Sourcery G++ Lite
ARM GNU/Linux
Sourcery G++ Lite 200993-67
Getting Started

((ODESOURCERY

Sourcery G++ Lite: ARM GNU/Linux: Sourcery G++ Lite
2009q3-67: Getting Started

CodeSourcery, Inc.
Copyright © 2005, 2006, 2007, 2008, 2009 CodeSourcery, Inc.

All rights reserved.

Abstract

This guide explains how to install and build applications with Sourcery G++ Lite, CodeSourcery's
customized, validated, and supported version of the GNU Toolchain. Sourcery G++ Lite includes
everything you need for application development, including C and C++ compilers, assemblers,
linkers, and libraries.

When you have finished reading this guide, you will know how to use Sourcery G++ from the
command line.

Table of Contents

P ACE .t iv
1. INteNdEd AUIENCE .. .oeviieeeie e et v
2. OFQANIZALION ...ttt et Y
3. Typographical CONVENTIONSuuiiiiiiieeiii et vi
Lo QUICK SEAMT ..ottt e e e e e et et e e e ae 1
1.1, Installation and SEt-UPc..uiiiiiiiiiii e 2
1.2. Configuring Sourcery G++ Lite for the Target SyStemoccoiiiiiiiiiieiiiiineennns 2
1.3. BUIldiNG YOUT PrOGramcoouuiiiiiiii ettt e 2
1.4. Running and Debugging YOUr PrOgramoveeuuuuneeiriieeiiiiae et eennens 2
2. Installation and CoNfIQUIATIONuiiiiiiiiiiii e 4
2.1, TEIMINOIOQY . ..eeitieeeiit et e e ettt e eeee 5
2.2, SYStem REQUITEIMENESeeutiieiiii et 5
2.3. Downloading an INSEAlIEriiiiii e 6
2.4, Installing SOUrCEry G+ LIteuiiiiiiii e 6
2.5. Installing Sourcery G++ Lite UPJatesuuviiiiiiiiiiiiiieeeii e 9
2.6. Setting up the ENVIFONMENToovvtiiiii e 9
2.7. Uninstalling SOUICEry G+ Litecoouuiiiiiiiiiiiiii e 11
3. Sourcery G++ Lite Tor ARM GNU/LINUX ...ccovvniiiiiiieiiie e 13
3.1. Included Components and FEATUIESuiiiiiiiieiiii e 14
3.2, Library Configurationsieeeiiiieeeii e 14
3.3. Compiling for ARMVAT and ARMVS5T SYSEEMSiiiviiiiiiiiiiieiii e 15
3.4, Target Kernel REQUIFEMENTSuuiiiiiie it 15
3.5. Using Sourcery G++ Lite on GNU/LINUX Targetsoveeiriinieiiiinieeiiineeeiiinnnnn 16
3.6. Using GDB Server for Debuggingovvvviiiiiiiiieiiei e 18
3.7. GLIBC BaCKLraCe SUPPOITccevviieiiiiiie ettt et 20
3.8. Using VP FI0ating POINTccouutiiiiiiiiiiii e 20
3.9. ABI ComPatibDilityccoeveiiiiii e 21
3.10. Object File POrtabilityccoouuiiiiiiie e 22
4. Using Sourcery G++ from the Command Linecoouiiiiiiiiiniiiiieee e 23
4.1. Building an ApplICAtIONuiiiiiii e 24
4.2. Running Applications on the Target SYStEMooeiiiiiiiiiiiiiie e 24
4.3. Running Applications from GDBuoiiiiiiiiiiiii e 25
5. Sourcery G+ Debug SPIite .. .coeeiiiiiii 26
5.1. Probing for DebUQG DEVICESuuiiiiiiiieiiii e 27
5.2. Invoking Sourcery G++ Debug SPriteoviiiiiiiiiiiii e 27
5.3. Sourcery G++ Debug Sprite OptioNSuiiiiiiiiiiiiie e 28
5.4. Remote Debug INterface DEVICESivvvuriiiiiii e 29
5.5, ACtel FIASNPIO DEVICES .. .covviiieiiiii e e 29
5.6. Debugging @ ReEMOte BOAITuiiiiiiiiiiiiii e 30
5.7. Supported Board FIlEScoouuiiiiiii e 30
5.8. BOArd File SYNTAX ...ccovtiiiiiiiii i 30
6. Next Steps With SOUICEIY G .oouuiiiiiiii e 34
6.1. Sourcery G+ SUDSCHIPLIONSuiiiiiiieiiii e 35
6.2. Sourcery G++ KNOWIedge BaSeuiiiiiiiiiiiiiiiiecei e 36
6.3. Manuals for GNU Toolchain COMPONENTSuuiiiiiieiiiiieee e 36
A. Sourcery G++ Lite ReleaSe NOTESvuiiiiiiiiiieiii e 38
A.1. Changes in Sourcery G++ Lite for ARM GNU/LINUXoiiiiiiiiiiiiiiiiieiiiineees 39
B. SOUICErY Gt Lite LICENSES ... ettt ettt e e e e e e eaeas 53
B.1. Licenses for Sourcery G++ Lite COMPONENTSouviiiiiiniiiiiiiieiii e 54
B.2. Sourcery G++ Software License AGreemeNtvivvereiiiiiiiieeiii e 55

Preface

This preface introduces the Sourcery G++ Lite Getting Started guide. It explains the structure
of this guide and describes the documentation conventions used.

Preface

1. Intended Audience

This guide is written for people who will install and/or use Sourcery G++ Lite. This guide provides
a step-by-step guide to installing Sourcery G++ Lite and to building simple applications. Parts of
this document assume that you have some familiarity with using the command-line interface.

2. Organization

This document is organized into the following chapters and appendices:

Chapter 1, “Quick Start”

Chapter 2, “Installation and Config-
uration”

Chapter 3, “Sourcery G++ Lite for
ARM GNU/Linux”

Chapter 4, “Using Sourcery G++
from the Command Line”

Chapter 5, “Sourcery G++ Debug
Sprite”

Chapter 6, “Next Steps with Sourcery
G++”

Appendix A, “Sourcery G++ Lite
Release Notes”

Appendix B, “Sourcery G++ Lite
Licenses”

This chapter includes a brief checklist to follow when in-
stalling and using Sourcery G++ Lite for the first time. You
may use this chapter as an abbreviated guide to the rest of this
manual.

This chapter describes how to download, install and configure
Sourcery G++ Lite. This section describes the available install-
ation options and explains how to set up your environment so
that you can build applications.

This chapter contains information about using Sourcery G++
Lite that is specific to ARM GNUY/Linux targets. You should
read this chapter to learn how to best use Sourcery G++ Lite
on your target system.

This chapter explains how to build applications with Sourcery
G++ Lite using the command line. In the process of reading
this chapter, you will build a simple application that you can
use as a model for your own programs.

This chapter describes the use of the Sourcery G++ Debug
Sprite for remote debugging. The Sprite is provided for debug-
ging of the Linux or uClinux kernel on the target board. This
chapter includes information about the debugging devices and
boards supported by the Sprite for ARM GNU/Linux.

This chapter describes where you can find additional docu-
mentation and information about using Sourcery G++ Lite
and its components. It also provides information about
Sourcery G++ subscriptions. CodeSourcery customers with
Sourcery G++ subscriptions receive comprehensive support
for Sourcery G++.

This appendix contains information about changes in this re-
lease of Sourcery G++ Lite for ARM GNU/Linux. You should
read through these notes to learn about new features and bug
fixes.

This appendix provides information about the software li-
censes that apply to Sourcery G++ Lite. Read this appendix
to understand your legal rights and obligations as a user of
Sourcery G++ Lite.

Preface

3. Typographical Conventions

The following typographical conventions are used in this guide:

> command arg ... A command, typed by the user, and its output. The “>” character is the
command prompt.

command The name of a program, when used in a sentence, rather than in literal
input or output.

literal Text provided to or received from a computer program.

pl acehol der Text that should be replaced with an appropriate value when typing a
command.

\ At the end of a line in command or program examples, indicates that a
long line of literal input or output continues onto the next line in the
document.

Vi

Chapter 1
Quick Start

This chapter includes a brief checklist to follow when installing and using Sourcery G++
Lite for the first time. You may use this chapter as an abbreviated guide to the rest of this
manual.

Quick Start

Sourcery G++ Lite for ARM GNUY/Linux is intended for developers working on embedded GNU/Linux
applications. It may also be used for Linux kernel development and debugging, or to build a
GNU/Linux distribution.

Follow the steps given in this chapter to install Sourcery G++ Lite and build and run your first ap-
plication program. The checklist given here is not a tutorial and does not include detailed instructions
for each step; however, it will help guide you to find the instructions and reference information you
need to accomplish each step. Note that this checklist is also oriented towards application debugging
rather than kernel debugging.

You can find additional details about the components, libraries, and other features included in this
version of Sourcery G++ Lite in Chapter 3, “Sourcery G++ Lite for ARM GNU/Linux”.

1.1. Installation and Set-Up

Install Sourcery G++ Lite on your host computer. You may download an installer package
from the Sourcery G++ web site?, or you may have received an installer on CD. The installer is an
executable program that pops up a window on your computer and leads you through a series of dialogs
to configure your installation. If the installation is successful, it will offer to launch the Getting
Started guide. For more information about installing Sourcery G++ Lite, including host system re-
quirements and tips to set up your environment after installation, refer to Chapter 2, “Installation
and Configuration”.

1.2. Configuring Sourcery G++ Lite for the Tar-
get System

Identify your target libraries. Sourcery G++ Lite supports libraries optimized for different targets.
Libraries are selected automatically by the linker, depending on the processor and other options you
have specified. Refer to Section 3.2, “Library Configurations” for details.

Install runtime libraries on your target machine. In order to run programs built with the
Sourcery G++ runtime libraries on target hardware, you must install these libraries, the Sourcery
G++ dynamic linker, and other runtime support files -- collectively referred to as the sysroot -- on
your GNU/Linux target system. Typically, this involves either using third-party tools to build a
complete root filesystem including the Sourcery G++ sysroot, or using special commands when
linking or running your program so it can find the sysroot installed in another location on the target.
Refer to Section 3.5, “Using Sourcery G++ Lite on GNU/Linux Targets” for full discussion of these
options.

1.3. Building Your Program
Build your program with Sourcery G++ command-line tools. Create a simple test program,

and follow the directions in Chapter 4, “Using Sourcery G++ from the Command Line” to compile
and link it using Sourcery G++ Lite.

1.4. Running and Debugging Your Program

The steps to run or debug your program depend on your target system and how it is configured.
Choose the appropriate method for your target.

! http://www.codesourcery.com/gnu_toolchains/

http://www.codesourcery.com/gnu_toolchains/
http://www.codesourcery.com/gnu_toolchains/

Quick Start

Run your program on the ARM GNU/Linux target. To run a program using the included
Sourcery G++ libraries, you must install the sysroot on the target, as previously discussed. Copy the
executable for your program to the target system. The method you use for launching your program
depends on how you have installed the libraries and built your program. In some cases, you may
need to invoke the Sourcery G++ dynamic linker explicitly. Refer to Section 3.5, “Using Sourcery
G++ Lite on GNU/Linux Targets” for details.

Debug your program on the target using GDB server. You can use GDB server on a remote
target to debug your program. When debugging a program that uses the included Sourcery G++ lib-
raries, you must use the gdbserver executable included in the sysroot, and similar issues with respect
to the dynamic linker as discussed previously apply. See Section 3.6, “Using GDB Server for Debug-
ging” for detailed instructions. Once you have started GDB server on the target, you can connect to
it from the debugger on your host system. Refer to Section 4.3, “Running Applications from GDB”
for instructions on remote debugging from command-line GDB.

Chapter 2
Installation and Configuration

This chapter explains how to install Sourcery G++ Lite. You will learn how to:
1. Verify that you can install Sourcery G++ Lite on your system.

2. Download the appropriate Sourcery G++ Lite installer.

3. Install Sourcery G++ Lite.

4. Configure your environment so that you can use Sourcery G++ Lite.

Installation and Configuration

2.1. Terminology

Throughout this document, the term host system refers to the system on which you run Sourcery
G++ while the term target systemrefers to the system on which the code produced by Sourcery G++
runs. The target system for this version of Sourcery G++ is arm-none-1inux-gnueabi.

If you are developing a workstation or server application to run on the same system that you are using
to run Sourcery G++, then the host and target systems are the same. On the other hand, if you are
developing an application for an embedded system, then the host and target systems are probably
different.

2.2. System Requirements

2.2.1. Host Operating System Requirements
This version of Sourcery G++ supports the following host operating systems and architectures:

» Microsoft Windows NT 4, Windows 2000, Windows XP, and Windows Vista systems using 1A32,
AMDG64, and EM64T processors.

e GNU/Linux systems using 1A32, AMD64, or EM64T processors, including Debian 3.1 (and later),
Red Hat Enterprise Linux 3 (and later), and SUSE Enterprise Linux 8 (and later).

Sourcery G++ is built as a 32-bit application. Therefore, even when running on a 64-bit host system,
Sourcery G++ requires 32-bit host libraries. If these libraries are not already installed on your system,
you must install them before installing and using Sourcery G++ Lite. Consult your operating system
documentation for more information about obtaining these libraries.

Installing on Ubuntu and Debian GNU/Linux Hosts

The Sourcery G++ graphical installer is incompatible with the dash shell, which is the default
/bin/sh for recent releases of the Ubuntu and Debian GNU/Linux distributions. To install
Sourcery G++ Lite on these systems, you must make Zbin/sh a symbolic link to one of
the supported shells: bash, csh, tcsh, zsh, or ksh.

For example, on Ubuntu systems, the recommended way to do this is:

> sudo dpkg-reconfigure -plow dash
Install as /bin/sh? No

This is a limitation of the installer and uninstaller only, not of the installed Sourcery G++
Lite toolchain.

2.2.2. Host Hardware Requirements
In order to install and use Sourcery G++ Lite, you must have at least 128MB of available memory.

The amount of disk space required for a complete Sourcery G++ Lite installation directory depends
on the host operating system and the number of target libraries included. Typically, you should plan
on at least 400MB.

In addition, the graphical installer requires a similar amount of temporary space during the installation
process. On Microsoft Windows hosts, the installer uses the location specified by the TEMP environ-
ment variable for these temporary files. If there is not enough free space on that volume, the installer

Installation and Configuration

prompts for an alternate location. On Linux hosts, the installer puts temporary files in the directory
specified by the IATEMPD IR environment variable, or /tmp if that is not set.

2.2.3. Target System Requirements

See Chapter 3, “Sourcery G++ Lite for ARM GNU/Linux” for requirements that apply to the target
system.

2.3. Downloading an Installer

If you have received Sourcery G++ Lite on a CD, or other physical media, then you do not need to
download an installer. You may skip ahead to Section 2.4, “Installing Sourcery G++ Lite”.

You can download Sourcery G++ Lite from the Sourcery G++ web sitel. This free version of Sourcery
G++, which is made available to the general public, does not include all the functionality of Code-
Sourcery's product releases. If you prefer, you may instead purchase or register for an evaluation of
CodeSourcery's product toolchains at the Sourcery G++ Portal?. For more information about sub-
scriptions for Sourcery G++ product releases, see Section 6.1, “Sourcery G++ Subscriptions”.

Once you have navigated to the appropriate web site, download the installer that corresponds to your
host operating system. For Microsoft Windows systems, the Sourcery G++ installer is provided as
an executable with the . exe extension. For GNU/Linux systems Sourcery G++ Lite is provided as
an executable installer package with the .bin extension. You may also install from a compressed
archive with the _tar .bz2 extension.

On Microsoft Windows systems, save the installer to the desktop. On GNU/Linux systems, save the
download package in your home directory.

2.4. Installing Sourcery G++ Lite

The method used to install Sourcery G++ Lite depends on your host system and the kind of installation
package you have downloaded.

