Using as

The GNU Assembler
(GNU Binutils)

Version 2.22

The Free Software Foundation Inc. thanks The Nice Computer Company of Australia for
loaning Dean Elsner to write the first (Vax) version of as for Project GNU. The proprietors,
management and staff of TNCCA thank FSF for distracting the boss while they got some

work done.

Dean Elsner, Jay Fenlason & friends

Using as
Edited by Cygnus Support

Copyright (©) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2006,
2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

Table of Contents

1 OVverview ... 1
1.1 Structure of this Manual 15
1.2 The GNU Assembler., 15
1.3 Object File Formats......... ..., 16
1.4 Command Line i 16
1.5 Input Files.o 16
1.6 Output (Object) File.... ... 17
1.7 Error and Warning Messages, 17

2 Command-Line Options....................... 19
2.1 Enable Listings: ‘~alcdghlns]’, 19
2.2 fmmalternate’ ... 19
2.8 D 20
2.4 Work Faster: ‘“—f7 20
2.5 .include Search Path: ‘-’ path.............................. 20
2.6 Difference Tables: ‘=K’ i 20
2.7 Include Local Symbols: ‘=L’ i 20
2.8 Configuring listing output: ‘-=-listing’ 20
2.9 Assemble in MRI Compatibility Mode: ‘=M’.................... 21
2.10 Dependency Tracking: ‘==MD’.............cciiiiiiiiiinenn.. 23
2.11 Name the Object File: ‘=o’. i i 23
2.12 Join Data and Text Sections: ‘=R’, 23
2.13 Display Assembly Statistics: ‘--statistics’................. 23
2.14 Compatible Output: ‘--traditional-format’................ 23
2.15 Announce Version: ‘=v’t 23
2.16 Control Warnings: ‘-W’, ‘~-warn’, ‘~-no-warn’,

f——fatal-warningst 24
2.17 Generate Object File in Spite of Errors: ‘=Z’.................. 24

3 Syntax.............. 25
3.1 PreproCessingoooiuuiiiii i 25
3.2 Whitespaceo 25
3.3 Commentso 25
3.4 Symbols ... 26
3.5 Statements. 26
3.6 ConsStants. 27

3.6.1 Character Constants ..., 27
3.6. 1.1 Strings......eiiii e 27
3.6.1.2 Charactersoouuiiiiiiiii e 28

3.6.2 Number Constantscooiiiiiiiiiii .. 28
3.6.2.1 Integersouuuriiimi 28
3.6.2.2 Bignumsooi 29

3.6.2.3 Flonumsooonii 29

ii Using as

4 Sections and Relocation....................... 31
4.1 Background........ ... 31
4.2 Linker Sectionscoiuuiiiiii i 32
4.3 Assembler Internal Sections il 33
4.4 SUb-SeCtiONSttt 33
4.5 DSS SECHION . o vttt 34

5 Symbols........... 37
5.1 Labels ... 37
5.2 Giving Symbols Other Values oL 37
5.3 Symbol Names 37
5.4 The Special Dot Symbol 39
5.5 Symbol Attributes ... 39

5.5.1 Value 39
0.0, 2 Iy De. i e 39
5.5.3 Symbol Attributes: a.out.......... ... i 39
5.5.3.1 Descriptor.t 40
5.5.3.2 Other.... .o 40
5.5.4 Symbol Attributes for COFF 40
5.5.4.1 Primary Attributes......... L. 40
5.5.4.2 Auxiliary Attributes......... o il 40
5.5.5 Symbol Attributes for SOM 40

6 Expressions................. ... 41
6.1 Empty EXpressions......... ..o 41
6.2 Integer EXPressionsouuiiiiiiiiiiiiii. 41

6.2.1 Arguments............iiiiii e 41
6.2.2 OPeratorsouunt et 41
6.2.3 Prefix Operatoro 41
6.2.4 Infix Operators.o.uuuiiiiii e 42

7 Assembler Directives.......................... 45
Tl @DOTt 45
7.2 .ABORT (COFF). ... oo 45
7.3 .align abs-expr, abs-expr, abs—expr 45
T4 ALlBMACTO o ettt e e 46
7.5 Lascii "string. ... 46
7.6 .asciz "string". 46
7.7 .balign[wl] abs-expr, abs-expr, abs—expr................ 46
7.8 .byte eXpresSIOonS..........cuiiuiiiiiiiiiiiiii i 47
7.9 .cfi_sections section_liStccciiiiiiiiiiiiiinnenn.. 47
7.10 .cfi_startproc [simplel........ ..ot 47
711 . cfi_endproC ..ottt 47
7.12 .cfi_personality encoding [, exp]l 47
7.13 .cfi_lsda encoding [, expl 47
7.14 .cfi_def_cfa register, offset...................... ... 48

7.15 .cfi_def_cfa_register register 48

7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27
7.28
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.38
7.39
7.40
7.41
7.42
7.43
7.44
7.45
7.46
7.47
7.48
7.49
7.50
7.51
7.52
7.53
7.54
7.55
7.56
7.57
7.58
7.59
7.60
7.61
7.62
7.63

.cfi_def_cfa_offset offset i, 48
.cfi_adjust_cfa_offset offset 48
.cfi_offset register, offset....................... 48
.cfi_rel_offset register, offset 48
.cfi_register registerl, register2...................... 48
.cfi_restore register i 48
.cfi_undefined register il 48
.cfi_same_value register 48
.cfi_remember_state,iiiii i 48
.cfi_return_column register................., 49
.cfi_signal frame.........l 49
cfi_window_save. 49
.cfi_escape expression|, ...|...... . i 49
.cfi_val_encoded_addr register, encoding, label 49
.comm symbol , length, 49
.data subsection............. . 50
def name 50
desc symbol, abs-exXpresSSionouiiiiiiiiiiii 50
Adm. 50
double FIONUMSttt 50
JeCt 50
LS. 50
elself ... 50
=3 2T o1
endef ... o1
endfunc ... 51
endif ... o1
.equ Symbol, eXPreSSIOI o1
.equiv symbol, @XPreSSIONoouiiiiiiiiiiiiiiiaa... o1
.eqQV Symbol, eXPreSSIONcciiuiiiiiiiniiiiiiiiiii o1
BT T o o o1
error "string" 52
EXITM ..o 52
EXEeIIL . 52
fail exXpresSSion . ..o 52
file. 52
.fill repeat , size , value.............oiiiiiiiiiiiii 53
c£loat F1oNUMS .« 53
func name [,1abel] 53
.global symbol, .globl symbolouiiuiinneo... 53
.gnu_attribute tag,value 53
.hiddennames 53
.hword expressions i 54
Jddent oo o4
.if absolute expressSioniiiiiiiiiia... 54
.incbin "file"[,skip[,count]], 55
.include "file" 95

.ANT eXPresSSIOonS .. 56

iii

iv

7.64 .internal namesiiiiiiii
7.65 .irp symbol ,valuesS.c.ouiiuiuiiiiiinineiiiiinaaaa..
7.66 .irpc symbol ,valuesS.cuuuiiiiiiiiniiianiiieann.
7.67 .lcomm symbol , lengthccoiiiiiiiiiiiiiiii...
T.68 Ll lags ..
7.69 .line 1ine-number................ceiiuiuiiiniiienniieennn.
7.70 .linkonce [typel........ ..o
T7L LSt
7.72 1n line—number
7.73 .loc fileno lineno [column] [options]
7.74 .loc_mark_labels enableo ...
T.75 .1local DaMeS ...
T7.76 .1ong eXPresSSIONS ... cuuuuui i
TAT UMACTO .ottt
T8 omri val ...
T.79 noaltmacTooii
T.80 noldst ..o
7.8l .0Cta DIGNUIMS ..ottt ittt e
T.82 Loffset 10C... ..o
7.83 .orgmew-1c , fill oot
7.84 .p2align[wl] abs-expr, abs-expr, abs-expr
7.85 .popsection
T.86 . PrevIOUS.ttt
T.87 .print Stringt
7.88 .protectedmames..............l
7.89 .psize lines , COLUMMScuiiiiniiiiiiinnaninnn ..
7.90 .purgem name ...
7.91 .pushsection name [, subsection] [, "flags"[,

Q@type [,arguments]]]o
7.92 .quad DIGOUISoiiii it
7.93 .reloc offset, reloc_namel, expression]
T.94 .Teplt CoUnT .. .ottt
7.95 .sbttl "subheading"i i
T.96 .8CL ClasSsS .ottt
797 .sectionmame
7.98 .set symbol, expression................ ...,
7.99 .Short eXpresSSIiOnScuuuuuiiiiiiianiiiaaainen.
7.100 .single fIONUMSuununuii it
TA01 osdze o
7.102 .skip size , fill
7.103 .s1lebl28 expressionsuuiiiiiiiiiiiiii
7.104 .space size , FIlluuiiiiiiiiiiii i
7.105 .stabd, .stabn, .stabsSiiiiiiii
7.106 .string "str", .string8 "str", .stringl6
7.107 .STTUCt @XPreSSIOncouuiiiiiiii i
7.108 .subsectionname................. i
T.109 LSYMVET ...ttt
7.110 .tag Structnameuuiiiiiiiiii i

Using as

7.111 .text SsubSeCtIOon ..o 72

7112 .title "heading"......... i 72
0 T v o1 PP 73
7.114 .1ulebl28 eXpresSSionsScouuuiiiiiii i 74
TA15 .val @ddr .o 74
7.116 .version "string" 74
7.117 .vtable_entry table, offset..............ccooiiiiiio... e
7.118 .vtable_inherit child, parentc....oo... 74
7.119 .warning "string" 74
7.120 .weak NAaMesS ...t 74
7.121 .weakref alias, target...............iiiiiiiiiiiia.. 75
7.122 .word eXpreSSIOnS ... 75
7.123 Deprecated Directives. ... 75
8 Object Attributes 77
8.1 GNU Object Attributesooueiiiii e 7
8.1.1 Common GNU attributes, 7
8.1.2 MIPS Attributes 77
8.1.3 PowerPC Attributes......... ... 78
8.2 Defining New Object Attributes.....................oi... 78
9 Machine Dependent Features................. 79
9.1 Alpha Dependent Features................. ..., 80
9.1, 1 NOLES . ottt ettt 80
9.1.2 OpPtionS .« ottt 80
9.1.3 Symbax ..o 81
9.1.3.1 Special Characters.............coooiiiiiiiiiiiia... 81
9.1.3.2 Register Names. ...t .. 81
9.1.3.3 Relocations. ... 81

9.1.4 Floating Point 83
9.1.5 Alpha Assembler Directives............................... 83
9.1.6 Opeodes 86
9.2 ARC Dependent Featuresoiiiiiiii ... 87
9.2, 1 OPtionS . oottt e 87
0.2.2 SYMbaX ...ttt 87
9.2.2.1 Special Characters.............coooiiiiiiiiiiia .. 87
9.2.2.2 Register Names.ccooiiiiiiiiiiiiiiiiiean.. 87

9.2.3 Floating Point o i 87
9.2.4 ARC Machine Directives ..., 87
9.2.5 OPCodesvei i 90
9.3 ARM Dependent Features...............ooiiiii .. 91
9.3. 1 OpPtionSttt 91
0.3.2 Sy MK . vttt 93
9.3.2.1 Instruction Set Syntax.............c..coiiiiiiiiiia 94
9.3.2.2 Special Characters.............c.oooiiiiiiiiiiia .. 94
9.3.2.3 Register Names.........ccooiiiiiiiiiiiiiiiiiia... 94
9.3.2.4 NEON Alignment Specifiers 94

9.3.3 Floating Point i i 94

vi

9.3.3.1 ARM relocation generation.......................... 95
9.3.4 ARM Machine Directives.............cooiiiiiiiiiinnn. 95
9.3.5 OPCodes . ..o 100
9.3.6 Mapping Symbols...... o 101
9.3.7 Unwindingot 101

9.4 AVR Dependent Features 104
9.4 1 OPtionS . . v vttt 104
9.4.2 SYNBAX . .ot ea 105

9.4.2.1 Special Charactersccooiiiiiiiiii.. 105

9.4.2.2 Register Names ..., 105

9.4.2.3 Relocatable Expression Modifiers................... 106
9.4.3 OPCOdEs ... vvii e 107

9.5 Blackfin Dependent Features................................. 110
9.5. 1 OptionSo 110
9.5.2 SyMbaX ..o 110
9.5.3 Directives.o 112

9.6 CRI16 Dependent Featuresiiiiiiiin. 114
9.6.1 CR16 Operand Qualifiers.............. ..., 114
9.6.2 CRI6 Syntaxovuit e 115

9.6.2.1 Special Charactersccoviiiiiiiiie... 115

9.7 CRIS Dependent Features....................cooiiiiiii.. 116
9.7.1 Command-line Options., 116
9.7.2 Instruction expansiono, 117
9.7.3 Symbols 117
.74 Syntax.o 118

9.7.4.1 Special Charactersccoiiiiiiiinennn.. 118

9.7.4.2 Symbols in position-independent code 118

9.7.4.3 Register names. ... 119

9.7.4.4 Assembler Directives, 119

9.8 D10V Dependent Features, 121
9.8.1 DIOV Options .. .ovviiei e 121
9.8.2 SYMbAX . .ttt 121

9.8.2.1 Size Modifiers...........oooiii i 121

9.8.2.2 Sub-Instructions........... ... oo i 121

9.8.2.3 Special Characterscoiiiiiineo... 122

9.8.2.4 Register Names i, 123

9.8.2.5 Addressing Modes.........c.cooiiiiiiiiiiiii 123

9.8.2.6 @WORD Modifier.................oooiiiiiiiiit, 124
9.8.3 Floating Point i i 124
9.8.4 OPCOAES . ..ottt 124

9.9 D30V Dependent Features, 125
9.9.1 D30V Options .. .ovveiei e 125
9.9.2 SymbaX e 125

9.9.2.1 Size Modifiers............ooooiiiiiii i 125

9.9.2.2 Sub-Instructions............ ... i 125

9.9.2.3 Special Characterscoiiiiiinee... 125

9.9.2.4 Guarded Execution....................oooi... 127

9.9.2.5 Register Names ..., 127

Using as

vii

9.9.2.6 Addressing Modes..........cooiiiiiiiiiiiiiian 128
9.9.3 Floating Point o . i 128
9.9.4 OPCodes 128

9.10 HS8/300 Dependent Features................ooooiiiiionn... 129
9.10.1 OPtIONS . ¢ ottt e 129
0.10.2 SymbaX. ..ottt 129

9.10.2.1 Special Characterscoooiiiiiiaaa.. 129

9.10.2.2 Register Names ..., 129

9.10.2.3 Addressing Modes. ... 129
9.10.3 Floating Point i 130
9.10.4 HS8/300 Machine Directives................coooiiiin... 131
9.10.5 OpCOAES . v vt 131

9.11 HPPA Dependent Features...............cooiiiiiiii... 132
9111 Notes. .ottt e 132
0.11.2 OptIONS. . ottt 132
0.11.3 Symbax. ..ottt 132
9.11.4 Floating Point i 132
9.11.5 HPPA Assembler Directives.............coooviii ... 132
9.11.6 OPCOAES . v vt et 136

9.12 ESA/390 Dependent Features............................... 137
9121 NObeS. oottt e 137
9.12.2 OPBIONS . vttt 137
9.12.3 SYNbaAX . ¢ ot 137
9.12.4 Floating Point o i i 138
9.12.5 ESA/390 Assembler Directives......................... 138
9.12.6 OpCOAES . .\ v vttt 139

9.13 80386 Dependent Featurescooiiiiiiiiiin... 140
9.13.1 OpLIONS . « vttt 140
9.13.2 x86 specific Directives. ... 141
9.13.3 1386 Syntactical Considerations......................... 141

9.13.3.1 AT&T Syntax versus Intel Syntax................. 141

9.13.3.2 Special Characterso, 142
9.13.4 Instruction Namingccoviiiiiiiiiiiiie... 142
9.13.5 AT&T Mnemonic versus Intel Mnemonic............... 143
9.13.6 Register Namingooiiiiiiiiiiiiii 143
9.13.7 Instruction Prefixes............ L 144
9.13.8 Memory References i 145
9.13.9 Handling of Jump Instructions 146
9.13.10 Floating Pointo i 146
9.13.11 Intel’s MMX and AMD’s 3DNow! SIMD Operations... 147
9.13.12 AMD’s Lightweight Profiling Instructions 147
9.13.13 Bit Manipulation Instructions...................... ... 147
9.13.14 AMD’s Trailing Bit Manipulation Instructions......... 147
9.13.15 Writing 16-bit Code........... ... 148
9.13.16 AT&T Syntax bugs.........covviiiiiiiiiii... 148
9.13.17 Specifying CPU Architecture.......................... 148
91318 NOtES. .t 149

viii

9.14.1 1860 NOES . .t vt 150
9.14.2 i860 Command-line Options.................coviinn. 150
9.14.2.1 SVRA4 compatibility options 150
9.14.2.2 Other options, 150
9.14.3 1860 Machine Directives............o, 150
9.14.4 1860 OpCOdes . ..ottt e 151
9.14.4.1 Other instruction support (pseudo-instructions).... 151
9.14.5 1860 Syntaxot e 152
9.14.5.1 Special Characters, 152
9.15 Intel 80960 Dependent Features................. 153
9.15.1 1960 Command-line Options................coiiiiinn. 153
9.15.2 Floating Point i 154
9.15.3 1960 Machine Directives...............coooi i, 154
9.15.4 1960 Opcodesottt 155
0.15.4. 1 Callg ettt 155
9.15.4.2 Compare-and-Branch.............................. 155
9.15.5 Syntax for the i960..... i 156
9.15.5.1 Special Characterscooviiiiiiiinn... 156
9.16 TA-64 Dependent Features, 157
9.16. 1 OptionS. ..t 157
0.16.2 SyIMbaX . oottt e 158
9.16.2.1 Special Charactersc.covviiiiiiinnnn... 158
9.16.2.2 Register Names ..., 158
9.16.2.3 IA-64 Processor-Status-Register (PSR) Bit Names
.. 158
9.16.2.4 Relocations ... 158
9.16.3 OpCOAES . .. vvi et 159
9.17 IP2K Dependent Features............... ..., 160
9.17.1 TP2K Options.ouuuiiiiii e 160
9.17.2 TP2K Syntax........ooveiii i 160
9.17.2.1 Special Charactersc.oouiiiiiiinno... 160
9.18 LM32 Dependent Featurescoooiiiiiiiiiii.. 161
9.18.1 OPLIONS . vttt 161
9.18.2 SyNbax. .. 161
9.18.2.1 Register Names ..., 161
9.18.2.2 Relocatable Expression Modifiers.................. 162
9.18.2.3 Special Charactersccouiiiiiiinn... 163
9.18.3 OpCOAES ... v vt 163
9.19 M32C Dependent Features...............c.ooiiiiiiiia.. 164
9.19.1 M32C Optionsvviiii it 164
9.19.2 M32C Syntax . ..ottt e 164
9.19.2.1 Symbolic Operand Modifiers 164
9.19.2.2 Special Characterscoiiiiii.. 165
9.20 M32R Dependent Features.................oooiiiiiiii.. 166
9.20.1 M32R Optionsvvteeit e 166
9.20.2 M32R Directivescoouiiiii 167
9.20.3 M32R Warningsooouuiiiiiii e 168

9.21 M680x%0 Dependent Featurescoooiiiiiiii... 170

Using as

9.21.1 MO680xX0 Options ..o 170
9.21.2 SYIBaAX . o ettt e 173
9.21.3 Motorola Syntaxoiiiiiiii 174
9.21.4 Floating Point o 175
9.21.5 680x0 Machine Directivescoooiiiiiiiia.n. 175
9.21.6 OPCOAES . v v vttt 176
9.21.6.1 Branch Improvement.............................. 176
9.21.6.2 Special Characterscoovviiiiiiinn... 177
9.22 M68HCI11 and M68HC12 Dependent Features............... 178
9.22.1 M68HC11 and M68HC12 Options...................... 178
0.22.2 SYIMBAX .« ettt 179
9.22.3 Symbolic Operand Modifiers 180
9.22.4 Assembler Directives.......... ... i 181
9.22.5 Floating Point 181
9.22.6 OpCOAES .. v vvt e 182
9.22.6.1 Branch Improvement.............................. 182
9.23 MicroBlaze Dependent Features............................. 183
9.23. 1 Directives.oouuuii 183
9.23.2 Syntax for the MicroBlaze.................., 183
9.23.2.1 Special Characterscooeiiiiiiiii... 183
9.24 MIPS Dependent Features................ ..., 184
9.24.1 Assembler options.c i 184
9.24.2 MIPS ECOFF object code ..., 189
9.24.3 Directives for debugging information 189
9.24.4 Directives to override the size of symbols............... 189
9.24.5 Directives to override the ISA level..................... 190
9.24.6 Directives for extending MIPS 16 bit instructions. 190
9.24.7 Directive to mark data as an instruction................ 190
9.24.8 Directives to save and restore options 191
9.24.9 Directives to control generation of MIPS ASE instructions
... 191
9.24.10 Directives to override floating-point options 192
9.24.11 Syntactical considerations for the MIPS assembler. 192
9.24.11.1 Special Characters.............ccviiiiiiea .. 192
9.25 MMIX Dependent Features, 193
9.25.1 Command-line Options...............cooiiiiiiiin.. 193
9.25.2 Instruction expansionc..ooiiiiiiiiiiiia... 194
9.25.3 SYNBaX. .o 194
9.25.3.1 Special Characterso, 194
0.25.3.2 Symbols ... 195
9.25.3.3 Registernames............. ... i, 195
9.25.3.4 Assembler Directives................ ... L. 196
9.25.4 Differences tommixalot 198
9.26 MSP 430 Dependent Features............. 200
9.26.1 OPLIONS. « vttt 200
0.26.2 SYNBAX .« ettt e 200
9.26.2.1 MaCroS. .« oo vttt 200

9.26.2.2 Special Characterscoiiiiii.. 200

ix

9.26.2.3 Register Names ..., 200
9.26.2.4 Assembler Extensions 201
9.26.3 Floating Point 201
9.26.4 MSP 430 Machine Directives....................oo.... 202
9.26.5 OPCOAES . .. vvt it 202
9.26.6 Profiling Capability L. 202
9.27 NS32K Dependent Features...................oooiiina.. 204
9.27.1 SYNBAX .« ottt e 204
9.27.1.1 Special Characters, 204

9.28 PDP-11 Dependent Features...................ooiiiii... 205
9.28.1 OPLIONS .« vttt 205
9.28.1.1 Code Generation Options 205
9.28.1.2 Instruction Set Extension Options................. 205
9.28.1.3 CPU Model Optionsccoooiiiiiiia.. 206
9.28.1.4 Machine Model Options........................... 206
9.28.2 Assembler Directives. ..., 207
9.28.3 PDP-11 Assembly Language Syntax.................... 207
9.28.4 Instruction Namingccooiiiiiiiiiiiiii ... 207
9.28.5 Synthetic Instructions..........l 208
9.29 picoJava Dependent Features 209
9.20.1 OPLIONS . « vttt 209
9.29.2 PJ Syntaxt 209
9.29.2.1 Special Characterscoovviiiiiiinnn... 209

9.30 PowerPC Dependent Features................ 210
9.30.1 OptionsS. ...t 210
9.30.2 PowerPC Assembler Directives......................... 212
9.30.3 PowerPC Syntax..........oouiiiiiiiiiiiiiiian, 212
9.30.3.1 Special Charactersoooiiiiia.. 212

9.31 RX Dependent Features...................ooiiiiiii.. 213
9.31.1 RX Options. ..oovnrtt i 213
9.31.2 Symbolic Operand Modifiers 213
9.31.3 Assembler Directives.........o 214
9.31.4 Floating Point i i 214
9.31.5 Syntax forthe RX i 214
9.31.5.1 Special Charactersccouiiiiiiinn.... 214

9.32 IBM S/390 Dependent Features...................ooooin... 215
9.32.1 OPLIONS . « .ttt 215
9.32.2 Special Characters........ ..o, 215
9.32.3 Instruction syntax ...l i i 215
9.32.3.1 Register naming............. ... i, 216
9.32.3.2 Instruction Mnemonics............................ 216
9.32.3.3 Instruction Operands..................ooiiio... 217
9.32.3.4 Instruction Formats.............. 219
9.32.3.5 Instruction Aliases ..., 222
9.32.3.6 Instruction Operand Modifier 225
9.32.3.7 Instruction Marker......... L. 227
9.32.3.8 Literal Pool Entries..................ooo i i, 227

9.32.4 Assembler Directivescouuun i 228

Using as

9.32.5 Floating Point 229
9.33 SCORE Dependent Features.......................coiinnn. 230
9.33.1 OpLIONS . « vttt 230
9.33.2 SCORE Assembler Directives 230
9.33.3 SCORE Syntaxcooiiiiiiiiiiiiiiiii .. 231
9.33.3.1 Special Charactersccouiiiiiiinn.... 231

9.34 Renesas / SuperH SH Dependent Features 232
9.34.1 OPLIONS . vttt 232
9.34.2 Synbax.o 232
9.34.2.1 Special Characters, 232
9.34.2.2 Register Names, 233
9.34.2.3 Addressing Modes. ...l 233
9.34.3 Floating Pointo i i i 233
9.34.4 SH Machine Directives...........ot 234
9.34.5 OpCOAES .. v v 234
9.35 SuperH SH64 Dependent Features........................... 235
9.35.1 OPLIONS .« vttt 235
9.35.2 SYNBaAX. .o 235
9.35.2.1 Special Characters, 235
9.35.2.2 Register Names ..., 236
9.35.2.3 Addressing Modes. ... 236
9.35.3 SH64 Machine Directives............. ..., 236
9.35.4 OpCOAES . .. vi it 237
9.36 SPARC Dependent Features, 238
9.36.1 Options. ...ttt 238
9.36.2 Enforcing aligned data oL 239
9.36.3 SParc SYNtaXttt 239
9.36.3.1 Special Characterscoiiiiiia.. 240
9.36.3.2 Register Names ..., 240
0.36.3.3 Constants......... ..ot 242
9.36.3.4 Relocations 243
9.36.3.5 Size Translations............. ..., 245
9.36.4 Floating Point 246
9.36.5 Sparc Machine Directives oot 246
9.37 TIC54X Dependent Features..............coiiiiian... 248
9.37.1 OPLIONS .« vttt 248
9.37.2 Blockingo 248
9.37.3 Environment Settingsc.ooiiiiiiiiiiii., 248
9.37.4 Constants Syntaxcoooiiiiiiiiiiiiiiii.. 248
9.37.5 String Substitution........... i 248
9.37.6 Local Labels........cooo i 249
9.37.7 Math Builtins......... 249
9.37.8 Extended Addressing................ooiiiiiiiii... 251
9.37.9 DIirectives.ouuuii e 251
9.37.10 Macros .« oo vi ettt e 256
9.37.11 Memory-mapped Registers.......................... 257
9.37.12 TICHAX Syntax.......eeeme i eieens 257

9.37.12.1 Special Characters.............ccooviiiiiiia.. 257

xi

xii

9.38 TIC6X Dependent Features................................. 258
9.38.1 TICHEX OptionS . ..vvveit et e 258
9.38.2 TTICHBX SYNLAX « o vttt ettt e et 258
9.38.3 TICHEX Directivesuviiiiie i 259

9.39 TILE-Gx Dependent Features............. ... 261
9.39.1 OPLIONS . « .ttt 261
0.39.2 SYIMBAX .« et e 261

9.39.2.1 Opcode Namesc.oviiiiiiiiiiiiiaan. 261
9.39.2.2 Register Names ..., 261
9.39.2.3 Symbolic Operand Modifiers 262
9.39.3 TILE-Gx Directivesc.couuiiiiiiiiiiiiinann 264

9.40 TILEPro Dependent Features............................... 266
9.40.1 OPLIONS . .\ttt 266
9.40.2 SYNBaX. .o 266

9.40.2.1 Opcode Names..........ooviiiiinenennnnnnnnn. 266
9.40.2.2 Register Names, 266
9.40.2.3 Symbolic Operand Modifiers 267
9.40.3 TILEPro Directives....... ..., 269

9.41 780 Dependent Features, 270
9.41. 1 OptionS. .. 270
0.41.2 SYNMBAX .« ettt et e 270

9.41.2.1 Special Charactersooiiiiiii.. 270
9.41.2.2 Register Names ..., 271
9.41.2.3 Case Sensitivity ... 271
9.41.3 Floating Point o 271
9.41.4 780 Assembler Directives........... 271
9.41.5 OpPCOAES . v vt et 272

9.42 78000 Dependent Features..................oooiiiiiii.. 273
9.42.1 OPLIONS . .« vttt 273
0.42.2 SYNEAK . .ottt 273

9.42.2.1 Special Charactersccooiiiiiian.. 273
9.42.2.2 Register Names, 273
9.42.2.3 Addressing Modes. ... 273
9.42.3 Assembler Directives for the Z8000..................... 274
9.42.4 OpCOAES ..\ vv 275

9.43 VAX Dependent Features................................... 275
9.43.1 VAX Command-Line Options 275
9.43.2 VAX Floating Point........... ..., 276
9.43.3 Vax Machine Directives.............. oL 276
9.43.4 VAX OpPCOodes.vviiiiii e 277
9.43.5 VAX Branch Improvement 277
9.43.6 VAX Operandso.uiiiiiiiiiiii .. 278
9.43.7 Not Supported on VAX i 279
9.43.8 VAX Syntax......oueiiiii 279

9.43.8.1 Special Charactersccoviiiiiiean.. 279

9.44 v850 Dependent Features, 279

9.44.1 OPLIONS . .\ttt 279

9.44.2 SYNBAX. .o 280

Using as

9.44.2.1 Special Characterscoouiiiiiiinn.... 280
9.44.2.2 Register Names, 280
9.44.3 Floating Point 283
9.44.4 V850 Machine Directives............coviiiiiiiiiann. 283
9.44.5 OPCOAES . .ttt 283
9.45 XStormyl16 Dependent Features................ 285
9.45.1 SYNBAX .« ottt e e 285
9.45.1.1 Special Characterscooviiiiiiinn... 285
9.45.2 XStormy16 Machine Directives......................... 285
9.45.3 XStormyl16 Pseudo-Opcodest 286
9.46 Xtensa Dependent Features.................. 287
9.46.1 Command Line Options. ..., 287
9.46.2 Assembler Syntax....... i 288
9.46.2.1 Opcode Namesoviiiiiiiiiiiiniiiea.. 288
9.46.2.2 Register Names ..., 289
9.46.3 Xtensa Optimizations...........cooveiiiiiieiiiienann.. 289
9.46.3.1 Using Density Instructions 289
9.46.3.2 Automatic Instruction Alignment.................. 289
9.46.4 Xtensa Relaxation i i i 290
9.46.4.1 Conditional Branch Relaxation.................... 290
9.46.4.2 Function Call Relaxation.......................... 291
9.46.4.3 Other Immediate Field Relaxation................. 291
9.46.5 Directives.oouuiii 292
9.46.5.1 schedule 293
9.46.5.2 longcallso 293
9.46.5.3 transform............ ... 293
9.46.5.4 literal...... .o 293
9.46.5.5 literal_position, 294
9.46.5.6 literal_prefix 295
9.46.5.7 absolute-literals it 295

10 Reporting Bugs............................. 297
10.1 Have You Found a Bug? i 297
10.2 How to Report Bugs............oo i 297
11 Acknowledgements.......................... 301

Appendix A GNU Free Documentation License
... 303

xiii

Chapter 1: Overview 1

1 Overview

This manual is a user guide to the GNU assembler as.

Here is a brief summary of how to invoke as. For details, see Chapter 2 [Command-Line
Options|, page 19.

as [-alcdghlns] [=file]] [-alternate] [-D]
[-compress-debug-sections] [-nocompress-debug-sections]
[-debug-prefix-map old=new]
[-defsym sym=vall] [-f] [-g] [-gstabs]
[-gstabs+] [—gdwarf-2] [~help] [-I dir] [-J]
[-K]1 [-L] [-listing-lhs-width=NUM]
[-listing-lhs-width2=NUM] [-listing-rhs-width=NUM]
[listing-cont-lines=NUM] [-keep-locals] [-o
objfile] [-R] [-reduce-memory-overheads] [-statistics]
[-v] [-version] [—version] [-W] [-warn]
[-fatal-warnings] [-w] [-x] [-Z] [@FILFE]
[-size-check=[error | warning]]
[-target-help] [target-options]
[-lfiles ...]

Target Alpha options:

[-mcpul
[-mdebug | -no-mdebug]
[-replace | -noreplacel

[-relax] [-g] [-Gsizel
[-F] [-32addr]

Target ARC options:
[-marc[5161718]]
[-EB|-EL]

Target ARM options:
[-mcpu=processor [+extension. . .]]
[-march=architecture [+extension...]]
[-mfpu=floating-point-format]
[-mfloat-abi=abi]

[-meabi=ver]

[-mthumb]

[-EB|-EL]

[-mapcs-32 | -mapcs-26 | -mapcs-float |
-mapcs-reentrant]
[-mthumb-interwork] [-k]

Target Blackfin options:
[-mcpu=processor [-sirevision]]
[-mfdpic]

[-mno-fdpic]
[-mnopic]

Target CRIS options:

[underscore | —mo-underscore]

[-pic] [-N]

[~emulation=criself | —emulation=crisaout]

[-march=v0_v10 | —march=v10 | -march=v32 | —march=common_v10_v32]

Target D10V options:
[-0]

Target D30V options:
[-Ol-n|-N]

Target H8/300 options:
[-h-tick-hex]

Target i386 options:
[-32|-n32|-64] [-n]
[-march=CPU [+EXTENSION...]] [-mtune=CPU]

Target 1960 options:
[-ACA|-ACA_A|-ACB|-ACC|-AKA |-AKB|
-AKC|-AMC]
[-b] [-no-relax]

Target IA-64 options:
[-mconstant-gp | -mauto-pic]
[-milp32 |-milp64 |-mlp64 | -mp64]
[-mle | mbe]
[-mtune=itanium1 | -mtune=itanium2]
[-munwind-check=warning | -munwind-check=error]
[-mhint.b=ok |-mhint.b=warning | -mhint.b=error]
[-x|-xexplicit] [-xauto] [-xdebug]

Target IP2K options:
[-mip2022|-mip2022ext]

Target M32C options:
[-m32c|-m16¢c] [-relax] [-h-tick-hex]

Target M32R options:
[-m32rx | -[no-]warn-explicit-parallel-conflicts |
-Win]p]

Target M680X0 options:
[-11 [-m68000|-m68010|-m68020] .. .]

Target M68HC11 options:
[-m68hcll|-m68hcl2|-m68hcs12]
[-mshort | -mlong]
[-mshort-double | -mlong-double]
[force-long-branches] [-short-branches]
[-strict-direct-mode] [—print-insn-syntax]
[-print-opcodes] [-generate-example]

Target MCORE options:
[-jsri2bsr] [-sifilter] [-relax]
[-mcpu=[210340]]

Target MICROBLAZE options:

Target MIPS options:
[-nocpp] [-EL] [-EB] [-O[optimization levell]
[-g[debug levell]]l [-G num] [-KPIC] [-call_shared]
[-non_shared] [-xgot [-mvxworks-pic]
[-mabi=ABI] [-32] [-n32] [-64] [-mfp32] [-mgp32]
[-march=CPU] [-mtune=CPU] [-mipsl] [-mips2]
[-mips3] [-mips4] [-mips5] [-mips32] [-mips32r2]

Using as

Chapter 1: Overview

[-mips64] [-mips64r2]
[-construct-floats] [-no-construct-floats]
[-trap] [-no-break] [-break] [-no-trap]
[-mips16] [-no-mips16]

[-mmicromips] [-mno-micromips]
[-msmartmips] [-mno-smartmips]
[-mips3d] [-no-mips3d]

[-mdmx] [-no-mdmx]

[-mdsp] [-mno-dsp]

[-mdspr2] [-mno-dspr2]

[-mmt] [-mno-mt]

[-mmcu] [-mno-mcu]

[-mfix7000] [-mno-fix7000]
[-mfix-vr4120] [-mno-fix-vr4120]
[-mfix-vr4130] [-mno-fix-vr4130]
[-mdebug] [-no-mdebug]

[-mpdr] [-mno-pdr]

Target MMIX options:
[-fixed-special-register-names] [—globalize-symbols]
[-gnu-syntax] [-relax] [-no-predefined-symbols]
[-no-expand] [-no-merge-gregs] [-x]
[linker-allocated-gregs]

Target PDP11 options:
[-mpic|-mno-pic] [-mall] [-mno-extensions]
[-mextension |-mno-extension]
[-mcpul] [-mmachine]

Target picoJava options:
[-mb |-me]

Target PowerPC options:

[-a32]-a64]

[-mpwrx |-mpwr2 |-mpwr |-m601 | -mppc | -mppc32 |-m603 | -m604 | -m403 | -m405 |
-m440 | -m464 |-m476 | -m7400 | -m7410 |-m7450 | -m7455 | -m750cl | -mppc64 |
-m620 |-me500 |-e500x2 | -me500mc | -me500mc64 | -mppc64bridge | -mbooke |
-mpower4 |-mpr4 | -mpower5 | -mpwr5 | -mpwr5x | -mpower6 | -mpwr6 |
-mpower?7 |-mpw?7 |-ma2|-mcell | -mspe | -mtitan | -me300 | -mcom]

[-many] [-maltivec|-mvsx]

[-mregnames | -mno-regnames]

[-mrelocatable [-mrelocatable-lib [-K PIC] [-memb]

[-mlittle | -mlittle-endian | -le | -mbig | -mbig-endian | -be]

[-msolaris | -mno-solaris]

[-nops=count]

Target RX options:
[-mlittle-endian | -mbig-endian]
[-m32bit-ints | -m16bit-ints]
[-m32bit-doubles | -m64bit-doubles]

Target s390 options:
[-m31|-m64] [-mesal-mzarch] [-march=CPU]
[-mregnames |-mno-regnames]
[-mwarn-areg-zero]

Target SCORE options:
[-EB] [-EL] [-FIXDD] [-NWARN]

4 Using as

[-SCORE5] [-SCORE5U] [-SCORET7] [-SCORE3]
[-march=score7] [-march=score3]
[-USE_R1] [-KPIC] [-00] [-G num] [-V]

Target SPARC options:
[-Av6|-Av7|-Av8|-Asparclet |-Asparclite
-Av8plus|-Av8plusal|-Av9|-Av9a]
[-xarch=v8plus |-xarch=v8plusa] [-bump]
[-321-64]

Target TIC54X options:
[-mcpu=54[123589] |-mcpu=>54[56]lp] [-mfar-mode |-mf]
[-merrors-to-file <filename>|-me <filename>]

Target TIC6X options:
[-march=arch] [-mbig-endian |-mlittle-endian]
[-mdsbt |-mno-dsbt] [-mpid=no |-mpid=near |-mpid=far]
[-mpic | -mno-pic]

Target TILE-Gx options:
[-m32|-m64]

Target Xtensa options:
[-[no-]text-section-literals] [—[no-]absolute-literals]
[-[no-|target-align] [—[no-]longcalls]
[-[no-]transform]
[-rename-section oldname=newname]

Target Z80 options:
[-z80]1 [-r800]
[-ignore-undocumented-instructions] [-Wnud]
[-ignore-unportable-instructions] [-Wnup]
[-warn-undocumented-instructions] [-Wud]
[-warn-unportable-instructions] [-Wup]
[-forbid-undocumented-instructions] [-Fud]
[-forbid-unportable-instructions] [-Fup]

@file Read command-line options from file. The options read are inserted in place
of the original @file option. If file does not exist, or cannot be read, then the
option will be treated literally, and not removed.

Options in file are separated by whitespace. A whitespace character may be
included in an option by surrounding the entire option in either single or double
quotes. Any character (including a backslash) may be included by prefixing the
character to be included with a backslash. The file may itself contain additional
@file options; any such options will be processed recursively.

-a[cdghlmns]
Turn on listings, in any of a variety of ways:

-ac omit false conditionals

-ad omit debugging directives

Chapter 1:

Overview 5)
-ag include general information, like as version and options passed
-ah include high-level source

-al include assembly

—-am include macro expansions

-an omit forms processing

-as include symbols

=file set the name of the listing file

You may combine these options; for example, use ‘-aln’ for assembly listing

without forms processing. The ‘=file’ option, if used, must be the last one.
By itself, ‘-a’ defaults to ‘-ahls’.

—-alternate

Begin in alternate macro mode. See Section 7.4 [.altmacro|, page 46.

—--compress-debug-sections

Compress DWARF debug sections using zlib. The debug sections are renamed
to begin with ‘.zdebug’, and the resulting object file may not be compatible
with older linkers and object file utilities.

--nocompress—-debug-sections

-D

Do not compress DWARF debug sections. This is the default.

Ignored. This option is accepted for script compatibility with calls to other
assemblers.

—--debug-prefix-map old=new

When assembling files in directory ‘o1d’, record debugging information describ-
ing them as in ‘new’ instead.

--defsym sym=value

Define the symbol sym to be value before assembling the input file. value must
be an integer constant. As in C, a leading ‘0x’ indicates a hexadecimal value,
and a leading ‘0’ indicates an octal value. The value of the symbol can be
overridden inside a source file via the use of a .set pseudo-op.

-f “fast”—skip whitespace and comment preprocessing (assume source is compiler
output).

-8

--gen-debug
Generate debugging information for each assembler source line using whichever
debug format is preferred by the target. This currently means either STABS,
ECOFF or DWARF2.

--gstabs Generate stabs debugging information for each assembler line. This may help
debugging assembler code, if the debugger can handle it.

--gstabs+

Generate stabs debugging information for each assembler line, with GNU exten-
sions that probably only gdb can handle, and that could make other debuggers

6 Using as

crash or refuse to read your program. This may help debugging assembler
code. Currently the only GNU extension is the location of the current working
directory at assembling time.

--gdwarf-2
Generate DWARF2 debugging information for each assembler line. This may
help debugging assembler code, if the debugger can handle it. Note—this option
is only supported by some targets, not all of them.

--size-check=error
--size-check=warning
Issue an error or warning for invalid ELF .size directive.

—--help Print a summary of the command line options and exit.

--target-help
Print a summary of all target specific options and exit.

-I dir Add directory dir to the search list for .include directives.

-J Don’t warn about signed overflow.

-K Issue warnings when difference tables altered for long displacements.
-L

--keep-locals
Keep (in the symbol table) local symbols. These symbols start with system-
specific local label prefixes, typically ‘.L’ for ELF systems or ‘L’ for traditional
a.out systems. See Section 5.3 [Symbol Names]|, page 37.

--listing-lhs-width=number
Set the maximum width, in words, of the output data column for an assembler
listing to number.

--listing-lhs-width2=number
Set the maximum width, in words, of the output data column for continuation
lines in an assembler listing to number.

--listing-rhs-width=number
Set the maximum width of an input source line, as displayed in a listing, to
number bytes.

--listing-cont-lines=number
Set the maximum number of lines printed in a listing for a single line of input
to number + 1.

-0 objfile
Name the object-file output from as objfile.

-R Fold the data section into the text section.

Set the default size of GAS’s hash tables to a prime number close to number.
Increasing this value can reduce the length of time it takes the assembler to
perform its tasks, at the expense of increasing the assembler’s memory require-
ments. Similarly reducing this value can reduce the memory requirements at
the expense of speed.

Chapter 1: Overview 7

—--reduce-memory-overheads
This option reduces GAS’s memory requirements, at the expense of making
the assembly processes slower. Currently this switch is a synonym for
‘--hash-size=4051’, but in the future it may have other effects as well.

-—-statistics
Print the maximum space (in bytes) and total time (in seconds) used by assem-
bly.
--strip-local-absolute
Remove local absolute symbols from the outgoing symbol table.
-v
-version Print the as version.
--version
Print the as version and exit.
-W
--no-warn

Suppress warning messages.

--fatal-warnings
Treat warnings as errors.

--warn Don’t suppress warning messages or treat them as errors.
-w Ignored.

-X Ignored.

-Z Generate an object file even after errors.

-- | files ...

Standard input, or source files to assemble.

See Section 9.1.2 [Alpha Options|, page 80, for the options available when as is configured
for an Alpha processor.

The following options are available when as is configured for an ARC processor.

-marc[5]6]718]
This option selects the core processor variant.

-EB | -EL Select either big-endian (-EB) or little-endian (-EL) output.
The following options are available when as is configured for the ARM processor family.

-mcpu=processor [+extension. . .]
Specify which ARM processor variant is the target.

-march=architecture [+extension. . .]

Specify which ARM architecture variant is used by the target.
-mfpu=floating-point-format

Select which Floating Point architecture is the target.

-mfloat-abi=abi
Select which floating point ABI is in use.

8 Using as

-mthumb Enable Thumb only instruction decoding.

-mapcs-32 | -mapcs-26 | -mapcs-float | -mapcs-reentrant
Select which procedure calling convention is in use.

-EB | -EL Select either big-endian (-EB) or little-endian (-EL) output.

-mthumb-interwork
Specify that the code has been generated with interworking between Thumb
and ARM code in mind.

-k Specify that PIC code has been generated.

See Section 9.5.1 [Blackfin Options|, page 110, for the options available when as is
configured for the Blackfin processor family.

See the info pages for documentation of the CRIS-specific options.

The following options are available when as is configured for a D10V processor.
-0 Optimize output by parallelizing instructions.

The following options are available when as is configured for a D30V processor.

-0 Optimize output by parallelizing instructions.
-n Warn when nops are generated.
-N Warn when a nop after a 32-bit multiply instruction is generated.

See Section 9.13.1 [i386-Options], page 140, for the options available when as is configured
for an 1386 processor.

The following options are available when as is configured for the Intel 80960 processor.

-ACA | ~ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC
Specify which variant of the 960 architecture is the target.

-b Add code to collect statistics about branches taken.

-no-relax
Do not alter compare-and-branch instructions for long displacements; error if
necessary.

The following options are available when as is configured for the Ubicom IP2K series.

-mip2022ext
Specifies that the extended IP2022 instructions are allowed.

-mip2022 Restores the default behaviour, which restricts the permitted instructions to
just the basic TP2022 ones.

The following options are available when as is configured for the Renesas M32C and
M16C processors.

-m32c Assemble M32C instructions.
-mi6¢ Assemble M16C instructions (the default).

-relax Enable support for link-time relaxations.

Chapter 1: Overview 9

-h-tick-hex
Support H’00 style hex constants in addition to 0x00 style.

The following options are available when as is configured for the Renesas M32R (formerly
Mitsubishi M32R) series.

--m32rx Specify which processor in the M32R family is the target. The default is nor-
mally the M32R, but this option changes it to the M32RX.

--warn-explicit-parallel-conflicts or —--Wp
Produce warning messages when questionable parallel constructs are encoun-
tered.

