
disassembly architecture . 27

disassembly endianness . 26
disassembly, with source . 29
discarding symbols . 38
DLL . 54
dlltool . 54
DWARF . 30
dynamic relocation entries, in object file 29
dynamic symbol table entries, printing 31
dynamic symbols . 11

E
ELF dynamic section information 61
ELF file header information . 60
ELF file information . 60
ELF notes . 61
ELF object file format . 30
ELF program header information 60
ELF reloc information . 61
ELF section group information 61
ELF section information . 61
ELF segment information . 60
ELF symbol table information 61
ELF version sections informations 61
endianness . 26
error on valid input . 66
external symbols . 11, 12
extract from archive . 4

F
fatal signal . 66
file name . 10

H
header information, all . 31

I
input .def file . 55
input file name . 10

L
ld . 8
libraries . 2
linker . 8
listings strings . 36
load plugin . 11

M
machine instructions . 25

Binutils Index 78

moving in archive . 3
MRI compatibility, ar . 5

N
name duplication in archive . 4
name length . 2
nm . 9
nm compatibility . 10, 11
nm format . 10, 11
not writing archive index . 5

O
objdump . 24
object code format 12, 25, 35, 36, 44
object file header . 26
object file information . 24
object file offsets . 26
object file sections . 29
object formats available . 27
operations on archive . 3

P
printing from archive . 3
printing strings . 36

Q
quick append to archive . 3

R
radix for section sizes . 34
ranlib . 33
readelf . 60
relative placement in archive . 4
relocation entries, in object file 29
removing symbols . 38
repeated names in archive . 4
replacement in archive . 3
reporting bugs . 66

S
scripts, ar . 5

section addresses in objdump 25
section headers . 26
section information . 27
section sizes . 34
sections, full contents . 29
size . 34
size display format . 34
size number format . 34
sorting symbols . 11
source code context . 26
source disassembly . 29
source file name . 10
source filenames for object files 27
stab . 30
start-address . 30
stop-address . 30
strings . 36
strings, printing . 36
strip . 38
Strip absolute paths . 29
symbol index . 2, 33
symbol index, listing . 12
symbol line numbers . 11
symbol table entries, printing 30
symbols . 9
symbols, discarding . 38

T
thin archives . 2

U
undefined symbols . 12
Unix compatibility, ar . 3
unwind information . 61
updating an archive . 5

V
version . 1
VMA in objdump . 25

W
wide output, printing . 32
writing archive index . 5

	Introduction
	ar
	Controlling ar on the Command Line
	Controlling ar with a Script

	ld
	nm
	objcopy
	objdump
	ranlib
	size
	strings
	strip
	c++filt
	addr2line
	nlmconv
	windmc
	windres
	dlltool
	The format of the dlltool .def file

	readelf
	Common Options
	Selecting the Target System
	Target Selection
	Architecture Selection

	Reporting Bugs
	Have You Found a Bug?
	How to Report Bugs

	GNU Free Documentation License
	Binutils Index