2.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows

If you have received Sourcery G++ Lite on CD, insert the CD in your computer. On most computers,
the installer then starts automatically. If your computer has been configured not to automatically run
CDs, open My Computer, and double click on the CD. If you downloaded Sourcery G++ Lite,
double-click on the installer.

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. The installer is
intended to be self-explanatory and on most pages the defaults are appropriate.

! http://www.codesourcery.com/gnu_toolchains/
2 https://support.codesourcery.com/GNUToolchain/

http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/
http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/

Installation and Configuration

2 Sourcery G++ for ARM EABI M= B3
Sourcery G++ for ARM EABI Wizard

@ Welcome! Installamawhere will guide you thraugh the installation of Sourcery

) Important Infarmation G+ for ARM EABI.

O Choose Install Set Itis strangly recommended that you quit all programs befare
(@ choose Install Folder continuing with this installation.

© Add to PATH?

() Choose Shortcut Folder
O Fre-Installation Surmmary
) Installing... You may cancel this installation at any time by clicking the 'Cancel’

© Install Complete huttan.

Click the 'Next' huttan to proceed to the next screen. Ifyou want to
change something an a previous screen, click the ‘Previous' buttan.

(& CoeSoucea

InstallAmpwhere by Macravision

Cancel | Erevious |

Running the Installer. The graphical installer guides you through the steps to
install Sourcery G++ Lite.

You may want to change the install directory pathname and customize the shortcut installation.

2 Sourcery G++ for ARM EABI (- [T =]

Choose Install Folder

G Welcome! Where Would You Like to Install?

G Impartant Information IC:'l,Program Files\CodeSourceryl Sourcery G++ I
& Choose Install Set

& Choose Install Folder

@ Add to PATH?

() Choose Shortcut Folder
O Fre-Installation Surmmary
) Installing...

) Install Complete

Restore Default Folder | Choose...

(& CoeSoucea

InstallAmpwhere by Macravision

Cancel | Frevious | INext |

Choose Install Folder. Select the pathname to your install directory.

Installation and Configuration

2 Sourcery G++ for ARM EABI

& wielcome!

& Important Infarmation

& Choose Install Set

& Choose Install Folder

@ Add to PATH?

& Choose Shorteut Folder
O Fre-Installation Surmmary
) Installing...

) Install Complete

(& (onESouncea

M= B3
Choose Shortcut Folder

Where would you like to create product icons?

{~ In & new Program Group: ISourcery G++ For ARM EABL

{~ In an existing Program Group: IAccessories LI
" In the Start Menu

= On the Desktop

' In the Quick Launch Bar

.
¥ Other: IieSourcery'l,Sourcery G+ For ARM BB Choose... |

" Don't create icons

[~ Create Icons For Al Users

InstallAmpwhere by Macravision

Cancel |

Frevious |

Choose Shortcut Folder.

You can customize where the installer creates

shortcuts for quick access to Sourcery G++ Lite.

When the installer has finished, it asks if you want to launch a viewer for the Getting Started guide.
Finally, the installer displays a summary screen to confirm a successful install before it exits.

2 Sourcery G++ for ARM EABI

& wielcome!
& Important Infarmation
& Choose Install Set

I B3
Install Complete

fongratulations! Sourcery G++ For ARM EART
has been successfully installed to:

diicygwinthomesandralarmss3instal

& Choose Install Folder
@ Add to PATH?

& Choose Shorteut Folder
G Fre-Installation Summary
& Installing...

& Install Complete

Press "Done” to quit the installer,

(& (onESouncea

InstallAmpwhere by Macravision

Cancel |

Frevious |

You should see a screen similar to this after a successful
install.

Install Complete.
If you prefer, you can run the installer in console mode rather than using the graphical interface. To
do this, invoke the installer with the -1 console command-line option. For example:
> /path/to/package.exe -1 console
2.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts

Start the graphical installer by invoking the executable shell script:

Installation and Configuration

> /bin/sh _/path/to/package.bin

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. For additional
details on running the installer, see the discussion and screen shots in the Microsoft Windows section
above.

If you prefer, or if your host system does not run the X Window System, you can run the installer
in console mode rather than using the graphical interface. To do this, invoke the installer with the
-1 console command-line option. For example:

> /bin/sh ./path/to/package.bin -i console

2.4.3. Installing Sourcery G++ Lite from a Compressed Archive

You do not need to be a system administrator to install Sourcery G++ Lite from a compressed archive.
You may install Sourcery G++ Lite using any user account and in any directory to which you have
write access. This guide assumes that you have decided to install Sourcery G++ Lite in the $HOME/
CodeSourcery subdirectory of your home directory and that the filename of the package you
have downloaded is /path/to/package.tar.bz2. After installation the toolchain will be in
$HOME/CodeSourcery/sourceryg++-2009q3.

First, uncompress the package file:

> bunzip2 /path/to/package.tar._bz2

Next, create the directory in which you wish to install the package:
> mkdir -p $HOME/CodeSourcery

Change to the installation directory:

> cd $HOME/CodeSourcery

Unpack the package:

> tar xf /path/to/package.tar

2.5. Installing Sourcery G++ Lite Updates

If you have already installed an earlier version of Sourcery G++ Lite for ARM GNU/Linux on your
system, it is not necessary to uninstall it before using the installer to unpack a new version in the
same location. The installer detects that it is performing an update in that case.

If you are installing an update from a compressed archive, it is recommended that you remove any
previous installation in the same location, or install in a different directory.

Note that the names of the Sourcery G++ commands for the ARM GNUY/Linux target all begin with
arm-none-linux-gnueabi. This means that you can install Sourcery G++ for multiple target systems
in the same directory without conflicts.

2.6. Setting up the Environment

As with the installation process itself, the steps required to set up your environment depend on your
host operating system.

Installation and Configuration

2.6.1. Setting up the Environment on Microsoft Windows Hosts
2.6.1.1. Setting the PATH

In order to use the Sourcery G++ tools from the command line, you should add them to your PATH.
You may skip this step if you used the graphical installer, since the installer automatically adds
Sourcery G++ to your PATH.

To set the PATH on a Microsoft Windows Vista system, use the following command in a cmd . exe
shell:

> setx PATH "%PATH%;C:\Program Files\Sourcery G++\bin"

where C:\Program Files\Sourcery G++ should be changed to the path of your Sourcery
G++ Lite installation.

To set the PATH on a system running a Microsoft Windows version other than Vista, from the desktop
bring up the Start menu and right click on My Computer. Select Properties, go to the
Advanced tab, then click on the Environment Variables button. Select the PATH variable
and click the Edit. Add the string ;C:\Program Files\Sourcery G++\bin to the end,
and click OK. Again, you must adjust the pathname to reflect your installation directory.

You can verify that your PATH is set up correctly by starting a new cmd . exe shell and running:
> arm-none-linux-gnueabi-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 2009q3-67.

2.6.1.2. Working with Cygwin

Sourcery G++ Lite does not require Cygwin or any other UNIX emulation environment. You can
use Sourcery G++ directly from the Windows command shell. You can also use Sourcery G++ from
within the Cygwin environment, if you prefer.

The Cygwin emulation environment translates Windows path names into UNIX path names. For
example, the Cygwin path /home/user/hel 1o . c corresponds to the Windows path ¢ 2 \cygwin\
home\user\hello. c. Because Sourcery G++ is not a Cygwin application, it does not, by default,
recognize Cygwin paths.

If you are using Sourcery G++ from Cygwin, you should set the CYGPATH environment variable.
If this environment variable is set, Sourcery G++ Lite automatically translates Cygwin path names
into Windows path names. To set this environment variable, type the following command in a Cygwin
shell:

> export CYGPATH=cygpath

To resolve Cygwin path names, Sourcery G++ relies on the cygpath utility provided with Cygwin.
You must provide Sourcery G++ with the full path to cygpath if cygpath is not in your PATH.
For example:

> export CYGPATH=c:/cygwin/bin/cygpath

directs Sourcery G++ Lite to use c:/cygwin/bin/cygpath as the path conversion utility. The
value of CYGPATH must be an ordinary Windows path, not a Cygwin path.

10

Installation and Configuration

2.6.2. Setting up the Environment on GNU/Linux Hosts

If you installed Sourcery G++ Lite using the graphical installer then you may skip this step. The in-
staller does this setup for you.

Before using Sourcery G++ Lite you should add it to your PATH. The command you must use varies
with the particular command shell that you are using. If you are using the C Shell (csh or tcsh), use
the command:

> setenv PATH $HOME/CodeSourcery/Sourcery_G++/bin:$PATH
If you are using Bourne Shell (sh), the Korn Shell (ksh), or another shell, use:

> PATH=$HOME/CodeSourcery/Sourcery_G++/bin:$PATH
> export PATH

If you are not sure which shell you are using, try both commands. In both cases, if you have installed
Sourcery G++ Lite in an alternate location, you must replace the directory above with bin subdir-
ectory of the directory in which you installed Sourcery G++ Lite.

You may also wish to set the MANPATH environment variable so that you can access the Sourcery
G++ manual pages, which provide additional information about using Sourcery G++. To set the
MANPATH environment variable, follow the same steps shown above, replacing PATH with MANPATH,
and bin with share/doc/sourceryg++-arm-none- 1 inux-gnueabi/man.

You can test that your PATH is set up correctly by running the following command:
> arm-none-linux-gnueabi-g++ -v

Verify that the last line of the output contains: Sourcery G++ Lite 2009q3-67.

2.7. Uninstalling Sourcery G++ Lite

The method used to uninstall Sourcery G++ Lite depends on the method you originally used to install
it. If you have modified any files in the installation it is recommended that you back up these changes.
The uninstall procedure may remove the files you have altered.

2.7.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows

For Windows hosts other than Microsoft Windows Vista, select Start, then Control Panel.
Select Add or Remove Programs. Scroll down and click on Sourcery G++ for ARM
GNU/Linux. Select Change/Remove and follow the on-screen dialogs to uninstall Sourcery G++
Lite.

On Microsoft Windows Vista hosts, select Start, then Settings and finally Control Panel.
Select the Uninstall a program task. Scroll down and double click on Sourcery G++
for ARM GNU/Linux. Follow the on-screen dialogs to uninstall Sourcery G++ Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall executable found in your Sourcery G++ Lite installation directory withthe - console
command-line option.

To uninstall third-party drivers bundled with Sourcery G++ Lite, first disconnect the associated
hardware device. Then use Add or Remove Programs (non-Vista) or Uninstall a

11

Installation and Configuration

program (Vista) to remove the drivers separately. Depending on the device, you may need to reboot
your computer to complete the driver uninstall.

2.7.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux

You should use the provided uninstaller to remove a Sourcery G++ Lite installation originally created
by the executable installer script. The arm-none- 1 inux-gnueabi directory located in the install
directory will be removed entirely by the uninstaller. Please back up any changes you have made to
this directory, such as modified linker scripts.

Start the graphical uninstaller by invoking the executable Uninstall shell script located in your install-
ation directory. After the uninstaller starts, follow the on-screen dialogs to uninstall Sourcery G++
Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall script with the -1 console command-line option.

2.7.3. Uninstalling a Compressed Archive Installation

If you installed Sourcery G++ Lite from a . tar .bz2 file, you can uninstall it by manually deleting
the installation directory created in the install procedure.

12

Chapter 3
Sourcery G++ Lite for ARM
GNU/Linux

This chapter contains information about features of Sourcery G++ Lite that are specific to
ARM GNUJ/Linux targets. You should read this chapter to learn how to best use Sourcery
G++ Lite on your target system.

13

Sourcery G++ Lite for ARM GNU/Linux

3.1. Included Components and Features

This section briefly lists the important components and features included in Sourcery G++ Lite for
ARM GNUY/Linux, and tells you where you may find further information about these features.

Component ‘Version ’Notes

GNU programming tools

GNU Compiler Collection 441 Separate manual included.

GNU Binary Utilities 21951 Includes assembler, linker, and other utilities.
Separate manuals included.

Debugging support and simulators

GNU Debugger 6.8.50 Separate manual included.

Sourcery G++ Debug Sprite for|2009g3-67 |Provided for kernel debugging only. See
ARM Chapter 5, “Sourcery G++ Debug Sprite”.

GDB Server N/A Included with GDB. See Section 3.6, “Using GDB

Server for Debugging”.

Target libraries

GNU C Library 2.10 Separate manual included.

Linux Kernel Headers 2.6.30

Other utilities

GNU Make N/A Build support on Windows hosts.
GNU Core Utilities N/A Build support on Windows hosts.

3.2. Library Configurations

Sourcery G++ includes copies of run-time libraries that have been built with optimizations for different
target architecture variants or other sets of build options. Each such set of libraries is referred to as
a multilib. When you link a target application, Sourcery G++ selects the multilib matching the build
options you have selected.

Each multilib corresponds to a sysroot directory that contains the files that should be installed on
the target system. The sysroot contains the dynamic linker used to run your applications on the target
as well as the libraries. Refer to Section 3.5, “Using Sourcery G++ Lite on GNU/Linux Targets” for
instructions on how to install and use these support files on your target GNU/Linux system. You can
find the sysroot directories provided with Sourcery G++ in the arm-none-1inux-gnueabi/
1 ibc directory of your installation. In the tables below, the dynamic linker pathname is given relative
to the corresponding sysroot.

3.2.1. Included Libraries

The following library configurations are available in Sourcery G++ Lite for ARM GNU/Linux.

ARMVSTE - Little-Endian, Soft-Float, GLIBC
Command-line option(s): default

Sysroot subdirectory: V4

Dynamic linker: lib/1d-linux.so.3

14

Sourcery G++ Lite for ARM GNU/Linux

ARMVAT - Little-Endian, Soft-Float, GLIBC

Command-line option(s): -march=armv4t

Sysroot subdirectory: armvat/

Dynamic linker: lib/1d-linux.so.3

Notes: This should also be used for ARMV5T cores such as the
ARM1020T.

ARMvV7-A Thumb-2 - Little-Endian, Soft-Float, GLIBC

Command-line option(s): -mthumb -march=armv7-a
Sysroot subdirectory: thumb2/
Dynamic linker: lib/1ld-linux.so.3

3.2.2. Library Selection

A given multilib may be compatible with additional processors and build options beyond those listed
above. However, even if a particular set of command-line options produces code compatible with
one of the provided multilibs, those options may not be sufficient to identify the intended library to
the linker. For example, on some targets, specifying only a processor option on the command line
may imply architecture features or floating-point support for compilation, but not for library selection.
The details of the mapping from command-line options to multilibs are target-specific and quite
complex. Therefore, it is recommended that your link command line include exactly the options listed
in the tables above for your intended target multilib. In some cases, you may need to supply different
options for linking than for compilation.

If you are uncertain which multilib is selected by a particular set of command-line options, GCC can
tell you if you invoke it with the —-print-multi-directory option in addition to your other
build options. For example:

> arm-none-linux-gnueabi-gcc -print-multi-directory options...

The output of this command is a directory name for the multilib, which you can look up in the tables
given previously.

3.3. Compiling for ARMv4T and ARMV5T Sys-
tems

By default Sourcery G++ generates Linux binaries that require an ARMV5TE or later CPU. To build
applications or libraries capable of running on ARMvAT or early ARMv5 CPUs, use the
-march=armv4t or -march=armv5t command-line options. These options also select libraries
for ARMVAT processors; see Section 3.2, “Library Configurations” for details.

Code compiled for ARMVAT is ABI compatible with ARMVS5 code. Code and binaries compiled for
different architectures may be mixed freely.

3.4. Target Kernel Requirements

The GNU C library supplied with Sourcery G++ Lite uses the EABI-based kernel syscall interface.
This means applications compiled with Sourcery G++ require at least a 2.6.16 kernel with EABI
syscalls enabled.

15

Sourcery G++ Lite for ARM GNU/Linux

To provide VFP and Advanced SIMD registers, gdbserver requires support from the Linux kernel.
Linu>1< 2.6.30 includes the necessary support; for older versions, visit the Sourcery G++ Knowledge
Base™.