--no-warn-explicit-parallel-conflicts or —--Wnp
Do not produce warning messages when questionable parallel constructs are
encountered.

The following options are available when as is configured for the Motorola 68000 series.
-1 Shorten references to undefined symbols, to one word instead of two.

-m68000 | -m68008 | -m68010 | -m68020 | ~-m68030

| -m68040 | -m68060 | -m68302 | -m68331 | -m68332

| -m68333 | -m68340 | -mcpu3d2 | -m5200
Specify what processor in the 68000 family is the target. The default is normally
the 68020, but this can be changed at configuration time.

-m68881 | -m68882 | -mno-68881 | -mno-68882
The target machine does (or does not) have a floating-point coprocessor. The
default is to assume a coprocessor for 68020, 68030, and cpu32. Although the
basic 68000 is not compatible with the 68881, a combination of the two can
be specified, since it’s possible to do emulation of the coprocessor instructions
with the main processor.

-m68851 | -mno-68851
The target machine does (or does not) have a memory-management unit co-
processor. The default is to assume an MMU for 68020 and up.

For details about the PDP-11 machine dependent features options, see Section 9.28.1
[PDP-11-Options|, page 205.

-mpic | -mno-pic
Generate position-independent (or position-dependent) code. The default is
‘-mpic’.

-mall
-mall-extensions
Enable all instruction set extensions. This is the default.

-mno-extensions
Disable all instruction set extensions.

-mextension | -mno-extension
Enable (or disable) a particular instruction set extension.

10 Using as

-mcpu Enable the instruction set extensions supported by a particular CPU, and dis-
able all other extensions.

-mmachine
Enable the instruction set extensions supported by a particular machine model,
and disable all other extensions.

The following options are available when as is configured for a picoJava processor.
-mb Generate “big endian” format output.
-ml Generate “little endian” format output.

The following options are available when as is configured for the Motorola 68HC11 or
68HC12 series.

-m68hcll | -m68hcl12 | -m68hcsl2
Specify what processor is the target. The default is defined by the configuration
option when building the assembler.

-mshort Specify to use the 16-bit integer ABI.
-mlong Specify to use the 32-bit integer ABL.

-mshort-double
Specify to use the 32-bit double ABI.

-mlong-double
Specify to use the 64-bit double ABI.

--force-long-branches
Relative branches are turned into absolute ones. This concerns conditional
branches, unconditional branches and branches to a sub routine.

-S | -—short-branches
Do not turn relative branches into absolute ones when the offset is out of range.

--strict-direct-mode
Do not turn the direct addressing mode into extended addressing mode when
the instruction does not support direct addressing mode.

--print-insn-syntax
Print the syntax of instruction in case of error.

—--print-opcodes
print the list of instructions with syntax and then exit.

--generate-example
print an example of instruction for each possible instruction and then exit. This
option is only useful for testing as.

The following options are available when as is configured for the SPARC architecture:

-Av6 | -Av7 | -Av8 | -Asparclet | -Asparclite
-Av8plus | -Av8plusa | -Av9 | -Av9a
Explicitly select a variant of the SPARC architecture.

Chapter 1: Overview 11

‘-Av8plus’ and ‘-Av8plusa’ select a 32 bit environment. ‘-Av9’ and ‘-Av9a’
select a 64 bit environment.

‘~Av8plusa’ and ‘-Av9a’ enable the SPARC V9 instruction set with Ultra-
SPARC extensions.

-xarch=v8plus | -xarch=v8plusa
For compatibility with the Solaris v9 assembler. These options are equivalent
to -Av8plus and -Av8plusa, respectively.

—bump Warn when the assembler switches to another architecture.
The following options are available when as is configured for the ’c¢54x architecture.

-mfar-mode
Enable extended addressing mode. All addresses and relocations will assume
extended addressing (usually 23 bits).

-mcpu=CPU_VERSION
Sets the CPU version being compiled for.

-merrors—to-file FILENAME
Redirect error output to a file, for broken systems which don’t support such
behaviour in the shell.

The following options are available when as is configured for a MIPS processor.

-G num This option sets the largest size of an object that can be referenced implicitly
with the gp register. It is only accepted for targets that use ECOFF format,
such as a DECstation running Ultrix. The default value is 8.

-EB Generate “big endian” format output.
-EL Generate “little endian” format output.

-mipsl

-mips2

-mips3

-mips4

-mipsb

-mips32

-mips32r2

-mips64

-mips64r2
Generate code for a particular MIPS Instruction Set Architecture level. ‘-mips1’
is an alias for ‘-march=r3000’, ‘-mips2’ is an alias for ‘-march=r6000’, ‘-mips3’
is an alias for ‘-march=r4000’ and ‘-mips4’ is an alias for ‘-march=r8000’
‘-mipsb’, ‘-mips32’, ‘-mips32r2’, ‘-mips64’, and ‘-mips64r2’ correspond to
generic ‘MIPS V’, ‘MIPS32’, ‘MIPS32 Release 2’, ‘MIPS64’, and ‘MIPS64 Release
2’ ISA processors, respectively.

-march=CPU
Generate code for a particular MIPS cpu.

-mtune=cpu
Schedule and tune for a particular MIPS cpu.

12 Using as

-mfix7000

-mno-£ix7000
Cause nops to be inserted if the read of the destination register of an mfhi or
mflo instruction occurs in the following two instructions.

-mdebug

-no-mdebug
Cause stabs-style debugging output to go into an ECOFF-style .mdebug section
instead of the standard ELF .stabs sections.

-mpdr
-mno-pdr Control generation of .pdr sections.

-mgp32

-mfp32 The register sizes are normally inferred from the ISA and ABI, but these flags
force a certain group of registers to be treated as 32 bits wide at all times.
‘-mgp32’ controls the size of general-purpose registers and ‘-mfp32’ controls the
size of floating-point registers.

-mipsi16
-no-mips16
Generate code for the MIPS 16 processor. This is equivalent to putting .set
mips16 at the start of the assembly file. ‘-no-mips16’ turns off this option.
-mmicromips

-mno-micromips
Generate code for the microMIPS processor. This is equivalent to putting .set
micromips at the start of the assembly file. ‘-mno-micromips’ turns off this
option. This is equivalent to putting .set nomicromips at the start of the
assembly file.

-msmartmips

-mno-smartmips
Enables the SmartMIPS extension to the MIPS32 instruction set. This
is equivalent to putting .set smartmips at the start of the assembly file.
‘-mno-smartmips’ turns off this option.

-mips3d

-no-mips3d
Generate code for the MIPS-3D Application Specific Extension. This tells the
assembler to accept MIPS-3D instructions. ‘-no-mips3d’ turns off this option.

-mdmx
-no-mdmx Generate code for the MDMX Application Specific Extension. This tells the
assembler to accept MDMX instructions. ‘-no-mdmx’ turns off this option.

-mdsp

-mno-dsp Generate code for the DSP Release 1 Application Specific Extension. This tells
the assembler to accept DSP Release 1 instructions. ‘-mno-dsp’ turns off this
option.

Chapter 1: Overview 13

-mdspr2
-mno-dspr2

-mmt
-mno-mt

—mmcu
—mno—mcu

—-—construc
—-no-const

—-—emulatio

-nocpp

-—trap
—-—-no-trap
--break
--no-break

Generate code for the DSP Release 2 Application Specific Extension. This
option implies -mdsp. This tells the assembler to accept DSP Release 2 in-
structions. ‘-mno-dspr2’ turns off this option.

Generate code for the MT Application Specific Extension. This tells the as-
sembler to accept MT instructions. ‘-mno-mt’ turns off this option.

Generate code for the MCU Application Specific Extension. This tells the
assembler to accept MCU instructions. ‘-mno-mcu’ turns off this option.

t-floats

ruct-floats

The ‘--no-construct-floats’ option disables the construction of double width
floating point constants by loading the two halves of the value into the two
single width floating point registers that make up the double width register.
By default ‘--construct-floats’ is selected, allowing construction of these
floating point constants.

n=name
This option causes as to emulate as configured for some other target, in all
respects, including output format (choosing between ELF and ECOFF only),
handling of pseudo-opcodes which may generate debugging information or store
symbol table information, and default endianness. The available configuration
names are: ‘mipsecoff’, ‘mipself’, ‘mipslecoff’, ‘mipsbecoff’, ‘mipslelf’,
‘mipsbelf’. The first two do not alter the default endianness from that of the
primary target for which the assembler was configured; the others change the
default to little- or big-endian as indicated by the ‘b’ or ‘1’ in the name. Using
‘~EB’ or ‘-EL’ will override the endianness selection in any case.

This option is currently supported only when the primary target as is config-
ured for is a Mips ELF or ECOFF target. Furthermore, the primary target
or others specified with ‘--enable-targets=... at configuration time must
include support for the other format, if both are to be available. For example,
the Irix 5 configuration includes support for both.

Eventually, this option will support more configurations, with more fine-grained
control over the assembler’s behavior, and will be supported for more processors.

as ignores this option. It is accepted for compatibility with the native tools.

Control how to deal with multiplication overflow and division by zero.

-—trap’
or ‘--no-break’ (which are synonyms) take a trap exception (and only work
for Instruction Set Architecture level 2 and higher); ‘--break’ or ‘--no-trap’

(also synonyms, and the default) take a break exception.

14 Using as

-n When this option is used, as will issue a warning every time it generates a nop
instruction from a macro.

The following options are available when as is configured for an MCore processor.

—-jsril2bsr

-nojsri2bsr
Enable or disable the JSRI to BSR transformation. By default this is enabled.
The command line option ‘-nojsri2bsr’ can be used to disable it.

-sifilter
-nosifilter

Enable or disable the silicon filter behaviour. By default this is disabled. The
default can be overridden by the ‘-sifilter’ command line option.

-relax Alter jump instructions for long displacements.

-mcpu=[210340]
Select the cpu type on the target hardware. This controls which instructions
can be assembled.

-EB Assemble for a big endian target.
-EL Assemble for a little endian target.

See the info pages for documentation of the MMIX-specific options.

See Section 9.30.1 [PowerPC-Opts], page 210, for the options available when as is con-
figured for a PowerPC processor.
See the info pages for documentation of the RX-specific options.

The following options are available when as is configured for the s390 processor family.

-m31
-m64 Select the word size, either 31/32 bits or 64 bits.

—mesa

-mzarch Select the architecture mode, either the Enterprise System Architecture (esa)
or the z/Architecture mode (zarch).

-march=processor
Specify which s390 processor variant is the target, ‘g6’, ‘g6’, ‘z900°, ‘z990’,
‘z9-109’, ‘z9-ec’, or ‘z10’.

-mregnames
-mno-regnames
Allow or disallow symbolic names for registers.

-mwarn-areg-zero
Warn whenever the operand for a base or index register has been specified but
evaluates to zero.

See Section 9.38.1 [TIC6X Options|, page 258, for the options available when as is
configured for a TMS320C6000 processor.

See Section 9.39.1 [TILE-Gx Options|, page 261, for the options available when as is
configured for a TILE-Gx processor.

Chapter 1: Overview 15

See Section 9.46.1 [Xtensa Options|, page 287, for the options available when as is
configured for an Xtensa processor.

The following options are available when as is configured for a Z80 family processor.

-z80 Assemble for Z80 processor.

-r800 Assemble for R800 processor.

—-ignore-undocumented-instructions

-Wnud Assemble undocumented Z80 instructions that also work on R800 without warn-
ing.

-ignore-unportable-instructions
-Wnup Assemble all undocumented Z80 instructions without warning.

-warn-undocumented-instructions
-Wud Issue a warning for undocumented Z80 instructions that also work on R800.

-warn-unportable-instructions
-Wup Issue a warning for undocumented Z80 instructions that do not work on R800.

—-forbid-undocumented-instructions
-Fud Treat all undocumented instructions as errors.

-forbid-unportable-instructions
-Fup Treat undocumented Z80 instructions that do not work on R800 as errors.

1.1 Structure of this Manual

This manual is intended to describe what you need to know to use GNU as. We cover the
syntax expected in source files, including notation for symbols, constants, and expressions;
the directives that as understands; and of course how to invoke as.

This manual also describes some of the machine-dependent features of various flavors of
the assembler.

On the other hand, this manual is not intended as an introduction to programming
in assembly language—Ilet alone programming in general! In a similar vein, we make no
attempt to introduce the machine architecture; we do not describe the instruction set,
standard mnemonics, registers or addressing modes that are standard to a particular archi-
tecture. You may want to consult the manufacturer’s machine architecture manual for this
information.

1.2 The GNU Assembler

GNU as is really a family of assemblers. If you use (or have used) the GNU assembler on
one architecture, you should find a fairly similar environment when you use it on another
architecture. Each version has much in common with the others, including object file
formats, most assembler directives (often called pseudo-ops) and assembler syntax.

as is primarily intended to assemble the output of the aNU C compiler gcc for use by
the linker 1d. Nevertheless, we’ve tried to make as assemble correctly everything that other
assemblers for the same machine would assemble. Any exceptions are documented explicitly
(see Chapter 9 [Machine Dependencies]|, page 79). This doesn’t mean as always uses the

16 Using as

same syntax as another assembler for the same architecture; for example, we know of several
incompatible versions of 680x0 assembly language syntax.

Unlike older assemblers, as is designed to assemble a source program in one pass of the
source file. This has a subtle impact on the . org directive (see Section 7.83 [.org|, page 62).

1.3 Object File Formats

The GNU assembler can be configured to produce several alternative object file formats. For
the most part, this does not affect how you write assembly language programs; but direc-
tives for debugging symbols are typically different in different file formats. See Section 5.5
[Symbol Attributes], page 39.

1.4 Command Line

After the program name as, the command line may contain options and file names. Options
may appear in any order, and may be before, after, or between file names. The order of file
names is significant.

‘=’ (two hyphens) by itself names the standard input file explicitly, as one of the files
for as to assemble.

Except for ‘==’ any command line argument that begins with a hyphen (‘-’) is an option.
Each option changes the behavior of as. No option changes the way another option works.
An option is a ‘=’ followed by one or more letters; the case of the letter is important. All
options are optional.

Some options expect exactly one file name to follow them. The file name may either
immediately follow the option’s letter (compatible with older assemblers) or it may be the
next command argument (GNU standard). These two command lines are equivalent:

as -o my-object-file.o mumble.s
as -omy-object-file.o mumble.s

1.5 Input Files

We use the phrase source program, abbreviated source, to describe the program input to
one run of as. The program may be in one or more files; how the source is partitioned into
files doesn’t change the meaning of the source.

The source program is a concatenation of the text in all the files, in the order specified.

FEach time you run as it assembles exactly one source program. The source program is
made up of one or more files. (The standard input is also a file.)

You give as a command line that has zero or more input file names. The input files are
read (from left file name to right). A command line argument (in any position) that has no
special meaning is taken to be an input file name.

If you give as no file names it attempts to read one input file from the as standard input,
which is normally your terminal. You may have to type ct1-D to tell as there is no more
program to assemble.

Use ‘==’ if you need to explicitly name the standard input file in your command line.

If the source is empty, as produces a small, empty object file.

Chapter 1: Overview 17

Filenames and Line-numbers

There are two ways of locating a line in the input file (or files) and either may be used in
reporting error messages. One way refers to a line number in a physical file; the other refers
to a line number in a “logical” file. See Section 1.7 [Error and Warning Messages|, page 17.

Physical files are those files named in the command line given to as.

Logical files are simply names declared explicitly by assembler directives; they bear no
relation to physical files. Logical file names help error messages reflect the original source
file, when as source is itself synthesized from other files. as understands the ‘# directives
emitted by the gcc preprocessor. See also Section 7.51 [.file|, page 52.

1.6 Output (Object) File

Every time you run as it produces an output file, which is your assembly language program
translated into numbers. This file is the object file. Its default name is a.out. You can
give it another name by using the ‘-0’ option. Conventionally, object file names end with
‘.0’. The default name is used for historical reasons: older assemblers were capable of
assembling self-contained programs directly into a runnable program. (For some formats,

this isn’t currently possible, but it can be done for the a.out format.)

The object file is meant for input to the linker 1d. It contains assembled program code,
information to help 1d integrate the assembled program into a runnable file, and (optionally)
symbolic information for the debugger.

1.7 Error and Warning Messages

as may write warnings and error messages to the standard error file (usually your termi-
nal). This should not happen when a compiler runs as automatically. Warnings report an
assumption made so that as could keep assembling a flawed program; errors report a grave
problem that stops the assembly.

Warning messages have the format
file_name:NNN:Warning Message Text

(where NNN is a line number). If a logical file name has been given (see Section 7.51
[.file], page 52) it is used for the filename, otherwise the name of the current input file
is used. If a logical line number was given (see Section 7.69 [.1line|, page 57) then it is
used to calculate the number printed, otherwise the actual line in the current source file is
printed. The message text is intended to be self explanatory (in the grand Unix tradition).

Error messages have the format
file_name:NNN:FATAL:Error Message Text

The file name and line number are derived as for warning messages. The actual message
text may be rather less explanatory because many of them aren’t supposed to happen.

Chapter 2: Command-Line Options 19

2 Command-Line Options

This chapter describes command-line options available in all versions of the GNU assembler;
see Chapter 9 [Machine Dependencies|, page 79, for options specific to particular machine
architectures.

If you are invoking as via the GNU C compiler, you can use the ‘-Wa’ option to pass
arguments through to the assembler. The assembler arguments must be separated from
each other (and the ‘-Wa’) by commas. For example:

gcc ¢ -g -0 -Wa,-alh,-L file.c

This passes two options to the assembler: ‘-alh’ (emit a listing to standard output with
high-level and assembly source) and ‘~L’ (retain local symbols in the symbol table).

Usually you do not need to use this ‘-Wa’ mechanism, since many compiler command-
line options are automatically passed to the assembler by the compiler. (You can call the
GNU compiler driver with the ‘-=v’ option to see precisely what options it passes to each
compilation pass, including the assembler.)

2.1 Enable Listings: ‘-a[cdghlns]’

These options enable listing output from the assembler. By itself, ‘-a’ requests high-level,
assembly, and symbols listing. You can use other letters to select specific options for the
list: ‘—ah’ requests a high-level language listing, ‘-al’ requests an output-program assembly
listing, and ‘-as’ requests a symbol table listing. High-level listings require that a compiler
debugging option like ‘-g’ be used, and that assembly listings (‘-al’) be requested also.

Use the ‘-ag’ option to print a first section with general assembly information, like as
version, switches passed, or time stamp.

Use the ‘-ac’ option to omit false conditionals from a listing. Any lines which are not
assembled because of a false .if (or .ifdef, or any other conditional), or a true . if followed
by an .else, will be omitted from the listing.

Use the ‘-ad’ option to omit debugging directives from the listing.

Once you have specified one of these options, you can further control listing output and
its appearance using the directives .1list, .nolist, .psize, .eject, .title, and .sbttl.
The ‘-an’ option turns off all forms processing. If you do not request listing output with
one of the ‘-a’ options, the listing-control directives have no effect.

The letters after ‘-a’ may be combined into one option, e.g., ‘-aln’.

Note if the assembler source is coming from the standard input (e.g., because it is being
created by gcc and the ‘-pipe’ command line switch is being used) then the listing will not
contain any comments or preprocessor directives. This is because the listing code buffers
input source lines from stdin only after they have been preprocessed by the assembler. This
reduces memory usage and makes the code more efficient.

2.2 ‘—-alternate’

Begin in alternate macro mode, see Section 7.4 [.altmacrol, page 46.

20 Using as

2.3 -D’

This option has no effect whatsoever, but it is accepted to make it more likely that scripts
written for other assemblers also work with as.

2.4 Work Faster: ‘-f’

‘~f’ should only be used when assembling programs written by a (trusted) compiler. ‘-f’
stops the assembler from doing whitespace and comment preprocessing on the input file(s)
before assembling them. See Section 3.1 [Preprocessing|, page 25.

Warning: if you use ‘-f’ when the files actually need to be preprocessed (if
they contain comments, for example), as does not work correctly.

2.5 .include Search Path: ‘-I’ path

Use this option to add a path to the list of directories as searches for files specified in
.include directives (see Section 7.62 [.include], page 55). You may use ‘-I’ as many
times as necessary to include a variety of paths. The current working directory is always
searched first; after that, as searches any ‘-I’ directories in the same order as they were
specified (left to right) on the command line.

2.6 Difference Tables: ‘-K’

as sometimes alters the code emitted for directives of the form ‘.word syml-sym2’. See
Section 7.122 [.word], page 75. You can use the ‘-K’ option if you want a warning issued
when this is done.

4

2.7 Include Local Symbols: ‘-L’

Symbols beginning with system-specific local label prefixes, typically ‘.L’ for ELF systems or
‘L’ for traditional a.out systems, are called local symbols. See Section 5.3 [Symbol Names],
page 37. Normally you do not see such symbols when debugging, because they are intended
for the use of programs (like compilers) that compose assembler programs, not for your
notice. Normally both as and 1d discard such symbols, so you do not normally debug with
them.

This option tells as to retain those local symbols in the object file. Usually if you do
this you also tell the linker 1d to preserve those symbols.

¢

2.8 Configuring listing output: ‘--listing’

The listing feature of the assembler can be enabled via the command line switch ‘-a’ (see
Section 2.1 [a], page 19). This feature combines the input source file(s) with a hex dump
of the corresponding locations in the output object file, and displays them as a listing file.
The format of this listing can be controlled by directives inside the assembler source (i.e.,
.list (see Section 7.71 [List], page 58), .title (see Section 7.112 [Title], page 72), .sbttl
(see Section 7.95 [Sbttl], page 66), .psize (see Section 7.89 [Psize|, page 64), and .eject
(see Section 7.36 [Eject], page 50) and also by the following switches:

Chapter 2: Command-Line Options 21

--listing-lhs-width="‘number’
Sets the maximum width, in words, of the first line of the hex byte dump. This
dump appears on the left hand side of the listing output.

--listing-lhs-width2="‘number’
Sets the maximum width, in words, of any further lines of the hex byte dump
for a given input source line. If this value is not specified, it defaults to being
the same as the value specified for ‘--1isting-lhs-width’. If neither switch
is used the default is to one.

--listing-rhs-width="‘number’
Sets the maximum width, in characters, of the source line that is displayed
alongside the hex dump. The default value for this parameter is 100. The
source line is displayed on the right hand side of the listing output.

--listing-cont-lines=‘number’
Sets the maximum number of continuation lines of hex dump that will be dis-
played for a given single line of source input. The default value is 4.

2.9 Assemble in MRI Compatibility Mode: ‘-M’

The ‘-M’ or ‘~-mri’ option selects MRI compatibility mode. This changes the syntax and
pseudo-op handling of as to make it compatible with the ASM68K or the ASM960 (depending
upon the configured target) assembler from Microtec Research. The exact nature of the
MRI syntax will not be documented here; see the MRI manuals for more information. Note
in particular that the handling of macros and macro arguments is somewhat different. The
purpose of this option is to permit assembling existing MRI assembler code using as.

The MRI compatibility is not complete. Certain operations of the MRI assembler de-
pend upon its object file format, and can not be supported using other object file formats.
Supporting these would require enhancing each object file format individually. These are:

e ¢lobal symbols in common section

The m68k MRI assembler supports common sections which are merged by the linker.
Other object file formats do not support this. as handles common sections by treating
them as a single common symbol. It permits local symbols to be defined within a
common section, but it can not support global symbols, since it has no way to describe
them.

e complex relocations

The MRI assemblers support relocations against a negated section address, and reloca-
tions which combine the start addresses of two or more sections. These are not support
by other object file formats.

e END pseudo-op specifying start address

The MRI END pseudo-op permits the specification of a start address. This is not
supported by other object file formats. The start address may instead be specified
using the ‘-e’ option to the linker, or in a linker script.

e IDNT, .ident and NAME pseudo-ops

The MRI IDNT, .ident and NAME pseudo-ops assign a module name to the output file.
This is not supported by other object file formats.

22

Using as

ORG pseudo-op

The m68k MRI ORG pseudo-op begins an absolute section at a given address. This
differs from the usual as . org pseudo-op, which changes the location within the current
section. Absolute sections are not supported by other object file formats. The address
of a section may be assigned within a linker script.

There are some other features of the MRI assembler which are not supported by as,

typically either because they are difficult or because they seem of little consequence. Some
of these may be supported in future releases.

EBCDIC strings
EBCDIC strings are not supported.
packed binary coded decimal

Packed binary coded decimal is not supported. This means that the DC.P and DCB.P
pseudo-ops are not supported.

FEQU pseudo-op

The m68k FEQU pseudo-op is not supported.
NOOBJ pseudo-op

The m68k NOOBJ pseudo-op is not supported.
OPT branch control options

The m68k OPT branch control options—B, BRS, BRB, BRL, and BRW—are ignored. as
automatically relaxes all branches, whether forward or backward, to an appropriate
size, so these options serve no purpose.

OPT list control options

The following m68k OPT list control options are ignored: C, CEX, CL, CRE, E, G, I, M,
MEX, MC, MD, X.

other OPT options

The following m68k OPT options are ignored: NEST, 0, OLD, OP, P, PCO, PCR, PCS, R.
OPT D option is default

The m68k OPT D option is the default, unlike the MRI assembler. OPT NOD may be used
to turn it off.

XREF pseudo-op.

The m68k XREF pseudo-op is ignored.

.debug pseudo-op

The 1960 .debug pseudo-op is not supported.
.extended pseudo-op

The 1960 .extended pseudo-op is not supported.
.list pseudo-op.

The various options of the i960 .1ist pseudo-op are not supported.
.optimize pseudo-op

The 1960 .optimize pseudo-op is not supported.
.output pseudo-op

The 1960 .output pseudo-op is not supported.

Chapter 2: Command-Line Options 23

e .setreal pseudo-op
The 1960 .setreal pseudo-op is not supported.

2.10 Dependency Tracking: ‘--MD’

as can generate a dependency file for the file it creates. This file consists of a single rule
suitable for make describing the dependencies of the main source file.

The rule is written to the file named in its argument.

This feature is used in the automatic updating of makefiles.

2.11 Name the Object File: ‘-0’

There is always one object file output when you run as. By default it has the name ‘a.out’
(or ‘b.out’, for Intel 960 targets only). You use this option (which takes exactly one
filename) to give the object file a different name.

Whatever the object file is called, as overwrites any existing file of the same name.

2.12 Join Data and Text Sections: ‘-R’

‘R’ tells as to write the object file as if all data-section data lives in the text section. This
is only done at the very last moment: your binary data are the same, but data section parts
are relocated differently. The data section part of your object file is zero bytes long because
all its bytes are appended to the text section. (See Chapter 4 [Sections and Relocation],
page 31.)

When you specify ‘-R’ it would be possible to generate shorter address displacements
(because we do not have to cross between text and data section). We refrain from doing
this simply for compatibility with older versions of as. In future, ‘-R’ may work this way.

When as is configured for COFF or ELF output, this option is only useful if you use
sections named ‘.text’ and ‘.data’.

‘~R’ is not supported for any of the HPPA targets. Using ‘-R’ generates a warning from
as.

2.13 Display Assembly Statistics: ‘--statistics’

Use ‘--statistics’ to display two statistics about the resources used by as: the maximum
amount of space allocated during the assembly (in bytes), and the total execution time
taken for the assembly (in CPU seconds).

2.14 Compatible Output: ‘--traditional-format’

For some targets, the output of as is different in some ways from the output of some existing
assembler. This switch requests as to use the traditional format instead.

For example, it disables the exception frame optimizations which as normally does by
default on gcc output.

2.15 Announce Version: ‘-v’

You can find out what version of as is running by including the option ‘-v’ (which you can
also spell as ‘-version’) on the command line.

24 Using as

¢

2.16 Control Warnings: ‘-W’, ‘--warn’, ‘--no-warn’,

‘--fatal-warnings’

as should never give a warning or error message when assembling compiler output. But
programs written by people often cause as to give a warning that a particular assumption
was made. All such warnings are directed to the standard error file.

If you use the ‘W’ and ‘--no-warn’ options, no warnings are issued. This only affects the
warning messages: it does not change any particular of how as assembles your file. Errors,
which stop the assembly, are still reported.

If you use the ‘--fatal-warnings’ option, as considers files that generate warnings to
be in error.

You can switch these options off again by specifying ‘--warn’, which causes warnings to
be output as usual.

2.17 Generate Object File in Spite of Errors: ‘-7’

After an error message, as normally produces no output. If for some reason you are inter-
ested in object file output even after as gives an error message on your program, use the ‘-7’
option. If there are any errors, as continues anyways, and writes an object file after a final
warning message of the form ‘n errors, m warnings, generating bad object file.’

Chapter 3: Syntax 25

3 Syntax

This chapter describes the machine-independent syntax allowed in a source file. as syntax is
similar to what many other assemblers use; it is inspired by the BSD 4.2 assembler, except
that as does not assemble Vax bit-fields.

3.1 Preprocessing

The as internal preprocessor:

e adjusts and removes extra whitespace. It leaves one space or tab before the keywords
on a line, and turns any other whitespace on the line into a single space.

e removes all comments, replacing them with a single space, or an appropriate number
of newlines.

e converts character constants into the appropriate numeric values.

It does not do macro processing, include file handling, or anything else you may get
from your C compiler’s preprocessor. You can do include file processing with the .include
directive (see Section 7.62 [.include|, page 55). You can use the GNU C compiler driver
to get other “CPP” style preprocessing by giving the input file a ‘.S’ suffix. See Section
“Options Controlling the Kind of Output” in Using GNU CC.

Excess whitespace, comments, and character constants cannot be used in the portions
of the input text that are not preprocessed.

If the first line of an input file is #NO_APP or if you use the ‘-f’ option, whitespace
and comments are not removed from the input file. Within an input file, you can ask for
whitespace and comment removal in specific portions of the by putting a line that says
#APP before the text that may contain whitespace or comments, and putting a line that
says #NO_APP after this text. This feature is mainly intend to support asm statements in
compilers whose output is otherwise free of comments and whitespace.

3.2 Whitespace

Whitespace is one or more blanks or tabs, in any order. Whitespace is used to separate
symbols, and to make programs neater for people to read. Unless within character constants
(see Section 3.6.1 [Character Constants|, page 27), any whitespace means the same as
exactly one space.

3.3 Comments

There are two ways of rendering comments to as. In both cases the comment is equivalent
to one space.

Anything from ‘/*’ through the next ‘*/’ is a comment. This means you may not nest
these comments.
/*
The only way to include a newline (’\n’) in a comment
is to use this sort of comment.

*/

/* This sort of comment does not nest. */

26 Using as

Anything from a line comment character up to the next newline is considered a comment
and is ignored. The line comment character is target specific, and some targets multiple
comment characters. Some targets also have line comment characters that only work if they
are the first character on a line. Some targets use a sequence of two characters to introduce
a line comment. Some targets can also change their line comment characters depending
upon command line options that have been used. For more details see the Syntazr section
in the documentation for individual targets.

If the line comment character is the hash sign (‘#’) then it still has the special ability to
enable and disable preprocessing (see Section 3.1 [Preprocessing], page 25) and to specify
logical line numbers:

To be compatible with past assemblers, lines that begin with ‘#’ have a special inter-
pretation. Following the ‘#’ should be an absolute expression (see Chapter 6 [Expressions],
page 41): the logical line number of the next line. Then a string (see Section 3.6.1.1 [Strings],
page 27) is allowed: if present it is a new logical file name. The rest of the line, if any,
should be whitespace.

If the first non-whitespace characters on the line are not numeric, the line is ignored.
(Just like a comment.)

This is an ordinary comment.
42-6 "new_file_name" # New logical file name
This is logical line # 36.

This feature is deprecated, and may disappear from future versions of as.

3.4 Symbols

A symbol is one or more characters chosen from the set of all letters (both upper and
lower case), digits and the three characters ‘_.$’. On most machines, you can also use $
in symbol names; exceptions are noted in Chapter 9 [Machine Dependencies|, page 79. No
symbol may begin with a digit. Case is significant. There is no length limit: all characters
are significant. Symbols are delimited by characters not in that set, or by the beginning of
a file (since the source program must end with a newline, the end of a file is not a possible
symbol delimiter). See Chapter 5 [Symbols|, page 37.

3.5 Statements

A statement ends at a newline character (‘\n’) or a line separator character. The line
separator character is target specific and described in the Syntaz section of each target’s
documentation. Not all targets support a line separator character. The newline or line
separator character is considered to be part of the preceding statement. Newlines and
separators within character constants are an exception: they do not end statements.

It is an error to end any statement with end-of-file: the last character of any input file
should be a newline.

An empty statement is allowed, and may include whitespace. It is ignored.

A statement begins with zero or more labels, optionally followed by a key symbol which
determines what kind of statement it is. The key symbol determines the syntax of the rest
of the statement. If the symbol begins with a dot ‘.’ then the statement is an assembler
directive: typically valid for any computer. If the symbol begins with a letter the statement
is an assembly language instruction: it assembles into a machine language instruction.

Chapter 3: Syntax 27

Different versions of as for different computers recognize different instructions. In fact,
the same symbol may represent a different instruction in a different computer’s assembly
language.

A label is a symbol immediately followed by a colon (:). Whitespace before a label or
after a colon is permitted, but you may not have whitespace between a label’s symbol and
its colon. See Section 5.1 [Labels], page 37.

For HPPA targets, labels need not be immediately followed by a colon, but the definition
of a label must begin in column zero. This also implies that only one label may be defined
on each line.

label: .directive followed by something
another_label: # This is an empty statement.
instruction operand_1, operand_2, ...

3.6 Constants

A constant is a number, written so that its value is known by inspection, without knowing
any context. Like this:

.byte 74, 0112, 092, Ox4A, O0X4a, ’J, ’\J # All the same value.
.ascii "Ring the bell\7" # A string constant.
.octa 0x123456789abcdef0123456789ABCDEFO # A bignum.

.float 0£f-314159265358979323846264338327\
95028841971.693993751E-40 # - pi, a flonum.

3.6.1 Character Constants

There are two kinds of character constants. A character stands for one character in one
byte and its value may be used in numeric expressions. String constants (properly called
string literals) are potentially many bytes and their values may not be used in arithmetic
expressions.

3.6.1.1 Strings

A string is written between double-quotes. It may contain double-quotes or null characters.
The way to get special characters into a string is to escape these characters: precede them
with a backslash ‘\’ character. For example ‘\\’ represents one backslash: the first \ is
an escape which tells as to interpret the second character literally as a backslash (which
prevents as from recognizing the second \ as an escape character). The complete list of
escapes follows.

\b Mnemonic for backspace; for ASCII this is octal code 010.

\f Mnemonic for FormFeed; for ASCII this is octal code 014.

\n Mnemonic for newline; for ASCII this is octal code 012.

\r Mnemonic for carriage-Return; for ASCII this is octal code 015.
\t Mnemonic for horizontal Tab; for ASCII this is octal code 011.

\ digit digit digit
An octal character code. The numeric code is 3 octal digits. For compatibility
with other Unix systems, 8 and 9 are accepted as digits: for example, \008 has
the value 010, and \009 the value 011.

28 Using as

\x hex-digits. ..
A hex character code. All trailing hex digits are combined. Either upper or
lower case x works.

\\ Represents one ‘\’ character.

tn?

\" Represents one character. Needed in strings to represent this character,
because an unescaped ‘"’ would end the string.

\ anything-else
Any other character when escaped by \ gives a warning, but assembles as if the
‘\” was not present. The idea is that if you used an escape sequence you clearly
didn’t want the literal interpretation of the following character. However as
has no other interpretation, so as knows it is giving you the wrong code and
warns you of the fact.

Which characters are escapable, and what those escapes represent, varies widely among
assemblers. The current set is what we think the BSD 4.2 assembler recognizes, and is
a subset of what most C compilers recognize. If you are in doubt, do not use an escape
sequence.

3.6.1.2 Characters

A single character may be written as a single quote immediately followed by that character.
The same escapes apply to characters as to strings. So if you want to write the character
backslash, you must write ’\\ where the first \ escapes the second \. As you can see, the
quote is an acute accent, not a grave accent. A newline immediately following an acute
accent is taken as a literal character and does not count as the end of a statement. The
value of a character constant in a numeric expression is the machine’s byte-wide code for
that character. as assumes your character code is ASCII: ’A means 65, ’B means 66, and
SO on.

3.6.2 Number Constants

as distinguishes three kinds of numbers according to how they are stored in the target
machine. Integers are numbers that would fit into an int in the C language. Bignums are
integers, but they are stored in more than 32 bits. Flonums are floating point numbers,
described below.

3.6.2.1 Integers
A binary integer is ‘Ob’ or ‘OB’ followed by zero or more of the binary digits ‘01’.
An octal integer is ‘0’ followed by zero or more of the octal digits (‘01234567’).

A decimal integer starts with a non-zero digit followed by zero or more digits
(‘0123456789’).

A hexadecimal integer is ‘0x’ or ‘0X’ followed by one or more hexadecimal digits chosen
from ‘0123456789abcdef ABCDEF".

Integers have the usual values. To denote a negative integer, use the prefix operator ‘-’
discussed under expressions (see Section 6.2.3 [Prefix Operators|, page 41).

Chapter 3: Syntax 29

3.6.2.2 Bignums

A bignum has the same syntax and semantics as an integer except that the number (or its
negative) takes more than 32 bits to represent in binary. The distinction is made because
in some places integers are permitted while bignums are not.

3.6.2.3 Flonums

A flonum represents a floating point number. The translation is indirect: a decimal floating
point number from the text is converted by as to a generic binary floating point number
of more than sufficient precision. This generic floating point number is converted to a
particular computer’s floating point format (or formats) by a portion of as specialized to
that computer.
A flonum is written by writing (in order)
e The digit ‘0. (‘0’ is optional on the HPPA.)
e A letter, to tell as the rest of the number is a flonum. e is recommended. Case is not
important.

On the H8/300, Renesas / SuperH SH, and AMD 29K architectures, the letter must
be one of the letters ‘DFPRSX’ (in upper or lower case).

On the ARC, the letter must be one of the letters ‘DFRS’ (in upper or lower case).

On the Intel 960 architecture, the letter must be one of the letters ‘DFT’ (in upper or
lower case).

On the HPPA architecture, the letter must be ‘E’ (upper case only).

An optional sign: either ‘+’ or ‘-".

An optional integer part: zero or more decimal digits.

An optional fractional part: ‘.’ followed by zero or more decimal digits.

An optional exponent, consisting of:
e An ‘E’or ‘e’.
e Optional sign: either ‘+” or ‘-’
e One or more decimal digits.
At least one of the integer part or the fractional part must be present. The floating point
number has the usual base-10 value.

as does all processing using integers. Flonums are computed independently of any
floating point hardware in the computer running as.

Chapter 4: Sections and Relocation 31

4 Sections and Relocation

4.1 Background

Roughly, a section is a range of addresses, with no gaps; all data “in” those addresses is
treated the same for some particular purpose. For example there may be a “read only”
section.

The linker 1d reads many object files (partial programs) and combines their contents to
form a runnable program. When as emits an object file, the partial program is assumed to
start at address 0. 1d assigns the final addresses for the partial program, so that different
partial programs do not overlap. This is actually an oversimplification, but it suffices to
explain how as uses sections.

1d moves blocks of bytes of your program to their run-time addresses. These blocks
slide to their run-time addresses as rigid units; their length does not change and neither
does the order of bytes within them. Such a rigid unit is called a section. Assigning run-
time addresses to sections is called relocation. It includes the task of adjusting mentions of
object-file addresses so they refer to the proper run-time addresses. For the H8/300, and for
the Renesas / SuperH SH, as pads sections if needed to ensure they end on a word (sixteen
bit) boundary.

An object file written by as has at least three sections, any of which may be empty.
These are named text, data and bss sections.

When it generates COFF or ELF output, as can also generate whatever other named
sections you specify using the ‘.section’ directive (see Section 7.97 [.section], page 66).
If you do not use any directives that place output in the ‘.text’ or ‘.data’ sections, these
sections still exist, but are empty.

When as generates SOM or ELF output for the HPPA, as can also generate what-
ever other named sections you specify using the ‘.space’ and ‘.subspace’ directives. See
HP9000 Series 800 Assembly Language Reference Manual (HP 92432-90001) for details on
the ‘.space’ and ‘.subspace’ assembler directives.

Additionally, as uses different names for the standard text, data, and bss sections
when generating SOM output. Program text is placed into the ‘$8CODE$’ section, data
into ‘$DATA$’, and BSS into ‘BSS’.

Within the object file, the text section starts at address 0, the data section follows, and
the bss section follows the data section.

When generating either SOM or ELF output files on the HPPA, the text section starts
at address 0, the data section at address 0x4000000, and the bss section follows the data
section.

To let 1d know which data changes when the sections are relocated, and how to change
that data, as also writes to the object file details of the relocation needed. To perform
relocation 1d must know, each time an address in the object file is mentioned:

e Where in the object file is the beginning of this reference to an address?
e How long (in bytes) is this reference?
e Which section does the address refer to? What is the numeric value of

(address) — (start-address of section)?

32 Using as

e Is the reference to an address “Program-Counter relative”?

In fact, every address as ever uses is expressed as
(section) + (offset into section)

Further, most expressions as computes have this section-relative nature. (For some object
formats, such as SOM for the HPPA, some expressions are symbol-relative instead.)

In this manual we use the notation {secname N} to mean “offset N into section sec-
name.”

Apart from text, data and bss sections you need to know about the absolute section.
When 1d mixes partial programs, addresses in the absolute section remain unchanged. For
example, address {absolute 0} is “relocated” to run-time address 0 by 1d. Although the
linker never arranges two partial programs’ data sections with overlapping addresses after
linking, by definition their absolute sections must overlap. Address {absolute 239} in
one part of a program is always the same address when the program is running as address
{absolute 239} in any other part of the program.

The idea of sections is extended to the undefined section. Any address whose section is
unknown at assembly time is by definition rendered {undefined U}—where U is filled in
later. Since numbers are always defined, the only way to generate an undefined address is
to mention an undefined symbol. A reference to a named common block would be such a
symbol: its value is unknown at assembly time so it has section undefined.

By analogy the word section is used to describe groups of sections in the linked program.
1d puts all partial programs’ text sections in contiguous addresses in the linked program.
It is customary to refer to the text section of a program, meaning all the addresses of all
partial programs’ text sections. Likewise for data and bss sections.

Some sections are manipulated by 1d; others are invented for use of as and have no
meaning except during assembly.

4.2 Linker Sections
1d deals with just four kinds of sections, summarized below.

named sections

text section

data section
These sections hold your program. as and 1d treat them as separate but equal
sections. Anything you can say of one section is true of another. When the pro-
gram is running, however, it is customary for the text section to be unalterable.
The text section is often shared among processes: it contains instructions, con-
stants and the like. The data section of a running program is usually alterable:
for example, C variables would be stored in the data section.

bss section
This section contains zeroed bytes when your program begins running. It is
used to hold uninitialized variables or common storage. The length of each
partial program’s bss section is important, but because it starts out containing
zeroed bytes there is no need to store explicit zero bytes in the object file. The
bss section was invented to eliminate those explicit zeros from object files.

Chapter 4: Sections and Relocation 33

absolute section
Address 0 of this section is always “relocated” to runtime address 0. This
is useful if you want to refer to an address that 1d must not change when
relocating. In this sense we speak of absolute addresses being “unrelocatable”:
they do not change during relocation.

undefined section
This “section” is a catch-all for address references to objects not in the preceding
sections.

An idealized example of three relocatable sections follows. The example uses the tradi-
tional section names ‘.text’ and ‘.data’. Memory addresses are on the horizontal axis.

Partial program #1:
text data bss
| ttttt | dddd | oo |

Partial program #2:
text data bss
T | poop | 000 |

linked program:

text data bss
T | eeeee | | daaa | ooop | 00000
addresses:

0...

4.3 Assembler Internal Sections

These sections are meant only for the internal use of as. They have no meaning at run-time.
You do not really need to know about these sections for most purposes; but they can be
mentioned in as warning messages, so it might be helpful to have an idea of their meanings
to as. These sections are used to permit the value of every expression in your assembly
language program to be a section-relative address.

ASSEMBLER-INTERNAL-LOGIC-ERROR!
An internal assembler logic error has been found. This means there is a bug in
the assembler.

expr section
The assembler stores complex expression internally as combinations of symbols.
When it needs to represent an expression as a symbol, it puts it in the expr
section.

4.4 Sub-Sections

Assembled bytes conventionally fall into two sections: text and data. You may have separate
groups of data in named sections that you want to end up near to each other in the object
file, even though they are not contiguous in the assembler source. as allows you to use
subsections for this purpose. Within each section, there can be numbered subsections with
values from 0 to 8192. Objects assembled into the same subsection go into the object file

34 Using as

together with other objects in the same subsection. For example, a compiler might want
to store constants in the text section, but might not want to have them interspersed with
the program being assembled. In this case, the compiler could issue a ‘.text 0’ before each
section of code being output, and a ‘.text 1’ before each group of constants being output.

Subsections are optional. If you do not use subsections, everything goes in subsection
number zero.

Each subsection is zero-padded up to a multiple of four bytes. (Subsections may be
padded a different amount on different flavors of as.)

Subsections appear in your object file in numeric order, lowest numbered to highest.
(All this to be compatible with other people’s assemblers.) The object file contains no
representation of subsections; 1d and other programs that manipulate object files see no
trace of them. They just see all your text subsections as a text section, and all your data
subsections as a data section.

To specify which subsection you want subsequent statements assembled into, use a nu-
meric argument to specify it, in a ‘.text expression’ or a ‘.data expression’ statement.
When generating COFF output, you can also use an extra subsection argument with arbi-
trary named sections: ‘.section name, expression’. When generating ELF output, you
can also use the .subsection directive (see Section 7.108 [SubSection|, page 71) to specify
a subsection: ‘.subsection expression’. Expression should be an absolute expression
(see Chapter 6 [Expressions|, page 41). If you just say ‘.text’ then ‘.text 0’ is assumed.
Likewise ‘.data’ means ‘.data 0’. Assembly begins in text 0. For instance:

.text 0O # The default subsection is text O anyway.
.ascii "This lives in the first text subsection. *"
.text 1

.ascii "But this lives in the second text subsection."
.data 0

.ascii "This lives in the data section,"

.ascii "in the first data subsection."

.text O

.ascii "This lives in the first text section,"

.ascii "immediately following the asterisk (*)."

Each section has a location counter incremented by one for every byte assembled into
that section. Because subsections are merely a convenience restricted to as there is no
concept of a subsection location counter. There is no way to directly manipulate a location
counter—but the .align directive changes it, and any label definition captures its current
value. The location counter of the section where statements are being assembled is said to

be the active location counter.

4.5 bss Section

The bss section is used for local common variable storage. You may allocate address space in
the bss section, but you may not dictate data to load into it before your program executes.
When your program starts running, all the contents of the bss section are zeroed bytes.

The .1lcomm pseudo-op defines a symbol in the bss section; see Section 7.67 [.lcomm|,
page 5H7.

The .comm pseudo-op may be used to declare a common symbol, which is another form
of uninitialized symbol; see Section 7.30 [.comm|, page 49.

Chapter 4: Sections and Relocation 35

When assembling for a target which supports multiple sections, such as ELF or COFF,
you may switch into the .bss section and define symbols as usual; see Section 7.97
[.section|, page 66. You may only assemble zero values into the section. Typically
the section will only contain symbol definitions and .skip directives (see Section 7.102
[.skip], page 69).

Chapter 5: Symbols 37

5 Symbols

Symbols are a central concept: the programmer uses symbols to name things, the linker
uses symbols to link, and the debugger uses symbols to debug.

Warning: as does not place symbols in the object file in the same order they
were declared. This may break some debuggers.

5.1 Labels

A label is written as a symbol immediately followed by a colon ‘:’. The symbol then
represents the current value of the active location counter, and is, for example, a suitable
instruction operand. You are warned if you use the same symbol to represent two different
locations: the first definition overrides any other definitions.

On the HPPA, the usual form for a label need not be immediately followed by a colon,
but instead must start in column zero. Only one label may be defined on a single line.
To work around this, the HPPA version of as also provides a special directive .label for
defining labels more flexibly.

5.2 Giving Symbols Other Values

A symbol can be given an arbitrary value by writing a symbol, followed by an equals sign
‘=" followed by an expression (see Chapter 6 [Expressions|, page 41). This is equivalent to
using the .set directive. See Section 7.98 [.set], page 69. In the same way, using a double
equals sign ‘="‘=" here represents an equivalent of the . eqv directive. See Section 7.45 [.eqv],
page 51.

Blackfin does not support symbol assignment with ‘=’

5.3 Symbol Names

Symbol names begin with a letter or with one of ‘._’. On most machines, you can also use
$ in symbol names; exceptions are noted in Chapter 9 [Machine Dependencies]|, page 79.
That character may be followed by any string of digits, letters, dollar signs (unless otherwise
noted for a particular target machine), and underscores.

Case of letters is significant: foo is a different symbol name than Foo.

Each symbol has exactly one name. Each name in an assembly language program refers
to exactly one symbol. You may use that symbol name any number of times in a program.

Local Symbol Names

A local symbol is any symbol beginning with certain local label prefixes. By default, the
local label prefix is ‘. L’ for ELF systems or ‘L’ for traditional a.out systems, but each target
may have its own set of local label prefixes. On the HPPA local symbols begin with ‘L$’.

Local symbols are defined and used within the assembler, but they are normally not
saved in object files. Thus, they are not visible when debugging. You may use the ‘-L’
option (see Section 2.7 [Include Local Symbols: ‘~L’], page 20) to retain the local symbols
in the object files.

38 Using as

Local Labels

Local labels help compilers and programmers use names temporarily. They create symbols
which are guaranteed to be unique over the entire scope of the input source code and which
can be referred to by a simple notation. To define a local label, write a label of the form ‘N:’
(where N represents any positive integer). To refer to the most recent previous definition
of that label write ‘Nb’, using the same number as when you defined the label. To refer to
the next definition of a local label, write ‘Nf’—the ‘b’ stands for “backwards” and the ‘f’
stands for “forwards”.

There is no restriction on how you can use these labels, and you can reuse them too. So
that it is possible to repeatedly define the same local label (using the same number ‘N’),
although you can only refer to the most recently defined local label of that number (for a
backwards reference) or the next definition of a specific local label for a forward reference.
It is also worth noting that the first 10 local labels (‘0:’. . .“9:”) are implemented in a slightly
more efficient manner than the others.

Here is an example:

1: branch 1f
2: branch 1b
1: branch 2f
2: branch 1b

Which is the equivalent of:
label_1: branch label_3
label_2: Dbranch label_1
label_3: branch label_4
label_4: branch label_3
Local label names are only a notational device. They are immediately transformed into
more conventional symbol names before the assembler uses them. The symbol names are
stored in the symbol table, appear in error messages, and are optionally emitted to the
object file. The names are constructed using these parts:

local label prefix
All local symbols begin with the system-specific local label prefix. Normally
both as and 1d forget symbols that start with the local label prefix. These
labels are used for symbols you are never intended to see. If you use the ‘-L’
option then as retains these symbols in the object file. If you also instruct 1d
to retain these symbols, you may use them in debugging.

number This is the number that was used in the local label definition. So if the label is
written ‘65:’ then the number is ‘55’.

C-B This unusual character is included so you do not accidentally invent a symbol
of the same name. The character has ASCII value of ‘\002’ (control-B).

ordinal number
This is a serial number to keep the labels distinct. The first definition of ‘0:’
gets the number ‘1’. The 15th definition of ‘0:’ gets the number ‘15’, and so on.
Likewise the first definition of ‘1:’ gets the number ‘1’ and its 15th definition
gets ‘157 as well.

So for example, the first 1: may be named .L1C-B1, and the 44th 3: may be named
.L3C-B44.

Chapter 5: Symbols 39

Dollar Local Labels

as also supports an even more local form of local labels called dollar labels. These labels
go out of scope (i.e., they become undefined) as soon as a non-local label is defined. Thus
they remain valid for only a small region of the input source code. Normal local labels, by
contrast, remain in scope for the entire file, or until they are redefined by another occurrence
of the same local label.

Dollar labels are defined in exactly the same way as ordinary local labels, except that
they have a dollar sign suffix to their numeric value, e.g., ‘558:’.

They can also be distinguished from ordinary local labels by their transformed names
which use ASCII character ‘\001’ (control-A) as the magic character to distinguish them
from ordinary labels. For example, the fifth definition of ‘6$’ may be named ‘.L6C-A5’.

5.4 The Special Dot Symbol

The special symbol ‘.’ refers to the current address that as is assembling into. Thus, the
expression ‘melvin: .long .’ defines melvin to contain its own address. Assigning a value
to . is treated the same as a .org directive. Thus, the expression ‘.=.+4’ is the same as
saying ‘.space 4’.

5.5 Symbol Attributes

Every symbol has, as well as its name, the attributes “Value” and “Type”. Depending on
output format, symbols can also have auxiliary attributes.

If you use a symbol without defining it, as assumes zero for all these attributes, and
probably won’t warn you. This makes the symbol an externally defined symbol, which is
generally what you would want.

5.5.1 Value

The value of a symbol is (usually) 32 bits. For a symbol which labels a location in the
text, data, bss or absolute sections the value is the number of addresses from the start of
that section to the label. Naturally for text, data and bss sections the value of a symbol
changes as 1d changes section base addresses during linking. Absolute symbols’ values do
not change during linking: that is why they are called absolute.

The value of an undefined symbol is treated in a special way. If it is 0 then the symbol
is not defined in this assembler source file, and 1d tries to determine its value from other
files linked into the same program. You make this kind of symbol simply by mentioning a
symbol name without defining it. A non-zero value represents a . comm common declaration.
The value is how much common storage to reserve, in bytes (addresses). The symbol refers
to the first address of the allocated storage.

5.5.2 Type

The type attribute of a symbol contains relocation (section) information, any flag settings
indicating that a symbol is external, and (optionally), other information for linkers and
debuggers. The exact format depends on the object-code output format in use.

5.5.3 Symbol Attributes: a.out

40 Using as

5.5.3.1 Descriptor

This is an arbitrary 16-bit value. You may establish a symbol’s descriptor value by using a
.desc statement (see Section 7.33 [.desc]|, page 50). A descriptor value means nothing to
as.

5.5.3.2 Other

This is an arbitrary 8-bit value. It means nothing to as.

5.5.4 Symbol Attributes for COFF

The COFF format supports a multitude of auxiliary symbol attributes; like the primary
symbol attributes, they are set between .def and .endef directives.

5.5.4.1 Primary Attributes

The symbol name is set with .def; the value and type, respectively, with .val and .type.

5.5.4.2 Auxiliary Attributes

The as directives .dim, .1line, .scl, .size, .tag, and .weak can generate auxiliary symbol
table information for COFF.

5.5.5 Symbol Attributes for SOM

The SOM format for the HPPA supports a multitude of symbol attributes set with the
.EXPORT and .IMPORT directives.

The attributes are described in HP9000 Series 800 Assembly Language Reference Manual
(HP 92432-90001) under the IMPORT and EXPORT assembler directive documentation.

Chapter 6: Expressions 41

6 Expressions

An expression specifies an address or numeric value. Whitespace may precede and/or follow
an expression.

The result of an expression must be an absolute number, or else an offset into a particular
section. If an expression is not absolute, and there is not enough information when as sees
the expression to know its section, a second pass over the source program might be necessary
to interpret the expression—but the second pass is currently not implemented. as aborts
with an error message in this situation.

6.1 Empty Expressions

An empty expression has no value: it is just whitespace or null. Wherever an absolute
expression is required, you may omit the expression, and as assumes a value of (absolute)
0. This is compatible with other assemblers.

6.2 Integer Expressions

An integer expression is one or more arguments delimited by operators.

6.2.1 Arguments

Arguments are symbols, numbers or subexpressions. In other contexts arguments are some-
times called “arithmetic operands”. In this manual, to avoid confusing them with the
“instruction operands” of the machine language, we use the term “argument” to refer to
parts of expressions only, reserving the word “operand” to refer only to machine instruction
operands.

Symbols are evaluated to yield {section NNN} where section is one of text, data, bss,
absolute, or undefined. NNN is a signed, 2’s complement 32 bit integer.

Numbers are usually integers.

A number can be a flonum or bignum. In this case, you are warned that only the low
order 32 bits are used, and as pretends these 32 bits are an integer. You may write integer-
manipulating instructions that act on exotic constants, compatible with other assemblers.

Subexpressions are a left parenthesis ‘ (’ followed by an integer expression, followed by a
right parenthesis)’; or a prefix operator followed by an argument.

6.2.2 Operators

Operators are arithmetic functions, like + or %. Prefix operators are followed by an argu-
ment. Infix operators appear between their arguments. Operators may be preceded and/or
followed by whitespace.

6.2.3 Prefix Operator
as has the following prefix operators. They each take one argument, which must be absolute.
- Negation. Two’s complement negation.

Complementation. Bitwise not.

42

Using as

6.2.4 Infix Operators

Infix operators take two arguments, one on either side. Operators have precedence, but
operations with equal precedence are performed left to right. Apart from + or ‘=’, both
arguments must be absolute, and the result is absolute.

1.

Highest Precedence

*

/
o
<<

>>

Multiplication.

Division. Truncation is the same as the C operator ‘/’
Remainder.

Shift Left. Same as the C operator ‘<<’.

Shift Right. Same as the C operator ‘>>’.

Intermediate precedence

Bitwise Inclusive Or.
Bitwise And.
Bitwise Exclusive Or.

Bitwise Or Not.

Low Precedence

+

Addition. If either argument is absolute, the result has the section of
the other argument. You may not add together arguments from different
sections.

Subtraction. If the right argument is absolute, the result has the section
of the left argument. If both arguments are in the same section, the result
is absolute. You may not subtract arguments from different sections.

Is Equal To

Is Not Equal To

Is Less Than

Is Greater Than

Is Greater Than Or Equal To
Is Less Than Or Equal To

The comparison operators can be used as infix operators. A true results has
a value of -1 whereas a false result has a value of 0. Note, these operators
perform signed comparisons.

Lowest Precedence

&&

Logical And.

Chapter 6: Expressions 43

'l Logical Or.

These two logical operations can be used to combine the results of sub
expressions. Note, unlike the comparison operators a true result returns a
value of 1 but a false results does still return 0. Also note that the logical
or operator has a slightly lower precedence than logical and.

In short, it’s only meaningful to add or subtract the offsets in an address; you can only
have a defined section in one of the two arguments.

Chapter 7: Assembler Directives 45

7 Assembler Directives

All assembler directives have names that begin with a period (‘.”). The rest of the name is
letters, usually in lower case.

This chapter discusses directives that are available regardless of the target machine
configuration for the GNU assembler. Some machine configurations provide additional di-
rectives. See Chapter 9 [Machine Dependencies|, page 79.

7.1 .abort

This directive stops the assembly immediately. It is for compatibility with other assemblers.
The original idea was that the assembly language source would be piped into the assembler.
If the sender of the source quit, it could use this directive tells as to quit also. One day
.abort will not be supported.

7.2 .ABORT (COFF)

When producing COFF output, as accepts this directive as a synonym for ‘.abort’.

7.3 .align abs-expr, abs-expr, abs-expr

Pad the location counter (in the current subsection) to a particular storage boundary. The
first expression (which must be absolute) is the alignment required, as described below.

The second expression (also absolute) gives the fill value to be stored in the padding
bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are normally
zero. However, on some systems, if the section is marked as containing code and the fill
value is omitted, the space is filled with no-op instructions.

The third expression is also absolute, and is also optional. If it is present, it is the
maximum number of bytes that should be skipped by this alignment directive. If doing
the alignment would require skipping more bytes than the specified maximum, then the
alignment is not done at all. You can omit the fill value (the second argument) entirely by
simply using two commas after the required alignment; this can be useful if you want the
alignment to be filled with no-op instructions when appropriate.

The way the required alignment is specified varies from system to system. For the arc,
hppa, 1386 using ELF, i860, iq2000, m68k, or32, s390, sparc, ticdx, tic80 and xtensa, the
first expression is the alignment request in bytes. For example ‘.align 8’ advances the
location counter until it is a multiple of 8. If the location counter is already a multiple of 8,
no change is needed. For the tich4x, the first expression is the alignment request in words.

For other systems, including ppc, i386 using a.out format, arm and strongarm, it is
the number of low-order zero bits the location counter must have after advancement. For
example ‘.align 3’ advances the location counter until it a multiple of 8. If the location
counter is already a multiple of 8, no change is needed.

This inconsistency is due to the different behaviors of the various native assemblers
for these systems which GAS must emulate. GAS also provides .balign and .p2align
directives, described later, which have a consistent behavior across all architectures (but
are specific to GAS).

46 Using as

7.4 .altmacro
Enable alternate macro mode, enabling:

LOCAL name [, ...]
One additional directive, LOCAL, is available. It is used to generate a string
replacement for each of the name arguments, and replace any instances of name
in each macro expansion. The replacement string is unique in the assembly, and
different for each separate macro expansion. LOCAL allows you to write macros
that define symbols, without fear of conflict between separate macro expansions.

String delimiters
You can write strings delimited in these other ways besides "string":

’string’ You can delimit strings with single-quote characters.
<string> You can delimit strings with matching angle brackets.

single-character string escape
To include any single character literally in a string (even if the character would
otherwise have some special meaning), you can prefix the character with ‘!’ (an
exclamation mark). For example, you can write ‘<4.3 !> 5.411>" to get the
literal text ‘4.3 > 5.41!".

Expression results as strings
You can write ‘%expr’ to evaluate the expression expr and use the result as a
string.

7.5 .ascii "string"...

.ascii expects zero or more string literals (see Section 3.6.1.1 [Strings|, page 27) separated
by commas. It assembles each string (with no automatic trailing zero byte) into consecutive
addresses.

7.6 .asciz "string"...

“wo M

.asciz is just like .ascii, but each string is followed by a zero byte. The “z” in ‘.asciz’
stands for “zero”.

7.7 .balign[wl] abs-expr, abs-expr, abs-expr

Pad the location counter (in the current subsection) to a particular storage boundary. The
first expression (which must be absolute) is the alignment request in bytes. For example
‘.balign 8’ advances the location counter until it is a multiple of 8. If the location counter
is already a multiple of 8, no change is needed.

The second expression (also absolute) gives the fill value to be stored in the padding
bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are normally
zero. However, on some systems, if the section is marked as containing code and the fill
value is omitted, the space is filled with no-op instructions.

The third expression is also absolute, and is also optional. If it is present, it is the
maximum number of bytes that should be skipped by this alignment directive. If doing
the alignment would require skipping more bytes than the specified maximum, then the

Chapter 7: Assembler Directives 47

alignment is not done at all. You can omit the fill value (the second argument) entirely by
simply using two commas after the required alignment; this can be useful if you want the
alignment to be filled with no-op instructions when appropriate.

The .balignw and .balignl directives are variants of the .balign directive. The
.balignw directive treats the fill pattern as a two byte word value. The .balignl directives
treats the fill pattern as a four byte longword value. For example, .balignw 4,0x368d will
align to a multiple of 4. If it skips two bytes, they will be filled in with the value 0x368d
(the exact placement of the bytes depends upon the endianness of the processor). If it skips
1 or 3 bytes, the fill value is undefined.

7.8 .byte expressions

.byte expects zero or more expressions, separated by commas. Each expression is assembled
into the next byte.

7.9 .cfi_sections section_list

.cfi_sections may be used to specify whether CFI directives should emit .eh_frame
section and/or .debug_frame section. If section_list is .eh_frame, .eh_frame is emitted,
if section_list is .debug_frame, .debug_frame is emitted. To emit both use .eh_frame,
.debug_frame. The default if this directive is not used is .cfi_sections .eh_frame.

7.10 .cfi_startproc [simple]

.cfi_startproc is used at the beginning of each function that should have an entry in
.eh_frame. It initializes some internal data structures. Don’t forget to close the function
by .cfi_endproc.

Unless .cfi_startproc is used along with parameter simple it also emits some archi-
tecture dependent initial CFI instructions.

7.11 .cfi_endproc

.cfi_endproc is used at the end of a function where it closes its unwind entry previously
opened by .cfi_startproc, and emits it to .eh_frame.

7.12 .cfi_personality encoding [, exp]

.cfi_personality defines personality routine and its encoding. encoding must be a con-
stant determining how the personality should be encoded. If it is 255 (DW_EH_PE_omit),
second argument is not present, otherwise second argument should be a constant or a sym-
bol name. When using indirect encodings, the symbol provided should be the location
where personality can be loaded from, not the personality routine itself. The default after
.cfi_startproc is .cfi_personality Oxff, no personality routine.

7.13 .cfi_lsda encoding [, exp]

.cfi_lsda defines LSDA and its encoding. encoding must be a constant determining how
the LSDA should be encoded. If it is 255 (DW_EH_PE_omit), second argument is not present,
otherwise second argument should be a constant or a symbol name. The default after .cfi_
startproc is .cfi_lsda Oxff, no LSDA.

48 Using as

7.14 .cfi_def_cfa register, offset

.cfi_def_cfa defines a rule for computing CFA as: take address from register and add
offset to it.

7.15 .cfi_def_cfa_register register

.cfi_def_cfa_register modifies a rule for computing CFA. From now on register will be
used instead of the old one. Offset remains the same.

7.16 .cfi_def_cfa_offset offset

.cfi_def_cfa_offset modifies a rule for computing CFA. Register remains the same, but
offset is new. Note that it is the absolute offset that will be added to a defined register to
compute CFA address.

7.17 .cfi_adjust_cfa_offset offset

Same as .cfi_def_cfa_offset but offset is a relative value that is added/substracted from
the previous offset.

7.18 .cfi_offset register, offset

Previous value of register is saved at offset offset from CFA.

7.19 .cfi_rel_offset register, offset

Previous value of register is saved at offset offset from the current CFA register. This is
transformed to .cfi_offset using the known displacement of the CFA register from the
CFA. This is often easier to use, because the number will match the code it’s annotating.

7.20 .cfi_register registerl, register2

Previous value of registerl is saved in register register?2.

7.21 .cfi_restore register

.cfi_restore says that the rule for register is now the same as it was at the beginning of
the function, after all initial instruction added by .cfi_startproc were executed.

7.22 .cfi_undefined register

From now on the previous value of register can’t be restored anymore.

7.23 .cfi_same_value register

Current value of register is the same like in the previous frame, i.e. no restoration needed.

7.24 .cfi_remember_state,

First save all current rules for all registers by .cfi_remember_state, then totally screw
them up by subsequent .cfi_x* directives and when everything is hopelessly bad, use .cfi_
restore_state to restore the previous saved state.

Chapter 7: Assembler Directives 49

7.25 .cfi_return_column register

Change return column register, i.e. the return address is either directly in register or can
be accessed by rules for register.

7.26 .cfi_signal_frame

Mark current function as signal trampoline.

7.27 .cfi_window_save

SPARC register window has been saved.

7.28 .cfi_escape expression|, . . .]

Allows the user to add arbitrary bytes to the unwind info. One might use this to add
OS-specific CFI opcodes, or generic CFI opcodes that GAS does not yet support.

7.29 .cfi_val_encoded_addr register, encoding, label

The current value of register is label. The value of label will be encoded in the output
file according to encoding; see the description of .cfi_personality for details on this
encoding.

The usefulness of equating a register to a fixed label is probably limited to the return
address register. Here, it can be useful to mark a code segment that has only one return
address which is reached by a direct branch and no copy of the return address exists in
memory or another register.

7.30 .comm symbol , length

.comm declares a common symbol named symbol. When linking, a common symbol in
one object file may be merged with a defined or common symbol of the same name in
another object file. If 1d does not see a definition for the symbol-just one or more common
symbols—then it will allocate length bytes of uninitialized memory. Ilength must be an
absolute expression. If 1d sees multiple common symbols with the same name, and they do
not all have the same size, it will allocate space using the largest size.

When using ELF or (as a GNU extension) PE, the .comm directive takes an optional
third argument. This is the desired alignment of the symbol, specified for ELF as a byte
boundary (for example, an alignment of 16 means that the least significant 4 bits of the
address should be zero), and for PE as a power of two (for example, an alignment of 5
means aligned to a 32-byte boundary). The alignment must be an absolute expression, and
it must be a power of two. If 1d allocates uninitialized memory for the common symbol, it
will use the alignment when placing the symbol. If no alignment is specified, as will set the
alignment to the largest power of two less than or equal to the size of the symbol, up to a
maximum of 16 on ELF, or the default section alignment of 4 on PE!.

1o ¢

! This is not the same as the executable image file alignment controlled by 1d’s --section-alignment’
option; image file sections in PE are aligned to multiples of 4096, which is far too large an alignment for
ordinary variables. It is rather the default alignment for (non-debug) sections within object (‘x.0’) files,
which are less strictly aligned.

50 Using as

The syntax for .comm differs slightly on the HPPA. The syntax is ‘symbol .comm,
length’; symbol is optional.

7.31 .data subsection

.data tells as to assemble the following statements onto the end of the data subsection
numbered subsection (which is an absolute expression). If subsection is omitted, it defaults
to zero.

7.32 .def name

Begin defining debugging information for a symbol name; the definition extends until the
.endef directive is encountered.

7.33 .desc symbol, abs-expression

This directive sets the descriptor of the symbol (see Section 5.5 [Symbol Attributes|, page 39)
to the low 16 bits of an absolute expression.

The ‘.desc’ directive is not available when as is configured for COFF output; it is only
for a.out or b.out object format. For the sake of compatibility, as accepts it, but produces
no output, when configured for COFF.

7.34 .dim

This directive is generated by compilers to include auxiliary debugging information in the
symbol table. It is only permitted inside .def/.endef pairs.

7.35 .double flonums

.double expects zero or more flonums, separated by commas. It assembles floating point
numbers. The exact kind of floating point numbers emitted depends on how as is configured.
See Chapter 9 [Machine Dependencies], page 79.

7.36 .eject

Force a page break at this point, when generating assembly listings.

7.37 .else

.else is part of the as support for conditional assembly; see Section 7.60 [.if], page 54. It
marks the beginning of a section of code to be assembled if the condition for the preceding
.if was false.

7.38 .elseif

.elseif is part of the as support for conditional assembly; see Section 7.60 [.if], page 54.
It is shorthand for beginning a new .if block that would otherwise fill the entire .else
section.

Chapter 7: Assembler Directives 51

7.39 .end

.end marks the end of the assembly file. as does not process anything in the file past the
.end directive.

7.40 .endef
This directive flags the end of a symbol definition begun with .def.

7.41 .endfunc

.endfunc marks the end of a function specified with .func.

7.42 .endif

.endif is part of the as support for conditional assembly; it marks the end of a block of
code that is only assembled conditionally. See Section 7.60 [.if], page 54.

7.43 .equ symbol, expression

This directive sets the value of symbol to expression. It is synonymous with ‘.set’; see
Section 7.98 [.set], page 69.

The syntax for equ on the HPPA is ‘symbol .equ expression’.

The syntax for equ on the Z80 is ‘symbol equ expression’. On the Z80 it is an eror if
symbol is already defined, but the symbol is not protected from later redefinition. Compare
Section 7.44 [Equiv], page 51.

7.44 .equiv symbol, expression

The .equiv directive is like .equ and .set, except that the assembler will signal an error
if symbol is already defined. Note a symbol which has been referenced but not actually
defined is considered to be undefined.

Except for the contents of the error message, this is roughly equivalent to

.ifdef SYM
.err

.endif

.equ SYM,VAL

plus it protects the symbol from later redefinition.

7.45 .eqv symbol, expression

The .eqv directive is like .equiv, but no attempt is made to evaluate the expression or any
part of it immediately. Instead each time the resulting symbol is used in an expression, a
snapshot of its current value is taken.

7.46 .err

If as assembles a . err directive, it will print an error message and, unless the ‘-Z’ option was
used, it will not generate an object file. This can be used to signal an error in conditionally
compiled code.

52 Using as

7.47 .error "string"

Similarly to .err, this directive emits an error, but you can specify a string that will be emit-
ted as the error message. If you don’t specify the message, it defaults to ".error directive
invoked in source file". See Section 1.7 [Error and Warning Messages|, page 17.

.error "This code has not been assembled and tested."

7.48 .exitm

Exit early from the current macro definition. See Section 7.77 [Macro|, page 59.

7.49 .extern

.extern is accepted in the source program—for compatibility with other assemblers—but
it is ignored. as treats all undefined symbols as external.

7.50 .fail expression

Generates an error or a warning. If the value of the expression is 500 or more, as will print a
warning message. If the value is less than 500, as will print an error message. The message
will include the value of expression. This can occasionally be useful inside complex nested
macros or conditional assembly.

7.51 .file

There are two different versions of the .file directive. Targets that support DWARF2
line number information use the DWARF2 version of .file. Other targets use the default
version.

Default Version

This version of the .file directive tells as that we are about to start a new logical file.
The syntax is:

.file string
string is the new file name. In general, the filename is recognized whether or not it is
surrounded by quotes ‘"’; but if you wish to specify an empty file name, you must give the
quotes—"". This statement may go away in future: it is only recognized to be compatible
with old as programs.

DWARF2 Version

When emitting DWARF2 line number information, .file assigns filenames to the .debug_
line file name table. The syntax is:

.file fileno filename

The fileno operand should be a unique positive integer to use as the index of the entry
in the table. The filename operand is a C string literal.

The detail of filename indices is exposed to the user because the filename table is shared
with the .debug_info section of the DWARF2 debugging information, and thus the user
must know the exact indices that table entries will have.

Chapter 7: Assembler Directives 53

7.52 .fill repeat , size , value

repeat, size and value are absolute expressions. This emits repeat copies of size bytes.
Repeat may be zero or more. Size may be zero or more, but if it is more than 8, then it
is deemed to have the value 8, compatible with other people’s assemblers. The contents of
each repeat bytes is taken from an 8-byte number. The highest order 4 bytes are zero. The
lowest order 4 bytes are value rendered in the byte-order of an integer on the computer as
is assembling for. Each size bytes in a repetition is taken from the lowest order size bytes
of this number. Again, this bizarre behavior is compatible with other people’s assemblers.

size and value are optional. If the second comma and value are absent, value is assumed
zero. If the first comma and following tokens are absent, size is assumed to be 1.

7.53 .float flonums

This directive assembles zero or more flonums, separated by commas. It has the same
effect as .single. The exact kind of floating point numbers emitted depends on how as is
configured. See Chapter 9 [Machine Dependencies|, page 79.

7.54 .func name[,labell

.func emits debugging information to denote function name, and is ignored unless the file
is assembled with debugging enabled. Only ‘~-gstabs[+]’ is currently supported. label is
the entry point of the function and if omitted name prepended with the ‘leading char’
is used. ‘leading char’ is usually _ or nothing, depending on the target. All functions
are currently defined to have void return type. The function must be terminated with
.endfunc.

7.55 .global symbol, .globl symbol

.global makes the symbol visible to 1d. If you define symbol in your partial program, its
value is made available to other partial programs that are linked with it. Otherwise, symbol
takes its attributes from a symbol of the same name from another file linked into the same
program.

Both spellings (‘.globl’ and ‘.global’) are accepted, for compatibility with other as-
semblers.

On the HPPA, .global is not always enough to make it accessible to other partial
programs. You may need the HPPA-only .EXPORT directive as well. See Section 9.11.5
[HPPA Assembler Directives], page 132.

7.56 .gnu_attribute tag,value
Record a GNU object attribute for this file. See Chapter 8 [Object Attributes|, page 77.

7.57 .hidden names

This is one of the ELF visibility directives. The other two are .internal (see Section 7.64
[.internal], page 56) and .protected (see Section 7.88 [.protected|, page 64).

This directive overrides the named symbols default visibility (which is set by their bind-
ing: local, global or weak). The directive sets the visibility to hidden which means that

54 Using as

the symbols are not visible to other components. Such symbols are always considered to be
protected as well.

7.58 .hword expressions

This expects zero or more expressions, and emits a 16 bit number for each.

¢

This directive is a synonym for ‘.short’; depending on the target architecture, it may

also be a synonym for ‘.word’.

7.59 .ident

This directive is used by some assemblers to place tags in object files. The behavior of
this directive varies depending on the target. When using the a.out object file format, as
simply accepts the directive for source-file compatibility with existing assemblers, but does
not emit anything for it. When using COFF, comments are emitted to the .comment or
.rdata section, depending on the target. When using ELF, comments are emitted to the
.comment section.

7.60 .if absolute expression

.if marks the beginning of a section of code which is only considered part of the source
program being assembled if the argument (which must be an absolute expression) is non-
zero. The end of the conditional section of code must be marked by .endif (see Section 7.42
[.endif], page 51); optionally, you may include code for the alternative condition, flagged by
.else (see Section 7.37 [.else], page 50). If you have several conditions to check, .elseif
may be used to avoid nesting blocks if/else within each subsequent .else block.

The following variants of .if are also supported:

.ifdef symbol
Assembles the following section of code if the specified symbol has been defined.
Note a symbol which has been referenced but not yet defined is considered to
be undefined.

.ifb text
Assembles the following section of code if the operand is blank (empty).

.ifc stringl ,string2
Assembles the following section of code if the two strings are the same. The
strings may be optionally quoted with single quotes. If they are not quoted,
the first string stops at the first comma, and the second string stops at the end
of the line. Strings which contain whitespace should be quoted. The string
comparison is case sensitive.

.ifeq absolute expression
Assembles the following section of code if the argument is zero.

.ifeqs stringl,string2
Another form of .ifc. The strings must be quoted using double quotes.
.ifge absolute expression

Assembles the following section of code if the argument is greater than or equal
to zero.

Chapter 7: Assembler Directives 55

.ifgt absolute expression
Assembles the following section of code if the argument is greater than zero.

.ifle absolute expression
Assembles the following section of code if the argument is less than or equal to
Z€ro.

.iflt absolute expression
Assembles the following section of code if the argument is less than zero.

.ifnb text
Like .ifb, but the sense of the test is reversed: this assembles the following
section of code if the operand is non-blank (non-empty).

.ifnc stringl ,string2.
Like .ifc, but the sense of the test is reversed: this assembles the following
section of code if the two strings are not the same.

.ifndef symbol

.ifnotdef symbol
Assembles the following section of code if the specified symbol has not been
defined. Both spelling variants are equivalent. Note a symbol which has been
referenced but not yet defined is considered to be undefined.

.ifne absolute expression
Assembles the following section of code if the argument is not equal to zero (in
other words, this is equivalent to .if).

.ifnes stringl ,string2
Like .ifeqs, but the sense of the test is reversed: this assembles the following
section of code if the two strings are not the same.

7.61 .incbin "file"[,skipl[,count]]

The incbin directive includes file verbatim at the current location. You can control the
search paths used with the ‘-I’ command-line option (see Chapter 2 [Command-Line Op-
tions], page 19). Quotation marks are required around file.

The skip argument skips a number of bytes from the start of the file. The count argument
indicates the maximum number of bytes to read. Note that the data is not aligned in any
way, so it is the user’s responsibility to make sure that proper alignment is provided both
before and after the incbin directive.

7.62 .include "file"

This directive provides a way to include supporting files at specified points in your source
program. The code from file is assembled as if it followed the point of the .include; when
the end of the included file is reached, assembly of the original file continues. You can control
the search paths used with the ‘~-I’ command-line option (see Chapter 2 [Command-Line
Options|, page 19). Quotation marks are required around file.

56 Using as

7.63 .int expressions

Expect zero or more expressions, of any section, separated by commas. For each expression,
emit a number that, at run time, is the value of that expression. The byte order and bit
size of the number depends on what kind of target the assembly is for.

7.64 .internal names

This is one of the ELF visibility directives. The other two are .hidden (see Section 7.57
[.hidden|, page 53) and .protected (see Section 7.88 [.protected|, page 64).

This directive overrides the named symbols default visibility (which is set by their bind-
ing: local, global or weak). The directive sets the visibility to internal which means that
the symbols are considered to be hidden (i.e., not visible to other components), and that
some extra, processor specific processing must also be performed upon the symbols as well.

7.65 .irp symbol,values...

Evaluate a sequence of statements assigning different values to symbol. The sequence of
statements starts at the .irp directive, and is terminated by an .endr directive. For each
value, symbol is set to value, and the sequence of statements is assembled. If no value is
listed, the sequence of statements is assembled once, with symbol set to the null string. To
refer to symbol within the sequence of statements, use \symbol.

For example, assembling

.irp param,1,2,3
move d\param, sp@-
.endr

is equivalent to assembling

move d1l,sp@-
move d2,sp@-
move d3,sp@-

For some caveats with the spelling of symbol, see also Section 7.77 [Macro], page 59.

7.66 .irpc symbol,values. ..

Evaluate a sequence of statements assigning different values to symbol. The sequence of
statements starts at the .irpc directive, and is terminated by an .endr directive. For
each character in value, symbol is set to the character, and the sequence of statements is
assembled. If no value is listed, the sequence of statements is assembled once, with symbol
set to the null string. To refer to symbol within the sequence of statements, use \symbol.

For example, assembling

.irpc param, 123
move d\param, sp@-
.endr

is equivalent to assembling

move dl,sp@-
move d2,sp@-

Chapter 7: Assembler Directives 57

move d3, sp@-

For some caveats with the spelling of symbol, see also the discussion at See Section 7.77
[Macro], page 59.

7.67 .lcomm symbol , length

Reserve length (an absolute expression) bytes for a local common denoted by symbol. The
section and value of symbol are those of the new local common. The addresses are allocated
in the bss section, so that at run-time the bytes start off zeroed. Symbol is not declared
global (see Section 7.55 [.global], page 53), so is normally not visible to 1d.

Some targets permit a third argument to be used with .lcomm. This argument specifies
the desired alignment of the symbol in the bss section.

The syntax for .lcomm differs slightly on the HPPA. The syntax is ‘symbol .lcomm,
length’; symbol is optional.

7.68 .lflags

as accepts this directive, for compatibility with other assemblers, but ignores it.

7.69 .line line-number

Change the logical line number. line-number must be an absolute expression. The next
line has that logical line number. Therefore any other statements on the current line (after
a statement separator character) are reported as on logical line number line-number — 1.
One day as will no longer support this directive: it is recognized only for compatibility with
existing assembler programs.

Even though this is a directive associated with the a.out or b.out object-code formats,
as still recognizes it when producing COFF output, and treats ‘.1line’ as though it were
the COFF ¢.1n’ if it is found outside a .def/.endef pair.

Inside a .def, ‘.1line’ is, instead, one of the directives used by compilers to generate
auxiliary symbol information for debugging.

7.70 .linkonce [typel]

Mark the current section so that the linker only includes a single copy of it. This may be
used to include the same section in several different object files, but ensure that the linker
will only include it once in the final output file. The .linkonce pseudo-op must be used
for each instance of the section. Duplicate sections are detected based on the section name,
so it should be unique.

This directive is only supported by a few object file formats; as of this writing, the only
object file format which supports it is the Portable Executable format used on Windows
NT.

The type argument is optional. If specified, it must be one of the following strings. For
example:

.linkonce same_size

Not all types may be supported on all object file formats.

58 Using as

discard Silently discard duplicate sections. This is the default.
one_only Warn if there are duplicate sections, but still keep only one copy.

same_size
Warn if any of the duplicates have different sizes.

same_contents
Warn if any of the duplicates do not have exactly the same contents.

7.71 .list

Control (in conjunction with the .nolist directive) whether or not assembly listings are
generated. These two directives maintain an internal counter (which is zero initially).
.list increments the counter, and .nolist decrements it. Assembly listings are generated
whenever the counter is greater than zero.

By default, listings are disabled. When you enable them (with the ‘-a’ command line
option; see Chapter 2 [Command-Line Options|, page 19), the initial value of the listing
counter is one.

7.72 .1ln line-number

‘.1n’ is a synonym for ‘.1line’.

7.73 .loc fileno lineno [column] [options]

When emitting DWARF2 line number information, the .loc directive will add a row to
the .debug_line line number matrix corresponding to the immediately following assembly
instruction. The fileno, lineno, and optional column arguments will be applied to the
.debug_line state machine before the row is added.

The options are a sequence of the following tokens in any order:

basic_block
This option will set the basic_block register in the .debug_line state machine
to true.

prologue_end
This option will set the prologue_end register in the .debug_line state ma-
chine to true.

epilogue_begin
This option will set the epilogue_begin register in the .debug_line state
machine to true.

is_stmt value
This option will set the is_stmt register in the .debug_line state machine to
value, which must be either 0 or 1.

isa value
This directive will set the isa register in the .debug_line state machine to
value, which must be an unsigned integer.

Chapter 7: Assembler Directives 59

discriminator value
This directive will set the discriminator register in the .debug_line state
machine to value, which must be an unsigned integer.

7.74 .loc_mark_labels enable

When emitting DWARF2 line number information, the .loc_mark_labels directive makes
the assembler emit an entry to the .debug_line line number matrix with the basic_block
register in the state machine set whenever a code label is seen. The enable argument should
be either 1 or 0, to enable or disable this function respectively.

7.75 .local names

This directive, which is available for ELF targets, marks each symbol in the comma-
separated list of names as a local symbol so that it will not be externally visible. If the
symbols do not already exist, they will be created.

For targets where the .lcomm directive (see Section 7.67 [Lcomm]|, page 57) does not
accept an alignment argument, which is the case for most ELF targets, the .local directive
can be used in combination with .comm (see Section 7.30 [Comm]|, page 49) to define aligned
local common data.

7.76 .long expressions

.long is the same as ‘.int’. See Section 7.63 [.int|, page 56.

7.77 .macro

The commands .macro and . endm allow you to define macros that generate assembly output.
For example, this definition specifies a macro sum that puts a sequence of numbers into
memory:

.macro sum from=0, to=5
.long \from

Jif \to-\from

sum "(\from+1)",\to
.endif

.endm

With that definition, ‘SUM 0,5’ is equivalent to this assembly input:

.long O
.long
.long
.long
.long
.long

g W N

.macro macname
.macro macname macargs ...
Begin the definition of a macro called macname. If your macro definition
requires arguments, specify their names after the macro name, separated by

60

Using as

commas or spaces. You can qualify the macro argument to indicate whether
all invocations must specify a non-blank value (through ‘:req’), or whether it
takes all of the remaining arguments (through ‘:vararg’). You can supply a
default value for any macro argument by following the name with ‘=deflt’.
You cannot define two macros with the same macname unless it has been sub-
ject to the .purgem directive (see Section 7.90 [Purgem], page 65) between the
two definitions. For example, these are all valid .macro statements:

.macro comm
Begin the definition of a macro called comm, which takes no argu-
ments.

.macro plusil p, pl

.macro plusl p pl
Fither statement begins the definition of a macro called plusi,
which takes two arguments; within the macro definition, write ‘\p’
or ‘\pl’ to evaluate the arguments.

.macro reserve_str pl=0 p2
Begin the definition of a macro called reserve_str, with two argu-
ments. The first argument has a default value, but not the second.
After the definition is complete, you can call the macro either as
‘reserve_str a,b’ (with ‘\p1’ evaluating to a and ‘\p2’ evaluating
to b), or as ‘reserve_str ,b’ (with ‘\p1’ evaluating as the default,
in this case ‘0’, and ‘\p2’ evaluating to b).

.macro m pl:req, p2=0, p3:vararg
Begin the definition of a macro called m, with at least three ar-
guments. The first argument must always have a value specified,
but not the second, which instead has a default value. The third
formal will get assigned all remaining arguments specified at invo-
cation time.

When you call a macro, you can specify the argument values either
by position, or by keyword. For example, ‘sum 9,17’ is equivalent
to ‘sum to=17, from=9’.

Note that since each of the macargs can be an identifier exactly as any other
one permitted by the target architecture, there may be occasional problems if
the target hand-crafts special meanings to certain characters when they occur
in a special position. For example, if the colon (:) is generally permitted to
be part of a symbol name, but the architecture specific code special-cases it
when occurring as the final character of a symbol (to denote a label), then
the macro parameter replacement code will have no way of knowing that and
consider the whole construct (including the colon) an identifier, and check only
this identifier for being the subject to parameter substitution. So for example
this macro definition:

.macro label 1
\1:
.endm

Chapter 7: Assembler Directives 61

.endm
.exitm

\@

LOCAL name

might not work as expected. Invoking ‘label foo’ might not create a label
called ‘foo’ but instead just insert the text ‘\1:’ into the assembler source,
probably generating an error about an unrecognised identifier.

Similarly problems might occur with the period character (‘.”) which is often
allowed inside opcode names (and hence identifier names). So for example
constructing a macro to build an opcode from a base name and a length specifier
like this:
.macro opcode base length
\base.\length
.endm

and invoking it as ‘opcode store 1’ will not create a ‘store.l’ instruction but
instead generate some kind of error as the assembler tries to interpret the text
“\base.\length’.

There are several possible ways around this problem:

Insert white space
If it is possible to use white space characters then this is the simplest
solution. eg:

.macro label 1
\1 :
.endm

Use ‘\()’ The string ‘\()’ can be used to separate the end of a macro argu-
ment from the following text. eg:
.macro opcode base length
\base\ () .\length
.endm

Use the alternate macro syntax mode
In the alternative macro syntax mode the ampersand character (‘&’)
can be used as a separator. eg:
.altmacro
.macro label 1
1&:
.endm

Note: this problem of correctly identifying string parameters to pseudo ops
also applies to the identifiers used in .irp (see Section 7.65 [Irp], page 56) and
.irpc (see Section 7.66 [Irpc|, page 56) as well.

Mark the end of a macro definition.
Exit early from the current macro definition.

as maintains a counter of how many macros it has executed in this pseudo-
variable; you can copy that number to your output with ‘\@’, but only within
a macro definition.

L, ...]
Warning: LOCAL is only available if you select “alternate macro syntax” with
‘~-alternate’ or .altmacro. See Section 7.4 [.altmacro|, page 46.

62 Using as

7.78 .mri val

If val is non-zero, this tells as to enter MRI mode. If val is zero, this tells as to exit MRI
mode. This change affects code assembled until the next .mri directive, or until the end of
the file. See Section 2.9 [MRI mode], page 21.

7.79 .noaltmacro

Disable alternate macro mode. See Section 7.4 [Altmacro], page 46.

7.80 .nolist

Control (in conjunction with the .list directive) whether or not assembly listings are
generated. These two directives maintain an internal counter (which is zero initially).
.list increments the counter, and .nolist decrements it. Assembly listings are generated
whenever the counter is greater than zero.

7.81 .octa bignums

This directive expects zero or more bignums, separated by commas. For each bignum, it
emits a 16-byte integer.

The term “octa” comes from contexts in which a “word” is two bytes; hence octa-word
for 16 bytes.

7.82 .offset loc

Set the location counter to loc in the absolute section. loc must be an absolute expression.
This directive may be useful for defining symbols with absolute values. Do not confuse it
with the .org directive.

7.83 .org new-lc , fill

Advance the location counter of the current section to new-Ic. new-Ic is either an absolute
expression or an expression with the same section as the current subsection. That is, you
can’t use .org to cross sections: if new-Ic has the wrong section, the .org directive is
ignored. To be compatible with former assemblers, if the section of new-Ic is absolute, as
issues a warning, then pretends the section of new-Ic is the same as the current subsection.

.org may only increase the location counter, or leave it unchanged; you cannot use .org
to move the location counter backwards.

Because as tries to assemble programs in one pass, new-Ic may not be undefined. If you
really detest this restriction we eagerly await a chance to share your improved assembler.

Beware that the origin is relative to the start of the section, not to the start of the
subsection. This is compatible with other people’s assemblers.

When the location counter (of the current subsection) is advanced, the intervening bytes
are filled with fill which should be an absolute expression. If the comma and fill are omitted,
fill defaults to zero.

Chapter 7: Assembler Directives 63

7.84 .p2align[wl] abs-expr, abs-expr, abs-expr

Pad the location counter (in the current subsection) to a particular storage boundary. The
first expression (which must be absolute) is the number of low-order zero bits the location
counter must have after advancement. For example ‘.p2align 3’ advances the location
counter until it a multiple of 8. If the location counter is already a multiple of 8, no change
is needed.

The second expression (also absolute) gives the fill value to be stored in the padding
bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are normally
zero. However, on some systems, if the section is marked as containing code and the fill
value is omitted, the space is filled with no-op instructions.

The third expression is also absolute, and is also optional. If it is present, it is the
maximum number of bytes that should be skipped by this alignment directive. If doing
the alignment would require skipping more bytes than the specified maximum, then the
alignment is not done at all. You can omit the fill value (the second argument) entirely by
simply using two commas after the required alignment; this can be useful if you want the
alignment to be filled with no-op instructions when appropriate.

The .p2alignw and .p2alignl directives are variants of the .p2align directive. The
.p2alignw directive treats the fill pattern as a two byte word value. The .p2alignl di-
rectives treats the fill pattern as a four byte longword value. For example, .p2alignw
2,0x368d will align to a multiple of 4. If it skips two bytes, they will be filled in with
the value 0x368d (the exact placement of the bytes depends upon the endianness of the
processor). If it skips 1 or 3 bytes, the fill value is undefined.

7.85 .popsection

This is one of the ELF section stack manipulation directives. The others are .section (see
Section 7.97 [Section], page 66), .subsection (see Section 7.108 [SubSection|, page 71),
.pushsection (see Section 7.91 [PushSection], page 65), and .previous (see Section 7.86
[Previous|, page 63).