3.5. Using Sourcery G++ Lite on GNU/Linux
Targets

In order to run and debug programs produced by Sourcery G++ on a GNU/Linux target, you must
install runtime support files on the target. You may also need to set appropriate build options so that
your executables can find the correct dynamic linker and libraries at runtime.

The runtime support files, referred to as the sysroot, are found in the arm-none- 1 inux-gnueabi/
1 ibc directory of your Sourcery G++ Lite installation. The sysroot consists of the contents of the
etc, lib, sbin, and usr directories. There may be other directories in
arm-none-1inux-gnueabi/libc that contain additional sysroots customized for particular
combinations of command-line compiler flags, or multilibs. Refer to Section 3.2, “Library Configur-
ations” for a list of the included multilibs in this version of Sourcery G++ Lite, and the corresponding
sysroot directory pathnames.

Note for Windows Host Users

The sysroots provided in Windows host packages for Sourcery G++ are not directly usable
on the Linux target because of differences between the Windows and Linux file systems.
Some files that are hard links, or copies, in the sysroot as installed on the Windows file
system should be symbolic links on the Linux target. Additionally, some files in the sysroot
which should be marked executable on the Linux target are not marked executable on
Windows. If you intend to use the sysroot provided with Sourcery G++ on a Windows host
system as the basis for your Linux target filesystem, you must correct these issues after
copying the sysroot to the target. If you are a Professional Edition customer and need assist-
ance with these modifications, please contact CodeSourcery's support team.

There are three choices for installing the sysroot on the target:

* You can install the files in the filesystem root on the target (that is, installing the files directly in
/etc/, /1ib/, and so on). All applications on the target then automatically use the Sourcery
G++ libraries. This method is primarily useful when you are building a GNU/Linux root filesystem
from scratch. If your target board already has a GNU/Linux filesystem installed, overwriting the
existing C library files is not recommended, as this may break other applications on your system,
or cause it to fail to boot.

* You can install the sysroot in an alternate location and build your application with the -rpath
and —-dynamic-linker linker options to specify the sysroot location.

 You can install the sysroot in an alternate location and explicitly invoke your application through
the dynamic linker to specify the sysroot location. If you are just getting started with Sourcery
G++ Lite, this may be the easiest way to get your application running, but this method does not
support use of the debugger.

Setting the environment variable LD_L 1BRARY_PATH on the target is not sufficient, since executables
produced by Sourcery G++ depend on the Sourcery G++ dynamic linker included in the sysroot as
well as the Sourcery G++ runtime libraries.

! http://support.codesourcery.com/GNUToolchain/kbentry117

16

http://support.codesourcery.com/GNUToolchain/kbentry117
http://support.codesourcery.com/GNUToolchain/kbentry117
http://support.codesourcery.com/GNUToolchain/kbentry117

Sourcery G++ Lite for ARM GNU/Linux

3.5.1. Installing the Sysroot

If you are modifying an existing system, rather than creating a new system from scratch, you should
place the sysroot files in a new directory, rather than in the root directory of your target system.

If you choose to overwrite your existing C library, you may not be able to boot your system. You
should back up your existing system before overwriting the C library and ensure that you can restore
the backup even with your system offline.

When running Sourcery G++ on a GNU/Linux host, you have the alternative of installing the sysroot
on the target at the same pathname where it is installed on the host system. One way to accomplish
this is to NFS-mount the installation directory on both machines in the same location, rather than to
copy files.

In many cases, you do not need to copy all of the files in the sysroot. For example, the usr/include
subdirectory contains files that are only needed if you will actually be running the compiler on your
target system. You do not need these files for non-native compilers. You also do not need any .o
or . afiles; these are used by the compiler when linking programs, but are not needed to run programs.
You should definitely copy all - so files and the executable files in usr/bin and sbin.

You need to install the sysroot(s) corresponding to the compiler options you are using for your ap-
plications. The tables in Section 3.2, “Library Configurations” tell you which sysroot directories
correspond to which compiler options. If you are unsure what sysroot is being referenced when you
build your program, you can identify the sysroot by adding —v to your compiler command-line options,
and looking at the —-sysroot= pathname in the compiler output.

3.5.2. Using Linker Options to Specify the Sysroot Location

If you have installed the sysroot on the target in a location other than the file system root, you can
use the -rpath and --dynamic-linker linker options to specify the sysroot location.

If you are using Sourcery G++ from the command line, follow these steps:

1. First find the correct sysroot directory, dynamic linker, and library subdirectory for your selected
multilib. Refer to Section 3.2, “Library Configurations”. In the following steps, sysr oot is the
absolute path to the sysroot directory on the target corresponding to your selected multilib. For
the default multilib, the dynamic linker path relative to the sysroot is 1ib/1d-1inux.so.3,
and the library subdirectory is 1ib. This is used in the example below.

2. When invoking arm-none-linux-gnueabi-gcc to link your executable, include the command-line
options:

-WI, -rpath=sysr oot /lib:sysroot Zusr/lib \
-WI,--dynamic-linker=sysroot /lib/ld-linux.so.3

where sysr oot is the absolute path to the sysroot directory on the target corresponding to your
selected multilib.

3. Copy the executable to the target and execute it normally.

Note that if you specify an incorrect path for ——dynamic-linker, the common failure mode
seen when running your application on the target is similar to

> _/factorial
./factorial: No such file or directory

17

Sourcery G++ Lite for ARM GNU/Linux

or

> _/factorial
./factorial: bad ELF interpreter: No such file or directory

This can be quite confusing since it appears from the error message as if it is the ./factorial
executable that is missing rather than the dynamic linker it references.

3.5.3. Specifying the Sysroot Location at Runtime

You can invoke the Sourcery G++ dynamic linker on the target to run your application without
having to compile it with specific linker options.

To do this, follow these steps:

1. Build your application on the host, without any additional linker options, and copy the executable
to your target system.

2. Find the correct sysroot directory, dynamic linker, and library subdirectory for your selected
multilib. Refer to Section 3.2, “Library Configurations”. In the following steps, sysr oot is the
absolute path to the sysroot directory on the target corresponding to your selected multilib. For
the default multilib, the dynamic linker is 1ib/1d-1inux.so. 3, and the library subdirectory
is Lib. This is used in the example below.

3. On the target system, invoke the dynamic linker with your executable as:

> sysroot /Zlib/ld-linux.so.3 \
—--library-path sysroot Zlib:sysroot Zusr/lib \
/ pat h/ t o/ your - execut abl e

where sysr oot is the absolute path to the sysroot directory on the target corresponding to your
selected multilib.

Invoking the linker in this manner requires that you provide either an absolute pathname to your
executable, or a relative pathname prefixed with . /. Specifying only the name of a file in the
current directory does not work.

3.6. Using GDB Server for Debugging

The GDB server utility provided with Sourcery G++ Lite can be used to debug a GNU/Linux applic-
ation. While Sourcery G++ runs on your host system, gdbserver and the target application run on
your target system. Even though Sourcery G++ and your application run on different systems, the
debugging experience when using gdbserver is very similar to debugging a native application.

3.6.1. Running GDB Server

The GDB server executables are included in the sysroot in ABI-specific subdirectories of
sysr oot Zusr. Use the executable from the sysroot and library subdirectory that match your pro-
gram. See Section 3.2, “Library Configurations” for details.

You must copy the sysroot to your target system as described in Section 3.5.1, “Installing the Sysroot”.
You must also copy the executable you want to debug to your target system.

If you have installed the sysroot in the root directory of the filesystem on the target, you can invoke
gdbserver as:

18

Sourcery G++ Lite for ARM GNU/Linux

> gdbserver :10000 program argl arg2 ...

where pr ogr amis the path to the program you want to debug andar g1 ar g2 ... are the argu-
ments you want to pass to it. The 10000 argument indicates that gdbserver should listen for
connections from GDB on port 10000. You can use a different port, if you prefer.

If you have installed the sysroot in an alternate directory, invoking gdbserver becomes more com-
plicated. You must build your application using the link-time options to specify the location of the
sysroot, as described in Section 3.5.2, “Using Linker Options to Specify the Sysroot Location”. You
must also invoke gdbserver itself using the dynamic linker provided in the Sourcery G++ sysroot,
as described in Section 3.5.3, “Specifying the Sysroot Location at Runtime”. In other words, the
command to invoke gdbserver in this case would be similar to:

> sysroot /lib/ld-linux.so.3 \
—--library-path sysroot /lib:sysroot Zusr/lib \
sysr oot Zusr/lib/bin/gdbserver :10000 program argl arg2 ...

3.6.2. Connecting to GDB Server from the Debugger

You can connect to GDB server by using the following command from within GDB:
(gdb) target remote target 10000

where t ar get is the host name or IP address of your target system.

When your program exits, gdbserver exits too. If you want to debug the program again, you must
restart gdbserver on the target. Then, in GDB, reissue the target command shown above.

3.6.3. Setting the Sysroot in the Debugger

In order to debug shared libraries, GDB needs to map the pathnames of shared libraries on the target
to the pathnames of equivalent files on the host system. Debugging of multi-threaded applications
also depends on correctly locating copies of the libraries provided in the sysroot on the host system.

In some situations, the target pathnames are valid on the host system. Otherwise, you must tell GDB
how to map target pathnames onto the equivalent host pathnames.

In the general case, there are two GDB commands required to set up the mapping:

(gdb) set sysroot-on-target tar get - pat hnane
(gdb) set sysroot host - pat hnane

This causes GDB to replace all instances of the t ar get - pat hname prefix in shared library path-
names reported by the target with host - pat hnane to get the location of the equivalent library on
the host.

If you have installed the sysroot in the root filesystem on the target, you can omit the set sysroot-
on-target command, and use only set sysroot to specify the location on the host system.

Refer to Section 3.5.1, “Installing the Sysroot” for more information about installing the sysroot on
the target. Note that if you have installed a stripped copy of the provided libraries on the target, you
should give GDB the location of an unstripped copy on the host.

19

Sourcery G++ Lite for ARM GNU/Linux

3.7. GLIBC Backtrace Support

Sourcery G++ supports the backtrace function from GLIBC. Backtracing is supported regardless
of optimization, with or without a frame pointer, and in both ARM and Thumb modes.

In order to support backtracing, Sourcery G++ enables generation of unwind tables by default when
compiling. These tables are used for any stack traversal, including backtrace, C++ exception
handling, and POSIX thread cancellation. Where none of these are required, you can reduce applic-
ation size by compiling with -fno-unwind-tables.

Some stand-alone programs, including bootloaders and the Linux kernel, can not be built with unwind
tables. To accommaodate these programs, Sourcery G++ does not generate unwind tables for C code
if the —-mabi or -FFreestanding options are used. These options are not generally used in user-
space programs. If you use either of these options and do need unwind tables, specify
-funwind-tables on the arm-none-linux-gnueabi-gcc command line.

3.8. Using VFP Floating Point

3.8.1. Enabling Hardware Floating Point
GCC provides three basic options for compiling floating-point code:

» Software floating point emulation, which is the default. In this case, the compiler implements
floating-point arithmetic by means of library calls.

e VFP hardware floating-point support using the soft-float ABI. This is selected by the
-mFloat-abi=softfp option. When you select this variant, the compiler generates VFP
floating-point instructions, but the resulting code uses the same call and return conventions as
code compiled with software floating point.

» VFP hardware floating-point support using the VFP ABI, which is the VFP variant of the Procedure
Call Standard for the ARM® Architecture (AAPCS). This ABI uses VFP registers to pass function
arguments and return values, resulting in faster floating-point code. To use this variant, compile
with -mFloat-abi=hard.

You can freely mix code compiled with either of the first two variants in the same program, as they
both use the same soft-float ABI. However, code compiled with the VFP ABI is not link-compatible
with either of the other two options. If you use the VFP ABI, you must use this option to compile
your entire program, and link with libraries that have also been compiled with the VFP ABI. For
example, you may need to use the VFP ABI in order to link your program with other code compiled
by the ARM RealView® compiler, which uses this ABI.

Sourcery G++ Lite for ARM GNU/Linux includes libraries built with software floating point, which
are compatible with VFP code compiled using the soft-float ABI. While the compiler is capable of
generating code using the VFP ABI, no compatible runtime libraries are provided in Sourcery G++
Lite. However, VFP hard-float libraries built with both ABIs are available to Sourcery G++ Profes-
sional Edition subscribers.

Note that, in addition to selecting hard/soft float and the ABI via the -mFloat-abi option, you
can also compile for a particular FPU using the -m¥pu option. For example, -mFpu=neon selects
VFPv3 with NEON coprocessor extensions.

20

Sourcery G++ Lite for ARM GNU/Linux

3.8.2. NEON SIMD Code

Sourcery G++ includes support for automatic generation of NEON SIMD vector code. Autovector-
ization is a compiler optimization in which loops involving normal integer or floating-point code
are transformed to use NEON SIMD instructions to process several data elements at once.

To enable generation of NEON vector code, use the command-line options -ftree-vectorize
-mfpu=neon -mFfloat-abi=softfp. The -mFpu=neon option also enables generation of
VFPv3 scalar floating-point code.

Sourcery G++ also includes support for manual generation of NEON SIMD code using C intrinsic
functions. These intrinsics, the same as those supported by the ARM RealView® compiler, are
defined in the arm_neon . h header and are documented in the '"ARM NEON Intrinsics' section of
the GCC manual. The command-line options -mfpu=neon -mfloat-abi=softfp must be
specified to use these intrinsics; -fFtree-vectorize is not required.

3.8.3. Half-Precision Floating Point

Sourcery G++ for ARM GNU/Linux includes support for half-precision (16-bit) floating point, in-
cluding the new __ fp16 data type in C and C++, support for generating conversion instructions
when compiling for processors that support them, and library functions for use in other cases.

To use half-precision floating point, you must explicitly enable it via the -mFpl16-Fformat command-
line option to the compiler. For more information about __ Fp16 representations and usage from C
and C++, refer to the GCC manual.

3.9. ABI Compatibility

The Application Binary Interface (ABI) for the ARM Architecture is a collection of standards, pub-
lished by ARM Ltd. and other organizations. The ABI makes it possible to combine tools from dif-
ferent vendors, including Sourcery G++ and ARM RealView®.

Sourcery G++ implements the ABI as described in these documents, which are available from the
ARM Information Center?:

« BSABI - ARM IHI 0036B (10 October 2008)

BPABI - ARM IHI 0037B (10 October 2008)

« EHABI - ARM IHI 0038A (10 October 2008)

« CLIBABI - ARM IHI 0039A (10 October 2008)

« AADWARF - ARM IHI 0040A (10 October 2008)
« CPPABI - ARM IHI 0041B (10 October 2008)

« AAPCS - ARM IHI 0042C (10 October 2008)

« RTABI - ARM IHI 0043B (10 October 2008)

« AAELF - ARM IHI 0044C (10 October 2008)

» ABI Addenda - ARM IHI 0045B (10 October 2008)

2 http://infocenter.arm.com

21

http://infocenter.arm.com
http://infocenter.arm.com
http://infocenter.arm.com

Sourcery G++ Lite for ARM GNU/Linux

Sourcery G++ currently produces DWARF version 2, rather than DWARF version 3 as specified in
AADWARF.

3.10. Object File Portability

It is possible to create object files using Sourcery G++ for ARM EABI that are link-compatible with
the GNU C library provided with Sourcery G++ for ARM GNUY/Linux as well as with the Code-
Sourcery C Library or Newlib C Library provided with ARM EABI toolchains. These object files
are additionally link-compatible with other ARM C Library ABI-compliant static linking environments
and toolchains.

To use this feature, when compiling your files with the bare-metal ARM EABI toolchain define the
preprocessor constant _ AEABI_PORTABILITY_LEVEL to 1 before including any system header
files. For example, pass the option -D_AEABI_PORTABILITY_LEVEL=1 on your compilation
command line. No special options are required when linking the resulting object files. When building
applications for ARM EABI, files compiled with this definition may be linked freely with those
compiled without it.

Files compiled in this manner may not use the functions fgetpos or fsetpos, or reference the
type fpos_t. This is because Newlib assumes a representation for fpos_t that is not AEABI-
compliant.