This directive replaces the current section (and subsection) with the top section (and
subsection) on the section stack. This section is popped off the stack.

7.86 .previous

This is one of the ELF section stack manipulation directives. The others are .section (see
Section 7.97 [Section], page 66), .subsection (see Section 7.108 [SubSection], page 71),
.pushsection (see Section 7.91 [PushSection], page 65), and .popsection (see Section 7.85
[PopSection], page 63).

This directive swaps the current section (and subsection) with most recently referenced
section/subsection pair prior to this one. Multiple .previous directives in a row will flip
between two sections (and their subsections). For example:

.section A
.subsection 1
.word 0x1234
.subsection 2
.word 0x5678
.previous

64 Using as

.word 0x9abc

Will place 0x1234 and 0x9abc into subsection 1 and 0x5678 into subsection 2 of section
A. Whilst:

.section A

.subsection 1
Now in section A subsection 1
.word 0x1234

.section B

.subsection 0O
Now in section B subsection 0O
.word 0x5678

.subsection 1
Now in section B subsection 1
.word 0x9abc

.previous
Now in section B subsection O
.word OxdefO

Will place 0x1234 into section A, 0x5678 and 0xdef0 into subsection 0 of section B and
0x9abc into subsection 1 of section B.

In terms of the section stack, this directive swaps the current section with the top section
on the section stack.

7.87 .print string

as will print string on the standard output during assembly. You must put string in double
quotes.

7.88 .protected names

This is one of the ELF visibility directives. The other two are .hidden (see Section 7.57
[Hidden], page 53) and .internal (see Section 7.64 [Internal|, page 56).

This directive overrides the named symbols default visibility (which is set by their bind-
ing: local, global or weak). The directive sets the visibility to protected which means
that any references to the symbols from within the components that defines them must
be resolved to the definition in that component, even if a definition in another component
would normally preempt this.

7.89 .psize lines , columns

Use this directive to declare the number of lines—and, optionally, the number of columns—
to use for each page, when generating listings.

If you do not use .psize, listings use a default line-count of 60. You may omit the
comma and columns specification; the default width is 200 columns.

as generates formfeeds whenever the specified number of lines is exceeded (or whenever
you explicitly request one, using .eject).

If you specify lines as 0, no formfeeds are generated save those explicitly specified with
.eject.

Chapter 7: Assembler Directives 65

7.90 .purgem name

Undefine the macro name, so that later uses of the string will not be expanded. See
Section 7.77 [Macro], page 59.

7.91 .pushsection name [, subsection] [, "flags"[,
Qtype [,arguments]]]

This is one of the ELF section stack manipulation directives. The others are .section (see
Section 7.97 [Section], page 66), .subsection (see Section 7.108 [SubSection], page 71),
.popsection (see Section 7.85 [PopSection|, page 63), and .previous (see Section 7.86
[Previous|, page 63).

This directive pushes the current section (and subsection) onto the top of the section
stack, and then replaces the current section and subsection with name and subsection.
The optional flags, type and arguments are treated the same as in the .section (see
Section 7.97 [Section], page 66) directive.

7.92 .quad bignums

.quad expects zero or more bignums, separated by commas. For each bignum, it emits an
8-byte integer. If the bignum won’t fit in 8 bytes, it prints a warning message; and just
takes the lowest order 8 bytes of the bignum.

The term “quad” comes from contexts in which a “word” is two bytes; hence quad-word
for 8 bytes.

7.93 .reloc offset, reloc_name[, expressionl]

Generate a relocation at offset of type reloc_name with value expression. If offset is a
number, the relocation is generated in the current section. If offset is an expression that
resolves to a symbol plus offset, the relocation is generated in the given symbol’s section.
expression, if present, must resolve to a symbol plus addend or to an absolute value, but
note that not all targets support an addend. e.g. ELF REL targets such as i386 store an
addend in the section contents rather than in the relocation. This low level interface does
not support addends stored in the section.

7.94 .rept count

Repeat the sequence of lines between the .rept directive and the next .endr directive count
times.

For example, assembling

.rept 3
.long O
.endr

is equivalent to assembling

.long O
.long O
.long O

66 Using as

7.95 .sbttl "subheading"
Use subheading as the title (third line, immediately after the title line) when generating
assembly listings.

This directive affects subsequent pages, as well as the current page if it appears within
ten lines of the top of a page.

7.96 .scl class

Set the storage-class value for a symbol. This directive may only be used inside a
.def/.endef pair. Storage class may flag whether a symbol is static or external, or it may
record further symbolic debugging information.

7.97 .section name

Use the .section directive to assemble the following code into a section named name.

This directive is only supported for targets that actually support arbitrarily named
sections; on a.out targets, for example, it is not accepted, even with a standard a.out
section name.

COFF Version

For COFF targets, the .section directive is used in one of the following ways:

.section namel[, "flags"]
.section name[, subsection]

If the optional argument is quoted, it is taken as flags to use for the section. Each flag
is a single character. The following flags are recognized:

b bss section (uninitialized data)

n section is not loaded

W writable section

d data section

r read-only section

X executable section

s shared section (meaningful for PE targets)

a ignored. (For compatibility with the ELF version)

N section is not readable (meaningful for PE targets)

0-9 single-digit power-of-two section alignment (GNU extension)

If no flags are specified, the default flags depend upon the section name. If the section
name is not recognized, the default will be for the section to be loaded and writable. Note
the n and w flags remove attributes from the section, rather than adding them, so if they
are used on their own it will be as if no flags had been specified at all.

If the optional argument to the .section directive is not quoted, it is taken as a sub-
section number (see Section 4.4 [Sub-Sections], page 33).

Chapter 7: Assembler Directives 67

ELF Version

This is one of the ELF section stack manipulation directives. The others are .subsection
(see Section 7.108 [SubSection|, page 71), .pushsection (see Section 7.91 [PushSection],
page 65), .popsection (see Section 7.85 [PopSection], page 63), and .previous (see
Section 7.86 [Previous|, page 63).

For ELF targets, the .section directive is used like this:
.section name [, "flags"[, Qtypel,flag_specific_arguments]]]

The optional flags argument is a quoted string which may contain any combination of
the following characters:

a section is allocatable

e section is excluded from executable and shared library.

W section is writable

X section is executable

M section is mergeable

S section contains zero terminated strings

G section is a member of a section group

T section is used for thread-local-storage

? section is a member of the previously-current section’s group, if any
The optional type argument may contain one of the following constants:

O@progbits

section contains data
@Gnobits section does not contain data (i.e., section only occupies space)
@note section contains data which is used by things other than the program

@init_array
section contains an array of pointers to init functions

@fini_array
section contains an array of pointers to finish functions

Opreinit_array
section contains an array of pointers to pre-init functions

Many targets only support the first three section types.

Note on targets where the @ character is the start of a comment (eg ARM) then another
character is used instead. For example the ARM port uses the % character.
If flags contains the M symbol then the type argument must be specified as well as an
extra argument—entsize—Ilike this:
.section name , "flags"M, Q@type, entsize
Sections with the M flag but not S flag must contain fixed size constants, each entsize

octets long. Sections with both M and S must contain zero terminated strings where each
character is entsize bytes long. The linker may remove duplicates within sections with the

68 Using as

same name, same entity size and same flags. entsize must be an absolute expression. For
sections with both M and S, a string which is a suffix of a larger string is considered a
duplicate. Thus "def" will be merged with "abcdef"; A reference to the first "def" will
be changed to a reference to "abcdef"+3.

If flags contains the G symbol then the type argument must be present along with an
additional field like this:

.section name , "flags"G, Q@type, GroupName[, linkagel]

The GroupName field specifies the name of the section group to which this particular
section belongs. The optional linkage field can contain:

comdat indicates that only one copy of this section should be retained

.gnu.linkonce
an alias for comdat

Note: if both the M and G flags are present then the fields for the Merge flag should
come first, like this:

.section name , "flags"MG, Q@type, entsize, GroupName[, linkage]

If flags contains the 7 symbol then it may not also contain the G symbol and the Group-
Name or linkage fields should not be present. Instead, ? says to consider the section that’s
current before this directive. If that section used G, then the new section will use G with
those same GroupName and linkage fields implicitly. If not, then the 7 symbol has no effect.

If no flags are specified, the default flags depend upon the section name. If the section
name is not recognized, the default will be for the section to have none of the above flags:
it will not be allocated in memory, nor writable, nor executable. The section will contain
data.

For ELF targets, the assembler supports another type of .section directive for compat-
ibility with the Solaris assembler:
.section "name"[, flags...]

Note that the section name is quoted. There may be a sequence of comma separated
flags:

#alloc section is allocatable
#urite section is writable
#execinstr

section is executable
#exclude section is excluded from executable and shared library.

#tls section is used for thread local storage

This directive replaces the current section and subsection. See the contents of the gas
testsuite directory gas/testsuite/gas/elf for some examples of how this directive and
the other section stack directives work.

Chapter 7: Assembler Directives 69

7.98 .set symbol, expression

Set the value of symbol to expression. This changes symbol’s value and type to conform to
expression. If symbol was flagged as external, it remains flagged (see Section 5.5 [Symbol
Attributes|, page 39).

You may .set a symbol many times in the same assembly.
If you .set a global symbol, the value stored in the object file is the last value stored
into it.

On Z80 set is a real instruction, use ‘symbol defl expression’ instead.

7.99 .short expressions

.short is normally the same as ‘.word’. See Section 7.122 [.word|, page 75.

In some configurations, however, .short and .word generate numbers of different
lengths. See Chapter 9 [Machine Dependencies], page 79.

7.100 .single flonums

This directive assembles zero or more flonums, separated by commas. It has the same
effect as .float. The exact kind of floating point numbers emitted depends on how as is
configured. See Chapter 9 [Machine Dependencies|, page 79.

7.101 .size

This directive is used to set the size associated with a symbol.

COFF Version

For COFF targets, the .size directive is only permitted inside .def/.endef pairs. It is
used like this:

.size expression

ELF Version
For ELF targets, the .size directive is used like this:

.size name , expression

This directive sets the size associated with a symbol name. The size in bytes is computed
from expression which can make use of label arithmetic. This directive is typically used to
set the size of function symbols.

7.102 .skip size , fill

This directive emits size bytes, each of value fill. Both size and fill are absolute expressions.
If the comma and fill are omitted, fill is assumed to be zero. This is the same as ‘.space’.

7.103 .slebl128 expressions

sleb128 stands for “signed little endian base 128.” This is a compact, variable length rep-
resentation of numbers used by the DWARF symbolic debugging format. See Section 7.114
[.uleb128], page 74.

70 Using as

7.104 .space size , fill

This directive emits size bytes, each of value fill. Both size and fill are absolute expressions.
If the comma and fill are omitted, fill is assumed to be zero. This is the same as ‘.skip’.

Warning: .space has a completely different meaning for HPPA targets; use
.block as a substitute. See HP9000 Series 800 Assembly Language Refer-
ence Manual (HP 92432-90001) for the meaning of the .space directive. See
Section 9.11.5 [HPPA Assembler Directives|, page 132, for a summary.

7.105 .stabd, .stabn, .stabs

There are three directives that begin ‘.stab’. All emit symbols (see Chapter 5 [Symbols],
page 37), for use by symbolic debuggers. The symbols are not entered in the as hash table:
they cannot be referenced elsewhere in the source file. Up to five fields are required:

string This is the symbol’s name. It may contain any character except ‘\000’, so
is more general than ordinary symbol names. Some debuggers used to code
arbitrarily complex structures into symbol names using this field.

type An absolute expression. The symbol’s type is set to the low 8 bits of this
expression. Any bit pattern is permitted, but 1d and debuggers choke on silly
bit patterns.

other An absolute expression. The symbol’s “other” attribute is set to the low 8 bits
of this expression.

desc An absolute expression. The symbol’s descriptor is set to the low 16 bits of this
expression.
value An absolute expression which becomes the symbol’s value.

If a warning is detected while reading a .stabd, .stabn, or .stabs statement, the
symbol has probably already been created; you get a half-formed symbol in your object file.
This is compatible with earlier assemblers!

.stabd type , other , desc
The “name” of the symbol generated is not even an empty string. It is a null
pointer, for compatibility. Older assemblers used a null pointer so they didn’t
waste space in object files with empty strings.

The symbol’s value is set to the location counter, relocatably. When your
program is linked, the value of this symbol is the address of the location counter
when the .stabd was assembled.

.stabn type , other , desc , value
The name of the symbol is set to the empty string "".

.stabs string , type , other , desc , value
All five fields are specified.

Chapter 7: Assembler Directives 71

7.106 .string "str", .string8 "str", .stringl6

"str", .string32 "str", .string64 "str"

Copy the characters in str to the object file. You may specify more than one string
to copy, separated by commas. Unless otherwise specified for a particular machine, the
assembler marks the end of each string with a 0 byte. You can use any of the escape
sequences described in Section 3.6.1.1 [Strings|, page 27.

The variants string16, string32 and string64 differ from the string pseudo opcode
in that each 8-bit character from str is copied and expanded to 16, 32 or 64 bits respectively.
The expanded characters are stored in target endianness byte order.

Example:

.string32 "BYE"

expands to:

.string "B\O\O\OY\O\O\OE\O\O\O" /* On little endian targets. */
.string "\O\O\OB\O\O\OY\O\O\OE" /% On big endian targets. */

7.107 .struct expression

Switch to the absolute section, and set the section offset to expression, which must be an
absolute expression. You might use this as follows:

.struct 0O
fieldl:

.struct fieldl + 4
field2:

.struct field2 + 4
field3:

This would define the symbol fieldl to have the value 0, the symbol field2 to have
the value 4, and the symbol field3 to have the value 8. Assembly would be left in the
absolute section, and you would need to use a .section directive of some sort to change to
some other section before further assembly.

7.108 .subsection name

This is one of the ELF section stack manipulation directives. The others are .section (see
Section 7.97 [Section], page 66), .pushsection (see Section 7.91 [PushSection], page 65),
.popsection (see Section 7.85 [PopSection|, page 63), and .previous (see Section 7.86
[Previous|, page 63).

This directive replaces the current subsection with name. The current section is not
changed. The replaced subsection is put onto the section stack in place of the then current
top of stack subsection.

7.109 .symver

Use the .symver directive to bind symbols to specific version nodes within a source file.
This is only supported on ELF platforms, and is typically used when assembling files to be
linked into a shared library. There are cases where it may make sense to use this in objects
to be bound into an application itself so as to override a versioned symbol from a shared
library.

For ELF targets, the .symver directive can be used like this:

72 Using as

.symver name, name2@nodename

If the symbol name is defined within the file being assembled, the .symver directive
effectively creates a symbol alias with the name name2@nodename, and in fact the main
reason that we just don’t try and create a regular alias is that the @ character isn’t permitted
in symbol names. The name2 part of the name is the actual name of the symbol by which
it will be externally referenced. The name name itself is merely a name of convenience that
is used so that it is possible to have definitions for multiple versions of a function within
a single source file, and so that the compiler can unambiguously know which version of a
function is being mentioned. The nodename portion of the alias should be the name of a
node specified in the version script supplied to the linker when building a shared library. If
you are attempting to override a versioned symbol from a shared library, then nodename
should correspond to the nodename of the symbol you are trying to override.

If the symbol name is not defined within the file being assembled, all references to name
will be changed to name2@nodename. If no reference to name is made, name2@nodename
will be removed from the symbol table.

Another usage of the .symver directive is:

.symver name, name2Q@Q@nodename

In this case, the symbol name must exist and be defined within the file being assembled.
It is similar to name2@nodename. The difference is name2@@nodename will also be used to
resolve references to name2 by the linker.

The third usage of the .symver directive is:

.symver name, name2@@@nodename

When name is not defined within the file being assembled, it is treated as
name2@nodename. When name is defined within the file being assembled, the symbol
name, name, will be changed to name20@nodename.

7.110 .tag structname

This directive is generated by compilers to include auxiliary debugging information in the
symbol table. It is only permitted inside .def/.endef pairs. Tags are used to link structure
definitions in the symbol table with instances of those structures.

7.111 .text subsection

Tells as to assemble the following statements onto the end of the text subsection numbered
subsection, which is an absolute expression. If subsection is omitted, subsection number
zero is used.

7.112 .title "heading"

Use heading as the title (second line, immediately after the source file name and pagenum-
ber) when generating assembly listings.

This directive affects subsequent pages, as well as the current page if it appears within
ten lines of the top of a page.

Chapter 7: Assembler Directives 73

7.113 .type
This directive is used to set the type of a symbol.

COFF Version

For COFF targets, this directive is permitted only within .def/.endef pairs. It is used
like this:
.type int

This records the integer int as the type attribute of a symbol table entry.

ELF Version
For ELF targets, the .type directive is used like this:

.type name , type description

This sets the type of symbol name to be either a function symbol or an object symbol.
There are five different syntaxes supported for the type description field, in order to provide
compatibility with various other assemblers.

Because some of the characters used in these syntaxes (such as ‘@’ and ‘#’) are comment
characters for some architectures, some of the syntaxes below do not work on all architec-
tures. The first variant will be accepted by the GNU assembler on all architectures so that
variant should be used for maximum portability, if you do not need to assemble your code
with other assemblers.

The syntaxes supported are:

.type <name> STT_<TYPE_IN_UPPER_CASE>
.type <name>,#<type>
.type <name>,Q@<type>
.type <name>,%<type>
.type <name>,"<type>"

The types supported are:

STT_FUNC
function Mark the symbol as being a function name.

STT_GNU_IFUNC

gnu_indirect_function
Mark the symbol as an indirect function when evaluated during reloc processing.
(This is only supported on assemblers targeting GNU systems).

STT_OBJECT
object Mark the symbol as being a data object.

STT_TLS
tls_object
Mark the symbol as being a thead-local data object.

STT_COMMON
common Mark the symbol as being a common data object.

STT_NOTYPE
notype Does not mark the symbol in any way. It is supported just for completeness.

74 Using as

gnu_unique_object
Marks the symbol as being a globally unique data object. The dynamic linker
will make sure that in the entire process there is just one symbol with this
name and type in use. (This is only supported on assemblers targeting GNU
systems).

Note: Some targets support extra types in addition to those listed above.

7.114 .ulebl128 expressions

uleb128 stands for “unsigned little endian base 128.” This is a compact, variable length rep-
resentation of numbers used by the DWARF symbolic debugging format. See Section 7.103
[.sleb128], page 69.

7.115 .val addr

This directive, permitted only within .def/.endef pairs, records the address addr as the
value attribute of a symbol table entry.

7.116 .version "string"

This directive creates a .note section and places into it an ELF formatted note of type
NT_VERSION. The note’s name is set to string.

7.117 .vtable_entry table, offset

This directive finds or creates a symbol table and creates a VTABLE_ENTRY relocation for
it with an addend of offset.

7.118 .vtable_inherit child, parent

This directive finds the symbol child and finds or creates the symbol parent and then
creates a VTABLE_INHERIT relocation for the parent whose addend is the value of the child
symbol. As a special case the parent name of 0 is treated as referring to the *ABS* section.

7.119 .warning "string"

Similar to the directive .error (see Section 7.47 [.error "string"|, page 52), but just
emits a warning.

7.120 .weak names

This directive sets the weak attribute on the comma separated list of symbol names. If the
symbols do not already exist, they will be created.

On COFF targets other than PE, weak symbols are a GNU extension. This directive
sets the weak attribute on the comma separated list of symbol names. If the symbols do
not already exist, they will be created.

On the PE target, weak symbols are supported natively as weak aliases. When a weak
symbol is created that is not an alias, GAS creates an alternate symbol to hold the default
value.

Chapter 7: Assembler Directives 75

7.121 .weakref alias, target

This directive creates an alias to the target symbol that enables the symbol to be referenced
with weak-symbol semantics, but without actually making it weak. If direct references or
definitions of the symbol are present, then the symbol will not be weak, but if all references
to it are through weak references, the symbol will be marked as weak in the symbol table.

The effect is equivalent to moving all references to the alias to a separate assembly source
file, renaming the alias to the symbol in it, declaring the symbol as weak there, and running
a reloadable link to merge the object files resulting from the assembly of the new source file
and the old source file that had the references to the alias removed.

The alias itself never makes to the symbol table, and is entirely handled within the
assembler.

7.122 .word expressions

This directive expects zero or more expressions, of any section, separated by commas.

The size of the number emitted, and its byte order, depend on what target computer
the assembly is for.

Warning: Special Treatment to support Compilers

Machines with a 32-bit address space, but that do less than 32-bit addressing, require
the following special treatment. If the machine of interest to you does 32-bit addressing
(or doesn’t require it; see Chapter 9 [Machine Dependencies|, page 79), you can ignore this
issue.

In order to assemble compiler output into something that works, as occasionally does
strange things to ‘.word’ directives. Directives of the form ‘.word symil-sym2’ are often
emitted by compilers as part of jump tables. Therefore, when as assembles a directive of
the form ‘.word syml-sym2’, and the difference between sym1 and sym2 does not fit in 16
bits, as creates a secondary jump table, immediately before the next label. This secondary
jump table is preceded by a short-jump to the first byte after the secondary table. This
short-jump prevents the flow of control from accidentally falling into the new table. Inside
the table is a long-jump to sym2. The original ‘.word’ contains syml minus the address of
the long-jump to sym?2.

3

If there were several occurrences of ‘. word symi1-sym2’ before the secondary jump table,
all of them are adjusted. If there was a ‘.word sym3-sym4’, that also did not fit in sixteen
bits, a long-jump to sym4 is included in the secondary jump table, and the .word directives
are adjusted to contain sym3 minus the address of the long-jump to sym4; and so on, for as
many entries in the original jump table as necessary.

7.123 Deprecated Directives

One day these directives won’t work. They are included for compatibility with older assem-
blers.

.abort

.line

Chapter 8: Object Attributes 7

8 Object Attributes

as assembles source files written for a specific architecture into object files for that architec-
ture. But not all object files are alike. Many architectures support incompatible variations.
For instance, floating point arguments might be passed in floating point registers if the
object file requires hardware floating point support—or floating point arguments might be
passed in integer registers if the object file supports processors with no hardware floating
point unit. Or, if two objects are built for different generations of the same architecture,
the combination may require the newer generation at run-time.

This information is useful during and after linking. At link time, 1d can warn about
incompatible object files. After link time, tools like gdb can use it to process the linked file
correctly.

Compatibility information is recorded as a series of object attributes. Each attribute has
a vendor, tag, and value. The vendor is a string, and indicates who sets the meaning of the
tag. The tag is an integer, and indicates what property the attribute describes. The value
may be a string or an integer, and indicates how the property affects this object. Missing
attributes are the same as attributes with a zero value or empty string value.

Object attributes were developed as part of the ABI for the ARM Architecture. The file
format is documented in ELF for the ARM Architecture.

8.1 aNU Object Attributes

The .gnu_attribute directive records an object attribute with vendor ‘gnu’.

Except for ‘Tag_compatibility’, which has both an integer and a string for its value,
GNU attributes have a string value if the tag number is odd and an integer value if the tag
number is even. The second bit (tag & 2 is set for architecture-independent attributes and
clear for architecture-dependent ones.

8.1.1 Common GNU attributes
These attributes are valid on all architectures.

Tag_compatibility (32)
The compatibility attribute takes an integer flag value and a vendor name. If
the flag value is 0, the file is compatible with other toolchains. If it is 1, then
the file is only compatible with the named toolchain. If it is greater than 1, the
file can only be processed by other toolchains under some private arrangement
indicated by the flag value and the vendor name.

8.1.2 MIPS Attributes

Tag_ GNU_MIPS_ABI_FP (4)
The floating-point ABI used by this object file. The value will be:

e 0 for files not affected by the floating-point ABI.

e 1 for files using the hardware floating-point with a standard
double-precision FPU.

e 2 for files using the hardware floating-point ABI with a single-precision
FPU.

78 Using as

e 3 for files using the software floating-point ABI.

e 4 for files using the hardware floating-point ABI with 64-bit wide double-
precision floating-point registers and 32-bit wide general purpose registers.

8.1.3 PowerPC Attributes
Tag_GNU_Power_ABI_FP (4)
The floating-point ABI used by this object file. The value will be:
e 0 for files not affected by the floating-point ABI.
e 1 for files using double-precision hardware floating-point ABI.
e 2 for files using the software floating-point ABI.
e 3 for files using single-precision hardware floating-point ABI.
Tag_GNU_Power_ABI_Vector (8)
The vector ABI used by this object file. The value will be:
e (for files not affected by the vector ABI.
e 1 for files using general purpose registers to pass vectors.
e 2 for files using AltiVec registers to pass vectors.

e 3 for files using SPE registers to pass vectors.

8.2 Defining New Object Attributes

If you want to define a new GNU object attribute, here are the places you will need to
modify. New attributes should be discussed on the ‘binutils’ mailing list.

e This manual, which is the official register of attributes.
e The header for your architecture ‘include/elf’, to define the tag.

e The ‘bfd’ support file for your architecture, to merge the attribute and issue any
appropriate link warnings.

e Test cases in ‘1d/testsuite’ for merging and link warnings.
e ‘binutils/readelf.c’ to display your attribute.

e GCC, if you want the compiler to mark the attribute automatically.

Chapter 9: Machine Dependent Features 79

9 Machine Dependent Features

The machine instruction sets are (almost by definition) different on each machine where as
runs. Floating point representations vary as well, and as often supports a few additional
directives or command-line options for compatibility with other assemblers on a particu-
lar platform. Finally, some versions of as support special pseudo-instructions for branch
optimization.

This chapter discusses most of these differences, though it does not include details on
any machine’s instruction set. For details on that subject, see the hardware manufacturer’s
manual.

80 Using as

9.1 Alpha Dependent Features

9.1.1 Notes

The documentation here is primarily for the ELF object format. as also supports the
ECOFF and EVAX formats, but features specific to these formats are not yet documented.

9.1.2 Options

-mcpu This option specifies the target processor. If an attempt is made to assemble an
instruction which will not execute on the target processor, the assembler may
either expand the instruction as a macro or issue an error message. This option
is equivalent to the .arch directive.

The following processor names are recognized: 21064, 21064a, 21066, 21068,
21164, 21164a, 21164pc, 21264, 21264a, 21264b, ev4, evb, 1cadb, evb, ev56,
pcab6, ev6, ev67, ev68. The special name all may be used to allow the
assembler to accept instructions valid for any Alpha processor.

In order to support existing practice in OSF /1 with respect to .arch, and exist-
ing practice within MILO (the Linux ARC bootloader), the numbered processor
names (e.g. 21064) enable the processor-specific PALcode instructions, while
the “electro-vlasic” names (e.g. ev4) do not.

-mdebug

-no-mdebug
Enables or disables the generation of .mdebug encapsulation for stabs directives
and procedure descriptors. The default is to automatically enable .mdebug
when the first stabs directive is seen.

-relax This option forces all relocations to be put into the object file, instead of saving
space and resolving some relocations at assembly time. Note that this option
does not propagate all symbol arithmetic into the object file, because not all
symbol arithmetic can be represented. However, the option can still be useful
in specific applications.

-replace

-noreplace
Enables or disables the optimization of procedure calls, both at assemblage and
at link time. These options are only available for VMS targets and -replace
is the default. See section 1.4.1 of the OpenVMS Linker Utility Manual.

-g This option is used when the compiler generates debug information. When gcc
is using mips-tfile to generate debug information for ECOFF, local labels
must be passed through to the object file. Otherwise this option has no effect.

-Gsize A local common symbol larger than size is placed in . bss, while smaller symbols
are placed in .sbss.

-F

-32addr These options are ignored for backward compatibility.

Chapter 9: Machine Dependent Features 81

9.1.3 Syntax

The assembler syntax closely follow the Alpha Reference Manual; assembler directives and
general syntax closely follow the OSF/1 and OpenVMS syntax, with a few differences for

ELF.

9.1.3.1 Special Characters

‘#" is the line comment character. Note that if ‘#’ is the first character on a line then
it can also be a logical line number directive (see Section 3.3 [Comments|, page 25) or a
preprocessor control command (see Section 3.1 [Preprocessing], page 25).

‘;7 can be used instead of a newline to separate statements.

9.1.3.2 Register Names

The 32 integer registers are referred to as ‘$n’ or ‘$rn’. In addition, registers 15, 28, 29,
and 30 may be referred to by the symbols ‘$fp’, ‘$at’, ‘$gp’, and ‘$sp’ respectively.

The 32 floating-point registers are referred to as ‘$fn’.

9.1.3.3 Relocations

Some of these relocations are available for ECOFF, but mostly only for ELF. They are
modeled after the relocation format introduced in Digital Unix 4.0, but there are additions.

The format is ‘! tag’ or ‘! tag ! number’ where tag is the name of the relocation. In some
cases number is used to relate specific instructions.

The relocation is placed at the end of the instruction like so:

ldah $0,a($29) lgprelhigh

lda $0,a($0) lgprellow

ldg $1,b($29) literal!100

1dl $2,0(%1) Ilituse_base!100
Iliteral
Iliteral!N

Used with an 1dq instruction to load the address of a symbol from the GOT.

A sequence number N is optional, and if present is used to pair lituse relo-
cations with this literal relocation. The lituse relocations are used by the
linker to optimize the code based on the final location of the symbol.

Note that these optimizations are dependent on the data flow of the program.
Therefore, if any lituse is paired with a literal relocation, then all uses of
the register set by the literal instruction must also be marked with lituse
relocations. This is because the original 1literal instruction may be deleted or
transformed into another instruction.

Also note that there may be a one-to-many relationship between 1literal and
lituse, but not a many-to-one. That is, if there are two code paths that load
up the same address and feed the value to a single use, then the use may not
use a lituse relocation.

82 Using as

Ilituse_base!N
Used with any memory format instruction (e.g. 1d1) to indicate that the literal
is used for an address load. The offset field of the instruction must be zero.
During relaxation, the code may be altered to use a gp-relative load.

!lituse_jsr!N
Used with a register branch format instruction (e.g. jsr) to indicate that the
literal is used for a call. During relaxation, the code may be altered to use a
direct branch (e.g. bsr).

Ilituse_jsrdirect!N
Similar to lituse_jsr, but also that this call cannot be vectored through a
PLT entry. This is useful for functions with special calling conventions which
do not allow the normal call-clobbered registers to be clobbered.

Ilituse_bytoff!N
Used with a byte mask instruction (e.g. extbl) to indicate that only the low 3
bits of the address are relevant. During relaxation, the code may be altered to
use an immediate instead of a register shift.

Ilituse_addr!N
Used with any other instruction to indicate that the original address is in fact
used, and the original 1dq instruction may not be altered or deleted. This is
useful in conjunction with lituse_jsr to test whether a weak symbol is defined.
1dq $27,foo($29) !literal!l
beq $27,is_undef Ilituse_addr!'1l
jsr $26,($27),foo !lituse_jsr!l

Ilituse_tlsgd!N
Used with a register branch format instruction to indicate that the literal is
the call to __tls_get_addr used to compute the address of the thread-local

storage variable whose descriptor was loaded with !'tlsgd!N.

Ilituse_tlsldm!N
Used with a register branch format instruction to indicate that the literal is the
call to __tls_get_addr used to compute the address of the base of the thread-
local storage block for the current module. The descriptor for the module must
have been loaded with !'tlsldm!N.

lgpdisp!N
Used with 1dah and 1da to load the GP from the current address, a-la the 1dgp
macro. The source register for the 1dah instruction must contain the address
of the 1dah instruction. There must be exactly one 1da instruction paired with
the 1dah instruction, though it may appear anywhere in the instruction stream.
The immediate operands must be zero.

bsr $26,foo
ldah $29,0($26) lgpdisp!1
lda $29,0($29) lgpdisp!1
lgprelhigh
Used with an 1dah instruction to add the high 16 bits of a 32-bit displacement
from the GP.

Chapter 9: Machine Dependent Features 83

lgprellow

lgprel

I samegp

Itlsgd
Itlsgd!N

Itlsldm
Itlsldm!N

lgotdtprel

ldtprelhi
ldtprello
ldtprel

lgottprel

Itprelhi
Itprello
Itprel

Used with any memory format instruction to add the low 16 bits of a 32-bit
displacement from the GP.

Used with any memory format instruction to add a 16-bit displacement from
the GP.

Used with any branch format instruction to skip the GP load at the target
address. The referenced symbol must have the same GP as the source object
file, and it must be declared to either not use $27 or perform a standard GP
load in the first two instructions via the .prologue directive.

Used with an 1lda instruction to load the address of a TLS descriptor for a
symbol in the GOT.

The sequence number N is optional, and if present it used to pair the descriptor
load with both the 1iteral loading the address of the __t1ls_get_addr function
and the lituse_tlsgd marking the call to that function.

For proper relaxation, both the tlsgd, literal and lituse relocations must
be in the same extended basic block. That is, the relocation with the lowest
address must be executed first at runtime.

Used with an 1lda instruction to load the address of a TLS descriptor for the
current module in the GOT.

Similar in other respects to tlsgd.

Used with an 1dq instruction to load the offset of the TLS symbol within its
module’s thread-local storage block. Also known as the dynamic thread pointer
offset or dtp-relative offset.

Like gprel relocations except they compute dtp-relative offsets.
Used with an 1dq instruction to load the offset of the TLS symbol from the

thread pointer. Also known as the tp-relative offset.

Like gprel relocations except they compute tp-relative offsets.

9.1.4 Floating Point
The Alpha family uses both IEEE and VAX floating-point numbers.

9.1.5 Alpha Assembler Directives

as for the Alpha supports many additional directives for compatibility with the native
assembler. This section describes them only briefly.

84 Using as

These are the additional directives in as for the Alpha:

.arch cpu
Specifies the target processor. This is equivalent to the ‘-mcpu’ command-line
option. See Section 9.1.2 [Alpha Options], page 80, for a list of values for cpu.

.ent function[, n]
Mark the beginning of function. An optional number may follow for compat-
ibility with the OSF/1 assembler, but is ignored. When generating .mdebug
information, this will create a procedure descriptor for the function. In ELF,
it will mark the symbol as a function a-la the generic .type directive.

.end function
Mark the end of function. In ELF, it will set the size of the symbol a-la the
generic .size directive.

.mask mask, offset
Indicate which of the integer registers are saved in the current function’s stack
frame. mask is interpreted a bit mask in which bit n set indicates that register
n is saved. The registers are saved in a block located offset bytes from the
canonical frame address (CFA) which is the value of the stack pointer on entry
to the function. The registers are saved sequentially, except that the return
address register (normally $26) is saved first.

This and the other directives that describe the stack frame are currently only
used when generating .mdebug information. They may in the future be used
to generate DWARF2 .debug_frame unwind information for hand written as-
sembly.

.fmask mask, offset
Indicate which of the floating-point registers are saved in the current stack
frame. The mask and offset parameters are interpreted as with .mask.

.frame framereg, frameoffset, retregl, argoffset]
Describes the shape of the stack frame. The frame pointer in use is framereg;
normally this is either $fp or $sp. The frame pointer is frameoffset bytes
below the CFA. The return address is initially located in retreg until it is saved
as indicated in .mask. For compatibility with OSF/1 an optional argoffset
parameter is accepted and ignored. It is believed to indicate the offset from the
CFA to the saved argument registers.

.prologue n

Indicate that the stack frame is set up and all registers have been spilled. The
argument n indicates whether and how the function uses the incoming procedure
vector (the address of the called function) in $27. 0 indicates that $27 is not
used; 1 indicates that the first two instructions of the function use $27 to
perform a load of the GP register; 2 indicates that $27 is used in some non-
standard way and so the linker cannot elide the load of the procedure vector
during relaxation.

.usepv function, which
Used to indicate the use of the $27 register, similar to .prologue, but without
the other semantics of needing to be inside an open .ent/.end block.

Chapter 9: Machine Dependent Features 85

The which argument should be either no, indicating that $27 is not used, or
std, indicating that the first two instructions of the function perform a GP
load.

One might use this directive instead of .prologue if you are also using dwarf2
CFI directives.

.gprel32 expression
Computes the difference between the address in expression and the GP for the
current object file, and stores it in 4 bytes. In addition to being smaller than a
full 8 byte address, this also does not require a dynamic relocation when used
in a shared library.

.t_floating expression
Stores expression as an IEEE double precision value.

.s_floating expression
Stores expression as an IEEE single precision value.

.f_floating expression
Stores expression as a VAX F format value.

.g_floating expression
Stores expression as a VAX G format value.

.d_floating expression
Stores expression as a VAX D format value.

.set feature
Enables or disables various assembler features. Using the positive name of the
feature enables while using ‘nofeature’ disables.

at Indicates that macro expansions may clobber the assembler tem-
porary ($at or $28) register. Some macros may not be expanded
without this and will generate an error message if noat is in effect.
When at is in effect, a warning will be generated if $at is used by
the programmer.

macro Enables the expansion of macro instructions. Note that variants of
real instructions, such as br label vs br $31,1abel are considered
alternate forms and not macros.

move

reorder

volatile These control whether and how the assembler may re-order instruc-
tions. Accepted for compatibility with the OSF/1 assembler, but
as does not do instruction scheduling, so these features are ignored.

The following directives are recognized for compatibility with the OSF /1 assembler but
are ignored.

.proc .aproc
.reguse .livereg
.option .aent
.ugen .eflag

.alias .noalias

86 Using as

9.1.6 Opcodes

For detailed information on the Alpha machine instruction set, see the Alpha Architecture
Handbook located at

ftp://ftp.digital.com/pub/Digital/info/semiconductor/literature/alphaahb.pdf

Chapter 9: Machine Dependent Features 87

9.2 ARC Dependent Features

9.2.1 Options

-marc[5]6]7]8]
This option selects the core processor variant. Using -marc is the same as
-marc6, which is also the default.

arch Base instruction set.

arcé Jump-and-link (jl) instruction. No requirement of an instruction
between setting flags and conditional jump. For example:

mov.f r0,rl

beq foo
arc’? Break (brk) and sleep (sleep) instructions.
arc8 Software interrupt (swi) instruction.

Note: the .option directive can to be used to select a core variant from within
assembly code.

-EB This option specifies that the output generated by the assembler should be
marked as being encoded for a big-endian processor.

-EL This option specifies that the output generated by the assembler should be
marked as being encoded for a little-endian processor - this is the default.

9.2.2 Syntax
9.2.2.1 Special Characters

The presence of a ‘#” on a line indicates the start of a comment that extends to the end of the
current line. Note that if a line starts with a ‘# character then it can also be a logical line
number directive (see Section 3.3 [Comments|, page 25) or a preprocessor control command
(see Section 3.1 [Preprocessing], page 25).

The ARC assembler does not support a line separator character.

9.2.2.2 Register Names
TODO

9.2.3 Floating Point

The ARC core does not currently have hardware floating point support. Software floating
point support is provided by GCC and uses IEEE floating-point numbers.

9.2.4 ARC Machine Directives

The ARC version of as supports the following additional machine directives:

.2byte expressions

TODO

.3byte expressions
TODO

88 Using as

.4byte expressions
TODO

.extAuxRegister name,address ,mode
The ARCtangent A4 has extensible auxiliary register space. The auxiliary
registers can be defined in the assembler source code by using this directive.
The first parameter is the name of the new auxiallry register. The second
parameter is the address of the register in the auxiliary register memory map
for the variant of the ARC. The third parameter specifies the mode in which
the register can be operated is and it can be one of:

r (readonly)
w (write only)
r|w (read or write)

For example:

.extAuxRegister mulhi,O0x12,w

This specifies an extension auxiliary register called mulhi which is at address
0x12 in the memory space and which is only writable.

.extCondCode suffix,value
The condition codes on the ARCtangent A4 are extensible and can be specified
by means of this assembler directive. They are specified by the suffix and the
value for the condition code. They can be used to specify extra condition codes
with any values. For example:
.extCondCode is_busy,0x14

add.is_busy ri1,r2,r3
bis_busy _main

.extCoreRegister name,regnum,mode,shortcut
Specifies an extension core register name for the application. This allows a
register name with a valid regnum between 0 and 60, with the following as
valid values for mode

‘r (readonly)’

‘w (write only)’

‘rlw (read or write)’

The other parameter gives a description of the register having a shortcut in the
pipeline. The valid values are:

can_shortcut
cannot_shortcut
For example:
.extCoreRegister mlo,57,r,can_shortcut

This defines an extension core register mlo with the value 57 which can shortcut
the pipeline.

.extInstruction name,opcode,subopcode ,suffixclass,syntaxclass
The ARCtangent A4 allows the user to specify extension instructions. The
extension instructions are not macros. The assembler creates encodings for use

Chapter 9: Machine Dependent Features 89

of these instructions according to the specification by the user. The parameters
are:

ename Name of the extension instruction

eopcode Opcode to be used. (Bits 27:31 in the encoding). Valid values
0x10-0x1f or 0x03

esubopcode
Subopcode to be used. Valid values are from 0x09-0x3f. However
the correct value also depends on syntaxclass

esuffixclass
Determines the kinds of suffixes to be allowed. Valid values are
SUFFIX_NONE, SUFFIX_COND, SUFFIX_FLAG which indicates the ab-
sence or presence of conditional suffixes and flag setting by the ex-
tension instruction. It is also possible to specify that an instruction
sets the flags and is conditional by using SUFFIX_CODE | SUFFIX_
FLAG.

esyntaxclass
Determines the syntax class for the instruction. It can have the
following values:

SYNTAX_20P:
2 Operand Instruction

SYNTAX_30P:
3 Operand Instruction

In addition there could be modifiers for the syntax class as described
below:

Syntax Class Modifiers are:

— OP1_MUST_BE_IMM: Modifies syntax class SYNTAX_30P,
specifying that the first operand of a three-operand
instruction must be an immediate (i.e., the result is
discarded). OP1_MUST_BE_IMM is used by bitwise ORing
it with SYNTAX_30P as given in the example below.
This could usually be used to set the flags using specific
instructions and not retain results.

— O0OP1_IMM_IMPLIED: Modifies syntax class SYNTAX_20P,
it specifies that there is an implied immediate destination
operand which does not appear in the syntax. For example, if
the source code contains an instruction like:

inst rl,r2
it really means that the first argument is an implied immediate
(that is, the result is discarded). This is the same as though the
source code were: inst 0,r1,r2. You use OP1_IMM_IMPLIED
by bitwise ORing it with SYNTAX_20P.

For example, defining 64-bit multiplier with immediate operands:

90 Using as

.extInstruction mp64,0x14,0x0,SUFFIX_COND | SUFFIX_FLAG ,
SYNTAX_30P|0P1_MUST_BE_IMM
The above specifies an extension instruction called mp64 which has 3 operands,
sets the flags, can be used with a condition code, for which the first operand is
an immediate. (Equivalent to discarding the result of the operation).
.extInstruction mul64,0x14,0x00,SUFFIX_COND, SYNTAX_20P|0P1_IMM_IMPLIED

This describes a 2 operand instruction with an implicit first immediate operand.
The result of this operation would be discarded.

.half expressions

TODO

.long expressions

TODO

.option arclarc5larc6|arc7|arc8
The .option directive must be followed by the desired core version. Again arc
is an alias for arc6.

Note: the .option directive overrides the command line option -marc; a warn-
ing is emitted when the version is not consistent between the two - even for the
implicit default core version (arc6).

.short expressions

TODO

.word expressions

TODO

9.2.5 Opcodes

For information on the ARC instruction set, see ARC Programmers Reference Manual,
ARC International (www.arc.com)

Chapter 9: Machine Dependent Features 91

9.3 ARM Dependent Features

9.3.1 Options

-mcpu=processor [+extension. . .]

This option specifies the target processor. The assembler will issue an
error message if an attempt is made to assemble an instruction which will
not execute on the target processor. The following processor names are
recognized: arml, arm2, arm250, arm3, arm6, arm60, arm600, arm610, arm620,
arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700, arm700i,
arm710, arm710t, arm720, arm720t, arm740t, arm710c, arm7100, arm7500,
arm7500fe, arm7t, arm7tdmi, arm7tdmi-s, arm8, arm810, strongarm,
strongarml, strongarml110, strongarm1100, strongarm1110, arm9, arm920,
arm920t, arm922t, arm940t, arm9tdmi, fa526 (Faraday FA526 processor),
fa626 (Faraday FA626 processor), arm9e, arm926e, arm926ej-s, arm946e-r0,
arm946e, arm946e-s, arm966e-r0, arm966e, arm966e-s, arm968e-s, arm10t,
arm10tdmi, arm10e, arm1020, arm1020t, arm1020e, arm1022e, arm1026ej-s,
fa606te (Faraday FAG06TE processor), fa6l6te (Faraday FAG616TE
processor), fa626te (Faraday FAG626TE processor), fmp626 (Faraday
FMP626 processor), fa726te (Faraday FAT26TE processor), arm1136j-s,
arm1136jf-s, arml1156t2-s, arml1156t2f-s, armll176jz-s, armll176jzf-s,
mpcore, mpcorenovip, cortex-ab, cortex-a7, cortex-a8, cortex-a9,
cortex-alb, cortex-r4, cortex-r4f, cortex-m4, cortex-m3, cortex-ml,
cortex-m0, ep9312 (ARM920 with Cirrus Maverick coprocessor), 180200
(Intel XScale processor) iwmmxt (Intel(r) XScale processor with Wireless
MMX(tm) technology coprocessor) and xscale. The special name all may
be used to allow the assembler to accept instructions valid for any ARM
processor.

In addition to the basic instruction set, the assembler can be told to accept
various extension mnemonics that extend the processor using the co-processor
instruction space. For example, -mcpu=arm920+maverick is equivalent to spec-
ifying -mcpu=ep9312.

Multiple extensions may be specified, separated by a +. The extensions should
be specified in ascending alphabetical order.

Some extensions may be restricted to particular architectures; this is docu-
mented in the list of extensions below.

Extension mnemonics may also be removed from those the assembler accepts.
This is done be prepending no to the option that adds the extension.
Extensions that are removed should be listed after all extensions which
have been added, again in ascending alphabetical order. For example,
-mcpu=ep9312+nomaverick is equivalent to specifying -mcpu=arm920.

The following extensions are currently supported: idiv, (Integer Divide Ex-
tensions for v7-A and v7-R architectures), iwmmxt, iwmmxt2, maverick, mp
(Multiprocessing Extensions for v7-A and v7-R architectures), os (Operating
System for v6M architecture), sec (Security Extensions for v6K and v7-A archi-

92

Using as

tectures), virt (Virtualization Extensions for v7-A architecture, implies idiv),
and xscale.

-march=architecture [+extension...]

This option specifies the target architecture. The assembler will issue an
error message if an attempt is made to assemble an instruction which will
not execute on the target architecture. The following architecture names are
recognized: armvl, armv2, armv2a, armv2s, armv3, armv3m, armv4, armv4xm,
armv4t, armv4txm, armvb, armvbt, armvbtxm, armvbte, armvbtexp, armve6,
armv6j, armv6k, armv6z, armv6zk, armv6-m, armv6s-m, armv’/, armv/-a,
armv7-r, armv7-m, armv7e-m, iwmmxt and xscale. If both -mcpu and -march
are specified, the assembler will use the setting for -mcpu.