Note that object files are only portable from EABI to GNU/Linux, and not vice versa; object files
compiled for ARM GNU/Linux targets cannot be linked into ARM EABI executables.

22

Chapter 4
Using Sourcery G++ from the

Command Line

This chapter demonstrates the use of Sourcery G++ Lite from the command line.

23

Using Sourcery G++ from the Command Line

4.1. Building an Application

This chapter explains how to build an application with Sourcery G++ Lite using the command line.
As elsewhere in this manual, this section assumes that your target system is arm-none-linux-gnueabi,
as indicated by the arm-none-linux-gnueabi command prefix.

Using an editor (such as notepad on Microsoft Windows or vi on UNIX-like systems), create a file
named main . c containing the following simple factorial program:

#include <stdio.h>

int factorial(int n) {
it (n == 0)
return 1;
return n * factorial (n - 1);

}

int main Q) {
int i;
int n;
for (i = 0; 1 < 10; ++i) {
n = factorial (i);
printf ('factorial(%d) = %d\n', 1, n);
}

return O;

}

Compile and link this program using the command:
> arm-none-linux-gnueabi-gcc -o factorial main.c

There should be no output from the compiler. (If you are building a C++ application, instead of a C
application, replace arm-none-linux-gnueabi-gcc with arm-none-linux-gnueabi-g++.)

4.2.Running Applications on the Target System

You may need to install the Sourcery G++ runtime libraries and dynamic linker on the target system
before you can run your application. Refer to Chapter 3, “Sourcery G++ Lite for ARM GNU/Linux”
for specific instructions.

To run your program on a GNU/Linux target system, use the command:
> factorial

You should see:

factorial(0) =1
factorial(l) =1
factorial(2) = 2
factorial(3) = 6
factorial(4) = 24
factorial(b5) = 120
factorial(6) = 720
factorial(7) = 5040

24

Using Sourcery G++ from the Command Line

40320
362880

factorial (8)
factorial (9)

4.3. Running Applications from GDB

You can run GDB, the GNU Debugger, on your host system to debug programs running remotely
on a target board or system.

While this section explains the alternatives for using GDB to run and debug application programs,
explaining the use of the GDB command-line interface is beyond the scope of this document. Please
refer to the GDB manual for further instructions.

4.3.1. Connecting to the Sourcery G++ Debug Sprite

The Sourcery G++ Debug Sprite is a program that runs on the host system to support hardware de-
bugging devices. You can use the Debug Sprite to run and debug programs on a target board without
an operating system, or to debug an operating system kernel. See Chapter 5, “Sourcery G++ Debug
Sprite” for detailed information about the supported devices.

You can start the Sprite directly from within GDB:
(gdb) target remote | arm-none-linux-gnueabi-sprite argunents

Refer to Section 5.2, “Invoking Sourcery G++ Debug Sprite” for a full description of the Sprite ar-
guments.

4.3.2. Connecting to an External GDB Server

Sourcery G++ Lite includes a program called gdbserver that can be used to debug a program running
on a remote ARM GNUJ/Linux target. Follow the instructions in Chapter 3, “Sourcery G++ Lite for
ARM GNU/Linux” to install and run gdbserver on your target system.

From within GDB, you can connect to a running gdbserver or other debugging stub that uses the
GDB remote protocol using:

(gdb) target remote host port

where host is the host name or IP address of the machine the stub is running on, and port is the
port number it is listening on for TCP connections.

25

Chapter 5
Sourcery G++ Debug Sprite

This chapter describes the use of the Sourcery G++ Debug Sprite for remote debugging.
The Sprite is provided for debugging of the Linux or uClinux kernel on the target board. This
chapter includes information about the debugging devices and boards supported by the
Sprite for ARM GNUJ/Linux.

26

Sourcery G++ Debug Sprite

Sourcery G++ Lite contains the Sourcery G++ Debug Sprite for ARM GNU/Linux. This Sprite is
provided to allow debugging of programs running on a bare board. You can use the Sprite to debug
a program when there is no operating system on the board, or for debugging the operating system
itself. If the board is running an operating system, and you wish to debug a program running on that
0S, you should use the facilities provided by the OS itself (for instance, using gdbserver).

The Sprite acts as an interface between GDB and external debug devices and libraries. Refer to
Section 5.2, “Invoking Sourcery G++ Debug Sprite” for information about the specific devices sup-
ported by this version of Sourcery G++ Lite.

Note for Linux/uClinux users

The Debug Sprite provided with Sourcery G++ Lite allows remote debugging of the Linux
or uClinux kernel running on the target. For remote debugging of application programs,
you should use gdbserver instead. See Chapter 3, “Sourcery G++ Lite for ARM GNU/Linux”
for details about how to install and run gdbserver on the target.

Important

The Sourcery G++ Debug Sprite is not part of the GNU Debugger and is not free or open-
source software. You may use the Sourcery G++ Debug Sprite only with the GNU Debugger.
You may not distribute the Sourcery G++ Debug Sprite to any third party.

5.1. Probing for Debug Devices

Before running the Sourcery G++ Debug Sprite for the first time, or when attaching new debug
devices to your host system, it is helpful to verify that the Sourcery G++ Debug Sprite recognizes
your debug hardware. From the command line, invoke the Sprite with the —i option:

> arm-none-linux-gnueabi-sprite -i

This prints out a list of supported device types. For devices that can be autodetected, it additionally
probes for and prints out a list of attached devices. For instance:

CodeSourcery ARM Debug Sprite
(Sourcery G++ Lite Sourcery G++ Lite 200903-67)
armusb: [speed=<n:0-7>] ARMUSB device
armusb:///0B01000C - Stellaris Evaluation Board (0B01000C)
rdi: (rdi-library=<file>&rdi-config=<file>) RDI Device
rdi:/// - RDI Device

This shows that ARMUSB and RDI devices are supported. The exact set of supported devices depends
on your host system and the version of Sourcery G++ you have installed; refer to Section 5.2, “In-
voking Sourcery G++ Debug Sprite” for complete information.

Note that it may take several seconds for the Debug Sprite to probe for all types of supported devices.

5.2. Invoking Sourcery G++ Debug Sprite

The Debug Sprite is invoked as follows:
> arm-none-linux-gnueabi-sprite [options] device-url board-file

The devi ce- ur | specifies the debug device to use to communicate with the board. It follows the
standard format:

27

Sourcery G++ Debug Sprite

schene:schene-specific-part [?devi ce-opti ons]
Most device URL schemes also follow the regular format:
schene:[//host nane:[port]]/pat h[?devi ce- opti ons]

The meanings of host nane, por t, pat h and devi ce- opt i ons parts depend on the schene
and are described below. The following schemes are supported in Sourcery G++ Lite for ARM
GNU/Linux:

rdi Use an RDI debugging device. Refer to Section 5.4, “Remote Debug Interface
Devices”.

Fflashpro Use a FlashPro debugging device. Refer to Section 5.5, “Actel FlashPro Devices”.

The optional ?devi ce- opt i ons portion is allowed in all schemes. These allow additional device-
specific options of the form nane=val ue. Multiple options are concatenated using &.

The boar d-fi | e specifies an XML file that describes how to initialize the target board, as well
as other properties of the board used by the debugger. If boar d- f i | e refers to a file (via a relative
or absolute pathname), it is read. Otherwise, boar d- f i | e can be a board name, and the toolchain's
board directory is searched for a matching file. See Section 5.7, “Supported Board Files” for the list
of supported boards, or invoke the Sprite with the —b option to list the available board files. You
can also write a custom board file; see Section 5.8, “Board File Syntax” for more information about
the file format.

Both the devi ce-url and board-fil e command-line arguments are required to correctly
connect the Sprite to a target board.

5.3. Sourcery G++ Debug Sprite Options

The following command-line options are supported by the Sourcery G++ Debug Sprite:

-b Print a list of boar d- f i | e files in the board config directory.

-h Print a list of options and their meanings. A list of devi ce- ur| syntaxes
is also shown.

-1 Print a list of the accessible devices. If a devi ce-url is also specified,

only devices for that device type are scanned. Each supported device type is
listed along with the options that can be appended to the devi ce- ur | . For
each discovered device, the devi ce- ur | isprinted along with a description
of that device.

-1 [host]:port Specify the host address and port number to listen for a GDB connection. If
this option is not given, the Debug Sprite communicates with GDB using
stdin and stdout. If you start the Sprite from within GDB using the target
remote | arm-none-linux-gnueabi-sprite ... command,
you do not need this option.

-m Listen for multiple sequential connections. Normally the Debug Sprite ter-
minates after the first connection from GDB terminates. This option instead
makes it listen for a subsequent connection. To terminate the Sprite, open a
connection and send the string END\n.

28

Sourcery G++ Debug Sprite

-q Do not print any messages.
-V Print additional messages.

If any of -b, —i or —h are given, the Debug Sprite terminates after providing the information rather
than waiting for a debugger connection.

5.4. Remote Debug Interface Devices

Remote Debug Interface (RDI) devices are supported. The RDI device URL accepts no hostname,
port or path components, so the devi ce- ur | is specified as follows:

rdi:[///][?devi ce-opti ons]]
The following devi ce- opt i ons are required:

rdi-library=library Specify the library (DLL or shared object) implementing the RDI
target you wish to use.

rdi-config=confi gfil e Specifyafilecontaining configuration information forl i brary.
The format of this file is specific to the RDI library you are using,
but tends to constitute a list of key=val ue pairs. Consult the
documentation of your RDI library for details.

5.5. Actel FlashPro Devices

On Windows hosts, Sourcery G++ Lite supports FlashPro devices used with Actel Cortex-M1 devel-
opment Kits.

For FlashPro devices, the devi ce- ur | has the following form:
flashpro:[//usb12345/][?jtagclock=rat e]

The optional usb12345 part indicates the ID of the FlashPro device to connect to, which is useful
if you have more than one such device attached to your computer. If the ID is omitted, the Debug
Sprite connects automatically to the first detected FlashPro device. You can enumerate the connected
FlashPro devices by invoking the Sprite with the — i switch, as follows:

> arm-none-linux-gnueabi-sprite -i flashpro:

The jtagclock option allows the communication speed with the target board to be altered. The
r at e is specified in Hz and may range between 93750 and 4000000. The default is 93750, the
slowest speed supported by the FlashPro device. Depending on your target board, you may be able
to increase this rate, but beware that communication errors may occur above a certain threshold. If
you encounter communication errors with a higher-than-default speed selected, try reducing the
speed.

5.5.1. Installing FlashPro Windows drivers

Windows drivers for the FlashPro device are included with the FlashPro software provided by Actel.
Refer to Actel's documentation for details on installing this software. You must use the Actel FlashPro
software to configure the FPGA on your Cortex-M1 board, but it does not need to be running when
using the Debug Sprite.

29

Sourcery G++ Debug Sprite

Once you have set up your board using the FlashPro software, you can check that it is recognized
by the Sourcery G++ Debug Sprite by running the following command:

> arm-none-linux-gnueabi-sprite -i
flashpro: [jtagclock=<n:93750-4000000>] FlashPro device
flashpro://usb12345/ - FlashPro Device

If output similar to the above does not appear, your FlashPro device is not working correctly. Contact
CodeSourcery for further guidance in that case.

5.6. Debugging a Remote Board

You can run the Sourcery G++ Debug Sprite on a different machine from the one on which GDB is
running. For example, if your board is connected to a machine in your lab, you can run the debugger
on your laptop and connect to the remote board. The Sourcery G++ Debug Sprite must run on the
machine that is connected to the target board. You must have Sourcery G++ installed on both ma-
chines.

To use this mode, you must start the Sprite with the —1 option and specify the port on which you
want it to listen. For example:

> arm-none-linux-gnueabi-sprite -1 10000 devi ce-url board-file
starts the Sprite listening on port 10000.

When running GDB from the command line, use the following command to connect GDB to the
remote Sprite:

(gdb) target remote host 10000

where host is the name of the remote machine. After this, debugging is just as if you are debugging
a target board connected to your host machine.

For more detailed instructions on using the Sourcery G++ Debug Sprite in this way, please refer to
the Sourcery G++ Knowledge Base®.

5.7. Supported Board Files

The Sourcery G++ Debug Sprite for ARM GNUY/Linux includes support for the following target
boards. Specify the appropriate boar d- f i | e as an argument when invoking the sprite from the
command line.

Board Config
ARMulator (RDI) |armulator

5.8. Board File Syntax

The boar d- fi | e can be a user-written XML file to describe a non-standard board. The Sourcery
G++ Debug Sprite searches for board files in the arm-none-1inux-gnueabi/lib/boards
directory in the installation. Refer to the files in that directory for examples.

! https://support.codesourcery.com/GNUToolchain/kbentry132

30

https://support.codesourcery.com/GNUToolchain/kbentry132
https://support.codesourcery.com/GNUToolchain/kbentry132

Sourcery G++ Debug Sprite

The file's DTD is:
<I-- Board description Ffiles

Copyright (c) 2007-2009 CodeSourcery, Inc.

THIS FILE CONTAINS PROPRIETARY, CONFIDENTIAL, AND TRADE
SECRET INFORMATION OF CODESOURCERY AND/OR ITS LICENSORS.

You may not use or distribute this file without the express
written permission of CodeSourcery or its authorized

distributor. This file is licensed only for use with
Sourcery G++. No other use is permitted.
-——>

<IELEMENT board
(properties?, feature?, initialize?, memory-map?)>
<IELEMENT properties
(description?, property*)>

<IELEMENT initialize
(write-register | write-memory | delay
| wait-until-memory-equal | wait-until-memory-not-equal)* >

<IELEMENT
<IATTLIST

<IELEMENT
<IATTLIST

<IELEMENT
<IATTLIST

<IELEMENT

write-register EMPTY>
write-register
address CDATA #REQUIRED
value CDATA
bits CDATA
write-memory EMPTY>

wr ite-memory

address CDATA

#REQUIRED
#IMPLIED>

#REQUIRED
value CDATA
bits CDATA

#REQUIRED
#IMPLIED>
delay EMPTY>

delay

time CDATA #REQUIRED>
wait-until-memory-equal EMPTY>

<IATTLIST wait-until-memory-equal
address CDATA #REQUIRED
value CDATA #REQUIRED
timeout CDATA #IMPLIED
bits CDATA #IMPLIED>
<IELEMENT wait-until-memory-not-equal EMPTY>
<IATTLIST wait-until-memory-not-equal
address CDATA #REQUIRED
value CDATA #REQUIRED
timeout CDATA #IMPLIED
bits CDATA #IMPLIED>
<IELEMENT memory-map (memory-device)*>
<IELEMENT memory-device (property*, description?, sectors*)>

<IATTLIST

memory-device

address CDATA #REQUIRED

31

Sourcery G++ Debug Sprite

size CDATA #REQUIRED
type CDATA #REQUIRED
device CDATA #IMPLIED>

<IELEMENT description (#PCDATA)>
<IELEMENT property (#PCDATA)>

<IATTLIST property name CDATA #REQUIRED>
<IELEMENT sectors EMPTY>

<IATTLIST sectors

size CDATA #REQUIRED

count CDATA #REQUIRED>

<IENTITY % gdbtarget SYSTEM *gdb-target.dtd'>
%gdbtarget;

All values can be provided in decimal, hex (with a Ox prefix) or octal (with a O prefix). Addresses
and memory sizes can use a K, KB, M, MB, G or GB suffix to denote a unit of memory. Times must

use a ms or us suffix.

The following elements are available:

<board> This top-level element encapsulates the entire description of the board. It
can contain <properties>, <feature>, <initialize> and

<memory-map> elements.

<properties> The <properties> element specifies specific properties of the target
system. This element can occur at most once. It can contain a

<description> element.

It can also contain <property> elements with the following names:

banked-regs The banked-regs property specifies that the CPU
of the target board has banked registers for different
processor modes (supervisor, IRQ, etc.).

has-vfp The has-vTp property specifies that the CPU of the
target board has VFP registers.

system-v6-m The system-v6-m property specifies that the CPU
of the target board has ARMv6-M architecture system

registers.

system-v7-m The system-v7-m property specifies that the CPU
of the target board has ARMv7-M architecture system

registers.

core-family The core-family property specifies the ARM
family of the target. The body of the <property>
element may be one of arm7, arm9, arml1, and

cortex.