The architecture option can be extended with the same instruction set extension
options as the -mcpu option.

-mfpu=floating-point-format

-mthumb

This option specifies the floating point format to assemble for. The assembler
will issue an error message if an attempt is made to assemble an instruction
which will not execute on the target floating point unit. The following
format options are recognized: softfpa, fpe, fpe2, fpe3, fpa, fpall,
fpall, arm7500fe, softvfp, softvfp+vip, vip, viplO, vifpl0-r0, v£p9,
vipxd, vipv2, vipv3, vipv3-fpl6, vipv3-di16, vipv3-d16-fpl6, vipv3xd,
vipv3xd-d16, vfpv4, vipv4-di6, fpv4-sp-di6, arml020t, armi020e,
arm1136jf-s, maverick, neon, and neon-vfpv4.

In addition to determining which instructions are assembled, this option also
affects the way in which the .double assembler directive behaves when assem-
bling little-endian code.

The default is dependent on the processor selected. For Architecture 5 or later,
the default is to assembler for VFP instructions; for earlier architectures the
default is to assemble for FPA instructions.

This option specifies that the assembler should start assembling Thumb in-
structions; that is, it should behave as though the file starts with a .code 16
directive.

-mthumb-interwork

This option specifies that the output generated by the assembler should be
marked as supporting interworking.

-mimplicit-it=never
-mimplicit-it=always
-mimplicit-it=arm
-mimplicit-it=thumb

The -mimplicit-it option controls the behavior of the assembler when con-
ditional instructions are not enclosed in IT blocks. There are four possible
behaviors. If never is specified, such constructs cause a warning in ARM code
and an error in Thumb-2 code. If always is specified, such constructs are ac-
cepted in both ARM and Thumb-2 code, where the IT instruction is added
implicitly. If arm is specified, such constructs are accepted in ARM code and

Chapter 9: Machine Dependent Features 93

cause an error in Thumb-2 code. If thumb is specified, such constructs cause
a warning in ARM code and are accepted in Thumb-2 code. If you omit this
option, the behavior is equivalent to -mimplicit-it=arm.

-mapcs-26

-mapcs-32
These options specify that the output generated by the assembler should be
marked as supporting the indicated version of the Arm Procedure. Calling
Standard.

-matpcs This option specifies that the output generated by the assembler should be
marked as supporting the Arm/Thumb Procedure Calling Standard. If enabled
this option will cause the assembler to create an empty debugging section in
the object file called .arm.atpcs. Debuggers can use this to determine the ABI
being used by.

-mapcs-float
This indicates the floating point variant of the APCS should be used. In this
variant floating point arguments are passed in FP registers rather than integer
registers.

-mapcs-reentrant
This indicates that the reentrant variant of the APCS should be used. This
variant supports position independent code.

-mfloat-abi=abi
This option specifies that the output generated by the assembler should be
marked as using specified floating point ABI. The following values are recog-
nized: soft, softfp and hard.

-meabi=ver
This option specifies which EABI version the produced object files should con-
form to. The following values are recognized: gnu, 4 and 5.

-EB This option specifies that the output generated by the assembler should be
marked as being encoded for a big-endian processor.

-EL This option specifies that the output generated by the assembler should be
marked as being encoded for a little-endian processor.

-k This option specifies that the output of the assembler should be marked as
position-independent code (PIC).

--fix-v4bx
Allow BX instructions in ARMv4 code. This is intended for use with the linker
option of the same name.

-mwarn-deprecated

-mno-warn-deprecated
Enable or disable warnings about using deprecated options or features. The
default is to warn.

9.3.2 Syntax

94 Using as

9.3.2.1 Instruction Set Syntax

Two slightly different syntaxes are support for ARM and THUMB instructions. The default,
divided, uses the old style where ARM and THUMB instructions had their own, separate
syntaxes. The new, unified syntax, which can be selected via the .syntax directive, and
has the following main features:

° Immediate operands do not require a # prefix.

° The IT instruction may appear, and if it does it is validated against subse-
quent conditional affixes. In ARM mode it does not generate machine code, in
THUMB mode it does.

° For ARM instructions the conditional affixes always appear at the end of the
instruction. For THUMB instructions conditional affixes can be used, but only
inside the scope of an IT instruction.

. All of the instructions new to the V6T2 architecture (and later) are available.
(Only a few such instructions can be written in the divided syntax).

° The .N and .W suffixes are recognized and honored.

° All instructions set the flags if and only if they have an s affix.

9.3.2.2 Special Characters

The presence of a ‘@ anywhere on a line indicates the start of a comment that extends to
the end of that line.

If a ‘#” appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3
[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25).

The ¢;’ character can be used instead of a newline to separate statements.
Either ‘#’ or ‘$’ can be used to indicate immediate operands.

TODO Explain about /data modifier on symbols.

9.3.2.3 Register Names
TODO Explain about ARM register naming, and the predefined names.

9.3.2.4 NEON Alignment Specifiers

Some NEON load/store instructions allow an optional address alignment qualifier. The
ARM documentation specifies that this is indicated by ‘@ align’. However GAS already
interprets the ‘@’ character as a "line comment" start, so ‘: align’ is used instead. For
example:

v1ld1.8 {q0}, [r0, :128]

9.3.3 Floating Point

The ARM family uses IEEE floating-point numbers.

Chapter 9: Machine Dependent Features 95

9.3.3.1 ARM relocation generation

Specific data relocations can be generated by putting the relocation name in parentheses
after the symbol name. For example:

.word foo(TARGET1)

This will generate an ‘R_ARM_TARGET1’ relocation against the symbol foo. The following
relocations are supported: GOT, GOTOFF, TARGET1, TARGET2, SBREL, TLSGD, TLSLDM, TLSLDO,
TLSDESC, TLSCALL, GOTTPOFF, GOT_PREL and TPOFF.

For compatibility with older toolchains the assembler also accepts (PLT) after branch
targets. This will generate the deprecated ‘R_ARM_PLT32’ relocation.

Relocations for ‘MOVW and ‘MOVT’ instructions can be generated by prefixing the value
with ‘#:1lower16:’ and ‘#:upper16’ respectively. For example to load the 32-bit address of
foo into r0:

MOVW r0O, #:lowerl6:foo
MOVT rO, #:upperl6:foo

9.3.4 ARM Machine Directives

.2byte expression [, expression]*
.4byte expression [, expression]*
.8byte expression [, expression]*
These directives write 2, 4 or 8 byte values to the output section.

.align expression [, expression]
This is the generic .align directive. For the ARM however if the first argument
is zero (ie no alignment is needed) the assembler will behave as if the argument
had been 2 (ie pad to the next four byte boundary). This is for compatibility
with ARM’s own assembler.

.arch name
Select the target architecture. Valid values for name are the same as for the
‘-march’ commandline option.

Specifying .arch clears any previously selected architecture extensions.

.arch_extension name
Add or remove an architecture extension to the target architecture. Valid values
for name are the same as those accepted as architectural extensions by the
‘-mcpu’ commandline option.

.arch_extension may be used multiple times to add or remove extensions
incrementally to the architecture being compiled for.

.arm This performs the same action as .code 32.

.pad #count
Generate unwinder annotations for a stack adjustment of count bytes. A posi-
tive value indicates the function prologue allocated stack space by decrementing
the stack pointer.

.bss This directive switches to the .bss section.

96 Using as

.cantunwind
Prevents unwinding through the current function. No personality routine or
exception table data is required or permitted.

.code [16(32]
This directive selects the instruction set being generated. The value 16 selects
Thumb, with the value 32 selecting ARM.

.Ccpu name
Select the target processor. Valid values for name are the same as for the
‘-mcpu’ commandline option.

Specifying .cpu clears any previously selected architecture extensions.

name .dn register name [.type] [[index]]

name .qun register name [.type] [[index]]
The dn and qgn directives are used to create typed and/or indexed register aliases
for use in Advanced SIMD Extension (Neon) instructions. The former should
be used to create aliases of double-precision registers, and the latter to create
aliases of quad-precision registers.

If these directives are used to create typed aliases, those aliases can be used
in Neon instructions instead of writing types after the mnemonic or after each
operand. For example:

x .dn d2.£32
y .dn d3.£32
z .dn d4.£32[1]
vmul x,y,z
This is equivalent to writing the following;:
vmul.£32 d2,d3,d4[1]

Aliases created using dn or gqn can be destroyed using unreq.

.eabi_attribute tag, value
Set the EABI object attribute tag to value.

The tag is either an attribute number, or one of the following: Tag_
CPU_raw_name, Tag_CPU_name, Tag CPU_arch, Tag_CPU_arch_profile,
Tag_ARM_ISA_use, Tag THUMB_ISA_use, Tag FP_arch, Tag_WMMX_arch,
Tag_Advanced_SIMD_arch, Tag_PCS_config, Tag_ABI_PCS_R9_use,
Tag_ABI_PCS_RW_data, Tag_ABI_PCS_RO_data, Tag_ABI_PCS_GOT_use,
Tag_ABI_PCS_wchar_t, Tag_ABI_FP_rounding, Tag_ABI_FP_denormal,
Tag_ABI_FP_exceptions, Tag_ABI_FP_user_exceptions, Tag_ABI_FP_

number_model, Tag_ABI_align_needed, Tag_ABI_align_preserved,
Tag_ABI_enum_size, Tag_ABI_HardFP_use, Tag_ABI_VFP_args,
Tag_ABI_WMMX_args, Tag_ABI_optimization_goals, Tag_ABI_FP_

optimization_goals, Tag_compatibility, Tag_CPU_unaligned_access,
Tag_FP_HP_extension, Tag_ABI_FP_16bit_format, Tag_MPextension_
use, Tag_DIV_use, Tag_nodefaults, Tag_also_compatible_with,
Tag_conformance, Tag_T2EE_use, Tag_Virtualization_use

The value is either a number, "string", or number, "string" depending on
the tag.

Chapter 9: Machine Dependent Features 97

Note - the following legacy values are also accepted by tag: Tag_VFP_arch, Tag_
ABI_align8_needed, Tag_ABI_align8_preserved, Tag_VFP_HP_extension,

.even This directive aligns to an even-numbered address.

.extend expression [, expression]*

.ldouble expression [, expression]*
These directives write 12byte long double floating-point values to the output
section. These are not compatible with current ARM processors or ABIs.

.fnend Marks the end of a function with an unwind table entry. The unwind index
table entry is created when this directive is processed.
If no personality routine has been specified then standard personality routine
0 or 1 will be used, depending on the number of unwind opcodes required.
.fnstart Marks the start of a function with an unwind table entry.

.force_thumb
This directive forces the selection of Thumb instructions, even if the target
processor does not support those instructions

.fpu name
Select the floating-point unit to assemble for. Valid values for name are the
same as for the ‘-mfpu’ commandline option.

.handlerdata
Marks the end of the current function, and the start of the exception table entry
for that function. Anything between this directive and the . fnend directive will
be added to the exception table entry.
Must be preceded by a .personality or .personalityindex directive.

.inst opcode [, ...]

.inst.n opcode [, ...]

.inst.w opcode [, ...]

Generates the instruction corresponding to the numerical value opcode.
.inst.n and .inst.w allow the Thumb instruction size to be specified
explicitly, overriding the normal encoding rules.

.ldouble expression [, expression]*
See .extend.

.ltorg This directive causes the current contents of the literal pool to be dumped into
the current section (which is assumed to be the .text section) at the current
location (aligned to a word boundary). GAS maintains a separate literal pool
for each section and each sub-section. The .1torg directive will only affect the
literal pool of the current section and sub-section. At the end of assembly all
remaining, un-empty literal pools will automatically be dumped.

Note - older versions of GAS would dump the current literal pool any time a
section change occurred. This is no longer done, since it prevents accurate
control of the placement of literal pools.

.movsp reg [, #offset]
Tell the unwinder that reg contains an offset from the current stack pointer. If
offset is not specified then it is assumed to be zero.

98 Using as

.object_arch name
Override the architecture recorded in the EABI object attribute section. Valid
values for name are the same as for the .arch directive. Typically this is useful
when code uses runtime detection of CPU features.

.packed expression [, expression]*
This directive writes 12-byte packed floating-point values to the output section.
These are not compatible with current ARM processors or ABIs.

.pad #count
Generate unwinder annotations for a stack adjustment of count bytes. A posi-
tive value indicates the function prologue allocated stack space by decrementing
the stack pointer.

.personality name
Sets the personality routine for the current function to name.

.personalityindex index
Sets the personality routine for the current function to the EABI standard
routine number index

.pool This is a synonym for .ltorg.

name .req register name
This creates an alias for register name called name. For example:

foo .req r0

.save reglist
Generate unwinder annotations to restore the registers in reglist. The format
of reglist is the same as the corresponding store-multiple instruction.

core registers
.save {r4, r5, r6, 1lr}
stmfd sp!, {r4, r5, r6, 1r}
FPA registers
.save f4, 2
sfmfd f4, 2, [sp]l!
VEP registers
.save {d8, d9, 410}
fstmdx sp!, {d8, 49, 410}
1WMMXt registers
.save {wrl10, wrii}
wstrd wrll, [sp, #-8]!
wstrd wr10, [sp, #-8]!
or
.save wrll
wstrd wril, [sp, #-8]!
.save wrl0
wstrd wrl0, [sp, #-8]!

.setfp fpreg, spreg [, #offset]
Make all unwinder annotations relative to a frame pointer. Without this the
unwinder will use offsets from the stack pointer.

The syntax of this directive is the same as the add or mov instruction used to set
the frame pointer. spreg must be either sp or mentioned in a previous .movsp
directive.

Chapter 9: Machine Dependent Features 99

.movsp ip
mov ip, sp

.setfp fp, ip, #4
add fp, ip, #4

.secrel32 expression [, expression]*
This directive emits relocations that evaluate to the section-relative offset of
each expression’s symbol. This directive is only supported for PE targets.

.syntax [unified | divided]
This directive sets the Instruction Set Syntax as described in the Section 9.3.2.1
[ARM-Instruction-Set]|, page 94 section.

.thumb This performs the same action as .code 16.

.thumb_func
This directive specifies that the following symbol is the name of a Thumb en-
coded function. This information is necessary in order to allow the assembler
and linker to generate correct code for interworking between Arm and Thumb
instructions and should be used even if interworking is not going to be per-
formed. The presence of this directive also implies .thumb

This directive is not neccessary when generating EABI objects. On these targets
the encoding is implicit when generating Thumb code.

.thumb_set
This performs the equivalent of a .set directive in that it creates a symbol
which is an alias for another symbol (possibly not yet defined). This directive
also has the added property in that it marks the aliased symbol as being a
thumb function entry point, in the same way that the .thumb_func directive
does.

.tlsdescseq tls-variable
This directive is used to annotate parts of an inlined TLS descriptor trampoline.
Normally the trampoline is provided by the linker, and this directive is not
needed.

.unreq alias-name

This undefines a register alias which was previously defined using the req, dn
or gn directives. For example:

foo .req r0

.unreq foo
An error occurs if the name is undefined. Note - this pseudo op can be used to
delete builtin in register name aliases (eg 'r0’). This should only be done if it
is really necessary.

.unwind_raw offset, bytel, ...
Insert one of more arbitary unwind opcode bytes, which are known to adjust
the stack pointer by offset bytes.

For example .unwind_raw 4, 0xbl, 0x01 is equivalent to .save {rO}

100

Using as

.vsave vip-reglist

Generate unwinder annotations to restore the VFP registers in vip-reglist using
FLDMD. Also works for VEPv3 registers that are to be restored using VLDM.
The format of vip-reglist is the same as the corresponding store-multiple in-
struction.

VEP registers
.vsave {d8, 49, di0}
fstmdd sp!, {d8, 49, d10}
VEPv3 registers
.vsave {d15, d16, di7}
vstm sp!, {d15, d16, di7}

Since FLDMX and FSTMX are now deprecated, this directive should be used
in favour of .save for saving VFP registers for ARMv6 and above.

9.3.5 Opcodes

as implements all the standard ARM opcodes. It also implements several pseudo opcodes,
including several synthetic load instructions.

NOP

LDR

ADR

ADRL

nop

This pseudo op will always evaluate to a legal ARM instruction that does noth-
ing. Currently it will evaluate to MOV r0, r0.

ldr <register> , = <expression>

If expression evaluates to a numeric constant then a MOV or MVN instruction
will be used in place of the LDR instruction, if the constant can be generated
by either of these instructions. Otherwise the constant will be placed into the
nearest literal pool (if it not already there) and a PC relative LDR instruction
will be generated.

adr <register> <label>

This instruction will load the address of label into the indicated register. The
instruction will evaluate to a PC relative ADD or SUB instruction depending
upon where the label is located. If the label is out of range, or if it is not
defined in the same file (and section) as the ADR instruction, then an error will
be generated. This instruction will not make use of the literal pool.

adrl <register> <label>

This instruction will load the address of label into the indicated register. The
instruction will evaluate to one or two PC relative ADD or SUB instructions
depending upon where the label is located. If a second instruction is not needed
a NOP instruction will be generated in its place, so that this instruction is
always 8 bytes long.

If the label is out of range, or if it is not defined in the same file (and section)
as the ADRL instruction, then an error will be generated. This instruction will
not make use of the literal pool.

Chapter 9: Machine Dependent Features 101

For information on the ARM or Thumb instruction sets, see ARM Software Development
Toolkit Reference Manual, Advanced RISC Machines Ltd.

9.3.6 Mapping Symbols

The ARM ELF specification requires that special symbols be inserted into object files to
mark certain features:

$a At the start of a region of code containing ARM instructions.
$t At the start of a region of code containing THUMB instructions.
$d At the start of a region of data.

The assembler will automatically insert these symbols for you - there is no need to code
them yourself. Support for tagging symbols ($b, $f, $p and $m) which is also mentioned
in the current ARM ELF specification is not implemented. This is because they have been
dropped from the new EABI and so tools cannot rely upon their presence.

9.3.7 Unwinding

The ABI for the ARM Architecture specifies a standard format for exception unwind infor-
mation. This information is used when an exception is thrown to determine where control
should be transferred. In particular, the unwind information is used to determine which
function called the function that threw the exception, and which function called that one,
and so forth. This information is also used to restore the values of callee-saved registers in
the function catching the exception.

If you are writing functions in assembly code, and those functions call other functions
that throw exceptions, you must use assembly pseudo ops to ensure that appropriate ex-
ception unwind information is generated. Otherwise, if one of the functions called by your
assembly code throws an exception, the run-time library will be unable to unwind the stack
through your assembly code and your program will not behave correctly.

To illustrate the use of these pseudo ops, we will examine the code that G++ generates
for the following C++ input:

void callee (int *);

int

caller ()

{
int 1i;
callee (&i);
return i;

}

This example does not show how to throw or catch an exception from assembly code.
That is a much more complex operation and should always be done in a high-level language,
such as C++, that directly supports exceptions.

The code generated by one particular version of G++ when compiling the example above
is:
_Z6callerv:

102 Using as

.fnstart
.LFB2:
@ Function supports interworking.
@ args = 0, pretend = 0, frame = 8
@ frame_needed = 1, uses_anonymous_args = 0
stmfd sp!, {fp, 1lr}
.save {fp, 1r}
.LCFIO:
.setfp fp, sp, #4
add fp, sp, #4
.LCFI1:
.pad #8
sub sp, sp, #8
.LCFI2:
sub r3, fp, #8
mov r0, r3
bl _Z6calleePi
ldr r3, [fp, #-8]
mov r0, r3
sub sp, fp, #4
ldmfd sp!, {fp, 1lr}
bx 1r
.LFE2:
.fnend

Of course, the sequence of instructions varies based on the options you pass to GCC
and on the version of GCC in use. The exact instructions are not important since we are
focusing on the pseudo ops that are used to generate unwind information.

An important assumption made by the unwinder is that the stack frame does not change
during the body of the function. In particular, since we assume that the assembly code does
not itself throw an exception, the only point where an exception can be thrown is from a
call, such as the bl instruction above. At each call site, the same saved registers (including
1r, which indicates the return address) must be located in the same locations relative to
the frame pointer.

The .fnstart (see [.fnstart pseudo op|, page 97) pseudo op appears immediately before
the first instruction of the function while the .fnend (see [.fnend pseudo op], page 97)
pseudo op appears immediately after the last instruction of the function. These pseudo ops
specify the range of the function.

Only the order of the other pseudos ops (e.g., .setfp or .pad) matters; their exact
locations are irrelevant. In the example above, the compiler emits the pseudo ops with
particular instructions. That makes it easier to understand the code, but it is not required
for correctness. It would work just as well to emit all of the pseudo ops other than .fnend
in the same order, but immediately after .fnstart.

The .save (see [.save pseudo op], page 98) pseudo op indicates registers that have been
saved to the stack so that they can be restored before the function returns. The argument to
the .save pseudo op is a list of registers to save. If a register is “callee-saved” (as specified
by the ABI) and is modified by the function you are writing, then your code must save

Chapter 9: Machine Dependent Features 103

the value before it is modified and restore the original value before the function returns.
If an exception is thrown, the run-time library restores the values of these registers from
their locations on the stack before returning control to the exception handler. (Of course, if
an exception is not thrown, the function that contains the .save pseudo op restores these
registers in the function epilogue, as is done with the 1dmfd instruction above.)

You do not have to save callee-saved registers at the very beginning of the function and
you do not need to use the .save pseudo op immediately following the point at which the
registers are saved. However, if you modify a callee-saved register, you must save it on the
stack before modifying it and before calling any functions which might throw an exception.
And, you must use the .save pseudo op to indicate that you have done so.

The .pad (see [.pad], page 95) pseudo op indicates a modification of the stack pointer
that does not save any registers. The argument is the number of bytes (in decimal) that
are subtracted from the stack pointer. (On ARM CPUs, the stack grows downwards, so
subtracting from the stack pointer increases the size of the stack.)

The .setfp (see [.setfp pseudo op|, page 98) pseudo op indicates the register that con-
tains the frame pointer. The first argument is the register that is set, which is typically fp.
The second argument indicates the register from which the frame pointer takes its value.
The third argument, if present, is the value (in decimal) added to the register specified by
the second argument to compute the value of the frame pointer. You should not modify
the frame pointer in the body of the function.

If you do not use a frame pointer, then you should not use the .setfp pseudo op. If you
do not use a frame pointer, then you should avoid modifying the stack pointer outside of
the function prologue. Otherwise, the run-time library will be unable to find saved registers
when it is unwinding the stack.

The pseudo ops described above are sufficient for writing assembly code that calls func-
tions which may throw exceptions. If you need to know more about the object-file format
used to represent unwind information, you may consult the Exception Handling ABI for
the ARM Architecture available from http://infocenter.arm. com.

http://infocenter.arm.com

104

Using as

9.4 AVR Dependent Features

9.4.1 Options

—mmcu=mcu

Specify ATMEL AVR instruction set or MCU type.

Instruction set avrl is for the minimal AVR core, not supported by the C com-
piler, only for assembler programs (MCU types: at90s1200, attiny11, attiny12,
attiny15, attiny28).

Instruction set avr2 (default) is for the classic AVR core with up to 8K
program memory space (MCU types: at90s2313, at90s2323, at90s2333,
at90s2343, attiny22, attiny26, at90s4414, at90s4433, at90s4434, at90s8515,
at90c8534, at90s8535).

Instruction set avr25 is for the classic AVR core with up to 8K program mem-
ory space plus the MOVW instruction (MCU types: attinyl3, attinyl3a, at-
tiny2313, attiny2313a, attiny24, attiny24a, attiny4313, attiny44, attiny44a,
attiny84, attiny84a, attiny25, attiny4b, attiny85, attiny261, attiny26la, at-
tiny461, attiny46la, attiny861, attiny861la, attiny87, attiny43u, attiny48, at-
tiny88, at86rf401, ata6289).

Instruction set avr3 is for the classic AVR core with up to 128K program mem-
ory space (MCU types: at43usb355, at76¢711).

Instruction set avr3l is for the classic AVR core with exactly 128K program
memory space (MCU types: atmegal03, at43usb320).

Instruction set avr35 is for classic AVR core plus MOVW, CALL, and JMP
instructions (MCU types: attinyl167, at90usb82, at90usb162, atmega8u2, at-
megal6u2, atmega32u2).

Instruction set avr4 is for the enhanced AVR core with up to 8K program mem-
ory space (MCU types: atmega48, atmega48a, atmega48p, atmega8, atmega88,
atmega88a, atmega88p, atmega88pa, atmega8515, atmega8535, atmega8hva,
at90pwml, at90pwm2, at90pwm2b, at90pwm3, at90pwma3b, at90pwms81).

Instruction set avrb is for the enhanced AVR core with up to 128K program
memory space (MCU types: atmegal6, atmegal6a, atmegal6l, atmegal62,
atmegal63, atmegal6G4a, atmegal64p, atmegal6, atmegal6da, atmegalG5p,
atmegal68, atmegal68a, atmegalb8p, atmegal69, atmegal69a, atmegal69p,
atmegal69pa, atmega3d2, atmegald23, atmega3d24a, atmegald24p, atmegad2h,
atmegad2ba, atmega3d2bp, atmega3d2bpa, atmegad2b0, atmegad2b0a, at-
megad250p, atmegald250pa, atmegad28, atmegald28p, atmega3d29, atmegald29a,
atmega3d29p, atmegad29pa, atmega3d290, atmegad290a, atmega3d290p,
atmega3d290pa, atmegad06, atmegab64, atmega640, atmega644, atmegab44a,
atmegab644p, atmegab44pa, atmega645, atmega64ba, atmega645p, atmega6450,
atmega64b0a, atmega6450p, atmega649, atmega649a, atmega649p,
atmega6490, atmega6490a, atmega6490p, atmegal6hva, atmegalbhva2, at-
megal6hvb, atmegal6hvbrevb, atmega3d2hvb, atmega32hvbrevb, atmega64hve,
at90can3d2, at90can64, at90pwml61, at90pwm216, at90pwma316, atmegad2cl,
atmegab4cl, atmegal6bml, atmega32ml, atmega64ml, atmegal6ud4,
atmega32u4, atmega32u6, at90usb646, at90usb647, at94k, at90scr100).

Chapter 9: Machine Dependent Features 105

Instruction set avrbl is for the enhanced AVR core with exactly 128K pro-
gram memory space (MCU types: atmegal28, atmegal280, atmegal281, at-
megal284p, atmegal28rfal, at90can128, at90usb1286, at90usb1287, m3000).

Instruction set avr6 is for the enhanced AVR core with a 3-byte PC (MCU
types: atmega2560, atmega2561).

Instruction set avrxmega?2 is for the XMEGA AVR core with 8K to 64K pro-
gram memory space and less than 64K data space (MCU types: atxmegal6ad,
atxmegal6d4, atxmegal6x1, atxmega32a4, atxmega32d4, atxmega32x1).

Instruction set avrxmega3 is for the XMEGA AVR core with 8K to 64K program
memory space and greater than 64K data space (MCU types: none).

Instruction set avrxmegad4 is for the XMEGA AVR core with up to 64K pro-
gram memory space and less than 64K data space (MCU types: atxmega64a3,
atxmega64d3).

Instruction set avrxmegab is for the XMEGA AVR core with up to 64K program
memory space and greater than 64K data space (MCU types: atxmega64al,
atxmega64alu).

Instruction set avrxmega6 is for the XMEGA AVR core with up to 256K pro-
gram memory space and less than 64K data space (MCU types: atxmegal28a3,
atxmegal28d3, atxmegal92a3, atxmegal28bl, atxmegal92d3, atxmega256as,
atxmega256a3b, atxmega256a3bu, atxmegal92ds3).

Instruction set avrxmega7 is for the XMEGA AVR core with up to 256K
program memory space and greater than 64K data space (MCU types:
atxmegal28al, atxmegal28alu).

-mall-opcodes
Accept all AVR opcodes, even if not supported by -mmcu.

-mno-skip-bug
This option disable warnings for skipping two-word instructions.

-mno-wrap
This option reject rjmp/rcall instructions with 8K wrap-around.

9.4.2 Syntax

9.4.2.1 Special Characters

The presence of a ‘;’ anywhere on a line indicates the start of a comment that extends to
the end of that line.

If a ‘#’ appears as the first character of a line, the whole line is treated as a comment, but
in this case the line can also be a logical line number directive (see Section 3.3 [Comments],
page 25) or a preprocessor control command (see Section 3.1 [Preprocessing], page 25).

The ‘$’ character can be used instead of a newline to separate statements.

9.4.2.2 Register Names

The AVR has 32 x 8-bit general purpose working registers ‘r0’, ‘r1’, ... ‘r31’. Six of the
32 registers can be used as three 16-bit indirect address register pointers for Data Space

106

Using as

addressing. One of the these address pointers can also be used as an address pointer for
look up tables in Flash program memory. These added function registers are the 16-bit ‘X’,
‘Y’ and ‘Z’ - registers.

X
Y
Z

r26:r27
r28:129
r30:r31

9.4.2.3 Relocatable Expression Modifiers

The assembler supports several modifiers when using relocatable addresses in AVR instruc-
tion operands. The general syntax is the following:

modifier(relocatable-expression)

1lo8

hi8

hh8

hlo8

hhi8

pm_lo8

pm_hi8

This modifier allows you to use bits 0 through 7 of an address expression as 8
bit relocatable expression.

This modifier allows you to use bits 7 through 15 of an address expression as
8 bit relocatable expression. This is useful with, for example, the AVR ‘1di’
instruction and ‘108’ modifier.

For example

1di r26, lo8(sym+10)
1di r27, hi8(sym+10)

This modifier allows you to use bits 16 through 23 of an address expression as
8 bit relocatable expression. Also, can be useful for loading 32 bit constants.

Synonym of ‘hh8’.

This modifier allows you to use bits 24 through 31 of an expression as 8 bit
expression. This is useful with, for example, the AVR ‘1di’ instruction and
‘108’, ‘hi8’, ‘h1l08’, ‘hhi8’, modifier.

For example

1di r26, 108(285774925)
1di r27, hi8(285774925)
1di r28, hlo8(285774925)
1di r29, hhi8(285774925)
; r29,r28,r27,r26 = 285774925

This modifier allows you to use bits 0 through 7 of an address expression as
8 bit relocatable expression. This modifier useful for addressing data or code
from Flash/Program memory. The using of ‘pm_108’ similar to ‘108’.

This modifier allows you to use bits 8 through 15 of an address expression as
8 bit relocatable expression. This modifier useful for addressing data or code
from Flash/Program memory.

Chapter 9: Machine Dependent Features

pm_hh8

This modifier allows you to use bits 15 through 23 of an address expression as
8 bit relocatable expression. This modifier useful for addressing data or code

from Flash/Program memory.

9.4.3 Opcodes

For detailed information on the AVR machine instruction set, see www.atmel.com/products/AVR.

as implements all the standard AVR opcodes. The following table summarizes the AVR

opcodes, and their arguments.

Legend:
r any register
‘1di’ register (r16-r31)
‘movw’ even register (10, r2, ..., r28, r30)
‘fmul’ register (r16-r23)
‘adiw’ register (r24,r26,r28,r30)
pointer registers (X,Y,Z)
base pointer register and displacement ([YZ]+disp)
Z pointer register (for [e]lpm Rd,Z[+])
immediate value from 0 to 255
immediate value from 0 to 255 (n = "M). Relocation impossible
immediate value from 0 to 7
Port address value from 0 to 63. (in, out)
Port address value from 0 to 31. (cbi, sbi, shic, sbis)
immediate value from 0 to 63 (used in ‘adiw’, ‘sbiw’)
immediate value
signed pc relative offset from -64 to 63
signed pc relative offset from -2048 to 2047
absolute code address (call, jmp)
immediate value from 0 to 7 (S = s << 4)
use this opcode entry if no parameters, else use next opcode entry

NP CHERR” 9B ENTO S <

1001010010001000 clc
1001010011011000 clh
1001010011111000 cli
1001010010101000 cln
1001010011001000 cls
1001010011101000 clt
1001010010111000 clv
1001010010011000 clz
1001010000001000 sec
1001010001011000 seh
1001010001111000 sei
1001010000101000 sen
1001010001001000 ses
1001010001101000 set
1001010000111000 sev
1001010000011000 sez
10010100188S1000 bclr S
100101000S5S1000 bset S
1001010100001001 icall
1001010000001001 ijmp
1001010111001000 1pm
1001000ddddd010+ 1pm
1001010111011000 elpm
1001000ddddd011+ elpm
0000000000000000 nop

www.atmel.com/products/AVR

108

1001010100001000
1001010100011000
1001010110001000
1001010110011000
1001010110101000
1001010111101000
000111rdddddrrrr
000011rdddddrrrr
001000rdddddrrrr
000101rdddddrrrr
000001rdddddrrrr
000100rdddddrrrr
001001rdddddrrrr
001011rdddddrrrr
100111rdddddrrrr
001010rdddddrrrr
000010rdddddrrrr
000110rdddddrrrr
001001rdddddrrrr
000011rdddddrrrr
000111rdddddrrrr
001000rdddddrrrr
0111KKKKddddKKKK
0111KKKKddddKKKK
1110KKKKddddKKKK
11101111dddd1111
0110KKKKddddKKKK
0110KKKKddddKKKK
0011KKKKddddKKKK
0100KKKKddddKKKK
0101KKKKddddKKKK
1111110rrrrrOsss
1111111rrrrrOsss
1111100dddddOsss
1111101ddddd0sss
10110PPdddddPPPP
10111PPrrrrrPPPP
10010110KKddKKKK
10010111KKddKKKK
10011000pppppsss
10011010pppppsss
10011001pppppsss
10011011pppppsss
1111011111111000
1111001111111000
1111001111111001
1111011111111100
1111011111111101
1111001111111101
1111011111111111
1111001111111111
1111001111111000
1111001111111100
1111001111111010
1111011111111001
1111011111111010
1111011111111000
1111011111111110

ret
reti
sleep
break
wdr
spm
adc
add
and
cp
cpc
cpse
eor
mov
mul
or
sbc
sub
clr
1sl
rol
tst
andi
cbr
1di
ser
ori
sbr
cpi
sbci
subi
sbrc
sbrs
bld
bst
in
out
adiw
sbiw
cbi
sbi
sbic
sbis
brcc
brcs
breq
brge
brhc
brhs
brid
brie
brlo
brlt
brmi
brne
brpl
brsh
brtc

L T T o T T T T T o T T

H oo RRRRARKRRAERARARRARAR/RRARR
n T EER= =B =

n n nn XK 9n non

HHEFHHHRRHHRRRHRERRHRDSO"YY S 5 9R R KK

Using as

Chapter 9: Machine Dependent Features 109

1111001111111110 brts 1
1111011111111011 brvc 1
1111001111111011 brvs 1
1111011111111sss brbc s,1
1111001111111sss brbs s,1
1101LLLLLLLLLLLL rcall L
1100LLLLLLLLLLLL rjmp L
1001010hhhhh111h call h
1001010hhhhh110h jmp h
1001010rrrrr0101 asr r
1001010rrrrr0000 com r
1001010rrrrr1010 dec r
1001010rrrrr0011 inc r
1001010rrrrr0110 1sr r
1001010rrrrr0001 neg r
1001000rrrrrii11l pop r
1001001rrrrr1111 push r
1001010rrrrr0111 ror r
1001010rrrrr0010 swap r
00000001ddddrrrr movw v,V
00000010ddddrrrr muls d,d
000000110dddOrrr mulsu a,a
000000110ddd1irrr fmul a,a
000000111ddd0rrr fmuls a,a
000000111dddirrr fmulsu a,a
1001001ddddd0000 sts i,r
1001000ddddd0000 1lds r,i
1000000dddddbooo 1dd r,b
100!000dddddee-+ 1d r,e
1000oolrrrrrbooo std b,r
100!001rrrrree—+ st e,r

1001010100011001 eicall
1001010000011001 eijmp

110

Using as

9.5 Blackfin Dependent Features

9.5.1 Options

-mcpu=processor|-sirevision]

-mfdpic

-mno-fdpic

-mnopic

This option specifies the target processor. The optional sirevision is not used
in assembler. It’s here such that GCC can easily pass down its -mcpu= option.
The assembler will issue an error message if an attempt is made to assemble
an instruction which will not execute on the target processor. The following
processor names are recoghized: bf504, bf506, bf512, bf514, bf516, bf518,
bf522, b£523, b£524, b£525, b£526, b£527, b£531, b£532, b£533, b£534, b£535
(not implemented yet), bf536, bf537, bf538, bf539, bf542, bf542m, bf544,
bf544m, bf547, bf547m, bf548, bf548m, bf549, bf549m, bf561, and bf592.

Assemble for the FDPIC ABI.

Disable -mfdpic.

9.5.2 Syntax

Special Characters

Assembler input is free format and may appear anywhere on the line. One
instruction may extend across multiple lines or more than one instruction may
appear on the same line. White space (space, tab, comments or newline) may
appear anywhere between tokens. A token must not have embedded spaces.
Tokens include numbers, register names, keywords, user identifiers, and also
some multicharacter special symbols like "+=","/*" or "||".

Comments are introduced by the ‘#’ character and extend to the end of the
current line. If the ‘#” appears as the first character of a line, the whole line is
treated as a comment, but in this case the line can also be a logical line num-
ber directive (see Section 3.3 [Comments|, page 25) or a preprocessor control
command (see Section 3.1 [Preprocessing], page 25).

Instruction Delimiting

A semicolon must terminate every instruction. Sometimes a complete instruc-
tion will consist of more than one operation. There are two cases where this
occurs. The first is when two general operations are combined. Normally a
comma separates the different parts, as in

a0= r3.h * r2.1, al = r3.1 * r2.h ;
The second case occurs when a general instruction is combined with one or two

memory references for joint issue. The latter portions are set off by a "||"
token.

a0 = r3.h * r2.1 || r1 = [p3++] || rd = [i2++];

Multiple instructions can occur on the same line. Each must be terminated by
a semicolon character.

Chapter 9: Machine Dependent Features 111

Register Names
The assembler treats register names and instruction keywords in a case insensi-
tive manner. User identifiers are case sensitive. Thus, R3.1, R3.L, r3.1 and r3.L
are all equivalent input to the assembler.

Register names are reserved and may not be used as program identifiers.

Some operations (such as "Move Register") require a register pair. Register
pairs are always data registers and are denoted using a colon, eg., R3:2. The
larger number must be written firsts. Note that the hardware only supports
odd-even pairs, eg., R7:6, R5:4, R3:2, and R1:0.

Some instructions (such as —SP (Push Multiple)) require a group of adjacent
registers. Adjacent registers are denoted in the syntax by the range enclosed
in parentheses and separated by a colon, eg., (R7:3). Again, the larger number
appears first.

Portions of a particular register may be individually specified. This is written
with a dot (".") following the register name and then a letter denoting the
desired portion. For 32-bit registers, ".H" denotes the most significant ("High")
portion. ".L" denotes the least-significant portion. The subdivisions of the 40-
bit registers are described later.

Accumulators
The set of 40-bit registers Al and A0 that normally contain data that is being
manipulated. Each accumulator can be accessed in four ways.

one 40-bit register
The register will be referred to as Al or AOQ.

one 32-bit register
The registers are designated as A1.W or A0.W.

two 16-bit registers
The registers are designated as A1.H, A1.L, AO.H or A0.L.

one 8-bit register
The registers are designated as A1.X or A0.X for the bits that
extend beyond bit 31.

Data Registers
The set of 32-bit registers (R0, R1, R2, R3, R4, R5, R6 and R7) that normally
contain data for manipulation. These are abbreviated as D-register or Dreg.
Data registers can be accessed as 32-bit registers or as two independent 16-bit
registers. The least significant 16 bits of each register is called the "low" half
and is designated with ".LL" following the register name. The most significant
16 bits are called the "high" half and is designated with ".H" following the
name.
R7.L, r2.h, r4.L, RO.H

Pointer Registers
The set of 32-bit registers (PO, P1, P2, P3, P4, P5, SP and FP) that normally
contain byte addresses of data structures. These are abbreviated as P-register
or Preg.

112 Using as

p2, p5, fp, sp

Stack Pointer SP
The stack pointer contains the 32-bit address of the last occupied byte location
in the stack. The stack grows by decrementing the stack pointer.

Frame Pointer FP
The frame pointer contains the 32-bit address of the previous frame pointer in
the stack. It is located at the top of a frame.

Loop Top LTO and LT1. These registers contain the 32-bit address of the top of a zero
overhead loop.

Loop Count
LCO and LC1. These registers contain the 32-bit counter of the zero overhead
loop executions.

Loop Bottom
LBO and LB1. These registers contain the 32-bit address of the bottom of a
zero overhead loop.

Index Registers
The set of 32-bit registers (10, I1, 12, I3) that normally contain byte addresses
of data structures. Abbreviated I-register or Ireg.

Modify Registers
The set of 32-bit registers (M0, M1, M2, M3) that normally contain offset values
that are added and subtracted to one of the index registers. Abbreviated as
Mreg.

Length Registers
The set of 32-bit registers (L0, L1, L2, L3) that normally contain the length
in bytes of the circular buffer. Abbreviated as Lreg. Clear the Lreg to disable
circular addressing for the corresponding Ireg.

Base Registers
The set of 32-bit registers (B0, B1, B2, B3) that normally contain the base
address in bytes of the circular buffer. Abbreviated as Breg.

Floating Point
The Blackfin family has no hardware floating point but the .float directive gen-
erates ieee floating point numbers for use with software floating point libraries.

Blackfin Opcodes
For detailed information on the Blackfin machine instruction set, see the Black-
fin(r) Processor Instruction Set Reference.

9.5.3 Directives
The following directives are provided for compatibility with the VDSP assembler.

.byte2 Initializes a two byte data object.

This maps to the .short directive.

Chapter 9:

.byted

.db

.dw

.dd

.var

Machine Dependent Features

Initializes a four byte data object.

This maps to the .int directive.

Initializes a single byte data object.

This directive is a synonym for .byte.

Initializes a two byte data object.

This directive is a synonym for .byte2.

Initializes a four byte data object.

This directive is a synonym for .byte4.

Define and initialize a 32 bit data object.

113

114 Using as

9.6 CR16 Dependent Features

9.6.1 CR16 Operand Qualifiers

The National Semiconductor CR16 target of as has a few machine dependent operand
qualifiers.

Operand expression type qualifier is an optional field in the instruction operand, to deter-
mines the type of the expression field of an operand. The @ is required. CR16 architecture
uses one of the following expression qualifiers:

s - Specifies expression operand type as small

m - Specifies expression operand type as medium

1 - Specifies expression operand type as large

c - Specifies the CR16 Assembler generates a relocation entry for

the operand, where pc has implied bit, the expression is adjusted
accordingly. The linker uses the relocation entry to update the
operand address at link time.

got/GOT - Specifies the CR16 Assembler generates a relocation entry for
the operand, offset from Global Offset Table. The linker uses this
relocation entry to update the operand address at link time

cgot/cGOT
- Specifies the CompactRISC Assembler generates a relocation entry
for the operand, where pc has implied bit, the expression is adjusted
accordingly. The linker uses the relocation entry to update the
operand address at link time.

CR16 target operand qualifiers and its size (in bits):

‘Immediate Operand’

- s —- 4 bits
¢ - m —- 16 bits, for movb and movw instructions.
¢ - m —- 20 bits, movd instructions.
¢ -1—- 32 bits

‘Absolute Operand’
- s — Illegal specifier for this operand.

- m —- 20 bits, movd instructions.

‘Displacement Operand’

- s —- 8 bits
. -m —— 16 bits
¢ -1-— 24 bits

For example:

Chapter 9: Machine Dependent Features 115

1 movw $_myfun@c,ri
This loads the address of _myfun, shifted right by 1, into rl.
2 movd $_myfun@c, (r2,rl)

This loads the address of _myfun, shifted right by 1, into register-
pair r2-ri.

3 _myfun_ptr:
.long _myfun@c
loadd _myfun_ptr, (r1,r0)
jal (r1,r0)

This .long directive, the address of _myfunc, shifted right by 1 at link time.
4 loadd _datal@GOT(r12), (r1,r0)

This loads the address of _datal, into global offset table (ie GOT) and its off-
set value from GOT loads into register-pair r2-ril.

5 loadd _myfunc@cGOT(r12), (r1,r0)

This loads the address of _myfun, shifted right by 1, into global off-
set table (ie GOT) and its offset value from GOT loads into register-pair ri-
r0.

9.6.2 CR16 Syntax
9.6.2.1 Special Characters

9

The presence of a ‘#’ on a line indicates the start of a comment that extends to the end
of the current line. If the ‘#" appears as the first character of a line, the whole line is
treated as a comment, but in this case the line can also be a logical line number directive
(see Section 3.3 [Comments], page 25) or a preprocessor control command (see Section 3.1
[Preprocessing], page 25).

The ¢;’ character can be used to separate statements on the same line.

116 Using as

9.7 CRIS Dependent Features

9.7.1 Command-line Options
The CRIS version of as has these machine-dependent command-line options.

The format of the generated object files can be either ELF or a.out, specified by the
command-line options ‘--emulation=crisaout’ and ‘--emulation=criself’. The default
is ELF (criself), unless as has been configured specifically for a.out by using the configura-
tion name cris-axis-aout.

There are two different link-incompatible ELF object file variants for CRIS, for use in
environments where symbols are expected to be prefixed by a leading ‘_’ character and for
environments without such a symbol prefix. The variant used for GNU/Linux port has no
symbol prefix. Which variant to produce is specified by either of the options ‘-—underscore’
and ‘--no-underscore’. The default is ‘-—underscore’. Since symbols in CRIS a.out
objects are expected to have a ‘_’ prefix, specifying ‘--no-underscore’ when generating
a.out objects is an error. Besides the object format difference, the effect of this option is to
parse register names differently (see [crisnous], page 119). The ‘--no-underscore’ option

makes a ‘$’ register prefix mandatory.

The option ‘--pic’ must be passed to as in order to recognize the symbol syntax used
for ELF (SVR4 PIC) position-independent-code (see [crispic], page 118). This will also
affect expansion of instructions. The expansion with ‘—-pic’ will use PC-relative rather
than (slightly faster) absolute addresses in those expansions. This option is only valid when
generating ELF format object files.

The option ‘--march=architecture’ specifies the recognized instruction set and recog-
nized register names. It also controls the architecture type of the object file. Valid values
for architecture are:

v0_v10 All instructions and register names for any architecture variant in the set
v0...v10 are recognized. This is the default if the target is configured as cris-*.

v10 Only instructions and register names for CRIS v10 (as found in ETRAX 100
LX) are recognized. This is the default if the target is configured as crisv10-*.

v32 Only instructions and register names for CRIS v32 (code name Guinness) are
recognized. This is the default if the target is configured as crisv32-*. This
value implies ‘--no-mul-bug-abort’. (A subsequent ‘--mul-bug-abort’ will
turn it back on.)

common_v10_v32
Only instructions with register names and addressing modes with opcodes com-
mon to the v10 and v32 are recognized.