<initialize> The <initialize> element defines an initialization sequence for the
board, which the Sprite performs before downloading a program. It can
contain <write-register>, <write-memory> and <delay>

elements.

32

Sourcery G++ Debug Sprite

<feature>

<memory-map>

<memory-device>

<write-register>

<wr ite-memory>

<delay>

<description>

<property>

This element is used to inform GDB about additional registers and peri-
pherals available on the board. It is passed directly to GDB; see the GDB
manual for further details.

This element describes the memory map of the target board. It is used by
GDB to determine where software breakpoints may be used and when
flash programming sequences must be used. This element can occur at
most once. It can contain <memory-device> elements.

This element specifies a region of memory. It has four attributes:
address, size, typeanddevice. The address and size attributes
specify the location of the memory device. The type attribute specifies
that device as ram, rom or flash. The devi ce attribute is required for
flash regions; it specifies the flash device type. The
<memory-device> element can contain a<description>element.

This element writes a value to a control register. It has three attributes:
address, value and bits. The bits attribute, specifying the bit
width of the write operation, is optional; it defaults to 32.

This element writes a value to a memory location. It has three attributes:
address, value and bits. The bits attribute is optional and defaults
to 32. Bit widths of 8, 16 and 32 bits are supported. The address written
to must be naturally aligned for the size of the write being done.

This element introduces a delay. It has one attribute, time, which specifies
the number of milliseconds, or microseconds to delay by.

This element encapsulates a human-readable description of its enclosing
element.

The <property> element allows additional name/value pairs to be
specified. The property name is specified in a name attribute. The property
value is the body of the <property> element.

33

Chapter 6
Next Steps with Sourcery G++

This chapter describes where you can find additional documentation and information about
using Sourcery G++ Lite and its components.

34

Next Steps with Sourcery G++

6.1. Sourcery G++ Subscriptions

CodeSourcery offers two levels of Sourcery G++ subscriptions. Professional Edition subscriptions
include unlimited support, with no per-incident fees. CodeSourcery's support is provided by the same
engineers who build Sourcery G++, and covers questions about installing and using Sourcery G++,
the C and C++ programming languages, and all other topics relating to Sourcery G++. CodeSourcery
provides updated versions of Sourcery G++ on demand to resolve critical problems reported by
Professional Edition subscribers. Personal Edition subscriptions do not include support, but do include
access to updates as long as the subscription remains active.

Subscription editions of Sourcery G++ also include many additional features not included in the free
Lite editions:

Sourcery G++ IDE. The Sourcery G++ IDE, based on Eclipse, provides a fully visual envir-
onment for developing applications, including an automated project builder, syntax-highlighting
editor, and a graphical debugging interface. The debugger provides features especially useful to
embedded systems programmers, including the ability to step through code at both the source and
assembly level, view registers, and examine stack traces. CodeSourcery's enhancements to Eclipse
include improved support for hardware debugging via JTAG or ICE units and complete integration
with the rest of Sourcery G++.

Debug Sprites. Sourcery G++ Debug Sprites provide hardware debugging support using JTAG
and ICE devices. On some systems, Sourcery G++ Sprites can automatically program flash memory
and display control registers. Debug Sprites included in Lite editions of Sourcery G++ include
only a subset of the functionality of the Sprites in the subscription editions.

CS3. CS3 provides a uniform, cross-platform approach to board initialization and interrupt
handling on bare-metal ELF and EABI platforms. Subscription versions of Sourcery G++ include
CS3 support for an expanded set of boards. In addition, the Sourcery G++ Board Builder allows
you to extend the power of CS3 to cover custom board definitions. The Board Builder is fully in-
tegrated with the Sourcery G++ IDE and Debug Sprites.

CodeSourcery C Library. Subscription versions of Sourcery G++ for bare-metal targets include
the CodeSourcery C Library, a proprietary library implementation that is optimized to be smaller
and faster than the Newlib C library included with Lite editions of Sourcery G++.

QEMU Instruction Set Simulator. The QEMU instruction set simulator can be used to run
— and debug — programs even without target hardware. Most bare-metal configurations of
Sourcery G++ include QEMU and linker scripts targeting the simulator. Configurations of Sourcery
G++ for GNU/Linux targets include a user-space QEMU emulator that runs on Linux hosts.

Sysroot Utilities. Subscription editions of Sourcery G++ include a set of sysroot utilities for
GNU/Linux targets. These utilities simplify use of the Sourcery G++ dynamic linker and shared
libraries on the target and also support remote debugging with gdbserver.

GNU/Linux Prelinker. For select GNU/Linux target systems, Sourcery G++ includes the
GNU/Linux prelinker. The prelinker is a postprocessor for GNU/Linux applications which can
dramatically reduce application launch time. CodeSourcery has modified the prelinker to operate
on non-GNU/Linux host systems, including Microsoft Windows.

Library Reduction Utility. Sourcery G++ also includes a Library Reduction Utility for
GNU/Linux targets. This utility allows the GNU C Library to be relinked to include only those
functions used by a given collection of binaries.

35

Next Steps with Sourcery G++

« Additional Libraries. For some platforms, additional run-time libraries optimized for particular
CPUs are available. Pre-built binary versions of the libraries with debug information are also
available to subscribers.

» Additional Documentation. Subscription customers receive expanded access to the Sourcery
G++ Knowledge Base, covering many more tips, howtos, and application notes to help you make
the best use of Sourcery G++.

If you would like more information about Sourcery G++ subscriptions, including a price quote or
information about evaluating Sourcery G++, please send email to <sales@codesourcery.com>.

If you have a Sourcery G++ subscription, you may access your account by visiting the Sourcery G++
Portall. If you have a support account, but are unable to log in, send email to
<support@codesourcery.com>.

6.2. Sourcery G++ Knowledge Base

The Sourcery G++ Knowledge Base is available to registered users at the Sourcery G++ Portal®.
Here you can find solutions to common problems including installing Sourcery G++, making it work
with specific targets, and interoperability with third-party libraries. There are also additional example
programs and tips for making the most effective use of the toolchain and for solving problems
commonly encountered during debugging. The Knowledge Base is updated frequently with additional
entries based on inquiries and feedback from customers.

6.3. Manuals for GNU Toolchain Components

Sourcery G++ Lite includes the full user manuals for each of the GNU toolchain components, such
as the compiler, linker, assembler, and debugger. Most of the manuals include tutorial material for
new users as well as serving as a complete reference for command-line options, supported extensions,
and the like.

When you install Sourcery G++ Lite, links to both the PDF and HTML versions of the manuals are
created in the shortcuts folder you select. If you elected not to create shortcuts when installing
Sourcery G++ Lite, the documentation can be found in the share/doc/
sourceryg++-arm-none- I inux-gnueabi/ subdirectory of your installation directory.

In addition to the detailed reference manuals, Sourcery G++ Lite includes a Unix-style manual page
for each toolchain component. You can view these by invoking the man command with the pathname
of the file you want to view. For example, you can first go to the directory containing the man pages:

> cd $INSTALL/share/doc/sourceryg++-arm-none-linux-gnueabi/man/manl
Then you can invoke man as:
> man ./arm-none-linux-gnueabi-gcc.1

Alternatively, if you use man regularly, you'll probably find it more convenient to add the directory
containing the Sourcery G++ man pages to your MANPATH environment variable. This should go in
your .profile or equivalent shell startup file; see Section 2.6, “Setting up the Environment” for
instructions. Then you can invoke man with just the command name rather than a pathname.

! https://support.codesourcery.com/GNUToolchain/
2 https://support.codesourcery.com/GNUToolchain/

36

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

Next Steps with Sourcery G++

Finally, note that every command-line utility program included with Sourcery G++ Lite can be invoked
with a ——hellp option. This prints a brief description of the arguments and options to the program
and exits without doing further processing.

37

Appendix A
Sourcery G++ Lite Release Notes

This appendix contains information about changes in this release of Sourcery G++ Lite for
ARM GNU/Linux. You should read through these notes to learn about new features and
bug fixes.

38

Sourcery G++ Lite Release Notes

A.l. Changes in Sourcery G++ Lite for ARM
GNU/Linux

This section documents Sourcery G++ Lite changes for each released revision.
A.1.1. Changes in Sourcery G++ Lite 200993-67

Out-of-range branch error. A compiler bug has been fixed that caused out-of-range branch errors
from the assembler. The bug only affected code compiled in Thumb-2 mode.

A.1.2. Changes in Sourcery G++ Lite 200993-65

ABI compliance. The runtime libraries have been annotated with Tag_ABI_align8_ needed
and Tag_ABI1_al ign8_preserved. This prevents errors when linking Sourcery G++ support
libraries with the ARM Real View® linker.

Increased speed of menctpy and menmmove. The performance of memcpy and memmove on
NEON-enabled ARM platforms is significantly improved, particularly when data is being copied
between mis-aligned addresses.

gdbserver bug fix. A bug has been fixed that caused gdbserver to crash when debugging programs
using thread-local storage without other multi-threading features.

GDB crash fix. A GDB bug has been fixed that caused GDB to crash when unloading shared
libraries or switching executables.

@ LE fix. A bug has been fixed in the processing of @FI LE command-line options by GCC,
GDB, and other tools. The bug caused any options in FI LE following a blank line to be ignored.

Preprocessor error handling. The preprocessor now treats failing to find a file referenced via
#include as a fatal error.

Multi-threaded debugging fix. A GDB bug has been fixed that caused the step command to
hang when debugging a multi-threaded program.

NEON improvements. The compiler now generates improved NEON vector code when copying
memory or storing constants to memory using the NEON coprocessor. The compiler also generates
better code for accessing data arrays that are not known to have 64-bit alignment. In addition, a bug
that caused internal compiler errors when compiling for Thumb-2 with NEON enabled has been
fixed, as has another bug that caused some vector shift NEON operations to be wrongly rejected.

ELF file corruption with strip. A bug that caused strip to corrupt unusual ELF files has been
fixed.

GDB support for Cygwin pathnames. A bug in GDB's translation of Cygwin pathnames has
been fixed.

Compiler errors with fl oat 32_t. A bug has been fixed that caused compiler errors when
using the Float32_t type from arm_neon.h.

gdbserver multi-threaded debugging fix. A bug has been fixed that prevented gdbserver from
exiting after debugging a multi-threaded program.

39

Sourcery G++ Lite Release Notes

Thumb-2 position-independent executables. A bug that caused position-independent executables
to fail to run correctly has been fixed. The bug only affected code compiled for Thumb-2 mode.

Support for ARM Cortex-A5 cores. Sourcery G++ now includes basic support for ARM Cortex-
A5 cores. Use the -mcpu=cortex-a5 command-line option.

Static variables and asmstatements bug fix. A bug in GCC that caused functions containing
static variables and asm statements to be miscompiled at —-02 or above has been fixed. The bug also
occurred at other optimization levels when the -fremove-local -statics command-line option
was used.

Warnings for naked functions. A compiler bug that resulted in incorrect warnings about missing
return statements in non-void functions declared with the naked attribute has been fixed.

Optimizer bug fix. Abugin GCC that caused functions with complex loop nests to be miscompiled
at —02 or above has been fixed. The bug also occurred at other optimization levels when the
-fpromote-loop-indices command-line option was used.

VFPv4 support. Sourcery G++ now includes support for VFPv4, VFPv4-D16 and NEON-VFPv4
coprocessors. Use the -mFpu=vfpv4, -mFpu=vFpv4-d16 or -mFpu=neon-vTpv4 options,
respectively.

GCC internal compiler error. A bug has been fixed that caused the compiler to crash when
optimizing code that casts between structure types and the type of the first field.

ELF Program Headers. The linker now better diagnoses errors in the usage of FILEHDR and
PHDRS keywords in PHDRS command of linker scripts. Refer to the linker manual for more inform-
ation.

A.1.3. Changes in Sourcery G++ Lite 200993-38

VFP half-precision extensions. Sourcery G++ now includes support for VFP coprocessors with
half-precision floating-point extensions. This can be enabled with the -mfpu=vfpv3-d16-fpl6
or -mFpu=vFpv3-Fpl6 command-line options.

Linux kernel headers update. Linux kernel header files have been updated to version 2.6.30.

ARM VFP assembler bug fix. ~ The assembler now correctly assembles the vmls, vnmla and
vnml's mnemonics. Previously these were incorrectly assembled to different instructions.

A.1.4.Changes in Sourcery G++ Lite 200993-15

Improved optimization for ARM. GCC now automatically enables loop unrolling and
-fpromote-loop-indices when -02 or -03 is specified. Loop unrolling is limited at —-02
to control code growth. These changes improve performance by more than 5%.

VFP assembly mnemonics. The assembler now accepts unified assembly mnemonics for VFP
instructions (e.g. VADD .32 s0, sO0) in legacy syntax mode.

Register corruption buginsetj npand| ongj np. A bug that could cause register corruption
in setjmp and longjmp has been fixed.

Optimizer improvements. When optimizing for speed, the compiler now uses improved heuristics
to limit certain types of optimizations that may adversely affect both code size and speed. This change
also makes it possible to produce better code when optimizing for space rather than speed.

40

Sourcery G++ Lite Release Notes

Improved optimization for Thumb-2. GCC now supports instruction scheduling for Thumb-2
code. This optimization is enabled when compiling with —-02, -03, or -0s, and can improve per-
formance substantially.

Linking objects built without - f PI Cinto shared libraries. The linker now gives an error for
attempts to link object files built without —FP I C or -Fpic into shared libraries when those objects
use the ARMv7 MOVW and MOVT instructions in ways that are unsafe in a shared library. Previously
it built a shared library that behaved incorrectly when used.

GDB update. The included version of GDB has been updated to 6.8.50.20090630. This update
adds numerous bug fixes and new features, including support for multi-byte and wide character sets
and improved C++ template support.

New assembler directive . i nst. The assembler now accepts the new . inst directive to gen-
erate an instruction from its integer encoding.

GDB and third-party compilers. Some bugs that caused GDB to crash when debugging programs
compiled with third-party tools have been fixed. These bugs did not affect programs built with
Sourcery G++.

Remote debugging hardware watchpoint bug fix. =~ A GDB bug has been fixed that caused
hardware watchpoint hits to be incorrectly reported in some cases.

Internal error in assembler. An assembler bug that caused an internal error when . thumb or
-arm appears after an invalid instruction has been fixed.

GDB internal warning fix. =~ A GDB bug has been fixed that caused warnings of the form
warning: (Internal error: pc address in read in psymtab, but not
in symtab.).

Improved bit counting operation. The __bui I'tin_ctz built-in function, which returns the
number of trailing zero bits in a value, has been improved to use a shorter instruction sequence for
ARMV6T2 and later.

Out-of-range branch errors. A Thumb-2 code generation defect in the compiler that caused
branch out of range errors from the assembler has been eliminated.

Binutils update. The binutils package has been updated to version 2.19.51.20090709 from the
FSF trunk. This update includes numerous bug fixes.

Linker fix. ~ The linker now correctly processes references to undefined local symbols. Such ref-
erences are treated the same as references to undefined global symbols. Usually object files contain
no such references, as they can never be satisfied.

Assembler validation improvements. The assembler now issues a warning when a section finishes
with an unclosed IT instruction block at the end of the input file. It also now rejects unwinding dir-
ectives that appear outside of a . Fnstart/. fnend pair. Additionally, 32-bit Thumb instructions
are now correctly rejected when assembling for cores that do not support these instructions.

Assembler validations fix. A bug in the assembler that caused some addw and subw instructions
with SP or PC as operand to be wrongly rejected has been fixed.

- maut o- i t assembler option replacedwith-m nplicit-it. The-mauto-itcommand-
line option to the assembler has been replaced with a more general -mimplicit-it option to
control the behavior of the assembler when conditional instructions appear outside an IT instruction
block. If you were previously using -mauto-it, you should now use -mimplicit-it=always.