When ‘-N’ is specified, as will emit a warning when a 16-bit branch instruction is
expanded into a 32-bit multiple-instruction construct (see Section 9.7.2 [CRIS-Expand],
page 117).

Some versions of the CRIS v10, for example in the Etrax 100 LX, contain a bug that
causes destabilizing memory accesses when a multiply instruction is executed with certain
values in the first operand just before a cache-miss. When the ‘--mul-bug-abort’ command
line option is active (the default value), as will refuse to assemble a file containing a multiply

Chapter 9: Machine Dependent Features 117

instruction at a dangerous offset, one that could be the last on a cache-line, or is in a
section with insufficient alignment. This placement checking does not catch any case where
the multiply instruction is dangerously placed because it is located in a delay-slot. The
‘-—mul-bug-abort’ command line option turns off the checking.

9.7.2 Instruction expansion

as will silently choose an instruction that fits the operand size for ‘[register+constant]’
operands. For example, the offset 127 in move.d [r3+127],r4 fits in an instruction using
a signed-byte offset. Similarly, move.d [r2+32767],r1 will generate an instruction using a
16-bit offset. For symbolic expressions and constants that do not fit in 16 bits including the
sign bit, a 32-bit offset is generated.

For branches, as will expand from a 16-bit branch instruction into a sequence of in-
structions that can reach a full 32-bit address. Since this does not correspond to a single
instruction, such expansions can optionally be warned about. See Section 9.7.1 [CRIS-Opts],
page 116.

If the operand is found to fit the range, a lapc mnemonic will translate to a lapcq
instruction. Use lapc.d to force the 32-bit lapc instruction.

Similarly, the addo mnemonic will translate to the shortest fitting instruction of addoq,
addo.w and addo.d, when used with a operand that is a constant known at assembly time.

9.7.3 Symbols

Some symbols are defined by the assembler. They're intended to be used in conditional
assembly, for example:

.if ..asm.arch.cris.v32

code for CRIS v32

.elseif ..asm.arch.cris.common_v10_v32
code common to CRIS v32 and CRIS v10

.elseif ..asm.arch.cris.v10 | ..asm.arch.cris.any_v0_v10
code for v10

.else

.error "Code needs to be added here."

.endif

These symbols are defined in the assembler, reflecting command-line options, either when
specified or the default. They are always defined, to 0 or 1.

..asm.arch.cris.any_vO0_v10
This symbol is non-zero when ‘--march=v0_v10’ is specified or the default.

..asm.arch.cris.common_v10_v32
Set according to the option ‘--march=common_v10_v32’.

..asm.arch.cris.v10
Reflects the option ‘--march=v10’.

..asm.arch.cris.v32
Corresponds to ‘-—march=v10’.

Speaking of symbols, when a symbol is used in code, it can have a suffix modifying its
value for use in position-independent code. See Section 9.7.4.2 [CRIS-Pic], page 118.

118 Using as

9.7.4 Syntax
There are different aspects of the CRIS assembly syntax.

9.7.4.1 Special Characters

The character ‘#’ is a line comment character. It starts a comment if and only if it is placed
at the beginning of a line.

A *;’ character starts a comment anywhere on the line, causing all characters up to the
end of the line to be ignored.

A ‘@ character is handled as a line separator equivalent to a logical new-line character
(except in a comment), so separate instructions can be specified on a single line.

9.7.4.2 Symbols in position-independent code

When generating position-independent code (SVR4 PIC) for use in cris-axis-linux-gnu or
crisv32-axis-linux-gnu shared libraries, symbol suffixes are used to specify what kind of
run-time symbol lookup will be used, expressed in the object as different relocation types.
Usually, all absolute symbol values must be located in a table, the global offset table, leaving
the code position-independent; independent of values of global symbols and independent of
the address of the code. The suffix modifies the value of the symbol, into for example an
index into the global offset table where the real symbol value is entered, or a PC-relative
value, or a value relative to the start of the global offset table. All symbol suffixes start
with the character ‘:’ (omitted in the list below). Every symbol use in code or a read-only
section must therefore have a PIC suffix to enable a useful shared library to be created.
Usually, these constructs must not be used with an additive constant offset as is usually
allowed, i.e. no 4 as in symbol + 4 is allowed. This restriction is checked at link-time, not
at assembly-time.

GOT

Attaching this suffix to a symbol in an instruction causes the symbol to be
entered into the global offset table. The value is a 32-bit index for that sym-
bol into the global offset table. The name of the corresponding relocation is
‘R_CRIS_32_GOT’. Example: move.d [$rO+extsym:GOT],$r9

GOT16

Same as for ‘GOT’, but the value is a 16-bit index into the global offset ta-
ble. The corresponding relocation is ‘R_CRIS_16_GOT’. Example: move.d
[$rO+asymbol:GOT16],$r10

PLT

This suffix is used for function symbols. It causes a procedure linkage table,
an array of code stubs, to be created at the time the shared object is created
or linked against, together with a global offset table entry. The value is a pc-
relative offset to the corresponding stub code in the procedure linkage table.
This arrangement causes the run-time symbol resolver to be called to look up
and set the value of the symbol the first time the function is called (at latest;
depending environment variables). It is only safe to leave the symbol unresolved
this way if all references are function calls. The name of the relocation is
‘R_CRIS_32_PLT_PCREL’. Example: add.d fnname:PLT,$pc

Chapter 9: Machine Dependent Features 119

PLTG

Like PLT, but the value is relative to the beginning of the global offset
table. The relocation is ‘R_CRIS_32_PLT_GOTREL’. Example: move.d
fnname:PLTG, $r3

GOTPLT

Similar to ‘PLT’, but the value of the symbol is a 32-bit index into the global
offset table. This is somewhat of a mix between the effect of the ‘GOT’ and
the ‘PLT’ suffix; the difference to ‘GOT’ is that there will be a procedure linkage
table entry created, and that the symbol is assumed to be a function entry
and will be resolved by the run-time resolver as with ‘PLT’. The relocation is
‘R_CRIS_32_GOTPLT’. Example: jsr [$rO+fnname:GOTPLT]

GOTPLT16

A variant of ‘GOTPLT’ giving a 16-bit wvalue. Its relocation name is
‘R_CRIS_16_GOTPLT’. Example: jsr [$rO+fnname:GOTPLT16]

GOTOFF

This suffix must only be attached to a local symbol, but may be used in an
expression adding an offset. The value is the address of the symbol relative to
the start of the global offset table. The relocation name is ‘R_CRIS_32_GOTREL’.
Example: move.d [$rO+localsym:GOTOFF],r3

9.7.4.3 Register names

A ‘$’ character may always prefix a general or special register name in an instruction
operand but is mandatory when the option ‘--no-underscore’ is specified or when the
.syntax register_prefix directive is in effect (see [crisnous|, page 119). Register names
are case-insensitive.

9.7.4.4 Assembler Directives

There are a few CRIS-specific pseudo-directives in addition to the generic ones. See
Chapter 7 [Pseudo Ops|, page 45. Constants emitted by pseudo-directives are in little-
endian order for CRIS. There is no support for floating-point-specific directives for CRIS.

.dword EXPRESSIONS
The .dword directive is a synonym for .int, expecting zero or more EXPRES-
SIONS, separated by commas. For each expression, a 32-bit little-endian con-
stant is emitted.

.syntax ARGUMENT
The .syntax directive takes as ARGUMENT one of the following case-sensitive
choices.

no_register_prefix
The .syntax no_register_prefix directive makes a ‘$’ character
prefix on all registers optional. It overrides a previous setting, in-
cluding the corresponding effect of the option ‘~-no-underscore’.

If this directive is used when ordinary symbols do not have a ‘_
character prefix, care must be taken to avoid ambiguities whether

120 Using as

an operand is a register or a symbol; using symbols with names the
same as general or special registers then invoke undefined behavior.

register_prefix
This directive makes a ‘$’ character prefix on all registers manda-
tory. It overrides a previous setting, including the corresponding
effect of the option ‘--underscore’.

leading_underscore
This is an assertion directive, emitting an error if the
‘--no-underscore’ option is in effect.

no_leading_underscore
This is the opposite of the .syntax leading_underscore directive
and emits an error if the option ‘--underscore’ is in effect.

.arch ARGUMENT
This is an assertion directive, giving an error if the specified ARGUMENT is
not the same as the specified or default value for the ‘-~-march=architecture’
option (see [march-option|, page 116).

Chapter 9: Machine Dependent Features 121

9.8 D10V Dependent Features

9.8.1 D10V Options

The Mitsubishi D10V version of as has a few machine dependent options.

‘-0’ The D10V can often execute two sub-instructions in parallel. When this option
is used, as will attempt to optimize its output by detecting when instructions
can be executed in parallel.

‘~-nowarnswap’
To optimize execution performance, as will sometimes swap the order of in-
structions. Normally this generates a warning. When this option is used, no
warning will be generated when instructions are swapped.

‘--gstabs-packing’

‘--no-gstabs-packing’
as packs adjacent short instructions into a single packed instruction.
‘-—no-gstabs-packing’ turns instruction packing off if ‘--gstabs’ is specified
as well; ‘--gstabs-packing’ (the default) turns instruction packing on even
when ‘--gstabs’ is specified.

9.8.2 Syntax

The D10V syntax is based on the syntax in Mitsubishi’s D10V architecture manual. The
differences are detailed below.

9.8.2.1 Size Modifiers

The D10V version of as uses the instruction names in the D10V Architecture Manual.
However, the names in the manual are sometimes ambiguous. There are instruction names
that can assemble to a short or long form opcode. How does the assembler pick the correct
form? as will always pick the smallest form if it can. When dealing with a symbol that
is not defined yet when a line is being assembled, it will always use the long form. If you
need to force the assembler to use either the short or long form of the instruction, you can
append either ‘.s’ (short) or ‘.1’ (long) to it. For example, if you are writing an assembly
program and you want to do a branch to a symbol that is defined later in your program, you
can write ‘bra.s foo’. Objdump and GDB will always append ‘.s’ or ‘.1’ to instructions
which have both short and long forms.

9.8.2.2 Sub-Instructions

The D10V assembler takes as input a series of instructions, either one-per-line, or in the
special two-per-line format described in the next section. Some of these instructions will
be short-form or sub-instructions. These sub-instructions can be packed into a single in-
struction. The assembler will do this automatically. It will also detect when it should not
pack instructions. For example, when a label is defined, the next instruction will never be
packaged with the previous one. Whenever a branch and link instruction is called, it will
not be packaged with the next instruction so the return address will be valid. Nops are
automatically inserted when necessary.

122 Using as

If you do not want the assembler automatically making these decisions, you can control
the packaging and execution type (parallel or sequential) with the special execution symbols
described in the next section.

9.8.2.3 Special Characters

]

A semicolon (‘;’) can be used anywhere on a line to start a comment that extends to the
end of the line.

If a ‘#” appears as the first character of a line, the whole line is treated as a comment, but
in this case the line could also be a logical line number directive (see Section 3.3 [Comments],
page 25) or a preprocessor control command (see Section 3.1 [Preprocessing], page 25).

Sub-instructions may be executed in order, in reverse-order, or in parallel. Instructions
listed in the standard one-per-line format will be executed sequentially. To specify the
executing order, use the following symbols:

>’ Sequential with instruction on the left first.
‘<=’ Sequential with instruction on the right first.

g1 Parallel

The D10V syntax allows either one instruction per line, one instruction per line with the
execution symbol, or two instructions per line. For example

abs al -> abs r0
Execute these sequentially. The instruction on the right is in the right container
and is executed second.

abs r0 <- abs al
Execute these reverse-sequentially. The instruction on the right is in the right
container, and is executed first.

1d2w r2,0@r8+ || mac a0,r0,r7
Execute these in parallel.

1d2w r2,0r8+ ||
mac a0,r0,r7
Two-line format. Execute these in parallel.

1d2w r2,0r8+

mac a0,r0,r7
Two-line format. Execute these sequentially. Assembler will put them in the
proper containers.

1d2w r2,0r8+ ->

mac a0,r0,r7
Two-line format. Execute these sequentially. Same as above but second in-
struction will always go into right container.

Since ‘$’ has no special meaning, you may use it in symbol names.

Chapter 9: Machine Dependent Features 123

9.8.2.4 Register Names

You can use the predefined symbols ‘r0’ through ‘ri15’ to refer to the D10V registers. You
can also use ‘sp’ as an alias for ‘r15’. The accumulators are ‘a0’ and ‘al’. There are special
register-pair names that may optionally be used in opcodes that require even-numbered
registers. Register names are not case sensitive.

Register Pairs
rO-ril
r2-r3
r4-rb
r6-r7
r8-r9
ri0-ri1
ri2-ri3
r14-ri5

The D10V also has predefined symbols for these control registers and status bits:

psw Processor Status Word
bpsw Backup Processor Status Word
pc Program Counter

bpc Backup Program Counter
rpt_c Repeat Count

rpt_s Repeat Start address
rpt_e Repeat End address
mod_s Modulo Start address
mod_e Modulo End address

iba Instruction Break Address
f0 Flag 0

f1 Flag 1

c Carry flag

9.8.2.5 Addressing Modes

as understands the following addressing modes for the D10V. Ra in the following refers to
any of the numbered registers, but not the control registers.

Rn Register direct
©@Rn Register indirect

@Rn+ Register indirect with post-increment

124 Using as

@Rn- Register indirect with post-decrement
@-SP Register indirect with pre-decrement
@(disp, Rn)
Register indirect with displacement
addr PC relative address (for branch or rep).
#1imm Immediate data (the ‘#’ is optional and ignored)

9.8.2.6 @WORD Modifier

Any symbol followed by @word will be replaced by the symbol’s value shifted right by 2.
This is used in situations such as loading a register with the address of a function (or any
other code fragment). For example, if you want to load a register with the location of the
function main then jump to that function, you could do it as follows:

1di r2, main@word
jmp r2

9.8.3 Floating Point

The D10V has no hardware floating point, but the .float and .double directives generates
IEEE floating-point numbers for compatibility with other development tools.

9.8.4 Opcodes

For detailed information on the D10V machine instruction set, see D10V Architecture: A
VLIW Microprocessor for Multimedia Applications (Mitsubishi Electric Corp.). as imple-
ments all the standard D10V opcodes. The only changes are those described in the section
on size modifiers

Chapter 9: Machine Dependent Features 125

9.9 D30V Dependent Features

9.9.1 D30V Options

The Mitsubishi D30V version of as has a few machine dependent options.

-0’ The D30V can often execute two sub-instructions in parallel. When this option
is used, as will attempt to optimize its output by detecting when instructions
can be executed in parallel.

‘-n’ When this option is used, as will issue a warning every time it adds a nop
instruction.
=N When this option is used, as will issue a warning if it needs to insert a nop

after a 32-bit multiply before a load or 16-bit multiply instruction.

9.9.2 Syntax

The D30V syntax is based on the syntax in Mitsubishi’s D30V architecture manual. The
differences are detailed below.

9.9.2.1 Size Modifiers

The D30V version of as uses the instruction names in the D30V Architecture Manual.
However, the names in the manual are sometimes ambiguous. There are instruction names
that can assemble to a short or long form opcode. How does the assembler pick the correct
form? as will always pick the smallest form if it can. When dealing with a symbol that
is not defined yet when a line is being assembled, it will always use the long form. If you
need to force the assembler to use either the short or long form of the instruction, you can
append either ‘.s’ (short) or ‘.1’ (long) to it. For example, if you are writing an assembly
program and you want to do a branch to a symbol that is defined later in your program, you
can write ‘bra.s foo’. Objdump and GDB will always append ‘.s’ or ‘.1’ to instructions
which have both short and long forms.

9.9.2.2 Sub-Instructions

The D30V assembler takes as input a series of instructions, either one-per-line, or in the
special two-per-line format described in the next section. Some of these instructions will
be short-form or sub-instructions. These sub-instructions can be packed into a single in-
struction. The assembler will do this automatically. It will also detect when it should not
pack instructions. For example, when a label is defined, the next instruction will never be
packaged with the previous one. Whenever a branch and link instruction is called, it will
not be packaged with the next instruction so the return address will be valid. Nops are
automatically inserted when necessary.

If you do not want the assembler automatically making these decisions, you can control
the packaging and execution type (parallel or sequential) with the special execution symbols
described in the next section.

9.9.2.3 Special Characters

A semicolon (‘;’) can be used anywhere on a line to start a comment that extends to the
end of the line.

126 Using as

If a ‘#” appears as the first character of a line, the whole line is treated as a comment, but
in this case the line could also be a logical line number directive (see Section 3.3 [Comments],
page 25) or a preprocessor control command (see Section 3.1 [Preprocessing], page 25).

Sub-instructions may be executed in order, in reverse-order, or in parallel. Instructions
listed in the standard one-per-line format will be executed sequentially unless you use the
‘-0’ option.

To specify the executing order, use the following symbols:

‘=>’ Sequential with instruction on the left first.
<=’ Sequential with instruction on the right first.

17 Parallel

The D30V syntax allows either one instruction per line, one instruction per line with the
execution symbol, or two instructions per line. For example

abs r2,r3 -> abs r4,r5
Execute these sequentially. The instruction on the right is in the right container
and is executed second.

abs r2,r3 <- abs r4,r5
Execute these reverse-sequentially. The instruction on the right is in the right
container, and is executed first.

abs r2,r3 || abs r4,r5
Execute these in parallel.

ldw r2,0(r3,r4) ||
mulx r6,r8,r9
Two-line format. Execute these in parallel.

mulx a0,r8,r9

stw r2,0(r3,r4)
Two-line format. Execute these sequentially unless ‘-0’ option is used. If the
‘-0’ option is used, the assembler will determine if the instructions could be
done in parallel (the above two instructions can be done in parallel), and if so,
emit them as parallel instructions. The assembler will put them in the proper
containers. In the above example, the assembler will put the ‘stw’ instruction
in left container and the ‘mulx’ instruction in the right container.

stw r2,0(r3,rd) —>

mulx a0,r8,r9
Two-line format. Execute the ‘stw’ instruction followed by the ‘mulx’ instruc-
tion sequentially. The first instruction goes in the left container and the second
instruction goes into right container. The assembler will give an error if the
machine ordering constraints are violated.

stw r2,0(r3,r4) <-

mulx a0,r8,r9
Same as previous example, except that the ‘mulx’ instruction is executed before
the ‘stw’ instruction.

Since ‘$’ has no special meaning, you may use it in symbol names.

Chapter 9: Machine Dependent Features 127

9.9.2.4 Guarded Execution

as supports the full range of guarded execution directives for each instruction. Just append
the directive after the instruction proper. The directives are:

/tx’ Execute the instruction if flag f0 is true.

/Ex Execute the instruction if flag f0 is false.

‘/xt’ Execute the instruction if flag f1 is true.

‘/xf’ FExecute the instruction if flag f1 is false.

/tt’ Execute the instruction if both flags fO and f1 are true.
‘/tf’ Execute the instruction if flag fO is true and flag f1 is false.

9.9.2.5 Register Names

You can use the predefined symbols ‘r0’ through ‘r63’ to refer to the D30V registers. You
can also use ‘sp’ as an alias for ‘r63” and ‘1link’ as an alias for ‘r62’. The accumulators are
‘a0’ and ‘al’.

The D30V also has predefined symbols for these control registers and status bits:

psw Processor Status Word

bpsw Backup Processor Status Word
pc Program Counter

bpc Backup Program Counter
rpt_c Repeat Count

rpt_s Repeat Start address

rpt_e Repeat End address

mod_s Modulo Start address

mod_e Modulo End address

iba Instruction Break Address

f0 Flag 0

f1 Flag 1

f2 Flag 2

£3 Flag 3

fa Flag 4

f5 Flag 5

f6 Flag 6

£7 Flag 7

s Same as flag 4 (saturation flag)

v Same as flag 5 (overflow flag)

128 Using as

va Same as flag 6 (sticky overflow flag)
c Same as flag 7 (carry/borrow flag)
b Same as flag 7 (carry/borrow flag)

9.9.2.6 Addressing Modes

as understands the following addressing modes for the D30V. Ra in the following refers to
any of the numbered registers, but not the control registers.

Rn Register direct
©Rn Register indirect
@Rn+ Register indirect with post-increment
@Rn- Register indirect with post-decrement
©-SP Register indirect with pre-decrement
@(disp, Rn)
Register indirect with displacement
addr PC relative address (for branch or rep).
#imm Immediate data (the ‘#’ is optional and ignored)

9.9.3 Floating Point

The D30V has no hardware floating point, but the .float and .double directives generates
IEEE floating-point numbers for compatibility with other development tools.

9.9.4 Opcodes

For detailed information on the D30V machine instruction set, see D30V Architecture: A
VLIW Microprocessor for Multimedia Applications (Mitsubishi Electric Corp.). as imple-
ments all the standard D30V opcodes. The only changes are those described in the section
on size modifiers

Chapter 9: Machine Dependent Features 129

9.10 H8/300 Dependent Features

9.10.1 Options

The Renesas H8/300 version of as has one machine-dependent option:

-h-tick-hex
Support H’00 style hex constants in addition to 0x00 style.

9.10.2 Syntax
9.10.2.1 Special Characters

‘;7 is the line comment character.

‘$’ can be used instead of a newline to separate statements. Therefore you may not use
‘$7 in symbol names on the H8/300.

9.10.2.2 Register Names

You can use predefined symbols of the form ‘rnh’ and ‘rnl’ to refer to the H8/300 registers
as sixteen 8-bit general-purpose registers. n is a digit from ‘0’ to ‘7’); for instance, both
‘rOh’ and ‘r71’ are valid register names.

You can also use the eight predefined symbols ‘rn’ to refer to the H8/300 registers as
16-bit registers (you must use this form for addressing).

On the H8/300H, you can also use the eight predefined symbols ‘ern’ (‘er0’ ... ‘er7’)
to refer to the 32-bit general purpose registers.

The two control registers are called pc (program counter; a 16-bit register, except on
the H8/300H where it is 24 bits) and ccr (condition code register; an 8-bit register). r7 is
used as the stack pointer, and can also be called sp.

9.10.2.3 Addressing Modes
as understands the following addressing modes for the H8/300:

rn Register direct

@rn Register indirect

e(d, rn)

@(d:16, rn)

@(d:24, rn)
Register indirect: 16-bit or 24-bit displacement d from register n. (24-bit dis-
placements are only meaningful on the H8/300H.)

Qrn+ Register indirect with post-increment
Q@-rn Register indirect with pre-decrement
Qaa

QGaa:8

Qaa:16

Qaa:24 Absolute address aa. (The address size : 24’ only makes sense on the H8/300H.)

130 Using as

#xx

#xx:8

#xx:16

#xx:32 Immediate data xx. You may specify the ‘:8’, ‘:16’, or ‘:32’ for clarity, if you
wish; but as neither requires this nor uses it—the data size required is taken
from context.

0Qaa
©@Qaa:8 Memory indirect. You may specify the ‘:8’ for clarity, if you wish; but as
neither requires this nor uses it.

9.10.3 Floating Point

The H8/300 family has no hardware floating point, but the .float directive generates IEEE
floating-point numbers for compatibility with other development tools.

Chapter 9: Machine Dependent Features 131

9.10.4 H8/300 Machine Directives
as has the following machine-dependent directives for the H8/300:

.h8300h Recognize and emit additional instructions for the H8/300H variant, and also
make .int emit 32-bit numbers rather than the usual (16-bit) for the H8/300
family.

.h8300s Recognize and emit additional instructions for the H8S variant, and also make
.int emit 32-bit numbers rather than the usual (16-bit) for the H8/300 family.

.h8300hn Recognize and emit additional instructions for the H8/300H variant in normal
mode, and also make .int emit 32-bit numbers rather than the usual (16-bit)
for the H8/300 family.

.h8300sn Recognize and emit additional instructions for the H8S variant in normal mode,
and also make .int emit 32-bit numbers rather than the usual (16-bit) for the
H8/300 family.

On the H8/300 family (including the H8/300H) ‘.word’ directives generate 16-bit num-
bers.

9.10.5 Opcodes

For detailed information on the H8/300 machine instruction set, see H8/300 Series Program-
ming Manual. For information specific to the H8/300H, see H8/300H Series Programming
Manual (Renesas).

as implements all the standard H8/300 opcodes. No additional pseudo-instructions are
needed on this family.

Four H8/300 instructions (add, cmp, mov, sub) are defined with variants using the suffixes
‘b’ “.w’, and ‘.1’ to specify the size of a memory operand. as supports these suffixes, but
does not require them; since one of the operands is always a register, as can deduce the
correct size.

For example, since r0 refers to a 16-bit register,

mov r0,Q@foo0
is equivalent to
mov.w r0,Q@foo0

If you use the size suffixes, as issues a warning when the suffix and the register size do
not match.

132 Using as

9.11 HPPA Dependent Features

9.11.1 Notes

As a back end for GNU cC as has been throughly tested and should work extremely well.
We have tested it only minimally on hand written assembly code and no one has tested it
much on the assembly output from the HP compilers.

The format of the debugging sections has changed since the original as port (version
1.3X) was released; therefore, you must rebuild all HPPA objects and libraries with the new
assembler so that you can debug the final executable.

The HPPA as port generates a small subset of the relocations available in the SOM
and ELF object file formats. Additional relocation support will be added as it becomes
necessary.

9.11.2 Options

as has no machine-dependent command-line options for the HPPA.

9.11.3 Syntax

The assembler syntax closely follows the HPPA instruction set reference manual; assembler
directives and general syntax closely follow the HPPA assembly language reference manual,
with a few noteworthy differences.

First, a colon may immediately follow a label definition. This is simply for compatibility
with how most assembly language programmers write code.

Some obscure expression parsing problems may affect hand written code which uses the
spop instructions, or code which makes significant use of the ! line separator.

as is much less forgiving about missing arguments and other similar oversights than the
HP assembler. as notifies you of missing arguments as syntax errors; this is regarded as a
feature, not a bug.

Finally, as allows you to use an external symbol without explicitly importing the symbol.
Warning: in the future this will be an error for HPPA targets.

Special characters for HPPA targets include:
‘;7 is the line comment character.
‘1’ can be used instead of a newline to separate statements.

Since ‘$’ has no special meaning, you may use it in symbol names.

9.11.4 Floating Point
The HPPA family uses IEEE floating-point numbers.

9.11.5 HPPA Assembler Directives

as for the HPPA supports many additional directives for compatibility with the native
assembler. This section describes them only briefly. For detailed information on HPPA-
specific assembler directives, see HP9000 Series 800 Assembly Language Reference Manual
(HP 92432-90001).

as does not support the following assembler directives described in the HP manual:

Chapter 9: Machine Dependent Features 133

.endm .liston
.enter .locct
.leave .macro
.listoff

Beyond those implemented for compatibility, as supports one additional assembler di-
rective for the HPPA: .param. It conveys register argument locations for static functions.
Its syntax closely follows the .export directive.

These are the additional directives in as for the HPPA:

.block n
.blockz n

.call

.callinfo

.code

Reserve n bytes of storage, and initialize them to zero.

Mark the beginning of a procedure call. Only the special case with no arguments
is allowed.

[param=value, ...] [flag, ...]
Specify a number of parameters and flags that define the environment for a
procedure.

param may be any of ‘frame’ (frame size), ‘entry_gr’ (end of general regis-
ter range), ‘entry_fr’ (end of float register range), ‘entry_sr’ (end of space
register range).

The values for flag are ‘calls’ or ‘caller’ (proc has subroutines), ‘no_calls’
(proc does not call subroutines), ‘save_rp’ (preserve return pointer), ‘save_sp’
(proc preserves stack pointer), ‘no_unwind’ (do not unwind this proc),
‘hpux_int’ (proc is interrupt routine).

Assemble into the standard section called ‘$TEXT$’, subsection ‘$CODES$’.

.copyright "string"

In the SOM object format, insert string into the object code, marked as a
copyright string.

.copyright "string"

.enter
.entry

.exit

In the ELF object format, insert string into the object code, marked as a version
string.

Not yet supported; the assembler rejects programs containing this directive.
Mark the beginning of a procedure.

Mark the end of a procedure.

.export name [,typ 1 [,param=r]

Make a procedure name available to callers. typ, if present, must be one
of ‘absolute’, ‘code’ (ELF only, not SOM), ‘data’, ‘entry’, ‘data’, ‘entry’,
‘millicode’, ‘plabel’, ‘pri_prog’, or ‘sec_prog’.

param, if present, provides either relocation information for the procedure ar-
guments and result, or a privilege level. param may be ‘argwn’ (where n ranges
from 0 to 3, and indicates one of four one-word arguments); ‘rtnval’ (the pro-
cedure’s result); or ‘priv_lev’ (privilege level). For arguments or the result, r

134 Using as

specifies how to relocate, and must be one of ‘no’ (not relocatable), ‘gr’ (argu-
ment is in general register), ‘fr’ (in floating point register), or ‘fu’ (upper half
of float register). For ‘priv_lev’, r is an integer.

.half n Define a two-byte integer constant n; synonym for the portable as directive
.short.

.import name [,typ]
Converse of .export; make a procedure available to call. The arguments use
the same conventions as the first two arguments for .export.

.label name
Define name as a label for the current assembly location.

.leave Not yet supported; the assembler rejects programs containing this directive.

.origin lc
Advance location counter to lc. Synonym for the as portable directive .org.

.param name [,typ] [,param=r]
Similar to .export, but used for static procedures.

.proc Use preceding the first statement of a procedure.
.procend Use following the last statement of a procedure.

label .reg expr
Synonym for .equ; define label with the absolute expression expr as its value.

.space secname [,params]
Switch to section secname, creating a new section by that name if necessary.
You may only use params when creating a new section, not when switching
to an existing one. secname may identify a section by number rather than by
name.

If specified, the list params declares attributes of the section, identified by key-
words. The keywords recognized are ‘spnum=exp’ (identify this section by the
number exp, an absolute expression), ‘sort=exp’ (order sections according to
this sort key when linking; exp is an absolute expression), ‘unloadable’ (sec-
tion contains no loadable data), ‘notdefined’ (this section defined elsewhere),
and ‘private’ (data in this section not available to other programs).

.Spnum secnam
Allocate four bytes of storage, and initialize them with the section number of
the section named secnam. (You can define the section number with the HPPA
.space directive.)

.string "str"
Copy the characters in the string str to the object file. See Section 3.6.1.1
[Strings], page 27, for information on escape sequences you can use in as strings.
Warning! The HPPA version of .string differs from the usual as definition:
it does mot write a zero byte after copying str.

.stringz "str"
Like .string, but appends a zero byte after copying str to object file.

Chapter 9: Machine Dependent Features 135

.subspa name [,params]

.nsubspa name [,params]
Similar to .space, but selects a subsection name within the current section.
You may only specify params when you create a subsection (in the first instance
of .subspa for this name).

If specified, the list params declares attributes of the subsection, identified
by keywords. The keywords recognized are ‘quad=expr’ (“quadrant” for this
subsection), ‘align=expr’ (alignment for beginning of this subsection; a power
of two), ‘access=expr’ (value for “access rights” field), ‘sort=expr’ (sorting
order for this subspace in link), ‘code_only’ (subsection contains only code),
‘unloadable’ (subsection cannot be loaded into memory), ‘comdat’ (subsection
is comdat), ‘common’ (subsection is common block), ‘dup_comm’ (subsection may

have duplicate names), or ‘zero’ (subsection is all zeros, do not write in object
file).

.nsubspa always creates a new subspace with the given name, even if one with
the same name already exists.

‘comdat’, ‘common’ and ‘dup_comm’ can be used to implement various flavors of
one-only support when using the SOM linker. The SOM linker only supports
specific combinations of these flags. The details are not documented. A brief
description is provided here.

‘comdat’ provides a form of linkonce support. It is useful for both code and data
subspaces. A ‘comdat’ subspace has a key symbol marked by the ‘is_comdat’
flag or ‘ST_COMDAT’. Only the first subspace for any given key is selected. The
key symbol becomes universal in shared links. This is similar to the behavior
of ‘secondary_def’ symbols.

‘common’ provides Fortran named common support. It is only useful for data
subspaces. Symbols with the flag ‘is_common’ retain this flag in shared links.
Referencing a ‘is_common’ symbol in a shared library from outside the library
doesn’t work. Thus, ‘is_common’ symbols must be output whenever they are
needed.

‘common’ and ‘dup_comm’ together provide Cobol common support. The sub-
spaces in this case must all be the same length. Otherwise, this support is
similar to the Fortran common support.

‘dup_comm’ by itself provides a type of one-only support for code. Only the
first ‘dup_comm’ subspace is selected. There is a rather complex algorithm
to compare subspaces. Code symbols marked with the ‘dup_common’ flag are
hidden. This support was intended for "C++ duplicate inlines".

A simplified technique is used to mark the flags of symbols based on the
flags of their subspace. A symbol with the scope SS_.UNIVERSAL and type
ST_ENTRY, ST_-CODE or ST_DATA is marked with the corresponding set-
tings of ‘comdat’, ‘common’ and ‘dup_comm’ from the subspace, respectively.
This avoids having to introduce additional directives to mark these symbols.
The HP assembler sets ‘is_common’ from ‘common’. However, it doesn’t set the
‘dup_common’ from ‘dup_comm’. It doesn’t have ‘comdat’ support.

136 Using as

.version "str"
Write str as version identifier in object code.

9.11.6 Opcodes

For detailed information on the HPPA machine instruction set, see PA-RISC Architecture
and Instruction Set Reference Manual (HP 09740-90039).

Chapter 9: Machine Dependent Features 137

9.12 ESA /390 Dependent Features

9.12.1 Notes

The ESA /390 as port is currently intended to be a back-end for the GNU cC compiler. It is
not HLASM compatible, although it does support a subset of some of the HLASM directives.
The only supported binary file format is ELF; none of the usual MVS/VM/OE/USS object
file formats, such as ESD or XSD, are supported.

When used with the GNU cC compiler, the ESA /390 as will produce correct, fully relo-
cated, functional binaries, and has been used to compile and execute large projects. How-
ever, many aspects should still be considered experimental; these include shared library
support, dynamically loadable objects, and any relocation other than the 31-bit relocation.

9.12.2 Options

as has no machine-dependent command-line options for the ESA /390.

9.12.3 Syntax

The opcode/operand syntax follows the ESA /390 Principles of Operation manual; assembler
directives and general syntax are loosely based on the prevailing AT&T/SVR4/ELF /Solaris
style notation. HLASM-style directives are mot supported for the most part, with the
exception of those described herein.

A leading dot in front of directives is optional, and the case of directives is ignored; thus
for example, .using and USING have the same effect.

A colon may immediately follow a label definition. This is simply for compatibility with
how most assembly language programmers write code.

‘#’ is the line comment character.
‘;7 can be used instead of a newline to separate statements.
Since ‘$’ has no special meaning, you may use it in symbol names.

Registers can be given the symbolic names r0..r15, fp0, fp2, fp4, fp6. By using thesse
symbolic names, as can detect simple syntax errors. The name rarg or r.arg is a synonym
for r11, rtca or r.tca for r12, sp, r.sp, dsa r.dsa for r13, Ir or r.Ir for r14, rbase or r.base for
r3 and rpgt or r.pgt for r4.

‘*’ is the current location counter. Unlike ‘.’ it is always relative to the last USING di-
rective. Note that this means that expressions cannot use multiplication, as any occurrence
of ‘¥’ will be interpreted as a location counter.

All labels are relative to the last USING. Thus, branches to a label always imply the use
of base+displacement.
Many of the usual forms of address constants / address literals are supported. Thus,
.using *,r3
L r15,=A(some_routine)
LM r6,r7,=V(some_longlong_extern)
A rl,=F’12°
AH r0,=H’>42’
ME r6,=E’3.1416°
MD r6,=D’3.14159265358979°

138 Using as

0 r6,=XL4’cacad0d0’
.1ltorg

should all behave as expected: that is, an entry in the literal pool will be created (or
reused if it already exists), and the instruction operands will be the displacement into the
literal pool using the current base register (as last declared with the .using directive).

9.12.4 Floating Point

The assembler generates only IEEE floating-point numbers. The older floating point formats
are not supported.

9.12.5 ESA /390 Assembler Directives

as for the ESA/390 supports all of the standard ELF/SVR4 assembler directives that
are documented in the main part of this documentation. Several additional directives are
supported in order to implement the ESA /390 addressing model. The most important of
these are .using and .ltorg

These are the additional directives in as for the ESA/390:
.dc A small subset of the usual DC directive is supported.

.drop regno
Stop using regno as the base register. The regno must have been previously
declared with a .using directive in the same section as the current section.

.ebcdic string
Emit the EBCDIC equivalent of the indicated string. The emitted string will
be null terminated. Note that the directives .string etc. emit ascii strings by
default.

EQU The standard HLASM-style EQU directive is not supported; however, the stan-
dard as directive .equ can be used to the same effect.

.ltorg Dump the literal pool accumulated so far; begin a new literal pool. The literal
pool will be written in the current section; in order to generate correct assembly,
a .using must have been previously specified in the same section.

.using expr ,regno

Use regno as the base register for all subsequent RX, RS, and SS form instruc-
tions. The expr will be evaluated to obtain the base address; usually, expr will
merely be ‘.

This assembler allows two .using directives to be simultaneously outstanding,
one in the .text section, and one in another section (typically, the .data
section). This feature allows dynamically loaded objects to be implemented in
a relatively straightforward way. A .using directive must always be specified
in the .text section; this will specify the base register that will be used for
branches in the .text section. A second .using may be specified in another
section; this will specify the base register that is used for non-label address
literals. When a second .using is specified, then the subsequent .1ltorg must
be put in the same section; otherwise an error will result.

Thus, for example, the following code uses r3 to address branch targets and r4
to address the literal pool, which has been written to the .data section. The

Chapter 9: Machine Dependent Features 139

is, the constants =A(some_routine), =H’42’ and =E’3.1416° will all appear
in the .data section.

.data
.using LITPOOL,r4
.text
BASR r3,0
.using *,r3
B START
.long LITPOOL
START:
L r4,4(,r3)
L r15,=A(some_routine)
LTR r15,r15
BNE LABEL
AH r0,=H’42’
LABEL:
ME r6,=E’3.1416°
.data
LITPOOL:
.ltorg

Note that this dual-.using directive semantics extends and is not compatible
with HLASM semantics. Note that this assembler directive does not support
the full range of HLASM semantics.

9.12.6 Opcodes

For detailed information on the ESA/390 machine instruction set, see ESA /390 Principles
of Operation (IBM Publication Number DZ9AR004).

140

Using as

9.13 80386 Dependent Features

The 1386 version as supports both the original Intel 386 architecture in both 16 and 32-bit
mode as well as AMD x86-64 architecture extending the Intel architecture to 64-bits.

9.13.1 Options

The 1386 version of as has a few machine dependent options:

--32 | --x32 | --64

-n

—--divide

Select the word size, either 32 bits or 64 bits. ‘-=-32’ implies Intel 1386 archi-
tecture, while ‘--x32" and ‘--64" imply AMD x86-64 architecture with 32-bit
or 64-bit word-size respectively.

These options are only available with the ELF object file format, and require
that the necessary BFD support has been included (on a 32-bit platform you
have to add —enable-64-bit-bfd to configure enable 64-bit usage and use x86-64
as target platform).

By default, x86 GAS replaces multiple nop instructions used for alignment
within code sections with multi-byte nop instructions such as leal
0(%esi,1),%esi. This switch disables the optimization.

On SVRA4-derived platforms, the character ‘/’ is treated as a comment character,
which means that it cannot be used in expressions. The ‘--divide’ option turns
‘/” into a normal character. This does not disable ‘/’ at the beginning of a line
starting a comment, or affect using ‘#’ for starting a comment.

-march=CPU [+EXTENSION. . .]

This option specifies the target processor. The assembler will issue an error
message if an attempt is made to assemble an instruction which will not ex-
ecute on the target processor. The following processor names are recognized:
18086, 1186, 1286, 1386, 1486, 1586, 1686, pentium, pentiumpro, pentiumii,
pentiumiii, pentium4, prescott, nocona, core, core2, corei7, 1lom, klom,
k6, k6_2, athlon, opteron, k8, amdfam10, bdverl, bdver2, generic32 and
generic64.

In addition to the basic instruction set, the assembler can be told to accept var-
ious extension mnemonics. For example, -march=i1686+ssed4+vmx extends i686
with sse4 and vmx. The following extensions are currently supported: 8087,
287, 387, no87, mmx, nommx, sse, sse2, sse3, ssse3, sse4.1, sse4.2, ssed,
nosse, avx, avx2, noavx, VX, Smx, xsave, xsaveopt, aes, pclmul, fsgsbase,
rdrnd, £16c, bmi2, fma, movbe, ept, 1lzcnt, invpcid, c1flush, lwp, fma4, xop,
syscall, rdtscp, 3dnow, 3dnowa, sse4a, sseb, svme, abm and padlock. Note
that rather than extending a basic instruction set, the extension mnemonics
starting with no revoke the respective functionality.

When the .arch directive is used with ‘-march’, the .arch directive will take
precedent.

-mtune=CPU

This option specifies a processor to optimize for. When used in conjunction
with the ‘-march’ option, only instructions of the processor specified by the
‘-march’ option will be generated.

Chapter 9: Machine Dependent Features 141

Valid CPU values are identical to the processor list of ‘-march=CPU’.

-msse2avx
This option specifies that the assembler should encode SSE instructions with
VEX prefix.

-msse-check=none

-msse-check=warning

-msse-check=error
These options control if the assembler should check SSE intructions.
‘-msse-check=none’ will make the assembler not to check SSE instructions,
which is the default. ‘-msse-check=warning’ will make the assembler issue
a warning for any SSE intruction. ‘-msse-check=error’ will make the
assembler issue an error for any SSE intruction.

-mavxscalar=128

-mavxscalar=256
These options control how the assembler should encode scalar AVX instruc-
tions. ‘-mavxscalar=128’ will encode scalar AVX instructions with 128bit
vector length, which is the default. ‘-mavxscalar=256" will encode scalar AVX
instructions with 256bit vector length.

-mmnemonic=att

-mmnemonic=intel
This option specifies instruction mnemonic for matching instructions. The
.att_mnemonic and .intel_mnemonic directives will take precedent.

-msyntax=att

-msyntax=intel
This option specifies instruction syntax when processing instructions. The
.att_syntax and .intel_syntax directives will take precedent.

-mnaked-reg
This opetion specifies that registers don’t require a ‘%’ prefix. The .att_syntax
and .intel_syntax directives will take precedent.

9.13.2 x86 specific Directives

.lcomm symbol , length[, alignment]
Reserve length (an absolute expression) bytes for a local common denoted by
symbol. The section and value of symbol are those of the new local common.
The addresses are allocated in the bss section, so that at run-time the bytes
start off zeroed. Since symbol is not declared global, it is normally not visible
to 1d. The optional third parameter, alignment, specifies the desired alignment
of the symbol in the bss section.

This directive is only available for COFF based x86 targets.
9.13.3 i386 Syntactical Considerations
9.13.3.1 AT&T Syntax versus Intel Syntax

as now supports assembly using Intel assembler syntax. .intel_syntax selects Intel mode,
and .att_syntax switches back to the usual AT&T mode for compatibility with the output

142 Using as

of gcc. Either of these directives may have an optional argument, prefix, or noprefix
specifying whether registers require a ‘%’ prefix. AT&T System V/386 assembler syntax is
quite different from Intel syntax. We mention these differences because almost all 80386
documents use Intel syntax. Notable differences between the two syntaxes are:

e AT&T immediate operands are preceded by ‘$’; Intel immediate operands are undelim-
ited (Intel ‘push 4’ is AT&T ‘pushl $47). AT&T register operands are preceded by ‘%’;
Intel register operands are undelimited. AT&T absolute (as opposed to PC relative)
jump/call operands are prefixed by ‘*’; they are undelimited in Intel syntax.

e AT&T and Intel syntax use the opposite order for source and destination operands.
Intel ‘add eax, 4’ is ‘addl $4, %eax’. The ‘source, dest’ convention is maintained
for compatibility with previous Unix assemblers. Note that ‘bound’, ‘invlpga’, and
instructions with 2 immediate operands, such as the ‘enter’ instruction, do not have
reversed order. Section 9.13.16 [i386-Bugs], page 148.

e In AT&T syntax the size of memory operands is determined from the last character of
the instruction mnemonic. Mnemonic suffixes of ‘b’, ‘w’, ‘1’ and ‘q’ specify byte (8-bit),
word (16-bit), long (32-bit) and quadruple word (64-bit) memory references. Intel syn-
tax accomplishes this by prefixing memory operands (not the instruction mnemonics)
with ‘byte ptr’, ‘word ptr’, ‘dword ptr’ and ‘qword ptr’. Thus, Intel ‘mov al, byte
ptr foo’ is ‘movb foo, %al’ in AT&T syntax.

In 64-bit code, ‘movabs’ can be used to encode the ‘mov’ instruction with the 64-bit
displacement or immediate operand.

e Immediate form long jumps and calls are ‘1call/1ljmp $section, $offset’ in AT&T
syntax; the Intel syntax is ‘call/jmp far section:offset’. Also, the far return in-
struction is ‘lret $stack-adjust’ in AT&T syntax; Intel syntax is ‘ret far stack-
adjust’.

e The AT&T assembler does not provide support for multiple section programs. Unix
style systems expect all programs to be single sections.

9.13.3.2 Special Characters

The presence of a ‘#’ appearing anywhere on a line indicates the start of a comment that
extends to the end of that line.

If a ‘#’ appears as the first character of a line then the whole line is treated as a com-
ment, but in this case the line can also be a logical line number directive (see Section 3.3
[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25).

If the ‘--divide’ command line option has not been specified then the ‘/’ character
appearing anywhere on a line also introduces a line comment.

The ¢;’ character can be used to separate statements on the same line.

9.13.4 Instruction Naming

Instruction mnemonics are suffixed with one character modifiers which specify the size of
operands. The letters ‘b’, ‘w’, ‘1’ and ‘q’ specify byte, word, long and quadruple word
operands. If no suffix is specified by an instruction then as tries to fill in the missing
suffix based on the destination register operand (the last one by convention). Thus, ‘mov
%ax, %bx’ is equivalent to ‘movw %ax, %bx’; also, ‘mov $1, %bx’ is equivalent to ‘movw $1,

Chapter 9: Machine Dependent Features 143

bx’. Note that this is incompatible with the AT&T Unix assembler which assumes that a
missing mnemonic suffix implies long operand size. (This incompatibility does not affect
compiler output since compilers always explicitly specify the mnemonic suffix.)

Almost all instructions have the same names in AT&T and Intel format. There are a few
exceptions. The sign extend and zero extend instructions need two sizes to specify them.
They need a size to sign/zero extend from and a size to zero extend to. This is accomplished
by using two instruction mnemonic suffixes in AT&T syntax. Base names for sign extend
and zero extend are ‘movs...” and ‘movz..." in AT&T syntax (‘movsx’ and ‘movzx’ in Intel
syntax). The instruction mnemonic suffixes are tacked on to this base name, the from suffix
before the to suffix. Thus, ‘movsbl %al, %edx’ is AT&T syntax for “move sign extend from
%al to %edx.” Possible suffixes, thus, are ‘b1’ (from byte to long), ‘bw’ (from byte to word),
‘wl’ (from word to long), ‘bq’ (from byte to quadruple word), ‘wq’ (from word to quadruple
word), and ‘1q’ (from long to quadruple word).

Different encoding options can be specified via optional mnemonic suffix. ‘.s’ suffix
swaps 2 register operands in encoding when moving from one register to another. ‘.d32’
suffix forces 32bit displacement in encoding.

The Intel-syntax conversion instructions

e ‘cbw’ — sign-extend byte in ‘%al’ to word in ‘Yax’,

e ‘cwde’ — sign-extend word in ‘%ax’ to long in ‘%eax’,

e ‘cwd’ — sign-extend word in ‘/ax’ to long in ‘%dx:%ax’,

e ‘cdq’ — sign-extend dword in ‘/eax’ to quad in ‘Yedx:%eax’,

e ‘cdge’ — sign-extend dword in ‘eax’ to quad in ‘Jrax’ (x86-64 only),

e ‘cqo’ — sign-extend quad in ‘)irax’ to octuple in ‘%rdx:%rax’ (x86-64 only),

are called ‘cbtw’; ‘cwtl’, ‘cwtd’, ‘cltd’, ‘cltq’, and ‘cqto’ in AT&T naming. as accepts
either naming for these instructions.

Far call/jump instructions are ‘lcall’ and ‘ljmp’ in AT&T syntax, but are ‘call far’
and ‘jump far’ in Intel convention.

9.13.5 AT&T Mnemonic versus Intel Mnemonic

as supports assembly using Intel mnemonic. .intel_mnemonic selects Intel mnemonic with
Intel syntax, and .att_mnemonic switches back to the usual AT&T mnemonic with AT&T
syntax for compatibility with the output of gcc. Several x87 instructions, ‘fadd’, ‘fdiv’,
‘fdivp’, ‘fdivr’, ‘fdivrp’, ‘fmul’, ‘fsub’, ‘fsubp’, ‘fsubr’ and ‘fsubrp’, are implemented
in AT&T System V/386 assembler with different mnemonics from those in Intel IA32 spec-
ification. gcc generates those instructions with AT&T mnemonic.

9.13.6 Register Naming

Register operands are always prefixed with ‘%’. The 80386 registers consist of
e the 8 32-bit registers ‘%,eax’ (the accumulator), ‘%ebx’, ‘hecx’, ‘edx’, ‘%hedi’, ‘%esi’,
‘%ebp’ (the frame pointer), and ‘%esp’ (the stack pointer).
e the 8 16-bit low-ends of these: ‘%ax’, ‘%bx’, ‘hex’, “%dx’, ‘%di’, ‘%si’, ‘%bp’, and ‘%sp’.
e the 8 8-bit registers: ‘%ah’, ‘%al’, ‘%bh’, ‘%bl’, ‘%ich’, ‘%cl’, ‘%dh’, and ‘%dl’ (These are
the high-bytes and low-bytes of ‘jax’, ‘%bx’, ‘%cx’, and ‘%dx’)

144 Using as

e the 6 section registers ‘%cs’ (code section), ‘%ds’ (data section), ‘%ss’ (stack section),
‘hes’, ‘%hfs’, and ‘%gs’.

e the 3 processor control registers ‘%cr0’, ‘,cr2’, and ‘%cr3’.

e the 6 debug registers ‘%db0’, ‘%db1’, ‘%db2’, ‘%db3’, ‘%db6’, and ‘%db7’.

e the 2 test registers ‘%tr6’ and ‘%tr7’.

e the 8 floating point register stack ‘%st’ or equivalently ‘%st(0)’, ‘%st(1)’, ‘%st(2)’,
‘st (3)7, ‘hst(4)’, ‘%hst(5)’, ‘%st(6)’, and ‘%st(7)’. These registers are overloaded
by 8 MMX registers ‘%mm0’, ‘%mm1’, ‘%mm2’, ‘%mm3’, ‘%mm4’, ‘Ymm5’, ‘%mm6’ and ‘/mm7’.

e the 8 SSE registers registers ‘%xmm0’, ‘%xmm1’, ‘%xmm2’, ‘%xmm3’, ‘%xmm4’, ‘%xmm5’, ‘%xmm6’
and ‘Yxmm7’.

The AMD x86-64 architecture extends the register set by:
e enhancing the 8 32-bit registers to 64-bit: ‘%rax’ (the accumulator), ‘%rbx’, ‘Yircx’,
“Y%rdx’, ‘“%rdi’, ‘%rsi’, ‘%rbp’ (the frame pointer), ‘%rsp’ (the stack pointer)
e the 8 extended registers ‘%r8—%r15’.
e the 8 32-bit low ends of the extended registers: ‘%r8d—%r15d’
e the 8 16-bit low ends of the extended registers: ‘%r8w'—%ri5w’
e the 8 8-bit low ends of the extended registers: ‘%r8b’—%r15b’
e the 4 8-bit registers: ‘%sil’, ‘%dil’, ‘%bpl’, ‘Y%spl’.
e the 8 debug registers: ‘%db8—%db15’.
e the 8 SSE registers: ‘%xmm8—%xmm15’.

9.13.7 Instruction Prefixes

Instruction prefixes are used to modify the following instruction. They are used to re-
peat string instructions, to provide section overrides, to perform bus lock operations, and
to change operand and address sizes. (Most instructions that normally operate on 32-bit
operands will use 16-bit operands if the instruction has an “operand size” prefix.) Instruc-
tion prefixes are best written on the same line as the instruction they act upon. For example,
the ‘scas’ (scan string) instruction is repeated with:

repne scas hes: (%edi),%al

You may also place prefixes on the lines immediately preceding the instruction, but this
circumvents checks that as does with prefixes, and will not work with all prefixes.

Here is a list of instruction prefixes:

e Section override prefixes ‘cs’, ‘ds’, ‘ss’, ‘es’, ‘fs’, ‘gs’. These are automatically added
by specifying using the section:memory-operand form for memory references.

e Operand/Address size prefixes ‘datal6’ and ‘addr16’ change 32-bit operands/addresses
into 16-bit operands/addresses, while ‘data32’ and ‘addr32’ change 16-bit ones (in a
.codel6 section) into 32-bit operands/addresses. These prefixes must appear on the
same line of code as the instruction they modify. For example, in a 16-bit .codel16
section, you might write:

addr32 jmpl *(%ebx)

e The bus lock prefix ‘lock’ inhibits interrupts during execution of the instruction it
precedes. (This is only valid with certain instructions; see a 80386 manual for details).

Chapter 9: Machine Dependent Features 145

e The wait for coprocessor prefix ‘wait’ waits for the coprocessor to complete the current
instruction. This should never be needed for the 80386/80387 combination.

e The ‘rep’, ‘repe’, and ‘repne’ prefixes are added to string instructions to make them
repeat ‘%hecx’ times (‘%cx’ times if the current address size is 16-bits).

e The ‘rex’ family of prefixes is used by x86-64 to encode extensions to 1386 instruction
set. The ‘rex’ prefix has four bits — an operand size overwrite (64) used to change
operand size from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
register set.

You may write the ‘rex’ prefixes directly. The ‘rex64xyz’ instruction emits ‘rex’ prefix
with all the bits set. By omitting the 64, x, y or z you may write other prefixes as well.
Normally, there is no need to write the prefixes explicitly, since gas will automatically
generate them based on the instruction operands.

9.13.8 Memory References

An Intel syntax indirect memory reference of the form
section: [base + index*scale + disp]

is translated into the AT&T syntax

section:disp(base, index, scale)

where base and index are the optional 32-bit base and index registers, disp is the optional
displacement, and scale, taking the values 1, 2, 4, and 8, multiplies index to calculate the
address of the operand. If no scale is specified, scale is taken to be 1. section specifies
the optional section register for the memory operand, and may override the default section
register (see a 80386 manual for section register defaults). Note that section overrides in
AT&T syntax must be preceded by a ‘%’. If you specify a section override which coincides
with the default section register, as does not output any section register override prefixes
to assemble the given instruction. Thus, section overrides can be specified to emphasize
which section register is used for a given memory operand.

Here are some examples of Intel and AT&T style memory references:

AT&T: ‘-4 (%ebp)’, Intel: ‘[ebp - 4]’
base is ‘%ebp’; disp is ‘-4’. section is missing, and the default section is used
(‘%ss’ for addressing with ‘%ebp’ as the base register). index, scale are both
missing.

AT&T: ‘foo(,%eax,4)’, Intel: ‘[foo + eax*4]’
index is ‘Yeax’ (scaled by a scale 4); disp is ‘foo’. All other fields are missing.
The section register here defaults to ‘%ds’.

AT&T: ‘foo(,1)’; Intel ‘[foo]’
This uses the value pointed to by ‘foo’ as a memory operand. Note that base
and index are both missing, but there is only one ‘,”. This is a syntactic

exception.
AT&T: “fgs:foo’; Intel ‘gs:foo’
This selects the contents of the variable ‘foo’ with section register section being
‘%gS 9 .
Absolute (as opposed to PC relative) call and jump operands must be prefixed with ‘*’.
If no ‘¥’ is specified, as always chooses PC relative addressing for jump/call labels.

146 Using as

Any instruction that has a memory operand, but no register operand, must specify its
size (byte, word, long, or quadruple) with an instruction mnemonic suffix (‘b’, ‘w’, ‘1’ or ‘q’,
respectively).

The x86-64 architecture adds an RIP (instruction pointer relative) addressing. This
addressing mode is specified by using ‘rip’ as a base register. Only constant offsets are
valid. For example:

AT&T: ‘1234 (Yrip)’, Intel: ‘[rip + 1234]’
Points to the address 1234 bytes past the end of the current instruction.

AT&T: ‘symbol (%rip)’, Intel: ‘[rip + symbol]’
Points to the symbol in RIP relative way, this is shorter than the default abso-
lute addressing.

Other addressing modes remain unchanged in x86-64 architecture, except registers used
are 64-bit instead of 32-bit.

9.13.9 Handling of Jump Instructions

Jump instructions are always optimized to use the smallest possible displacements. This is
accomplished by using byte (8-bit) displacement jumps whenever the target is sufficiently
close. If a byte displacement is insufficient a long displacement is used. We do not support
word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump instruction with
the ‘datal6’ instruction prefix), since the 80386 insists upon masking ‘%eip’ to 16 bits after
the word displacement is added. (See also see Section 9.13.17 [i386-Arch], page 148)

)

Note that the ‘jcxz’, ‘jecxz’, ‘loop’, ‘loopz’, ‘loope’, ‘loopnz’ and ‘loopne’ instruc-
tions only come in byte displacements, so that if you use these instructions (gcc does not
use them) you may get an error message (and incorrect code). The AT&T 80386 assembler
tries to get around this problem by expanding ‘jcxz foo’ to

jcxz cx_zero

jmp cx_nonzero
cx_zero: jmp foo
CX_Nnonzero:

9.13.10 Floating Point

All 80387 floating point types except packed BCD are supported. (BCD support may
be added without much difficulty). These data types are 16-, 32-, and 64- bit integers,
and single (32-bit), double (64-bit), and extended (80-bit) precision floating point. Each
supported type has an instruction mnemonic suffix and a constructor associated with it.
Instruction mnemonic suffixes specify the operand’s data type. Constructors build these
data types into memory.

¢

e Floating point constructors are ‘.float’ or ‘.single’, ‘.double’, and ‘.tfloat’ for
32-, 64-, and 80-bit formats. These correspond to instruction mnemonic suffixes ‘s’,
‘1’, and ‘t’. ‘t’ stands for 80-bit (ten byte) real. The 80387 only supports this format
via the ‘f1dt’ (load 80-bit real to stack top) and ‘fstpt’ (store 80-bit real and pop
stack) instructions.

e Integer constructors are ‘.word’, ‘.long’ or ‘.int’, and ‘.quad’ for the 16-, 32-, and 64-

bit integer formats. The corresponding instruction mnemonic suffixes are ‘s’ (single),
‘1’ (long), and ‘q’ (quad). As with the 80-bit real format, the 64-bit ‘q’ format is only

Chapter 9: Machine Dependent Features 147

present in the ‘fildq’ (load quad integer to stack top) and ‘fistpq’ (store quad integer
and pop stack) instructions.

Register to register operations should not use instruction mnemonic suffixes. ‘fstl %st,
%st (1)’ will give a warning, and be assembled as if you wrote ‘fst %st, %st(1)’, since all
register to register operations use 80-bit floating point operands. (Contrast this with ‘fstl
%st, mem’, which converts ‘%st’ from 80-bit to 64-bit floating point format, then stores the
result in the 4 byte location ‘mem’)

9.13.11 Intel’s MMX and AMD’s 3DNow! SIMD Operations

as supports Intel’s MMX instruction set (SIMD instructions for integer data), available on
Intel’s Pentium MMX processors and Pentium II processors, AMD’s K6 and K6-2 proces-
sors, Cyrix’ M2 processor, and probably others. It also supports AMD’s 3DNow! instruction
set (SIMD instructions for 32-bit floating point data) available on AMD’s K6-2 processor
and possibly others in the future.

Currently, as does not support Intel’s floating point SIMD, Katmai (KNI).

The eight 64-bit MMX operands, also used by 3DNow!, are called ‘%mmO’, ‘%mm1’; ...
“%mm7’. They contain eight 8-bit integers, four 16-bit integers, two 32-bit integers, one 64-
bit integer, or two 32-bit floating point values. The MMX registers cannot be used at the
same time as the floating point stack.

See Intel and AMD documentation, keeping in mind that the operand order in instruc-
tions is reversed from the Intel syntax.

9.13.12 AMD'’s Lightweight Profiling Instructions

as supports AMD’s Lightweight Profiling (LWP) instruction set, available on AMD’s Family
15h (Orochi) processors.

LWP enables applications to collect and manage performance data, and react to per-
formance events. The collection of performance data requires no context switches. LWP
runs in the context of a thread and so several counters can be used independently across
multiple threads. LWP can be used in both 64-bit and legacy 32-bit modes.

For detailed information on the LWP instruction set, see the AMD Lightweight Profiling
Specification available at Lightweight Profiling Specification.

9.13.13 Bit Manipulation Instructions
as supports the Bit Manipulation (BMI) instruction set.

BMI instructions provide several instructions implementing individual bit manipulation
operations such as isolation, masking, setting, or resetting.

9.13.14 AMD'’s Trailing Bit Manipulation Instructions

as supports AMD’s Trailing Bit Manipulation (TBM) instruction set, available on AMD’s
BDVER2 processors (Trinity and Viperfish).

TBM instructions provide instructions implementing individual bit manipulation op-
erations such as isolating, masking, setting, resetting, complementing, and operations on
trailing zeros and ones.

http://developer.amd.com/cpu/LWP

148 Using as

9.13.15 Writing 16-bit Code

While as normally writes only “pure” 32-bit i386 code or 64-bit x86-64 code depending
on the default configuration, it also supports writing code to run in real mode or in 16-bit
protected mode code segments. To do this, put a ‘. codel6’ or ‘. codel6gcc’ directive before
the assembly language instructions to be run in 16-bit mode. You can switch as to writing
32-bit code with the ‘. code32’ directive or 64-bit code with the ‘. code64’ directive.

‘.codel6gcc’ provides experimental support for generating 16-bit code from gcc, and
differs from ‘.codel16’ in that ‘call’, ‘ret’, ‘enter’, ‘leave’, ‘push’, ‘pop’, ‘pusha’, ‘popa’,
‘pushf’, and ‘popf’ instructions default to 32-bit size. This is so that the stack pointer is
manipulated in the same way over function calls, allowing access to function parameters at
the same stack offsets as in 32-bit mode. ‘.codel6gcc’ also automatically adds address size
prefixes where necessary to use the 32-bit addressing modes that gcc generates.

The code which as generates in 16-bit mode will not necessarily run on a 16-bit pre-
80386 processor. To write code that runs on such a processor, you must refrain from using
any 32-bit constructs which require as to output address or operand size prefixes.

Note that writing 16-bit code instructions by explicitly specifying a prefix or an instruc-
tion mnemonic suffix within a 32-bit code section generates different machine instructions
than those generated for a 16-bit code segment. In a 32-bit code section, the following code
generates the machine opcode bytes ‘66 6a 04’, which pushes the value ‘4’ onto the stack,
decrementing ‘%esp’ by 2.

pushw $4

The same code in a 16-bit code section would generate the machine opcode bytes ‘6a 04’
(i.e., without the operand size prefix), which is correct since the processor default operand
size is assumed to be 16 bits in a 16-bit code section.

9.13.16 AT&T Syntax bugs

The UnixWare assembler, and probably other AT&T derived ix86 Unix assemblers, generate
floating point instructions with reversed source and destination registers in certain cases.
Unfortunately, gcc and possibly many other programs use this reversed syntax, so we're
stuck with it.
For example
fsub %st,%st(3)
results in ‘%st(3)’ being updated to ‘%st - %st(3)’ rather than the expected ‘%st(3) -
%st’. This happens with all the non-commutative arithmetic floating point operations

with two register operands where the source register is ‘%st’ and the destination register is
Yhst (1)’

9.13.17 Specifying CPU Architecture

as may be told to assemble for a particular CPU (sub-)architecture with the .arch cpu_
type directive. This directive enables a warning when gas detects an instruction that is
not supported on the CPU specified. The choices for cpu_type are:

‘18086’ ‘1186’ ‘1286’ ‘1386’
‘1486’ ‘1586’ ‘1686’ ‘pentium’
‘pentiumpro’ ‘pentiumii’ ‘pentiumiii’ ‘pentiumd’

‘prescott’ ‘nocona’ ‘core’ ‘core2’

Chapter 9: Machine Dependent Features 149

‘coreiT’ ‘liom’ ‘kilom’

‘k6’ ‘k6_2’ ‘athlon’ ‘k8’
‘amdfam10’ ‘bdverl’ ‘bdver2’

‘generic32’ ‘generic64’

. mmx’ ‘.sse’ ‘.sse2’ ‘.ssed
‘.sssed’ ‘.ssed.l’ ‘.ssed.2’ ‘.ssed’
‘.avx’ ‘. vmx’ ‘. smx’ ‘.ept’
‘.clflush’ ‘.movbe’ ‘.xsave’ ‘.xsaveopt’
‘.aes’ ‘.pclmul’ ‘. fma’ ‘.fsgsbase’
‘.rdrnd’ ‘.f16c’ ‘Lavx2’ ‘. bmi2’
‘.1zcnt’ ‘.invpcid’

‘.3dnow’ ‘.3dnowa’ ‘.sseda’ ‘.sseb’
‘.syscall’ ‘.rdtscp’ ‘. svme’ ‘. abm’

‘. lwp’ ‘. fmad’ ‘.xop’

‘.padlock’

Apart from the warning, there are only two other effects on as operation; Firstly, if you
specify a CPU other than ‘i486’, then shift by one instructions such as ‘sarl $1, %eax’
will automatically use a two byte opcode sequence. The larger three byte opcode sequence
is used on the 486 (and when no architecture is specified) because it executes faster on
the 486. Note that you can explicitly request the two byte opcode by writing ‘sarl %eax’.
Secondly, if you specify ‘18086’°, ‘1186, or ‘1286, and ‘.codel6’ or ‘.codel6gcc’ then byte
offset conditional jumps will be promoted when necessary to a two instruction sequence
consisting of a conditional jump of the opposite sense around an unconditional jump to the
target.

Following the CPU architecture (but not a sub-architecture, which are those starting with
a dot), you may specify ‘jumps’ or ‘nojumps’ to control automatic promotion of conditional
jumps. ‘jumps’ is the default, and enables jump promotion; All external jumps will be of
the long variety, and file-local jumps will be promoted as necessary. (see Section 9.13.9
[i386-Jumps|, page 146) ‘nojumps’ leaves external conditional jumps as byte offset jumps,
and warns about file-local conditional jumps that as promotes. Unconditional jumps are
treated as for ‘jumps’.

For example

.arch i8086,nojumps

9.13.18 Notes

There is some trickery concerning the ‘mul’ and ‘imul’ instructions that deserves mention.
The 16-, 32-, 64- and 128-bit expanding multiplies (base opcode ‘0x£6’; extension 4 for ‘mul’
and 5 for ‘imul’) can be output only in the one operand form. Thus, ‘imul %ebx, %eax’
does not select the expanding multiply; the expanding multiply would clobber the ‘%edx’
register, and this would confuse gcc output. Use ‘imul %ebx’ to get the 64-bit product in
‘Yhedx : feax’.

We have added a two operand form of ‘imul’ when the first operand is an immediate
mode expression and the second operand is a register. This is just a shorthand, so that,
multiplying ‘%eax’ by 69, for example, can be done with ‘imul $69, %eax’ rather than ‘imul
$69, %eax, leax’.

150 Using as

9.14 Intel i860 Dependent Features

9.14.1 1860 Notes

This is a fairly complete i860 assembler which is compatible with the UNIX System V /860
Release 4 assembler. However, it does not currently support SVR4 PIC (i.e., @GOT,
@GOTOFF, @PLT)

Like the SVR4/860 assembler, the output object format is ELF32. Currently, this is the
only supported object format. If there is sufficient interest, other formats such as COFF
may be implemented.

Both the Intel and AT&T/SVR4 syntaxes are supported, with the latter being the
default. One difference is that AT& T syntax requires the '%’ prefix on register names while
Intel syntax does not. Another difference is in the specification of relocatable expressions.
The Intel syntax is halexpression whereas the SVR4 syntax is [expression]@ha (and
similarly for the "1" and "h" selectors).

9.14.2 i860 Command-line Options
9.14.2.1 SVRA4 compatibility options

-V Print assembler version.

-Qy Ignored.

-Qn Ignored.

9.14.2.2 Other options

-EL Select little endian output (this is the default).

-EB Select big endian output. Note that the i860 always reads instructions as little

endian data, so this option only effects data and not instructions.

-mwarn-expand
Emit a warning message if any pseudo-instruction expansions occurred. For ex-
ample, a or instruction with an immediate larger than 16-bits will be expanded
into two instructions. This is a very undesirable feature to rely on, so this flag
can help detect any code where it happens. One use of it, for instance, has been
to find and eliminate any place where gcc may emit these pseudo-instructions.

-mxp Enable support for the i860XP instructions and control registers. By default,
this option is disabled so that only the base instruction set (i.e., i860XR) is
supported.

-mintel-syntax
The 1860 assembler defaults to AT&T/SVR4 syntax. This option enables the
Intel syntax.

9.14.3 1860 Machine Directives

.dual Enter dual instruction mode. While this directive is supported, the preferred
way to use dual instruction mode is to explicitly code the dual bit with the d.
prefix.

Chapter 9: Machine Dependent Features 151

.enddual Exit dual instruction mode. While this directive is supported, the preferred
way to use dual instruction mode is to explicitly code the dual bit with the d.
prefix.

.atmp Change the temporary register used when expanding pseudo operations. The
default register is r31.

The .dual, .enddual, and .atmp directives are available only in the Intel syntax mode.

Both syntaxes allow for the standard .align directive. However, the Intel syntax addi-
tionally allows keywords for the alignment parameter: ".align type", where ‘type’ is one
of .short, .long, .quad, .single, .double representing alignments of 2, 4, 16, 4, and 8,
respectively.

9.14.4 i860 Opcodes

All of the Intel i860XR and i860XP machine instructions are supported. Please see either
i860 Microprocessor Programmer’s Reference Manual or i860 Microprocessor Architecture
for more information.

9.14.4.1 Other instruction support (pseudo-instructions)

For compatibility with some other i860 assemblers, a number of pseudo-instructions are
supported. While these are supported, they are a very undesirable feature that should be
avoided — in particular, when they result in an expansion to multiple actual i860 instructions.
Below are the pseudo-instructions that result in expansions.

e Load large immediate into general register:

The pseudo-instruction mov imm, %rn (where the immediate does not fit within a signed
16-bit field) will be expanded into:

orh large_imm@h,%r0,%rn

or large_imm@l,%rn,%rn

e Load/store with relocatable address expression:

For example, the pseudo-instruction 1d.b addr_exp (%rx) ,%rn will be expanded into:
orh addr_exp@ha,’rx,%r31
1d.1 addr_exp@l(%r31),%rn
The analogous expansions apply to 1d.x, st.x, f1d.x, pfld.x, fst.x, and pst.x as
well.

e Signed large immediate with add/subtract:

If any of the arithmetic operations adds, addu, subs, subu are used with an im-
mediate larger than 16-bits (signed), then they will be expanded. For instance, the
pseudo-instruction adds large_imm,%rx,%rn expands to:

orh large_imm@h,%r0,%r31
or large_imm@l,%r31,%r31
adds %r31,%rx,%rn

e Unsigned large immediate with logical operations:

Logical operations (or, andnot, or, xor) also result in expansions. The pseudo-
instruction or large_imm,%rx,%rn results in:

orh large_imm@h,%rx,%r31

or large_imm@l,%r31,%rn

Similarly for the others, except for and which expands to:

152 Using as

andnot (-1 - large_imm)G®h,%rx,%r31
andnot (-1 - large_imm)@1,%r31,%rn

9.14.5 1860 Syntax
9.14.5.1 Special Characters

The presence of a ‘#’ appearing anywhere on a line indicates the start of a comment that
extends to the end of that line.

If a ‘#’ appears as the first character of a line then the whole line is treated as a com-
ment, but in this case the line can also be a logical line number directive (see Section 3.3
[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25).

The ¢;’ character can be used to separate statements on the same line.

Chapter 9: Machine Dependent Features 153

9.15 Intel 80960 Dependent Features

9.15.1 1960 Command-line Options

-ACA | ~ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC

Select the 80960 architecture. Instructions or features not supported by the
selected architecture cause fatal errors.

‘=ACA’ is equivalent to ‘~ACA_A’; ‘~AKC’ is equivalent to ‘~AMC’. Synonyms are
provided for compatibility with other tools.

If you do not specify any of these options, as generates code for any instruction
or feature that is supported by some version of the 960 (even if this means mix-
ing architectures!). In principle, as attempts to deduce the minimal sufficient
processor type if none is specified; depending on the object code format, the
processor type may be recorded in the object file. If it is critical that the as
output match a specific architecture, specify that architecture explicitly.

Add code to collect information about conditional branches taken, for later
optimization using branch prediction bits. (The conditional branch instructions
have branch prediction bits in the CA, CB, and CC architectures.) If BR
represents a conditional branch instruction, the following represents the code
generated by the assembler when ‘-b’ is specified:

call increment routine

.word O # pre-counter
Label: BR

call increment routine

.word O # post-counter

The counter following a branch records the number of times that branch was
not taken; the difference between the two counters is the number of times the
branch was taken.

A table of every such Label is also generated, so that the external postprocessor
gbr960 (supplied by Intel) can locate all the counters. This table is always
labeled ‘__BRANCH_TABLE__’; this is a local symbol to permit collecting statistics
for many separate object files. The table is word aligned, and begins with a
two-word header. The first word, initialized to 0, is used in maintaining linked
lists of branch tables. The second word is a count of the number of entries
in the table, which follow immediately: each is a word, pointing to one of the
labels illustrated above.

*NEXT COUNT: N | *BRLAB 1 ‘) *BRLAB N

__BRANCH_TABLE__ layout

The first word of the header is used to locate multiple branch tables, since each
object file may contain one. Normally the links are maintained with a call to
an initialization routine, placed at the beginning of each function in the file.
The GNU C compiler generates these calls automatically when you give it a ‘-b’
option. For further details, see the documentation of ‘gbr960°.

154

-no-relax

Using as

Normally, Compare-and-Branch instructions with targets that require displace-
ments greater than 13 bits (or that have external targets) are replaced with
the corresponding compare (or ‘chkbit’) and branch instructions. You can use
the ‘-no-relax’ option to specify that as should generate errors instead, if the
target displacement is larger than 13 bits.

This option does not affect the Compare-and-Jump instructions; the code emit-
ted for them is always adjusted when necessary (depending on displacement
size), regardless of whether you use ‘-no-relax’.

9.15.2 Floating Point

as generates IEEE floating-point numbers for the directives ‘.float’, ‘.double’,
‘.extended’, and ‘.single’.

9.15.3 1960 Machine Directives

.bss symbol, length, align

Reserve length bytes in the bss section for a local symbol, aligned to the power
of two specified by align. length and align must be positive absolute expressions.
This directive differs from ‘.1comm’ only in that it permits you to specify an
alignment. See Section 7.67 [.1lcomm], page 57.

.extended flonums

.extended expects zero or more flonums, separated by commas; for each
flonum, ‘.extended’ emits an IEEE extended-format (80-bit) floating-point
number.

.leafproc call-lab, bal-lab

You can use the ‘.leafproc’ directive in conjunction with the optimized callj
instruction to enable faster calls of leaf procedures. If a procedure is known to
call no other procedures, you may define an entry point that skips procedure
prolog code (and that does not depend on system-supplied saved context), and
declare it as the bal-lab using ‘.leafproc’. If the procedure also has an entry
point that goes through the normal prolog, you can specify that entry point as
call-lab.

A ‘.leafproc’ declaration is meant for use in conjunction with the optimized
call instruction ‘callj’; the directive records the data needed later to choose
between converting the ‘callj’ into a bal or a call.

call-lab is optional; if only one argument is present, or if the two arguments are
identical, the single argument is assumed to be the bal entry point.

.sysproc name, index

The ‘.sysproc’ directive defines a name for a system procedure. After you
define it using ‘. sysproc’, you can use name to refer to the system procedure
identified by index when calling procedures with the optimized call instruction
‘callj’.

Both arguments are required; index must be between 0 and 31 (inclusive).

Chapter 9: Machine Dependent Features 155

9.15.4 1960 Opcodes

All Intel 960 machine instructions are supported; see Section 9.15.1 [i9960 Command-line
Options|, page 153 for a discussion of selecting the instruction subset for a particular 960
architecture.

Some opcodes are processed beyond simply emitting a single corresponding instruction:
‘callj’, and Compare-and-Branch or Compare-and-Jump instructions with target displace-
ments larger than 13 bits.

9.15.4.1 callj

You can write callj to have the assembler or the linker determine the most appropriate
form of subroutine call: ‘call’, ‘bal’, or ‘calls’. If the assembly source contains enough
information—a ‘.leafproc’ or ‘.sysproc’ directive defining the operand—then as trans-
lates the callj; if not, it simply emits the callj, leaving it for the linker to resolve.

9.15.4.2 Compare-and-Branch

The 960 architectures provide combined Compare-and-Branch instructions that permit you
to store the branch target in the lower 13 bits of the instruction word itself. However, if you
specify a branch target far enough away that its address won’t fit in 13 bits, the assembler
can either issue an error, or convert your Compare-and-Branch instruction into separate
instructions to do the compare and the branch.

Whether as gives an error or expands the instruction depends on two choices you can
make: whether you use the ‘-no-relax’ option, and whether you use a “Compare and
Branch” instruction or a “Compare and Jump” instruction. The “Jump” instructions are
always expanded if necessary; the “Branch” instructions are expanded when necessary un-
less you specify -no-relax—in which case as gives an error instead.

These are the Compare-and-Branch instructions, their “Jump” variants, and the instruc-
tion pairs they may expand into:

Compare and
Branch Jump FExpanded to

bbc chkbit; bno
bbs chkbit; bo
cmpibe cmpije cmpi; be

cmpibg cmpijg cmpi; bg
cmpibge cmpijge cmpi; bge

cmpibl cmpijl cmpi; bl
cmpible cmpijle cmpi; ble

cmpibno cmpijno cmpi; bno

cmpibne cmpijne cmpi; bne
cmpibo cmpijo cmpi; bo
cmpobe cmpoje cmpo; be

cmpobg cmpojg cmpo; bg
cmpobge cmpojge cmpo; bge

cmpobl cmpojl cmpo; bl
cmpoble cmpojle cmpo; ble
cmpobne cmpojne cmpo; bne

156 Using as

9.15.5 Syntax for the i960
9.15.5.1 Special Characters

The presence of a ‘#’” on a line indicates the start of a comment that extends to the end of
the current line.

If a ‘#’ appears as the first character of a line, the whole line is treated as a comment, but
in this case the line can also be a logical line number directive (see Section 3.3 [Comments],
page 25) or a preprocessor control command (see Section 3.1 [Preprocessing], page 25).

The ¢;’ character can be used to separate statements on the same line.

Chapter 9: Machine Dependent Features 157

9.16 IA-64 Dependent Features

9.16.1 Options

‘-mconstant-gp’

This option instructs the assembler to mark the resulting object file as using the
“constant GP” model. With this model, it is assumed that the entire program
uses a single global pointer (GP) value. Note that this option does not in any
fashion affect the machine code emitted by the assembler. All it does is turn
on the EF_TA_64_CONS_GP flag in the ELF file header.

‘-mauto-pic’

‘-milp32’
‘-milp64’
‘-mlp64’
‘-mp64’

‘-mle
-mbe

)

9

This option instructs the assembler to mark the resulting object file as using
the “constant GP without function descriptor” data model. This model is like
the “constant GP” model, except that it additionally does away with function
descriptors. What this means is that the address of a function refers directly
to the function’s code entry-point. Normally, such an address would refer to
a function descriptor, which contains both the code entry-point and the GP-
value needed by the function. Note that this option does not in any fashion
affect the machine code emitted by the assembler. All it does is turn on the
EF_TA_64_NOFUNCDESC_CONS_GP flag in the ELF file header.

These options select the data model. The assembler defaults to -m1p64 (LP64
data model).

These options select the byte order. The -mle option selects little-endian byte
order (default) and -mbe selects big-endian byte order. Note that IA-64 machine
code always uses little-endian byte order.

‘-mtune=itaniuml’
‘-mtune=itanium?’

Tune for a particular 1A-64 CPU, itaniuml or itaniumZ2. The default is ita-
nium?2.

‘-munwind-check=warning’
‘-munwind-check=error’

These options control what the assembler will do when performing consistency
checks on unwind directives. -munwind-check=warning will make the assem-
bler issue a warning when an unwind directive check fails. This is the default.
-munwind-check=error will make the assembler issue an error when an unwind
directive check fails.

‘-mhint .b=0k’
‘-mhint.b=warning’
‘-mhint.b=error’

These options control what the assembler will do when the ‘hint.Db’
instruction is used. -mhint.b=ok will make the assembler accept ‘hint.Db’.

158 Using as

-mint.b=warning will make the assembler issue a warning when ‘hint.b’ is
used. -mhint.b=error will make the assembler treat ‘hint.b’ as an error,
which is the default.

4 i

-X
‘-xexplicit’
These options turn on dependency violation checking.
‘-xauto’ This option instructs the assembler to automatically insert stop bits where
necessary to remove dependency violations. This is the default mode.
‘-xnone’ This option turns off dependency violation checking.

‘-xdebug’ This turns on debug output intended to help tracking down bugs in the depen-
dency violation checker.

‘-xdebugn’
This is a shortcut for -xnone -xdebug.

‘-xdebugx’
This is a shortcut for -xexplicit -xdebug.

9.16.2 Syntax
The assembler syntax closely follows the [A-64 Assembly Language Reference Guide.

9.16.2.1 Special Characters

‘//’ is the line comment token.

‘;7 can be used instead of a newline to separate statements.

9.16.2.2 Register Names

The 128 integer registers are referred to as ‘rn’. The 128 floating-point registers are referred
to as ‘fn’. The 128 application registers are referred to as ‘arn’. The 128 control registers
are referred to as ‘crn’. The 64 one-bit predicate registers are referred to as ‘pn’. The
8 branch registers are referred to as ‘bn’. In addition, the assembler defines a number of
aliases: ‘gp’ (‘r1’), ‘sp’ (‘r12’), ‘rp’ (‘b0’), ‘ret0’ (‘r8’), ‘retl’ (‘r9’), ‘ret2’ (‘r10’), ‘ret3d’
(‘r9’), ‘fargn’ (‘f8+n’), and ‘fretn’ (‘£8+n’).

For convenience, the assembler also defines aliases for all named application and con-
trol registers. For example, ‘ar.bsp’ refers to the register backing store pointer (‘ari7’).
Similarly, ‘cr.eoi’ refers to the end-of-interrupt register (‘cré7’).

9.16.2.3 IA-64 Processor-Status-Register (PSR) Bit Names

The assembler defines bit masks for each of the bits in the TA-64 processor status register.
For example, ‘psr.ic’ corresponds to a value of 0x2000. These masks are primarily intended
for use with the ‘ssm’/‘sum’ and ‘rsm’/‘rum’ instructions, but they can be used anywhere
else where an integer constant is expected.

9.16.2.4 Relocations

In addition to the standard IA-64 relocations, the following relocations are implemented by
as:

Chapter 9: Machine Dependent Features 159

@slotcount (V)
Convert the address offset V into a slot count. This pseudo function is available
only on VMS. The expression V must be known at assembly time: it can’t
reference undefined symbols or symbols in different sections.

9.16.3 Opcodes

For detailed information on the IA-64 machine instruction set, see the 1A-64 Assembly
Language Reference Guide available at

http://developer.intel.com/design/itanium/arch_spec.htm

160 Using as

9.17 IP2K Dependent Features

9.17.1 IP2K Options

The Ubicom IP2K version of as has a few machine dependent options:

-mip2022ext
as can assemble the extended IP2022 instructions, but it will only do so if this
is specifically allowed via this command line option.

-mip2022 This option restores the assembler’s default behaviour of not permitting the
extended IP2022 instructions to be assembled.

9.17.2 TP2K Syntax
9.17.2.1 Special Characters

The presence of a ‘;’ on a line indicates the start of a comment that extends to the end of
the current line.

If a ‘#’ appears as the first character of a line, the whole line is treated as a comment, but
in this case the line can also be a logical line number directive (see Section 3.3 [Comments],
page 25) or a preprocessor control command (see Section 3.1 [Preprocessing], page 25).

The IP2K assembler does not currently support a line separator character.

Chapter 9: Machine Dependent Features

9.18 LM32 Dependent Features

9.18.1 Options

-mmultiply-enabled
Enable multiply instructions.

-mdivide—-enabled
Enable divide instructions.

-mbarrel-shift-enabled
Enable barrel-shift instructions.

-msign-extend-enabled
Enable sign extend instructions.

-muser—-enabled
Enable user defined instructions.

-micache-enabled
Enable instruction cache related CSRs.

-mdcache-enabled
Enable data cache related CSRs.

-mbreak-enabled
Enable break instructions.

-mall-enabled
Enable all instructions and CSRs.

9.18.2 Syntax

9.18.2.1 Register Names
LM32 has 32 x 32-bit general purpose registers ‘r0’, ‘ri’, ... ‘r31’.

The following aliases are defined: ‘gp’ - ‘r26’, ‘fp’ - ‘r27’, ‘sp’ -

- ‘r30’, ‘ba’ - ‘r31’.
LM32 has the following Control and Status Registers (CSRs).

1IE Interrupt enable.

M Interrupt mask.

Ip Interrupt pending.

ICC Instruction cache control.
DCC Data cache control.

CC Cycle counter.

CFG Configuration.

EBA Exception base address.

DC Debug control.

‘r28’, ‘ra’

161

- ‘r29’, ‘ea’

162

DEBA
JTX
JRX
BPO
BP1
BP2
BP3
WPO
WP1
WP2
WP3

Using as

Debug exception base address.
JTAG transmit.
JTAG receive.
Breakpoint 0.
Breakpoint 1.
Breakpoint 2.
Breakpoint 3.
Watchpoint 0.
Watchpoint 1.
Watchpoint 2.
Watchpoint 3.

9.18.2.2 Relocatable Expression Modifiers

The assembler supports several modifiers when using relocatable addresses in LM32 instruc-
tion operands. The general syntax is the following:

1o

hi

gp

got

gotofflol6

gotoffhil6

modifier (relocatable-expression)

This modifier allows you to use bits 0 through 15 of an address expression as
16 bit relocatable expression.

This modifier allows you to use bits 16 through 23 of an address expression as
16 bit relocatable expression.

For example

ori r4, r4, lo(sym+10)
orhi r4, r4, hi(sym+10)

This modified creates a 16-bit relocatable expression that is the offset of the
symbol from the global pointer.
mva r4, gp(sym)

This modifier places a symbol in the GOT and creates a 16-bit relocatable
expression that is the offset into the GOT of this symbol.
1w r4, (gp+got(sym))

This modifier allows you to use the bits 0 through 15 of an address which is an
offset from the GOT.

This modifier allows you to use the bits 16 through 31 of an address which is
an offset from the GOT.

orhi r4, r4, gotoffhil6(lsym)
addi r4, r4, gotofflol6(1lsym)

Chapter 9: Machine Dependent Features 163

9.18.2.3 Special Characters

The presence of a ‘#’ on a line indicates the start of a comment that extends to the end of the
current line. Note that if a line starts with a ‘#’ character then it can also be a logical line
number directive (see Section 3.3 [Comments|, page 25) or a preprocessor control command
(see Section 3.1 [Preprocessing], page 25).

A semicolon (‘;’) can be used to separate multiple statements on the same line.

9.18.3 Opcodes

For detailed information on the LM32 machine instruction set, see http://www.latticesemi.com/products/i

as implements all the standard LM32 opcodes.

http://www.latticesemi.com/products/intellectualproperty/ipcores/mico32/

164

Using as

9.19 M32C Dependent Features

as can assemble code for several different members of the Renesas M32C family. Normally
the default is to assemble code for the M16C microprocessor. The -m32c option may be
used to change the default to the M32C microprocessor.

9.19.1 M32C Options

The Renesas M32C version of as has these machine-dependent options:

-m32c¢ Assemble M32C instructions.

-m16¢ Assemble M16C instructions (default).
-relax Enable support for link-time relaxations.
-h-tick-hex

Support H’00 style hex constants in addition to 0x00 style.

9.19.2 M32C Syntax

9.19.2.1 Symbolic Operand Modifiers

The assembler supports several modifiers when using symbol addresses in M32C instruction
operands. The general syntax is the following:

fmodifier (symbol)
%dsp8
%dsp16
These modifiers override the assembler’s assumptions about how big a sym-
bol’s address is. Normally, when it sees an operand like ‘sym[a0]’ it assumes
‘sym’ may require the widest displacement field (16 bits for ‘-m16c’, 24 bits for
‘-m32c¢’). These modifiers tell it to assume the address will fit in an 8 or 16 bit
(respectively) unsigned displacement. Note that, of course, if it doesn’t actually
fit you will get linker errors. Example:
mov.w %dsp8(sym) [a0],rl
mov.b #0,%dsp8(sym) [a0]
%hi8
This modifier allows you to load bits 16 through 23 of a 24 bit address into an
8 bit register. This is useful with, for example, the M16C ‘smovf’ instruction,
which expects a 20 bit address in ‘rih’ and ‘a0’. Example:
mov.b #4hi8(sym),r1h
mov.w #1016 (sym),a0
smovf.b
%lo16
Likewise, this modifier allows you to load bits 0 through 15 of a 24 bit address
into a 16 bit register.
%hil6

This modifier allows you to load bits 16 through 31 of a 32 bit address into
a 16 bit register. While the M32C family only has 24 bits of address space,

Chapter 9: Machine Dependent Features 165

it does support addresses in pairs of 16 bit registers (like ‘ala0’ for the ‘lde’
instruction). This modifier is for loading the upper half in such cases. Example:

mov.w #%hi16(sym),al
mov.w #)1016(sym),a0

lde.w [ala0l],rl

9.19.2.2 Special Characters
The presence of a ‘;’ character on a line indicates the start of a comment that extends to
the end of that line.

If a ‘#” appears as the first character of a line, the whole line is treated as a comment, but
in this case the line can also be a logical line number directive (see Section 3.3 [Comments],
page 25) or a preprocessor control command (see Section 3.1 [Preprocessing], page 25).

The ‘|’ character can be used to separate statements on the same line.

166

Using as

9.20 M32R Dependent Features

9.20.1 M32R Options

The Renease M32R version of as has a few machine dependent options:

-m32rx

-m32r2
-m32r

-little
-EL
-big
-EB

-KPIC

-parallel

as can assemble code for several different members of the Renesas M32R fam-
ily. Normally the default is to assemble code for the M32R microprocessor.
This option may be used to change the default to the M32RX microprocessor,
which adds some more instructions to the basic M32R instruction set, and some
additional parameters to some of the original instructions.

This option changes the target processor to the the M32R2 microprocessor.

This option can be used to restore the assembler’s default behaviour of assem-
bling for the M32R microprocessor. This can be useful if the default has been
changed by a previous command line option.

This option tells the assembler to produce little-endian code and data. The
default is dependent upon how the toolchain was configured.

This is a synonym for -little.
This option tells the assembler to produce big-endian code and data.
This is a synonum for -big.

This option specifies that the output of the assembler should be marked as
position-independent code (PIC).

This option tells the assembler to attempts to combine two sequential instruc-
tions into a single, parallel instruction, where it is legal to do so.

-no-parallel

This option disables a previously enabled -parallel option.

-no-bitinst

This option disables the support for the extended bit-field instructions provided
by the M32R2. If this support needs to be re-enabled the -bitinst switch can
be used to restore it.

This option tells the assembler to attempt to optimize the instructions that it
produces. This includes filling delay slots and converting sequential instructions
into parallel ones. This option implies -parallel.

-warn-explicit-parallel-conflicts

Instructs as to produce warning messages when questionable parallel instruc-
tions are encountered. This option is enabled by default, but gcc disables
it when it invokes as directly. Questionable instructions are those whose be-
haviour would be different if they were executed sequentially. For example the
code fragment ‘mv r1, r2 || mv r3, r1’ produces a different result from ‘mv
rl, r2 \nmv r3, r1’ since the former moves rl into r3 and then r2 into rl,
whereas the later moves r2 into rl1 and r3.

This is a shorter synonym for the -warn-explicit-parallel-conflicts option.

Chapter 9: Machine Dependent Features 167

-no-warn-explicit-parallel-conflicts
Instructs as not to produce warning messages when questionable parallel in-
structions are encountered.

-Wnp This is a shorter synonym for the -no-warn-explicit-parallel-conflicts option.

-ignore-parallel-conflicts
This option tells the assembler’s to stop checking parallel instructions for con-
straint violations. This ability is provided for hardware vendors testing chip
designs and should not be used under normal circumstances.