41

Sourcery G++ Lite Release Notes

Other -mimplicit-it modes allow you to separately control implicit IT instruction insertion
behavior in ARM and Thumb-2 code. For more information, refer to the assembler manual. In addition
to renaming the option, a number of bugs in the implicit IT generation have been fixed.

Linker failure with Cortex-A8 erratum fix. A bug in the —-—Fix-cortex-a8 linker option
has been fixed. The bug caused the linker either to produce a bad value error, or to silently gen-
erate an incorrect executable.

Debug information for variadic functions. A compiler bug that resulted in incorrect debug in-
formation for functions with variable arguments has been fixed.

Code generation improvements. The compiler has been changed to make better use of VFP re-
gisters in mixed integer and floating-point code, resulting in faster code.

Register variable corruption. A compiler bug has been fixed that caused incorrect code to be
generated when the frame pointer or other special-use registers are used as explicit local register
variables, introduced via the asm keyword on their declarations.

Startup code debugging fixes. Two GDB bugs have been fixed that caused errors when debugging
startup code. One bug caused an internal error message; the other caused the error Cannot find
bounds of current function.

Assembler fix for mixed Thumb and ARM mode. A bug in the assembler has been fixed where
mapping symbols were sometimes incorrectly placed at section boundaries. This could lead to incorrect
disassembly in some cases.

C++ exception matching. A C++ conformance defect has been fixed. According to clause 15.3
of the standard, given a derived class D with base B, a thrown D * object is not caught by a handler
with type B *& (that is, a reference to pointer B). The compiler formerly treated this case incorrectly
as if the handler had type B *, which does catch D *.

-frenove-1 ocal - stati csoptimization. The -fremove-local-statics optimization
is now enabled by default at —-02 and higher optimization levels.

Elimination of spurious warnings about NULL . The C++ compiler no longer issues spurious
warnings about comparisons between pointers to members and NULL.

Vectorizer improvements. The compiler now generates improved code for accesses to static
nested array variables (e.g. static int foo[8][8];).

EGLIBC version 2.10. Sourcery G++ Lite for ARM GNUY/Linux now includes EGLIBC version
2.10 library which is based on GNU C Library version 2.10. For more information about changes,
see http://www.eglibc.org/news#eglibc_2_ 10.

Configuration file required for Debug Sprite. ~ When invoking the Sourcery G++ Debug Sprite
from the command line, it is now required to specify a board configuration file argument. This change
eliminates a source of confusion and errors resulting from accidental omission of the configuration
file argument, since recent improvements to debugger functionality depend on properties specified
in the configuration file. Refer to Chapter 5, “Sourcery G++ Debug Sprite” for more details on in-
voking the Sourcery G++ Debug Sprite from the command line.

Invalid relocations in startup code. A bug that caused invalid relocations to be present in the
C library startup code has been fixed. This bug caused problems when using these objects with third-
party tools.

42

Sourcery G++ Lite Release Notes

GCC version 4.4.1. Sourcery G++ Lite for ARM GNUY/Linux is now based on GCC version
4.4.1. For more information about changes from GCC version 4.3 that was included in previous re-
leases, see http://gcc.gnu.org/gcc-4.4/changes.html.

Watchpoint support. The Sourcery G++ Debug Sprite now implements watchpoints on all cur-
rently-supported debugging devices.

Linker map address sorting. The map generated by the linker —Map option now lists symbols
sorted by address.

Assembler fix. The assembler now correctly diagnoses a missing operand to b1 and b I x instruc-
tions. Previously, incorrect code was silently generated.

A.1.5. Changes in Sourcery G++ Lite 2009q1-203

Internal compiler error with Cortex-A9. A bug has been fixed that caused internal compiler
errors when compiling with -mcpu=cortex-A9.

A.1.6. Changes in Sourcery G++ Lite 2009¢q1-200

GDB finish internal error. A bug has been fixed that caused a GDB internal error when using
the finish command. The bug occurred when debugging optimized code.

GDB backwards compatibility fix. A bug has been fixed that caused GDB to crash when loading
symbols from binaries built by very old versions of GCC.

Overloaded function resolution. The C++ compiler now correctly diagnoses an error when the
second operand of a comma expression is an unresolved set of overloaded functions. Previously, it
incorrectly used the context of the comma expression to resolve the function.

Fix for backt r ace function in dynamically-linked executables. = The backtrace function
now reports backtraces for dynamically-linked executables. Previously, this function worked only
with statically-linked executables, i.e., executables linked with —static.

Pointer-to-member functions. A bug has been fixed that caused the C++ compiler to crash when
compiling a pointer-to-member function reference without an explicit & operator. This syntax is al-
lowed only when the -fms-extensions command-line option is used.

A.1.7. Changes in Sourcery G++ Lite 2009q1-176

Assembler fix for -mauto-it. A bug in the assembler that caused incorrect assembly of
branches has been fixed. The bug only occurred when automatically generating IT instructions using
-mauto-it.

Fix for dl open in statically-linked executables. A bug has been fixed that made statically-
linked programs crash when calling dlopen with RTLD_GLOBAL to request global availability of
symbols from the shared module.

Overlay sections. arm-none-linux-gnueabi-readelf now correctly recognizes section headers
for ARM_DEBUGOVERLAY and ARM_OVERLAYSECT ION sections.

Linker bugfix. Abug that caused the linker to crash when . ARM . ex i dx sections were discarded
by a linker script has been fixed.

43

Sourcery G++ Lite Release Notes

Incorrect placement of linker-generated functions. A bug that caused some linker-generated
functions (including stubs to support interworking from ARM mode to Thumb mode and stubs to
avoid processor errata) to be placed in data sections has been fixed.

New option for automatically generating IT blocks. The assembler now allows use of condi-
tional Thumb-2 instructions without requiring explicit IT instructions. Use the -mauto- it command-
line option to enable this automatic generation of IT instructions.

Optimized mrentpy. The implementation of memcpy has been optimized to increase performance
on ARM targets that support prefetch instructions.

Optimized memory and string routines. The implementations of memcpy, memset, strcmp,
strcpy, and strlen have been optimized to increase performance on ARM targets.

Reduced compilation time. Compilation and build times when using Sourcery G++ Lite are now
slightly faster. This performance improvement is the result of building the compilers and other host
tools with a recent version of Sourcery G++, rather than an older GCC version.

Support for GLIBC backt r ace function. Sourcery G++ Lite now supports the GLIBC
backtrace function on ARM GNU/Linux targets. For more information, see Section 3.7, “GLIBC
Backtrace Support”.

Assembler bug fix. A bug in the assembler that caused duplicate and missing mapping symbols
has been fixed. The bug caused incorrect objdump output and incorrect byte-swapping for BES8
configurations.

Stack backtracing and C++ exception handling. Improvements have been made to the linker
in support of C++ runtime exception handling and stack backtracing. A problem that caused crashes
during the backtrace of C routines that were not compiled with the —fexceptions option has
been fixed. In addition, the linker generates more compact stack unwinding tables which can lead
to smaller executables.

Incorrect linker-generated functions. A bug that caused some linker-generated functions (such
as stubs to support interworking from ARM mode to Thumb mode) to contain only nop instructions
instead of correct code sequences has been fixed.

Assembler diagnostics for invalid instructions. The assembler now issues diagnostics for invalid
ADR and ADRL instructions. Formerly, these invalid instructions were silently mis-assembled. This
assembler bug did not affect correct code.

Sprite's failure to reset the target. A bug has been fixed that sometimes caused the Sourcery
G++ Debug Sprite to fail to reset the target when using the multiple sequential connection feature
(enabled via the -m command-line option). This problem was specific to running the Debug Sprite
on Microsoft Windows hosts.

Disassembler bug fix. A bug has been fixed that caused incorrect disassembly of some object
files with multiple sections whose symbol tables included symbols in the middle of functions. These
typically resulted from hand-written assembly.

Linker crash with very large applications. A linker bug that caused a crash when linking very
large applications with the -—Fix-cortex-a8 command-line option has been fixed.

arm-none-linux-gnueabi-objcopy bug fix. A bug has been fixed that caused arm-none-linux-
gnueabi-objcopy to issue an error when generating output in the Intel HEX format and using
--change-section-Ima to change section addresses.

44

Sourcery G++ Lite Release Notes

Linker script search path. The bug in the linker has been fixed that caused it not to follow its
documented behavior for searching for linker scripts named with the —T option. Now scripts are
looked up first in the current directory, then in library directories specified with -L command-line
options, and finally in the default system linker script directory.

Errors when inserting breakpoints. A GDB bug has been fixed that caused errors of the form
“function® found in filenane psymtab but not in symtab when setting a
breakpoint on f unct i on. This error commonly occurred when setting breakpoints on functions
provided by the C library.

Cortex-A8 erratum workaround enabled for ARMv7-A. The workaround for the erratum in
Cortex-A8 processors mentioned below is now enabled by default if you are targeting the ARMv7-
A architecture profile. The workaround can be disabled by passing the —--no-fix-cortex-a8
option to the linker.

Internal compiler error when optimizing. A bug has been fixed that caused internal
compiler error: in build2_stat when compiling.

Erratum workaround for Cortex-A8 processors. The linker now implements a workaround
for an erratum in Cortex-A8 processors. If you are targeting an affected part and wish to use the
workaround, pass the —-Fix-cortex-a8 option to the linker. Please contact ARM for further
details of the erratum.

Maximum code alignment increased. The maximum allowed code alignment has been increased
from 32 to 64 bytes. This change affects the .p2align and .al ign directives in GAS and the
-falign-functions GCC option.

Corruption of block-scope variables. A compiler optimization bug that sometimes caused cor-
ruption of stack-allocated variables has been fixed. The bug affected variables declared in a local
block scope in functions containing multiple non-overlapping lexical block scopes, a technique
commonly used by programmers to reduce stack frame size. In some rare cases, other optimizations
performed by the compiler were ignoring the local extent of such block-scope variables.

ARM EABI attributes. Anassembler bug that resulted in some object files generated from hand-
written assembly being incorrectly tagged as using VFP instructions has been fixed. This tagging
was harmless for objects linked with Sourcery G++ tools and libraries, but may have affected third-
party tools and libraries.

A.1.8. Changes in Sourcery G++ Lite 2009q1-123

Incorrect code when using - fal i gn-1 abel s . A bug that caused the compiler to generate
incorrect code for swi tch statements when the —Fal ign-1abel's option is used has been fixed.

ARMVAT library selection. Compiler options such as -mcpu=arm740t, specifying an ARMvAT
CPU, now cause the compiler to link with the ARMvAT libraries without requiring -march=armv4t
to be specified as well.

Core files in GDB. A bug in GDB has been fixed that caused incorrect values for CPSR (the
status register) to be displayed when debugging core files. In some cases, this bug could also cause
the gcore command to crash GDB.

Loop optimization improvements. A new option, -Fpromote-loop-indices, has been
added to the compiler. Specifying this option enables an optimization that improves the performance
of loops with index variables of integer types narrower than the target machine word size, such as
char or short. This optimization also applies to int on 64-bit targets.

45

Sourcery G++ Lite Release Notes

Support for VFP and Advanced SIMD (NEON) register display. The Sourcery G++ debugger
can now display VFP and Advanced SIMD registers when debugging Linux applications with gdb-
server. This may require a kernel patch; see Section 3.4, “Target Kernel Requirements” for details.

Extraneous linker error messages. A linker bug that caused extraneous error messages of the
form Dwarf Error: Offset (507) greater than or equal to .debug str
size (421). has been corrected. This bug did not affect the correctness of output binaries.

Assembler marking of data. Data generated using the assembler directives .asci i, -asciz,
.dc.d, .dc.s, .dc.x, .dcb, .dcb.b, .dcb.d, .dcb.1, .dcb.s, .dcb.w, .dcb.Xx, .ds,
.ds.b,.ds.d, .ds.1l, .ds.p, .ds.s, .ds.w, .ds.x, .double, .Fill, .float, . incbin,
-single, .space, .skip, .string, -string8, .stringl6, .string32, .string64,
and .zero is now correctly marked by the assembler as data rather than code. This fixes incorrect
byte-swapping of such data when linking for BE8 configurations.

VFP ABI support. Sourcery G++ now supports the VFP variant of the Procedure Call Standard
for the ARM® Architecture (AAPCS) in addition to the default soft-float ABI. The VFP ABI uses
VFP registers to pass function arguments and return values, resulting in faster floating-point code.
Code compiled with the VFP ABI is not compatible with the soft-float ABI libraries provided with
Sourcery G++ Lite; however, VFP ABI libraries for little-endian ARM v7-A processors are now
available as add-ons for Sourcery G++ Professional Edition. For further information about floating-
point compiler, ABI and library support in Sourcery G++, refer to Section 3.8.1, “Enabling Hardware
Floating Point”.

Improved vectorization. Automatic vectorization for NEON now uses the fused multiply-add
(VMLA) and fused multiply-subtract (VMLS) instructions. These fused instructions are faster than the
equivalent two-instruction sequence consisting of a multiply followed by an add or subtract.

GDB quit error. A bug in GDB has been fixed that caused quit to report Quitting: You
can"t do that without a process to debug. when debugging a core dump file.

Out-of-bounds accesses to stack arrays. A bug has been fixed that caused internal compiler
errors when some code involving out-of-bounds accesses to stack-allocated arrays was compiled
with the -mthumb option. Such code is not valid C; although it is now accepted by the compiler
and no diagnostic is issued, it has undefined behavior if executed.

A.1.9. Changes in Sourcery G++ Lite 2009q1-117

Thread cancellationinai o_suspend. A bug in the Thumb-2 version of aio_suspend has
been fixed that caused programs to crash if the calling thread was canceled.

Linking big-endian programs for ARMv7-A. When linking for ARMv7-A targets with
-mbig-endian, Sourcery G++ now implicitly assumes BE8 mode, rather than BE32.

GCC version 4.3.3. Sourcery G++ Lite for ARM GNUY/Linux is now based on GCC version
4.3.3. This is a bug fix update to GCC. For more information about changes from GCC version 4.3.2
that was included in previous releases, see http://gcc.gnu.org/gcc-4.3/changes._html.

Improved NOP generation for Thumb-2 cores. The assembler now generates Thumb-2/ARMv6K
architectural NOP instructions when alignment padding is required in code sections.

ARM atomic memory operations. Support has been added for atomic memory operations in
ARM Linux applications via built-in functions (for example, _sync_fetch_and_add). Please
refer to the GCC manual (Atomic Builtins) for further information.

46

Sourcery G++ Lite Release Notes

Internal compiler error with - 3 or - f predi cti ve- conmoni ng. A bug has been fixed
that caused internal compiler errors when compiling some code with -03 or
-fpredictive-commoning.

CS3 board and processor support. CS3 board and processor support has been cleaned up to
remove entries that are not appropriate for or supported by Sourcery G++ Lite on ARM GNU/Linux
targets. This includes processors for which Sourcery G++ Lite does not include appropriate run-time
libraries. In addition, CS3 support files for boards and processors that do not have an MMU to support
running the Linux kernel have been removed. These changes are intended to simplify processor and
board selection.

C++ named operators bug fix. A bug has been fixed that caused the compiler to crash in some
cases when the C++ operators and_eq, bitand, bitor, compl, not_eq, or_eqand xor_eq
were used in contexts where the preprocessor converts their names to strings.

Debug information for anonymous structure types. A GCC bug in the generation of debug
information for anonymous structure types in C++ code has been fixed. The bug caused printing the
type information for such structures in the debugger (via the ptype command) to fail with an error
message.

timer_del ete bug. A bug has been fixed that caused some programs to crash or hang after
calling timer_delete.

Linker errors on non-ELF input. A bug has been fixed that caused internal errors from the
linker when linking non-ELF input files (with the —-b or ——-Fformat linker options).

Undefined weak references in shared libraries. A linker bug has been fixed affecting calls from
Thumb code in shared libraries to functions that are undefined weak references when the shared
library is linked. Such calls executed as nops whether or not the functions were defined at run time.
This affected thread-related code in the Thumb-2 versions of the standard C++ library provided with
Sourcery G++, causing some multithreaded C++ programs to crash.

Improved code generation. The compiler has been improved to generate better code for an integer
multiplication whose result feeds into an addition.

Installer fails during upgrade. The Sourcery G++ installer for Microsoft Windows hosts could
fail during an upgrade while waiting for the previous version to be uninstalled. This bug has been
fixed.

Performance improvements. Tuning parameters for ARM code generation have been adjusted
to improve performance of the generated code.

Uninstaller removed by upgrade. The uninstaller could be incorrectly deleted during an upgrade
on Microsoft Windows hosts. This bug has been fixed.

Remote debugging connection auto-retry. The target remote command within GDB now uses
a configurable auto-retry timeout when establishing TCP connections. This is useful in avoiding race
conditions when the remote GDB stub or GDB server is launched simultaneously with GDB. The
auto-retry behavior is enabled by default; refer to the GDB manual for details.

CVP Thumb-2 instruction. The assembler no longer issues an error about CMP instructions in
which the second argument is the stack pointer (r13), as these are valid instructions. However, use
of the stack pointer in this context is deprecated in the current ARM architecture specification and
the assembler now warns about the deprecated use.

47

Sourcery G++ Lite Release Notes

DMVB, DSB, and | SBinstructions on ARMv6-M. The assembler now accepts the DMB, DSB, and
ISB instructions on ARMv6-M CPUs, including Cortex-M0 and Cortex-M1. These instructions
were incorrectly rejected on these CPUs in previous releases.

Thumb half-precision floating point bug fix. A compiler bug has been fixed that formerly
caused incorrect code to be generated in Thumb mode for functions using half-precision floating-
point constants. The bug did not affect Thumb-2 code.

Improved code generation. The compiler has been improved to generate better code for integer
multiplication by certain constants.

Thumb-2 swi t ch code generation bug fix. A bug has been fixed that caused incorrect Thumb-
2 code to be generated for some switch statements. This affected code in the libraries provided
with Sourcery G++ that handles cleanup attributes and POSIX thread cancellation.

Internal compiler errors when optimizing. A defect that occasionally caused internal compiler
errors when partial redundancy elimination (PRE) optimization was enabled has been corrected.

Install directory pathnames. Bugs in the install and uninstall scripts for Linux hosts that caused
errors or incorrect behavior when the Sourcery G++ install directory pathname contains whitespace
characters have been fixed.

Internal compiler error with large NEON types. A bug has been fixed that caused internal
compiler errors when compiling code using NEON types at least 32 bytes wide.

Temporary files on Microsoft Windows. On Microsoft Windows hosts, Sourcery G++ Lite now
uses the standard Windows algorithm to choose the directory in which to place temporary files. This
change eliminates a crash that occurred if none of the TEMP, TMP, or TMPD IR variables were set to
a suitable directory.

Vectorized shift fix. A bug has been fixed that caused incorrect code for loops containing a right
shift by a constant. The bug affected code compiled with -mfpu=neon and loop vectorization enabled
with -03 or -ftree-vectorize.

Incorrect code for nested functions. A bug in GCC that caused the compiler to generate incorrect
code for nested functions has been fixed. The bug resulted in incorrect stack alignments in the affected
functions.

Binutils update. The binutils package has been updated to version 2.19.51.20090205 from the
FSF trunk. This update includes numerous bug fixes.

sched_setaffinity bug fix. A bug has been fixed that caused the Thumb-2 version of
sched_setaffinity to fail inappropriately with EFAULT.

ARM build attributes conformance improvements. Several ARM EABI 2.07 conformance
issues relating to the handling of build attributes in the assembler and linker have been fixed. All
build attribute types are now recognized, and can now be declared by name, in addition to by number.
Support for merging attributes in the linker has been improved, and the linking of incompatible objects
is now detected and rejected in more cases.

Internal compiler error with - f renove- | ocal -statics. Aninternal compiler error that
occurred when using the —fremove-local -statics option has been fixed. The error occurred
when compiling code with function-local static array or structure variables.

GDB update. The included version of GDB has been updated to 6.8.50.20081022. This update
includes numerous bug fixes.

48

Sourcery G++ Lite Release Notes

Linker crash on incompatible input files. Some third-party compilers, including ARM
RealView® 4.0, produce a build attribute marking output files that are not compatible with the ABI
for the ARM Architecture. This attribute sometimes caused the linker to crash. The linker now cor-
rectly issues an error message.

A.1.10. Changes in Sourcery G++ Lite 200893-72

Bug fix for assembly listing. A bug that caused the assembler to produce corrupted listings (via
the —a option) on Windows hosts has been fixed.

Optimizer bug fix. A bug that caused an unrecognizable insn internal compiler error
when compiling at optimization levels above —-00 has been fixed.

VFP compiler fix. A compiler bug that resulted in internal compiler error: output_
operand: invalid expression as operand when generating VFP code has been fixed.

GDB display of source. A bug has been fixed that prevented GDB from locating debug inform-
ation in some cases. The debugger failed to display source code for or step into the affected functions.

Bugfixforl i bSegFaul t. so. Binaries linked with I ibSegFault. so now produce a correct
backtrace when a segmentation fault occurs. Formerly, the location of the fault was shown incorrectly.

GDB segment warning. Some compilers produce binaries including uninitialized data regions,
such as the stack and heap. GDB incorrectly displayed the warning Loadable segment "nane"
outside of ELF segments for such binaries; the warning has now been fixed.

Misaligned NEON memory accesses. A bug has been fixed that caused the compiler to use
aligned NEON load/store instructions to access misaligned data when autovectorizing certain loops.
The bug affected code compiled with -mFpu=neon and loop vectorization enabled with —-03 or
-ftree-vectorize.

Sprite crash on error. A bug has been fixed which sometimes caused the Sourcery G++ Debug
Sprite to crash when it attempted to send an error message to GDB.

Persistent remote server connections. A GDB bug has been fixed that caused the target exten-
ded-remote command to fail to tell the remote server to make the connection persistent across program
invocations.

A.1.11. Changes in Sourcery G++ Lite 2008q3-41

Definitionof va_l i st. Inorder to conform to the ABI for the ARM Architecture, the definition
of the type of va_ list (defined in stdarg. h) has been changed. This change impacts only the
mangled names of C++ entities. For example, the mangled name of a C++ function taking an argument
of type va_list, orva_list *, oranother type involving va_l i st has changed. Since this is
an incompatible change, you must recompile and relink any modules defining or using affected va_
1 i st-typed entities.

Thumb-2 assembler fixes. The Thumb-2 encodings of QADD, QDADD, QSUB, and QDSUB have
been corrected. Previous versions of the assembler generated incorrect object files for these instruc-
tions. The assembler now accepts the ORN, QASX, QSAX, RRX, SHASX, SHSAX, SSAX, USAX,
UHASX, UQSAX, and USAX mnemonics. The assembler now detects and issues errors for invalid
uses of register 13 (the stack pointer) and register 15 (the program counter) in many instructions.

Printing casted valuesin GDB. A GDB bug that caused incorrect output for expressions contain-
ing casts, such as in the print *(Type *)ptr command, has been fixed.

49

Sourcery G++ Lite Release Notes

Bug fix for objcopy/strip. An objcopy bug that corrupted COMDAT groups when creating new
binaries has been fixed. This bug also affected strip -g.

Improved support for debugging RealView® objects. GDB support for programs compiled
by the ARM RealView® compiler has been improved.

Binutils support for DWARF Version 3. The addr2line command now supports binaries con-
taining DWARF 3 debugging information. The Id command can display error messages with source
locations for input files containing DWARF 3 debugging information.

NEON improvements. Several improvements and bug fixes have been made to the NEON Ad-
vanced SIMD Extension support in GCC. A problem that caused the autovectorizer to fail in some
circumstances has been fixed. Also, many of the intrinsics available via the arm_neon_h header
file now have improved error checking for out-of-bounds arguments, and the vget_lane intrinsics
that return signed values now produce improved code.

NEON compiler fix. A compiler bug that resulted in incorrect NEON code being generated has
been fixed. Typically the incorrect code occurred when NEON intrinsics were used inside small i
statements.

Connecting to the target using a pipe. A bug in GDB's target remote | pr ogr amcommand
has been fixed. When launching the specified pr ogr amfailed, the bug caused GDB to crash, hang,
or give amessage Error: No Error.

Mixed-case NEON register aliases. An assembler bug that prevented NEON register aliases
from being created with mixed-case names using the .dn and . gn directives has been fixed. Previ-
ously only aliases created with all-lowercase or all-uppercase names worked correctly.

Janus 2CC support. GCC now includes a work-around for a hardware bug in Avalent Janus
2CC cores. To compile and link for these cores, use the -mFix-janus-2cc compiler option. If
you are using the linker directly use the ——-Fix-janus-2cc linker option.

ARM exception handling bug fix. A bug in the runtime library has been fixed that formerly
caused throwing an unexpected exception in C++ to crash instead of calling the unexpected exception
handler. The bug only affected C++ code compiled by non-GNU compilers such as ARM Real View®.

Mangling of NEON type names. A bug in the algorithm used by the C++ compiler for mangling
the names of NEON types, such as int8x16_t, has been fixed. These mangled names are used
internally in object files to encode type information in addition to the programmer-visible names of
the C++ variables and functions. The new mangled name encoding is more compact and conforms
to the ARM C++ ABI.

Errors after loading the debugged program. An intermittent GDB bug has been fixed. The
bug could cause a GDB internal error after the load command.

Half-precision floating point. ~ Sourcery G++ now includes support for half-precision floating
point via the __ Fp16 type in C and C++. The compiler can generate code using either hardware
support or library routines. For more information, see Section 3.8.3, “Half-Precision Floating Point”.

A.1.12. Changes in Sourcery G++ Lite 200893-13

GDB update. The included version of GDB has been updated to 6.8.50.20080821. This update
adds numerous bug fixes and new features, including support for decimal floating point, improved
Thumb mode support, the new find command to search memory, the new /m (mixed source and

50

Sourcery G++ Lite Release Notes

assembly) option to the disassemble command, and the new macro define command to define C
preprocessor macros interactively.

Uppercase operands to IT instructions. The assembler now accepts both uppercase and lowercase
operands for the 1T family of instructions.

NEON autovectorizer fix. A compiler bug that caused generation of bad VLD1 instructions has
been fixed. The bug affected code compiled with -mfpu=neon -ftree-vectorize.

Remote debugging improvements. The gdbserver utility now supports a more efficient com-
munications protocol that can reduce latency during remote debugging. The protocol optimizations
are enabled automatically when gdbserver operates over a TCP connection. Refer to the GDB
manual for more information.

Output files removed on error. When GCC encounters an error, it now consistently removes
any incomplete output files that it may have created.

ARMV7 offset out of range errors. An assembler bug that resulted in offset out of
range errors when compiling for ARMv7 processors has been fixed.

Thumb-2 MJL encoding. In Thumb-2 mode, the assembler now encodes MUL as a 16-bit instruction
(rather than as a 32-bit instruction) when possible. This fix results in smaller code, with no loss of
performance.

ARM C++ ABI utility functions. Vector utility functions required by the ARM C++ ABI no
longer crash when passed null pointers. The affected functionsare __aeabi_vec_dtor_cookie,
__aeabi_vec delete, aeabi_vec delete3,and__aeabi_vec delete3_nodtor.
In addition, on GNU/Linux systems, the ARM C++ ABI utility functions are now exported from the
libstdc++.so shared library. These functions are not intended for use by application programmers;
they are only called by compiler-generated code. They are not presently used by the GNU C++
compiler, but are used by some other compilers, including ARM's RealView® compiler.

GCC version 4.3.2. Sourcery G++ Lite for ARM GNU/Linux is now based on GCC version
4.3.2. For more information about changes from GCC version 4.2 that was included in previous re-
leases, see http://gcc.gnu.org/gcc-4.3/changes.html.

Smaller Thumb-2 code. When optimizing for size (i.e., when -Os is in use), GCC now generates
the 16-bit MULS Thumb-2 multiply instruction instead of the 32-bit MUL instruction.

Thumb-2 RBI T encoding. An assembler bug that resulted in incorrect encoding of the Thumb-
2 RBIT instruction has been fixed.

Sprite communication improvements. The Sourcery G++ Debug Sprite now uses a more efficient
protocol for communicating with GDB. This can result in less latency when debugging, especially
when running the Sprite on a remote machine over a network connection.

Marvell Feroceon compiler bug fix. A bug that caused an internal compiler error when optim-
izing for Marvell Feroceon CPUs has been fixed.

Misaligned accesses to packed structures fix. A bug that caused GCC to generate misaligned
accesses to packed structures has been fixed.

Bug fix for objdump on Windows. An objdump bug that caused the -S option not to work on
Windows in some cases has been fixed.

51

Sourcery G++ Lite Release Notes

A.1.13. Changes in Older Releases

For information about changes in older releases of Sourcery G++ Lite for ARM GNU/Linux, please
refer to the Getting Started guide packaged with those releases.

52

Appendix B
Sourcery G++ Lite Licenses

Sourcery G++ Lite contains software provided under a variety of licenses. Some components
are “free” or “open source” software, while other components are proprietary. This appendix
explains what licenses apply to your use of Sourcery G++ Lite. You should read this appendix
to understand your legal rights and obligations as a user of Sourcery G++ Lite.

53

Sourcery G++ Lite Licenses

B.1. Licenses for Sourcery G++ Lite Compon-
ents

The table below lists the major components of Sourcery G++ Lite for ARM GNU/Linux and the license
terms which apply to each of these components.

Some free or open-source components provide documentation or other files under terms different
from those shown below. For definitive information about the license that applies to each component,
consult the source package corresponding to this release of Sourcery G++ Lite. Sourcery G++ Lite
may contain free or open-source components not included in the list below; for a definitive list,
consult the source package corresponding to this release of Sourcery G++ Lite.

Component License

GNU Compiler Collection GNU General Public License 3.0

GNU Binary Utilities GNU General Public License 3.0 2

GNU Debugger GNU General Public License 3.0 °
Sourcery G++ Debug Sprite for ARM |CodeSourcery License

GNU C Library GNU Lesser General Public License 2.1 *
Linux Kernel Headers GNU General Public License 2.0 °

GNU Make GNU General Public License 2.0 ©

GNU Core Utilities GNU General Public License 2.0 /

The CodeSourcery License is available in Section B.2, “Sourcery G++ Software License Agreement”.
Important

Although some of the licenses that apply to Sourcery G++ Lite are “free software” or “open
source software” licenses, none of these licenses impose any obligation on you to reveal
the source code of applications you build with Sourcery G++ Lite. You can develop propri-
etary applications and libraries with Sourcery G++ Lite.

Sourcery G++ Lite may include some third party example programs and libraries in the share/
sourceryg++-arm-none-linux-gnueabi-examples subdirectory. These examples are
not covered by the Sourcery G++ Software License Agreement. To the extent permitted by law,
these examples are provided by CodeSourcery as is with no warranty of any kind, including implied
warranties of merchantability or fitness for a particular purpose. Your use of each example is governed
by the license notice (if any) it contains.

Lhitp:/Amvww.gnu.org/licenses/gpl.html
2 http://www.gnu.org/licenses/gpl.html
3 http://www.gnu.org/licenses/gpl.html
4 http://www.gnu.org/licenses/old-licenses/Igpl-2.1.html
5 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
6 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
7 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

54

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

Sourcery G++ Lite Licenses

B.2. Sourcery G++™ Software License Agree-
ment

1.

Parties. The parties to this Agreement are you, the licensee (“You” or “Licensee”) and
CodeSourcery. If You are not acting on behalf of Yourself as an individual, then “You” means
Your company or organization.

The Software. The Software licensed under this Agreement consists of computer programs
and documentation referred to as Sourcery G++™ Lite Edition (the “Software”).

Definitions.

3.1. CodeSourcery Proprietary Components. The components of the Software that are
owned and/or licensed by CodeSourcery and are not subject to a “free software” or
*“open source” license, such as the GNU Public License. The CodeSourcery Proprietary
Components of the Software include, without limitation, the Sourcery G++ Installer,
any Sourcery G++ Eclipse plug-ins, and any Sourcery G++ Debug Sprite. For a complete
list, refer to the Getting Started Guide included with the distribution.

3.2. Open Source Software Components. The components of the Software that are
subject to a “free software” or “open source” license, such as the GNU Public License.

3.3. Proprietary Rights. All rights in and to copyrights, rights to register copyrights,
trade secrets, inventions, patents, patent rights, trademarks, trademark rights, confidential
and proprietary information protected under contract or otherwise under law, and other
similar rights or interests in intellectual or industrial property.

3.4. Redistributable Components. The CodeSourcery Proprietary Components that are
intended to be incorporated or linked into Licensee object code developed with the
Software. The Redistributable Components of the Software include, without limitation,
the CSLIBC run-time library and the CodeSourcery Common Startup Code Sequence
(CS3). For a complete list, refer to the Getting Started Guide included with the distribu-
tion.

License Grant to Proprietary Components of the Software. You are granted a non-exclus-
ive, royalty-free license (a) to install and use the CodeSourcery Proprietary Components of the
Software, (b) to transmit the CodeSourcery Proprietary Components over an internal computer
network, (c) to copy the CodeSourcery Proprietary Components for Your internal use only, and
(d) to distribute the Redistributable Component(s) in binary form only and only as part of Li-
censee object code developed with the Software that provides substantially different function-
ality than the Redistributable Component(s).

Restrictions. You may not: (i) copy or permit others to use the CodeSourcery Proprietary
Components of the Software, except as expressly provided above; (ii) distribute the CodeSourcery
Proprietary Components of the Software to any third party, except as expressly provided above;
or (iii) reverse engineer, decompile, or disassemble the CodeSourcery Proprietary Components
of the Software, except to the extent this restriction is expressly prohibited by applicable law.

“Free Software” or “Open Source” License to Certain Components of the Software.

This Agreement does not limit Your rights under, or grant You rights that supersede, the license
terms of any Open Source Software Component delivered to You by CodeSourcery. Sourcery
G++ includes components provided under various different licenses. The Getting Started Guide
provides an overview of which license applies to different components. Definitive licensing

55

Sourcery G++ Lite Licenses

10.

11.

12.

13.

information for each “free software” or “open source” component is available in the relevant
source file.

CodeSourcery Trademarks. Notwithstanding any provision in a “free software” or “open
source” license agreement applicable to a component of the Software that permits You to dis-
tribute such component to a third party in source or binary form, You may not use any Code-
Sourcery trademark, whether registered or unregistered, including without limitation, Code-
Sourcery™, Sourcery G++™ the CodeSourcery crystal ball logo, or the Sourcery G++ splash
screen, or any confusingly similar mark, in connection with such distribution, and You may not
recompile the Open Source Software Components with the --with-pkgversion or
—--with-bugurl configuration options that embed CodeSourcery trademarks in the resulting
binary.

Term and Termination. This Agreement shall remain in effect unless terminated pursuant
to this provision. CodeSourcery may terminate this Agreement upon seven (7) days written
notice of a material breach of this Agreement if such breach is not cured; provided that the un-
authorized use, copying, or distribution of the CodeSourcery Proprietary Components of the
Software will be deemed a material breach that cannot be cured.

Transfers. You may not transfer any rights under this Agreement without the prior written
consent of CodeSourcery, which consent shall not be unreasonably withheld. A condition to
any transfer or assignment shall be that the recipient agrees to the terms of this Agreement. Any
attempted transfer or assignment in violation of this provision shall be null and void.

Ownership. CodeSourcery owns and/or has licensed the CodeSourcery Proprietary Com-
ponents of the Software and all intellectual property rights embodied therein, including copyrights
and valuable trade secrets embodied in its design and coding methodology. The CodeSourcery
Proprietary Components of the Software are protected by United States copyright laws and in-
ternational treaty provisions. CodeSourcery also owns all rights, title and interest in and with
respect to its trade names, domain names, trade dress, logos, trademarks, service marks, and
other similar rights or interests in intellectual property. This Agreement provides You only a
limited use license, and no ownership of any intellectual property.

Warranty Disclaimer; Limitation of Liability. CODESOURCERY AND ITS LICENSORS
PROVIDE THE SOFTWARE “AS-IS” AND PROVIDED WITH ALL FAULTS. CODE-
SOURCERY DOES NOT MAKE ANY WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED. CODESOURCERY SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES
OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, SYSTEM INTEGRATION, AND DATA ACCURACY. THERE IS NO WAR-
RANTY OR GUARANTEE THAT THE OPERATION OF THE SOFTWARE WILL BE
UNINTERRUPTED, ERROR-FREE, OR VIRUS-FREE, OR THAT THE SOFTWARE WILL
MEET ANY PARTICULAR CRITERIA OF PERFORMANCE, QUALITY, ACCURACY,
PURPOSE, OR NEED. YOU ASSUME THE ENTIRE RISK OF SELECTION, INSTALLA.-
TION, AND USE OF THE SOFTWARE. THIS DISCLAIMER OF WARRANTY CONSTI-
TUTES AN ESSENTIAL PART OF THIS AGREEMENT. NO USE OF THE SOFTWARE
IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

Local Law. If implied warranties may not be disclaimed under applicable law, then ANY
IMPLIED WARRANTIES ARE LIMITED IN DURATION TO THE PERIOD REQUIRED
BY APPLICABLE LAW.

Limitation of Liability. =~ INDEPENDENT OF THE FORGOING PROVISIONS, IN NO
EVENT AND UNDER NO LEGAL THEORY, INCLUDING WITHOUT LIMITATION,
TORT, CONTRACT, OR STRICT PRODUCTS LIABILITY, SHALL CODESOURCERY
BE LIABLE TOYOU ORANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCID-

56

Sourcery G++ Lite Licenses

14.

15.

16.

17.

18.

ENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER
MALFUNCTION, OR ANY OTHER KIND OF COMMERCIAL DAMAGE, EVEN IF
CODESOURCERY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
THIS LIMITATION SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY TO THE EXTENT PROHIBITED BY APPLICABLE LAW. IN NO EVENT SHALL
CODESOURCERY'S LIABILITY FOR ACTUAL DAMAGES FOR ANY CAUSE WHAT-
SOEVER, AND REGARDLESS OF THE FORM OF ACTION, EXCEED THE AMOUNT
PAID BY YOU IN FEES UNDER THIS AGREEMENT DURING THE PREVIOUS ONE
YEAR PERIOD.

Export Controls. You agree to comply with all export laws and restrictions and regulations
of the United States or foreign agencies or authorities, and not to export or re-export the Software
or any direct product thereof in violation of any such restrictions, laws or regulations, or without
all necessary approvals. As applicable, each party shall obtain and bear all expenses relating to
any necessary licenses and/or exemptions with respect to its own export of the Software from
the U.S. Neither the Software nor the underlying information or technology may be electronically
transmitted or otherwise exported or re-exported (i) into Cuba, Iran, Iraq, Libya, North Korea,
Sudan, Syria or any other country subject to U.S. trade sanctions covering the Software, to in-
dividuals or entities controlled by such countries, or to nationals or residents of such countries
other than nationals who are lawfully admitted permanent residents of countries not subject to
such sanctions; or (ii) to anyone on the U.S. Treasury Department's list of Specially Designated
Nationals and Blocked Persons or the U.S. Commerce Department's Table of Denial Orders.
By downloading or using the Software, Licensee agrees to the foregoing and represents and
warrants that it complies with these conditions.

U.S. Government End-Users. The Software is a “commercial item,” as that term is defined
in 48 C.F.R. 2.101 (Oct. 1995), consisting of “commercial computer software” and “commercial
computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).
Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
all U.S. Government End Users acquire the Software with only those rights set forth herein.

Licensee Outside The U.S. IfYou are located outside the U.S., then the following provisions
shall apply: (i) Les parties aux presentes confirment leur volonte que cette convention de meme
que tous les documents y compris tout avis qui siy rattache, soient rediges en langue anglaise
(translation: “The parties confirm that this Agreement and all related documentation is and will
be in the English language.”); and (ii) You are responsible for complying with any local laws
in your jurisdiction which might impact your right to import, export or use the Software, and
You represent that You have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

Severability. If any provision of this Agreement is declared invalid or unenforceable, such
provision shall be deemed modified to the extent necessary and possible to render it valid and
enforceable. In any event, the unenforceability or invalidity of any provision shall not affect
any other provision of this Agreement, and this Agreement shall continue in full force and effect,
and be construed and enforced, as if such provision had not been included, or had been modified
as above provided, as the case may be.

Arbitration. Except for actions to protect intellectual property rights and to enforce an ar-
bitrator's decision hereunder, all disputes, controversies, or claims arising out of or relating to
this Agreement or a breach thereof shall be submitted to and finally resolved by arbitration under
the rules of the American Arbitration Association (“AAA”) then in effect. There shall be one
arbitrator, and such arbitrator shall be chosen by mutual agreement of the parties in accordance
with AAA rules. The arbitration shall take place in Granite Bay, California, and may be conducted

57

Sourcery G++ Lite Licenses

19.

20.

21.

22.

by telephone or online. The arbitrator shall apply the laws of the State of California, USA to
all issues in dispute. The controversy or claim shall be arbitrated on an individual basis, and
shall not be consolidated in any arbitration with any claim or controversy of any other party.
The findings of the arbitrator shall be final and binding on the parties, and may be entered in
any court of competent jurisdiction for enforcement. Enforcements of any award or judgment
shall be governed by the United Nations Convention on the Recognition and Enforcement of
Foreign Arbitral Awards. Should either party file an action contrary to this provision, the other
party may recover attorney's fees and costs up to $1000.00.

Jurisdiction And Venue. The courts of Placer County in the State of California, USA and
the nearest U.S. District Court shall be the exclusive jurisdiction and venue for all legal proceed-
ings that are not arbitrated under this Agreement.

Independent Contractors. The relationship of the parties is that of independent contractor,
and nothing herein shall be construed to create a partnership, joint venture, franchise, employ-
ment, or agency relationship between the parties. Licensee shall have no authority to enter into
agreements of any kind on behalf of CodeSourcery and shall not have the power or authority
to bind or obligate CodeSourcery in any manner to any third party.

Force Majeure. Neither CodeSourcery nor Licensee shall be liable for damages for any
delay or failure of delivery arising out of causes beyond their reasonable control and without
their fault or negligence, including, but not limited to, Acts of God, acts of civil or military au-
thority, fires, riots, wars, embargoes, or communications failure.

Miscellaneous. This Agreement constitutes the entire understanding of the parties with respect
to the subject matter of this Agreement and merges all prior communications, representations,
and agreements. This Agreement may be modified only by a written agreement signed by the
parties. If any provision of this Agreement is held to be unenforceable for any reason, such
provision shall be reformed only to the extent necessary to make it enforceable. This Agreement
shall be construed under the laws of the State of California, USA, excluding rules regarding
conflicts of law. The application of the United Nations Convention of Contracts for the Interna-
tional Sale of Goods is expressly excluded. This license is written in English, and English is its
controlling language.

58

	Sourcery G++ Lite
	Table of Contents
	Preface
	1. Intended Audience
	2. Organization
	3. Typographical Conventions

	Chapter 1 Quick Start
	1.1. Installation and Set-Up
	1.2. Configuring Sourcery G++ Lite for the Target System
	1.3. Building Your Program
	1.4. Running and Debugging Your Program

	Chapter 2 Installation and Configuration
	2.1. Terminology
	2.2. System Requirements
	2.2.1. Host Operating System Requirements
	2.2.2. Host Hardware Requirements
	2.2.3. Target System Requirements

	2.3. Downloading an Installer
	2.4. Installing Sourcery G++ Lite
	2.4.1. Using the Sourcery G++ Lite Installer on Microsoft Windows
	2.4.2. Using the Sourcery G++ Lite Installer on GNU/Linux Hosts
	2.4.3. Installing Sourcery G++ Lite from a Compressed Archive

	2.5. Installing Sourcery G++ Lite Updates
	2.6. Setting up the Environment
	2.6.1. Setting up the Environment on Microsoft Windows Hosts
	2.6.1.1. Setting the PATH
	2.6.1.2. Working with Cygwin

	2.6.2. Setting up the Environment on GNU/Linux Hosts

	2.7. Uninstalling Sourcery G++ Lite
	2.7.1. Using the Sourcery G++ Lite Uninstaller on Microsoft Windows
	2.7.2. Using the Sourcery G++ Lite Uninstaller on GNU/Linux
	2.7.3. Uninstalling a Compressed Archive Installation

	Chapter 3 Sourcery G++ Lite for ARM GNU/Linux
	3.1. Included Components and Features
	3.2. Library Configurations
	3.2.1. Included Libraries
	3.2.2. Library Selection

	3.3. Compiling for ARMv4T and ARMv5T Systems
	3.4. Target Kernel Requirements
	3.5. Using Sourcery G++ Lite on GNU/Linux Targets
	3.5.1. Installing the Sysroot
	3.5.2. Using Linker Options to Specify the Sysroot Location
	3.5.3. Specifying the Sysroot Location at Runtime

	3.6. Using GDB Server for Debugging
	3.6.1. Running GDB Server
	3.6.2. Connecting to GDB Server from the Debugger
	3.6.3. Setting the Sysroot in the Debugger

	3.7. GLIBC Backtrace Support
	3.8. Using VFP Floating Point
	3.8.1. Enabling Hardware Floating Point
	3.8.2. NEON SIMD Code
	3.8.3. Half-Precision Floating Point

	3.9. ABI Compatibility
	3.10. Object File Portability

	Chapter 4 Using Sourcery G++ from the Command Line
	4.1. Building an Application
	4.2. Running Applications on the Target System
	4.3. Running Applications from GDB
	4.3.1. Connecting to the Sourcery G++ Debug Sprite
	4.3.2. Connecting to an External GDB Server

	Chapter 5 Sourcery G++ Debug Sprite
	5.1. Probing for Debug Devices
	5.2. Invoking Sourcery G++ Debug Sprite
	5.3. Sourcery G++ Debug Sprite Options
	5.4. Remote Debug Interface Devices
	5.5. Actel FlashPro Devices
	5.5.1. Installing FlashPro Windows drivers

	5.6. Debugging a Remote Board
	5.7. Supported Board Files
	5.8. Board File Syntax

	Chapter 6 Next Steps with Sourcery G++
	6.1. Sourcery G++ Subscriptions
	6.2. Sourcery G++ Knowledge Base
	6.3. Manuals for GNU Toolchain Components

	Appendix A Sourcery G++ Lite Release Notes
	A.1. Changes in Sourcery G++ Lite for ARM GNU/Linux
	A.1.1. Changes in Sourcery G++ Lite 2009q3-67
	A.1.2. Changes in Sourcery G++ Lite 2009q3-65
	A.1.3. Changes in Sourcery G++ Lite 2009q3-38
	A.1.4. Changes in Sourcery G++ Lite 2009q3-15
	A.1.5. Changes in Sourcery G++ Lite 2009q1-203
	A.1.6. Changes in Sourcery G++ Lite 2009q1-200
	A.1.7. Changes in Sourcery G++ Lite 2009q1-176
	A.1.8. Changes in Sourcery G++ Lite 2009q1-123
	A.1.9. Changes in Sourcery G++ Lite 2009q1-117
	A.1.10. Changes in Sourcery G++ Lite 2008q3-72
	A.1.11. Changes in Sourcery G++ Lite 2008q3-41
	A.1.12. Changes in Sourcery G++ Lite 2008q3-13
	A.1.13. Changes in Older Releases

	Appendix B Sourcery G++ Lite Licenses
	B.1. Licenses for Sourcery G++ Lite Components
	B.2. Sourcery G++ Software License Agreement