-no-ignore-parallel-conflicts
This option restores the assembler’s default behaviour of checking parallel in-
structions to detect constraint violations.

-Ip This is a shorter synonym for the -ignore-parallel-conflicts option.
-nlp This is a shorter synonym for the -no-ignore-parallel-conflicts option.

-warn-unmatched-high
This option tells the assembler to produce a warning message if a .high pseudo
op is encountered without a matching .low pseudo op. The presence of such
an unmatched pseudo op usually indicates a programming error.

-no-warn-unmatched-high
Disables a previously enabled -warn-unmatched-high option.

-Wuh This is a shorter synonym for the -warn-unmatched-high option.

-Wnuh This is a shorter synonym for the -no-warn-unmatched-high option.

9.20.2 M32R Directives
The Renease M32R version of as has a few architecture specific directives:

low expression
The low directive computes the value of its expression and places the lower
16-bits of the result into the immediate-field of the instruction. For example:

or3 r0, rO, #low(0x12345678) ; compute rO = rO | 0x5678
add3, r0, r0, #low(fred) ; compute rO = r0 + low 16-bits of address of fred

high expression
The high directive computes the value of its expression and places the upper
16-bits of the result into the immediate-field of the instruction. For example:

seth r0, #high(0x12345678) ; compute rO = 0x12340000
seth, r0, #high(fred) ; compute rO = upper 16-bits of address of fred

shigh expression

The shigh directive is very similar to the high directive. It also computes
the value of its expression and places the upper 16-bits of the result into the
immediate-field of the instruction. The difference is that shigh also checks to
see if the lower 16-bits could be interpreted as a signed number, and if so it
assumes that a borrow will occur from the upper-16 bits. To compensate for
this the shigh directive pre-biases the upper 16 bit value by adding one to it.
For example:

For example:

168

.m32r

.m32rx

.m32r2

.little

.big

Using as

0x12340000
0x00010000

seth r0, #shigh(0x12345678) ; compute r0 =
seth r0, #shigh(0x00008000) ; compute r0Q =
In the second example the lower 16-bits are 0x8000. If these are treated as a
signed value and sign extended to 32-bits then the value becomes 0xffff8000. If

this value is then added to 0x00010000 then the result is 0x00008000.

This behaviour is to allow for the different semantics of the or3 and add3
instructions. The or3 instruction treats its 16-bit immediate argument as un-
signed whereas the add3 treats its 16-bit immediate as a signed value. So for
example:

seth r0, #shigh(0x00008000)

add3 r0, r0, #low(0x00008000)
Produces the correct result in r0, whereas:

seth r0, #shigh(0x00008000)

or3 r0, r0, #low(0x00008000)
Stores 0xffff8000 into r0.

Note - the shigh directive does not know where in the assembly source code
the lower 16-bits of the value are going set, so it cannot check to make sure
that an or3 instruction is being used rather than an add3 instruction. It is up
to the programmer to make sure that correct directives are used.

The directive performs a similar thing as the -m32r command line option. It
tells the assembler to only accept M32R instructions from now on. An instruc-
tions from later M32R, architectures are refused.

The directive performs a similar thing as the -m32rz command line option. It
tells the assembler to start accepting the extra instructions in the M32RX ISA
as well as the ordinary M32R ISA.

The directive performs a similar thing as the -m32r2 command line option. It
tells the assembler to start accepting the extra instructions in the M32R2 ISA
as well as the ordinary M32R ISA.

The directive performs a similar thing as the -little command line option. It
tells the assembler to start producing little-endian code and data. This option
should be used with care as producing mixed-endian binary files is fraught with
danger.

The directive performs a similar thing as the -big command line option. It
tells the assembler to start producing big-endian code and data. This option
should be used with care as producing mixed-endian binary files is fraught with
danger.

9.20.3 M32R Warnings

There are several warning and error messages that can be produced by as which are specific

to the M32R:

output of 1st instruction is the same as an input to 2nd instruction - is this
intentional 7

This message is only produced if warnings for explicit parallel conflicts have
been enabled. It indicates that the assembler has encountered a parallel in-
struction in which the destination register of the left hand instruction is used

Chapter 9: Machine Dependent Features 169

as an input register in the right hand instruction. For example in this code
fragment ‘mv r1l, r2 || neg r3, rl’ register rl is the destination of the move
instruction and the input to the neg instruction.

output of 2nd instruction is the same as an input to 1st instruction - is this

intentional 7
This message is only produced if warnings for explicit parallel conflicts have
been enabled. It indicates that the assembler has encountered a parallel in-
struction in which the destination register of the right hand instruction is used
as an input register in the left hand instruction. For example in this code
fragment ‘mv r1l, r2 || neg r2, r3’ register r2 is the destination of the neg
instruction and the input to the move instruction.

instruction ‘...’ is for the M32RX only
This message is produced when the assembler encounters an instruction which
is only supported by the M32Rx processor, and the ‘-m32rx’ command line flag
has not been specified to allow assembly of such instructions.

unknown instruction ‘...’

This message is produced when the assembler encounters an instruction which
it does not recognize.

only the NOP instruction can be issued in parallel on the m32r
This message is produced when the assembler encounters a parallel instruction
which does not involve a NOP instruction and the ‘-m32rx’ command line
flag has not been specified. Only the M32Rx processor is able to execute two
instructions in parallel.

instruction ‘...’ cannot be executed in parallel.

This message is produced when the assembler encounters a parallel instruction
which is made up of one or two instructions which cannot be executed in parallel.

Instructions share the same execution pipeline
This message is produced when the assembler encounters a parallel instruction
whoes components both use the same execution pipeline.

Instructions write to the same destination register.
This message is produced when the assembler encounters a parallel instruction
where both components attempt to modify the same register. For example these
code fragments will produce this message: ‘mv r1, r2 || neg r1, r3’ ‘j1 r0 ||
mv ri4, r1’ ‘st r2, @-rl || mv rl, r3’ ‘mvrl, r2 || 1d r0, @ri+’ ‘cmp ri,
r2 || addx r3, r4’ (Both write to the condition bit)

170 Using as

9.21 M680x0 Dependent Features

9.21.1 M680x0 Options
The Motorola 680x0 version of as has a few machine dependent options:

‘-march=architecture’
This option specifies a target architecture. The following architectures are rec-
ognized: 68000, 68010, 68020, 68030, 68040, 68060, cpu32, isaa, isaaplus,
isab, isac and cfvie.

‘-mcpu=cpu’
This option specifies a target cpu. When used in conjunction with the ‘-march’
option, the cpu must be within the specified architecture. Also, the generic
features of the architecture are used for instruction generation, rather than
those of the specific chip.

‘-m[no-]168851’

‘-m[no-168881’

‘-m[no-J]div’

‘-m[no-Jusp’

‘-m[no-J]float’

‘-m[no-]mac’

‘-m[no-J]emac’
Enable or disable various architecture specific features. If a chip or architecture
by default supports an option (for instance ‘-march=isaaplus’ includes the
‘-mdiv’ option), explicitly disabling the option will override the default.

=1 You can use the ‘-1’ option to shorten the size of references to undefined sym-
bols. If you do not use the ‘-1’ option, references to undefined symbols are wide
enough for a full long (32 bits). (Since as cannot know where these symbols
end up, as can only allocate space for the linker to fill in later. Since as does
not know how far away these symbols are, it allocates as much space as it can.)
If you use this option, the references are only one word wide (16 bits). This
may be useful if you want the object file to be as small as possible, and you
know that the relevant symbols are always less than 17 bits away.

‘--register-prefix-optional’

For some configurations, especially those where the compiler normally does not
prepend an underscore to the names of user variables, the assembler requires
a ‘%’ before any use of a register name. This is intended to let the assembler
distinguish between C variables and functions named ‘a0’ through ‘a7’; and so
on. The ‘% is always accepted, but is not required for certain configurations,
notably ‘sun3’. The ‘--register-prefix-optional’ option may be used to
permit omitting the ‘%’ even for configurations for which it is normally required.
If this is done, it will generally be impossible to refer to C variables and functions
with the same names as register names.

‘-—bitwise-or’
Normally the character ‘|’ is treated as a comment character, which means that
it can not be used in expressions. The ‘~-bitwise-or’ option turns ‘|’ into a

Chapter 9: Machine Dependent Features 171

normal character. In this mode, you must either use C style comments, or start
comments with a ‘#’ character at the beginning of a line.

‘——base-size-default-16 —-base-size-default-32’

If you use an addressing mode with a base register without specifying
the size, as will normally use the full 32 bit value. For example, the
addressing mode ‘%a0@(%d0)’ is equivalent to ‘%a0@(%d0:1)’. You may use
the ‘--base-size-default-16’ option to tell as to default to using the 16 bit
value. In this case, ‘%a0@(%d0)’ is equivalent to ‘%a0@(%d0:w)’. You may use
the ‘--base-size-default-32’ option to restore the default behaviour.

‘-—disp-size-default-16 --disp-size-default-32’

‘——pcrel’

‘-m68000’

If you use an addressing mode with a displacement, and the value of the dis-
placement is not known, as will normally assume that the value is 32 bits. For
example, if the symbol ‘disp’ has not been defined, as will assemble the ad-
dressing mode ‘%a0@(disp,%d0)’ as though ‘disp’ is a 32 bit value. You may
use the ‘--disp-size-default-16’ option to tell as to instead assume that
the displacement is 16 bits. In this case, as will assemble ‘%a0@(disp,%d0)’ as
though ‘disp’ is a 16 bit value. You may use the ‘--disp-size-default-32’
option to restore the default behaviour.

Always keep branches PC-relative. In the M680x0 architecture all branches are
defined as PC-relative. However, on some processors they are limited to word
displacements maximum. When as needs a long branch that is not available,
it normally emits an absolute jump instead. This option disables this substitu-
tion. When this option is given and no long branches are available, only word
branches will be emitted. An error message will be generated if a word branch
cannot reach its target. This option has no effect on 68020 and other processors
that have long branches. see Section 9.21.6.1 [Branch Improvement|, page 176.

as can assemble code for several different members of the Motorola 680x0 family.
The default depends upon how as was configured when it was built; normally,
the default is to assemble code for the 68020 microprocessor. The following
options may be used to change the default. These options control which in-
structions and addressing modes are permitted. The members of the 680x0
family are very similar. For detailed information about the differences, see the
Motorola manuals.

‘-m68000’

‘-m68ec000’

‘-m68hc000’

‘-m68hc001’

‘-m68008’

‘-m68302’

‘-m68306’

‘-m68307’

‘-m68322’

‘-m68356° Assemble for the 68000. ‘-m68008’, ‘-m68302’°, and so on are syn-
onyms for ‘-m68000°, since the chips are the same from the point
of view of the assembler.

172

‘-m68010’

‘-m68020’
‘-m68ec020’

‘-m68030’
‘-m68ec030’

‘-m68040’
‘-m68ec040’

‘-m68060’
‘-m68ec060’

‘-mcpu32’
‘-m68330’
‘-m68331’
‘-m68332’
‘-m68333’
‘-m68334’
‘-m68336’
‘-m68340’
‘-m68341°
‘-m68349’
‘-m68360’

‘-m5200’
‘-m5202’
‘-m5204’
‘-m5206’
‘-m5206e’
‘-m521x’
‘-m5249’
‘-m528%’
‘-m5307’
‘-m5407’
‘-m547x’
‘-m548x’
‘-mcfvd’
‘-mcfvie’

‘-m68881’
‘-m68882’

Using as

Assemble for the 68010.

Assemble for the 68020. This is normally the default.

Assemble for the 68030.

Assemble for the 68040.

Assemble for the 68060.

Assemble for the CPU32 family of chips.

Assemble for the ColdFire family of chips.

Assemble 68881 floating point instructions. This is the default for
the 68020, 68030, and the CPU32. The 68040 and 68060 always
support floating point instructions.

Chapter 9: Machine Dependent Features 173

‘-mno-68881’
Do not assemble 68881 floating point instructions. This is the de-
fault for 68000 and the 68010. The 68040 and 68060 always support
floating point instructions, even if this option is used.

‘-m68851° Assemble 68851 MMU instructions. This is the default for the
68020, 68030, and 68060. The 68040 accepts a somewhat different
set of MMU instructions; ‘-m68851’ and ‘-m68040’ should not be
used together.

‘-mno-68851’
Do not assemble 68851 MMU instructions. This is the default for
the 68000, 68010, and the CPU32. The 68040 accepts a somewhat
different set of MMU instructions.

9.21.2 Syntax

This syntax for the Motorola 680x0 was developed at MIT.

The 680x0 version of as uses instructions names and syntax compatible with the Sun
assembler. Intervening periods are ignored; for example, ‘movl’ is equivalent to ‘mov.1’.

In the following table apc stands for any of the address registers (‘%4a0’ through ‘%a7’),
the program counter (‘%pc’), the zero-address relative to the program counter (‘%zpc’), a
suppressed address register (‘%4za0’ through ‘%za7’), or it may be omitted entirely. The use
of size means one of ‘w” or ‘1’, and it may be omitted, along with the leading colon, unless
a scale is also specified. The use of scale means one of ‘1’, ‘2, ‘4’ or ‘8’, and it may always
be omitted along with the leading colon.

The following addressing modes are understood:

Immediate
‘#number’

Data Register
‘%d0’ through ‘%d7’

Address Register
“%a0’ through ‘%a7’
“%a7’ is also known as ‘%sp’, i.e., the Stack Pointer. %a6 is also known as ‘%fp’,
the Frame Pointer.

Address Register Indirect
‘%a0@’ through ‘%a7@’

Address Register Postincrement
‘%a0@+’ through ‘%a7@+’

Address Register Predecrement
‘%a0@-" through ‘%a7@-’

Indirect Plus Offset
‘apc@(number)’

Index ‘apc@(number ,register:size:scale)’

The number may be omitted.

174 Using as

Postindex ‘apc@(number)@(onumber ,register:size:scale)’

The onumber or the register, but not both, may be omitted.

Preindex ‘apc@(number ,register:size:scale)@(onumber)’

The number may be omitted. Omitting the register produces the Postindex
addressing mode.

Absolute ‘symbol’, or ‘digits’, optionally followed by ‘:b’, ‘:w’, or ‘:1".

9.21.3 Motorola Syntax

The standard Motorola syntax for this chip differs from the syntax already discussed (see
Section 9.21.2 [Syntax|, page 173). as can accept Motorola syntax for operands, even if
MIT syntax is used for other operands in the same instruction. The two kinds of syntax are
fully compatible.

In the following table apc stands for any of the address registers (‘%a0’ through ‘%a7’),
the program counter (‘%pc’), the zero-address relative to the program counter (‘%zpc’), or
a suppressed address register (‘%za0’ through ‘%za7’). The use of size means one of ‘w’ or
‘l’, and it may always be omitted along with the leading dot. The use of scale means one
of ‘17, ‘2’ ‘4’ or ‘8’, and it may always be omitted along with the leading asterisk.

The following additional addressing modes are understood:

Address Register Indirect
“(%a0)’ through ‘(%a7)’
“%a7’ is also known as ‘Ysp’, i.e., the Stack Pointer. %a6 is also known as ‘%fp’,
the Frame Pointer.

Address Register Postincrement
‘(%a0)+’ through ‘(%a7)+’

Address Register Predecrement
‘= (%a0)’ through ‘- (%a7)’

Indirect Plus Offset
‘number (7a0)’ through ‘number (7a7)’, or ‘number (/pc)’.

The number may also appear within the parentheses, as in ‘(number , %a0)’.
When used with the pc, the number may be omitted (with an address register,
omitting the number produces Address Register Indirect mode).

Index ‘number (apc ,register .sizex*scale)’

The number may be omitted, or it may appear within the parentheses. The
apc may be omitted. The register and the apc may appear in either order. If
both apc and register are address registers, and the size and scale are omitted,
then the first register is taken as the base register, and the second as the index
register.

Postindex ‘([number ,apc],register.size*scale,onumber)’

The onumber, or the register, or both, may be omitted. Either the number or
the apc may be omitted, but not both.

Chapter 9: Machine Dependent Features 175

Preindex

‘([number , apc ,register .size*scale] ,onumber)’

The number, or the apc, or the register, or any two of them, may be omitted.
The onumber may be omitted. The register and the apc may appear in either
order. If both apc and register are address registers, and the size and scale are
omitted, then the first register is taken as the base register, and the second as
the index register.

9.21.4 Floating Point
Packed decimal (P) format floating literals are not supported. Feel free to add the code!

The floating point formats generated by directives are these.

.float

.double

.extend
.1ldouble

Single precision floating point constants.

Double precision floating point constants.

Extended precision (long double) floating point constants.

9.21.5 680x0 Machine Directives

In order to be compatible with the Sun assembler the 680x0 assembler understands the
following directives.

.datal
.data2

.even

.skip

.arch name

.Cpu name

This directive is identical to a .data 1 directive.
This directive is identical to a .data 2 directive.

This directive is a special case of the .align directive; it aligns the output to
an even byte boundary.

This directive is identical to a .space directive.

Select the target architecture and extension features. Valid values for name
are the same as for the ‘-march’ command line option. This directive cannot
be specified after any instructions have been assembled. If it is given multiple
times, or in conjunction with the ‘-march’ option, all uses must be for the same
architecture and extension set.

Select the target cpu. Valid valuse for name are the same as for the ‘-mcpu’
command line option. This directive cannot be specified after any instructions
have been assembled. If it is given multiple times, or in conjunction with the
‘-mopt’ option, all uses must be for the same cpu.

176

Using as

9.21.6 Opcodes

9.21.6.1 Branch Improvement

Certain pseudo opcodes are permitted for branch instructions. They expand to the shortest
branch instruction that reach the target. Generally these mnemonics are made by substi-
tuting ‘j’ for ‘b’ at the start of a Motorola mnemonic.

The following table summarizes the pseudo-operations. A * flags cases that are more
fully described after the table:

jbsr
jra

jXX

Displacement
oo — —
| 68020 68000/10, not PC-relative OK
Pseudo-Op |BYTE WORD LONG ABSOLUTE LONG JUMP *ok
o — S
jbsr |bsrs bsrw bsrl jsr
jra |bras braw bral jmp
jXX |bXXs bXXw bXX1 bNXs ; jmp
dbXX | N/A dbXXw dbXX;bras;bral dbXX;bras;jmp
fjXX | N/A fbXXw fbXX1 N/A
condition

NX: negative of condition XX

x—see full description below
x*x—this expansion mode is disallowed by ‘--pcrel’

These are the simplest jump pseudo-operations; they always map to one partic-
ular machine instruction, depending on the displacement to the branch target.
This instruction will be a byte or word branch is that is sufficient. Otherwise,
a long branch will be emitted if available. If no long branches are available
and the ‘--pcrel’ option is not given, an absolute long jump will be emitted
instead. If no long branches are available, the ‘-—pcrel’ option is given, and a
word branch cannot reach the target, an error message is generated.

In addition to standard branch operands, as allows these pseudo-operations to
have all operands that are allowed for jsr and jmp, substituting these instruc-
tions if the operand given is not valid for a branch instruction.

Here, ‘jXX’ stands for an entire family of pseudo-operations, where XX is a
conditional branch or condition-code test. The full list of pseudo-ops in this
family is:

jhi jls jcc jcs jne jeq jvc

jvs jpl jmi jge jlt jgt jle
Usually, each of these pseudo-operations expands to a single branch instruction.
However, if a word branch is not sufficient, no long branches are available, and
the ‘=-pcrel’ option is not given, as issues a longer code fragment in terms of
NX, the opposite condition to XX. For example, under these conditions:

jXX foo

gives

Chapter 9: Machine Dependent Features 177

dbXX

£jXX

bNXs oof
jmp foo
oof:

The full family of pseudo-operations covered here is

dbhi dbls dbcc dbcs dbne dbeq dbvc
dbvs dbpl dbmi dbge dblt dbgt dble
dbf dbra dbt

Motorola ‘dbXX’ instructions allow word displacements only. When a word
displacement is sufficient, each of these pseudo-operations expands to the cor-
responding Motorola instruction. When a word displacement is not sufficient
and long branches are available, when the source reads ‘dbXX foo’, as emits
dbXX ool
bras o002
ool:bral foo
002:

3

If, however, long branches are not available and the ‘--pcrel’ option is not
given, as emits
dbXX ool
bras o002
ool:jmp foo
002:
This family includes
fjne fjeq fjge £jlt fjgt fjle fjf
fjt fjgl fjgle fjnge £fjngl £fjngle fjngt
fjnle fjnlt fjoge <£fjogl £fjogt £fjole £fjolt
fjor fjseq fjsf fjsne f£fjst fjueq fjuge
fjugt fjule £fjult £fjun
Fach of these pseudo-operations always expands to a single Motorola coproces-
sor branch instruction, word or long. All Motorola coprocessor branch instruc-
tions allow both word and long displacements.

9.21.6.2 Special Characters

Line comments are introduced by the ‘|’ character appearing anywhere on a line, unless
the ‘--bitwise-or’ command line option has been specified.

An asterisk (‘*’) as the first character on a line marks the start of a line comment as

well.

A hash character (‘#’) as the first character on a line also marks the start of a line
comment, but in this case it could also be a logical line number directive (see Section 3.3
[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25). If the hash character appears elsewhere on a line it is used to introduce an
immediate value. (This is for compatibility with Sun’s assembler).

Multiple statements on the same line can appear if they are separated by the *;’ character.

178

Using as

9.22 M68HC11 and M68HC12 Dependent Features

9.22.1 M68HC11 and M68HC12 Options
The Motorola 68HC11 and 68HC12 version of as have a few machine dependent options.

-m68hcil

-m68hc12

-m68hcs12

-mshort

-mlong

This option switches the assembler in the M68HC11 mode. In this mode, the
assembler only accepts 68HC11 operands and mnemonics. It produces code for
the 68HC11.

This option switches the assembler in the M68HC12 mode. In this mode, the
assembler also accepts 68HC12 operands and mnemonics. It produces code
for the 68HC12. A few 68HCI11 instructions are replaced by some 68HC12
instructions as recommended by Motorola specifications.

This option switches the assembler in the M68HCS12 mode. This mode is
similar to ‘-m68hc12’ but specifies to assemble for the 68HCS12 series. The
only difference is on the assembling of the ‘movb’ and ‘movw’ instruction when
a PC-relative operand is used.

This option controls the ABI and indicates to use a 16-bit integer ABI. It has
no effect on the assembled instructions. This is the default.

This option controls the ABI and indicates to use a 32-bit integer ABI.

-mshort-double

This option controls the ABI and indicates to use a 32-bit float ABI. This is
the default.

-mlong-double

This option controls the ABI and indicates to use a 64-bit float ABI.

—--strict-direct-mode

You can use the ‘--strict-direct-mode’ option to disable the automatic trans-
lation of direct page mode addressing into extended mode when the instruction
does not support direct mode. For example, the ‘clr’ instruction does not sup-
port direct page mode addressing. When it is used with the direct page mode,
as will ignore it and generate an absolute addressing. This option prevents
as from doing this, and the wrong usage of the direct page mode will raise an
erTor.

—-short-branches

The ‘--short-branches’ option turns off the translation of relative branches
into absolute branches when the branch offset is out of range. By default
as transforms the relative branch (‘bsr’, ‘bgt’, ‘bge’, ‘beq’, ‘bne’, ‘ble’, ‘D1t’,
‘bhi’, ‘bec’, ‘bls’, ‘bes’, ‘bmi’, ‘bvs’, ‘bvs’, ‘bra’) into an absolute branch when
the offset is out of the -128 .. 127 range. In that case, the ‘bsr’ instruction is
translated into a ‘jsr’, the ‘bra’ instruction is translated into a ‘jmp’ and the
conditional branches instructions are inverted and followed by a ‘jmp’. This
option disables these translations and as will generate an error if a relative
branch is out of range. This option does not affect the optimization associated
to the ‘jbra’; ‘jbsr’ and ‘jbXX’ pseudo opcodes.

Chapter 9: Machine Dependent Features 179

--force-long-branches
The ‘--force-long-branches’ option forces the translation of relative branches
into absolute branches. This option does not affect the optimization associated
to the ‘jbra’, ‘jbsr’ and ‘jbXX’ pseudo opcodes.

--print-insn-syntax
You can use the ‘~-print-insn-syntax’ option to obtain the syntax description
of the instruction when an error is detected.

—--print-opcodes
The ‘--print-opcodes’ option prints the list of all the instructions with their
syntax. The first item of each line represents the instruction name and the
rest of the line indicates the possible operands for that instruction. The list is
printed in alphabetical order. Once the list is printed as exits.

--generate-example
The ‘--generate-example’ option is similar to ‘~—-print-opcodes’ but it gen-
erates an example for each instruction instead.

9.22.2 Syntax

In the M68HC11 syntax, the instruction name comes first and it may be followed by one
or several operands (up to three). Operands are separated by comma (‘,’). In the normal
mode, as will complain if too many operands are specified for a given instruction. In the
MRI mode (turned on with ‘M’ option), it will treat them as comments. Example:

inx

lda #23

bset 2,x #4

brclr *bot #8 foo

The presence of a ‘;’ character or a ‘!’ character anywhere on a line indicates the start

of a comment that extends to the end of that line.

A ‘%’ or a ‘# character at the start of a line also introduces a line comment, but these
characters do not work elsewhere on the line. If the first character of the line is a ‘#’
then as well as starting a comment, the line could also be logical line number directive
(see Section 3.3 [Comments|, page 25) or a preprocessor control command (see Section 3.1
[Preprocessing], page 25).

The M68HC11 assembler does not currently support a line separator character.

The following addressing modes are understood for 68HC11 and 68HC12:

Immediate
‘#number’

Address Register
‘number ,X’, ‘number ,Y’

The number may be omitted in which case 0 is assumed.

Direct Addressing mode
‘*symbol’, or ‘*digits’

Absolute ‘symbol’, or ‘digits’

180

Using as

The M68HC12 has other more complex addressing modes. All of them are supported
and they are represented below:

Constant Offset Indexed Addressing Mode

‘number ,reg’

The number may be omitted in which case 0 is assumed. The register can
be either ‘X', Y’, ‘SP’ or ‘PC’. The assembler will use the smaller post-byte
definition according to the constant value (5-bit constant offset, 9-bit constant
offset or 16-bit constant offset). If the constant is not known by the assembler
it will use the 16-bit constant offset post-byte and the value will be resolved at
link time.

Offset Indexed Indirect

‘[number ,reg]’
The register can be either ‘X’, ‘Y’, ‘SP’ or ‘PC’.

Auto Pre-Increment/Pre-Decrement/Post-Increment/Post-Decrement

‘number ,-reg’ ‘number ,+reg’ ‘number ,reg-’ ‘number ,reg+’

The number must be in the range ‘-8’..+8” and must not be 0. The register
can be either ‘X', Y’, ‘SP’ or ‘PC’.

Accumulator Offset

‘acc ,reg’
The accumulator register can be either ‘A’, ‘B’ or ‘D’. The register can be either
‘X, Y’, ‘SP’ or ‘PC’.

Accumulator D offset indexed-indirect

‘[D,regl’
The register can be either ‘X’, ‘Y’ ‘SP” or ‘PC’.

For example:

ldab 1024,sp
1dd [10,x]
orab 3,+x
stab -2,y-
1ldx a,pc

sty [d,sp]

9.22.3 Symbolic Operand Modifiers

The assembler supports several modifiers when using symbol addresses in 68HC11 and
68HC12 instruction operands. The general syntax is the following:

%addr

fmodifier (symbol)

This modifier indicates to the assembler and linker to use the 16-bit physical
address corresponding to the symbol. This is intended to be used on memory
window systems to map a symbol in the memory bank window. If the symbol
is in a memory expansion part, the physical address corresponds to the symbol
address within the memory bank window. If the symbol is not in a memory ex-
pansion part, this is the symbol address (using or not using the %addr modifier
has no effect in that case).

Chapter 9: Machine Dependent Features 181

hpage This modifier indicates to use the memory page number corresponding to the
symbol. If the symbol is in a memory expansion part, its page number is
computed by the linker as a number used to map the page containing the symbol
in the memory bank window. If the symbol is not in a memory expansion part,
the page number is 0.

%hi This modifier indicates to use the 8-bit high part of the physical address of the
symbol.

%lo This modifier indicates to use the 8-bit low part of the physical address of the
symbol.

For example a 68HC12 call to a function ‘foo_example’ stored in memory expansion
part could be written as follows:
call Yaddr (foo_example) ,’%page(foo_example)

and this is equivalent to

call foo_example

And for 68HC11 it could be written as follows:

ldab #J,page(foo_example)
stab _page_switch
jsr %addr(foo_example)

9.22.4 Assembler Directives
The 68HC11 and 68HC12 version of as have the following specific assembler directives:

.relax The relax directive is used by the ‘GNU Compiler’ to emit a specific relocation
to mark a group of instructions for linker relaxation. The sequence of instruc-
tions within the group must be known to the linker so that relaxation can be
performed.

.mode [mshort|mlong|mshort-double|mlong-doublel
This directive specifies the ABI. It overrides the ‘-mshort’, ‘-mlong’,
‘-mshort-double’ and ‘-mlong-double’ options.

.far symbol
This directive marks the symbol as a ‘far’ symbol meaning that it uses a
‘call/rtc’ calling convention as opposed to ‘jsr/rts’. During a final link, the
linker will identify references to the ‘far’ symbol and will verify the proper
calling convention.

.interrupt symbol
This directive marks the symbol as an interrupt entry point. This information
is then used by the debugger to correctly unwind the frame across interrupts.

.xrefb symbol
This directive is defined for compatibility with the ‘Specification for
Motorola 8 and 16-Bit Assembly Language Input Standard’ and is ignored.

9.22.5 Floating Point
Packed decimal (P) format floating literals are not supported. Feel free to add the code!

The floating point formats generated by directives are these.

182

.float

.double

.extend
.1ldouble

Using as

Single precision floating point constants.

Double precision floating point constants.

Extended precision (long double) floating point constants.

9.22.6 Opcodes

9.22.6.1 Branch Improvement

Certain pseudo opcodes are permitted for branch instructions. They expand to the shortest
branch instruction that reach the target. Generally these mnemonics are made by prepend-
ing ‘j’ to the start of Motorola mnemonic. These pseudo opcodes are not affected by the
‘-—short-branches’ or ‘--force-long-branches’ options.

The following table summarizes the pseudo-operations.

jbsr
jbra

jbXX

Op

bsr
bra
jbsr
jbra
bXX
jbXX

XX:

Displacement Width

+-—= -—- -—- -—- -—- -+
| Options |
| --short-branches --force-long-branches
+-—= et +-- -—- -+
|BYTE WORD | BYTE WORD |
+-—= e +-- -—- -—- -+
| bsr <pc-rel> <error> | jsr <abs> |
| bra <pc-rel> <error> | jmp <abs>
bsr <pc-rel> jsr <abs>	bsr <pc-rel> jsr <abs>
bra <pc-rel> jmp <abs>	bra <pc-rel> jmp <abs>
bXX <pc-rel> <error>	bNX +3; jmp <abs>
bXX <pc-rel> DNX +3;	bXX <pc-rel> DNX +3; jmp <abs>
jmp <abs>	
+-—= e +-- -—- -—- -+
condition

NX: negative of condition XX

These are the simplest jump pseudo-operations; they always map to one partic-
ular machine instruction, depending on the displacement to the branch target.

Here, ‘jbXX’ stands for an entire family of pseudo-operations, where XX is a
conditional branch or condition-code test. The full list of pseudo-ops in this
family is:
jbcc jbeq jbge jbgt jbhi jbvs jbpl jblo
jbcs jbne jblt jble jbls jbvc jbmi
For the cases of non-PC relative displacements and long displacements, as issues
a longer code fragment in terms of NX, the opposite condition to XX. For
example, for the non-PC relative case:
jbXX foo
gives
bNXs oof
jmp foo
oof:

Chapter 9: Machine Dependent Features 183

9.23 MicroBlaze Dependent Features

The Xilinx MicroBlaze processor family includes several variants, all using the same core
instruction set. This chapter covers features of the GNU assembler that are specific to the
MicroBlaze architecture. For details about the MicroBlaze instruction set, please see the
MicroBlaze Processor Reference Guide (UGO081) available at www.xilinx.com.

9.23.1 Directives
A number of assembler directives are available for MicroBlaze.

.data8 expression,...
This directive is an alias for .byte. Each expression is assembled into an eight-
bit value.

.datal6 expression,...
This directive is an alias for .hword. Each expression is assembled into an
16-bit value.

.data32 expression,...
This directive is an alias for .word. Each expression is assembled into an 32-bit
value.

.ent name[,labell
This directive is an alias for .func denoting the start of function name at
(optional) label.

.end name [,labell
This directive is an alias for .endfunc denoting the end of function name.

.gpword label, ...
This directive is an alias for .rva. The resolved address of Iabel is stored in
the data section.

.weakext label
Declare that label is a weak external symbol.

.rodata Switch to .rodata section. Equivalent to .section .rodata

.sdata2 Switch to .sdata2 section. Equivalent to .section .sdata2

.sdata Switch to .sdata section. Equivalent to .section .sdata
.bss Switch to .bss section. Equivalent to .section .bss
.sbss Switch to .sbss section. Equivalent to .section .sbss

9.23.2 Syntax for the MicroBlaze
9.23.2.1 Special Characters

The presence of a ‘#’ on a line indicates the start of a comment that extends to the end of
the current line.

If a ‘#” appears as the first character of a line, the whole line is treated as a comment, but
in this case the line can also be a logical line number directive (see Section 3.3 [Comments],
page 25) or a preprocessor control command (see Section 3.1 [Preprocessing], page 25).

The ¢;’ character can be used to separate statements on the same line.

184 Using as

9.24 MIPS Dependent Features

GNU as for MIPS architectures supports several different MIPS processors, and MIPS ISA
levels I through V, MIPS32, and MIPS64. For information about the MIPS instruction set,
see MIPS RISC Architecture, by Kane and Heindrich (Prentice-Hall). For an overview of
MIPS assembly conventions, see “Appendix D: Assembly Language Programming” in the
same work.

9.24.1 Assembler options
The MIPS configurations of GNU as support these special options:
-G num This option sets the largest size of an object that can be referenced implicitly

with the gp register. It is only accepted for targets that use ECOFF format. The
default value is 8.

-EB

-EL Any MIPS configuration of as can select big-endian or little-endian output at run
time (unlike the other GNU development tools, which must be configured for one
or the other). Use ‘~EB’ to select big-endian output, and ‘~EL’ for little-endian.

-KPIC Generate SVR4-style PIC. This option tells the assembler to generate SVR4-

style position-independent macro expansions. It also tells the assembler to mark
the output file as PIC.

-mvxworks-pic
Generate VxWorks PIC. This option tells the assembler to generate VxWorks-
style position-independent macro expansions.

-mipsl

-mips2

-mips3

-mips4

-mipsb5xo

-mips32

-mips32r2

-mips64

-mips64r2
Generate code for a particular MIPS Instruction Set Architecture level.
‘-mipsl’ corresponds to the R2000 and R3000 processors, ‘-mips2’ to the
R6000 processor, ‘-mips3’ to the R4000 processor, and ‘-mips4’ to the R80O00
and R10000 processors. ‘-mipsb5’, ‘-mips32’, ‘-mips32r2’, ‘-mips64’, and
‘-mips64r2’ correspond to generic MIPS V, MIPS32, MIPS32 RELEASE 2,
MIPS64, and MIPS64 RELEASE 2 ISA processors, respectively. You can also
switch instruction sets during the assembly; see Section 9.24.5 [MIPS ISA],
page 190.

-mgp32

-mfp32 Some macros have different expansions for 32-bit and 64-bit registers. The

register sizes are normally inferred from the ISA and ABI, but these flags force
a certain group of registers to be treated as 32 bits wide at all times. ‘-mgp32’

Chapter 9: Machine Dependent Features 185

controls the size of general-purpose registers and ‘-mfp32’ controls the size of
floating-point registers.

The .set gp=32 and .set fp=32 directives allow the size of registers to
be changed for parts of an object. The default value is restored by .set
gp=default and .set fp=default.

On some MIPS variants there is a 32-bit mode flag; when this flag is set, 64-
bit instructions generate a trap. Also, some 32-bit OSes only save the 32-bit
registers on a context switch, so it is essential never to use the 64-bit registers.

-mgp64
-mfp64 Assume that 64-bit registers are available. This is provided in the interests of
symmetry with ‘-mgp32’ and ‘-mfp32’.

The .set gp=64 and .set fp=64 directives allow the size of registers to
be changed for parts of an object. The default value is restored by .set
gp=default and .set fp=default.

-mips16

-no-mips16
Generate code for the MIPS 16 processor. This is equivalent to putting .set
mips16 at the start of the assembly file. ‘-no-mips16’ turns off this option.

-mmicromips

-mno-micromips
Generate code for the microMIPS processor. This is equivalent to putting .set
micromips at the start of the assembly file. ‘-mno-micromips’ turns off this
option. This is equivalent to putting .set nomicromips at the start of the
assembly file.

-msmartmips

-mno-smartmips
Enables the SmartMIPS extensions to the MIPS32 instruction set, which pro-
vides a number of new instructions which target smartcard and cryptographic
applications. This is equivalent to putting .set smartmips at the start of the
assembly file. ‘-mno-smartmips’ turns off this option.

-mips3d
-no-mips3d
Generate code for the MIPS-3D Application Specific Extension. This tells the
assembler to accept MIPS-3D instructions. ‘-no-mips3d’ turns off this option.
-mdmx

-no-mdmx Generate code for the MDMX Application Specific Extension. This tells the
assembler to accept MDMX instructions. ‘-no-mdmx’ turns off this option.

-mdsp

-mno-dsp Generate code for the DSP Release 1 Application Specific Extension. This tells
the assembler to accept DSP Release 1 instructions. ‘-mno-dsp’ turns off this
option.

186 Using as

-mdspr2

-mno-dspr2
Generate code for the DSP Release 2 Application Specific Extension. This
option implies -mdsp. This tells the assembler to accept DSP Release 2 in-
structions. ‘-mno-dspr2’ turns off this option.

-mmt

-mno-mt Generate code for the MT Application Specific Extension. This tells the as-
sembler to accept MT instructions. ‘-mno-mt’ turns off this option.

-mmcu
-mno-mcu Generate code for the MCU Application Specific Extension. This tells the
assembler to accept MCU instructions. ‘-mno-mcu’ turns off this option.

-mfix7000

-mno-£ix7000
Cause nops to be inserted if the read of the destination register of an mfhi or
mflo instruction occurs in the following two instructions.

-mfix-loongson2f-jump

-mno-fix-loongson2f-jump
Eliminate instruction fetch from outside 256M region to work around the Loong-
son2F ‘jump’ instructions. Without it, under extreme cases, the kernel may
crash. The issue has been solved in latest processor batches, but this fix has no
side effect to them.

-mfix-loongson2f-nop

-mno-fix-loongson2f-nop
Replace nops by or at,at,zero to work around the Loongson2F ‘nop’ errata.
Without it, under extreme cases, cpu might deadlock. The issue has been solved
in latest loongson2f batches, but this fix has no side effect to them.

-mfix-vr4120

-mno-fix-vr4120
Insert nops to work around certain VR4120 errata. This option is intended to
be used on GCC-generated code: it is not designed to catch all problems in
hand-written assembler code.

-mfix-vr4130
-mno-fix-vr4130
Insert nops to work around the VR4130 ‘mflo’/‘mfhi’ errata.

-mfix-24k
-no-mfix-24k
Insert nops to work around the 24K ‘eret’/‘deret’ errata.

-mfix-cn63xxpl

-mno-fix—-cn63xxpl
Replace pref hints 0 - 4 and 6 - 24 with hint 28 to work around certain
CN63XXP1 errata.

Chapter 9: Machine Dependent Features 187

-m4010

-no-m4010
Generate code for the LSI R4010 chip. This tells the assembler to accept the
R4010 specific instructions (‘addciu’, ‘ffc’, etc.), and to not schedule ‘nop’
instructions around accesses to the ‘HI’ and ‘L0’ registers. ‘-no-m4010’ turns
off this option.

-m4650

-no-m4650
Generate code for the MIPS R4650 chip. This tells the assembler to accept
the ‘mad’ and ‘madu’ instruction, and to not schedule ‘nop’ instructions around
accesses to the ‘HI’ and ‘LO’ registers. ‘-no-m4650° turns off this option.

~m3900

-no-m3900

-m4100

-no-m4100
For each option ‘-mnnnn’, generate code for the MIPS Rnnnn chip. This tells
the assembler to accept instructions specific to that chip, and to schedule for
that chip’s hazards.

-march=cpu
Generate code for a particular MIPS cpu. It is exactly equivalent to ‘-mcpu’,
except that there are more value of cpu understood. Valid cpu value are:

2000, 3000, 3900, 4000, 4010, 4100, 4111, vr4120, vr4130, vr4181,
4300, 4400, 4600, 4650, 5000, rmb5200, rm5230, rm5231, rmb261,
rmb721, vr5400, vr5500, 6000, rm7000, 8000, rm9000, 10000, 12000,
14000, 16000, 4kc, 4km, 4kp, 4ksc, 4kec, 4dkem, 4kep, 4ksd, m4k,
mdkp, m14k, m14ke, 24ke, 24kf2_1, 24kf, 24kf1_1, 24kec, 24kef2_1,
24kef, 24kefl_1, 34ke, 34kf2_1, 34kf, 34kf1_1, 74ke, 74kf2_1, 74kf,
T4kf1_1, 74kf3_2, 1004ke, 1004kf2_1, 1004kf, 1004kf1_1, 5kc, 5kf,
20ke, 25kf, sbl, sbla, loongson2e, loongson2f, loongson3a, octeon,
xlr

4

For compatibility reasons, ‘nx’ and ‘bfx’ are accepted as synonyms for ‘nf1_1’.
These values are deprecated.

-mtune=cpu
Schedule and tune for a particular MIPS cpu. Valid cpu values are identical to
‘-march=cpu’.

-mabi=abi
Record which ABI the source code uses. The recognized arguments are: ‘327,
‘n32’, ‘064’, ‘64’ and ‘eabi’.

-msym32

-mno-sym32
Equivalent to adding .set sym32 or .set nosym32 to the beginning of the as-
sembler input. See Section 9.24.4 [MIPS symbol sizes|, page 189.

-nocpp This option is ignored. It is accepted for command-line compatibility with
other assemblers, which use it to turn off C style preprocessing. With GNU as,

188 Using as

there is no need for ‘-nocpp’, because the GNU assembler itself never runs the
C preprocessor.

-msoft-float

-mhard-float
Disable or enable floating-point instructions. Note that by default floating-
point instructions are always allowed even with CPU targets that don’t have
support for these instructions.

-msingle-float

-mdouble-float
Disable or enable double-precision floating-point operations. Note that by de-
fault double-precision floating-point operations are always allowed even with
CPU targets that don’t have support for these operations.

-—construct-floats

--no-construct-floats
The ——no-construct-floats option disables the construction of double width
floating point constants by loading the two halves of the value into the two
single width floating point registers that make up the double width register.
This feature is useful if the processor support the FR bit in its status register,
and this bit is known (by the programmer) to be set. This bit prevents the
aliasing of the double width register by the single width registers.

By default --construct-floats is selected, allowing construction of these
floating point constants.

-—trap

--no-break
as automatically macro expands certain division and multiplication instruc-
tions to check for overflow and division by zero. This option causes as to
generate code to take a trap exception rather than a break exception when an
error is detected. The trap instructions are only supported at Instruction Set
Architecture level 2 and higher.

--break

--no-trap
Generate code to take a break exception rather than a trap exception when an
error is detected. This is the default.

-mpdr

-mno-pdr Control generation of .pdr sections. Off by default on IRIX, on elsewhere.

-mshared

-mno-shared
When generating code using the Unix calling conventions (selected by ‘~KPIC’ or
‘-mcall_shared’), gas will normally generate code which can go into a shared
library. The ‘-mno-shared’ option tells gas to generate code which uses the
calling convention, but can not go into a shared library. The resulting code is
slightly more efficient. This option only affects the handling of the ‘.cpload’
and ‘.cpsetup’ pseudo-ops.

Chapter 9: Machine Dependent Features 189

9.24.2 MIPS ECOFF object code

Assembling for a MIPS ECOFF target supports some additional sections besides the usual
.text, .data and .bss. The additional sections are .rdata, used for read-only data,
.sdata, used for small data, and .sbss, used for small common objects.

When assembling for ECOFF, the assembler uses the $gp ($28) register to form the
address of a “small object”. Any object in the .sdata or .sbss sections is considered
“small” in this sense. For external objects, or for objects in the .bss section, you can use
the gcc ‘=G’ option to control the size of objects addressed via $gp; the default value is 8§,
meaning that a reference to any object eight bytes or smaller uses $gp. Passing ‘-G 0’ to as
prevents it from using the $gp register on the basis of object size (but the assembler uses
$gp for objects in .sdata or sbss in any case). The size of an object in the .bss section
is set by the .comm or .lcomm directive that defines it. The size of an external object may
be set with the .extern directive. For example, ‘.extern sym,4’ declares that the object
at sym is 4 bytes in length, whie leaving sym otherwise undefined.

Using small ECOFF objects requires linker support, and assumes that the $gp register
is correctly initialized (normally done automatically by the startup code). MIPS ECOFF
assembly code must not modify the $gp register.

9.24.3 Directives for debugging information

MIPS ECOFF as supports several directives used for generating debugging information which
are not support by traditional MIPS assemblers. These are .def, .endef, .dim, .file,
.scl, .size, .tag, .type, .val, .stabd, .stabn, and .stabs. The debugging information
generated by the three .stab directives can only be read by GDB, not by traditional MIPS
debuggers (this enhancement is required to fully support C++ debugging). These directives
are primarily used by compilers, not assembly language programmers!

9.24.4 Directives to override the size of symbols

The n64 ABI allows symbols to have any 64-bit value. Although this provides a great deal
of flexibility, it means that some macros have much longer expansions than their 32-bit
counterparts. For example, the non-PIC expansion of ‘dla $4,sym’ is usually:
lui $4,%highest (sym)
lui $1,%hi (sym)
daddiu $4,%4,%higher (sym)
daddiu $1,$1,%lo(sym)
ds1132 $4,$4,0
daddu $4,$4,$1
whereas the 32-bit expansion is simply:
lui $4,%hi (sym)
daddiu $4,$4,%lo(sym)
n64 code is sometimes constructed in such a way that all symbolic constants are known
to have 32-bit values, and in such cases, it’s preferable to use the 32-bit expansion instead
of the 64-bit expansion.

You can use the .set sym32 directive to tell the assembler that, from this point on, all
expressions of the form ‘symbol’ or ‘symbol + offset’ have 32-bit values. For example:

.set sym32
dla $4,sym
1w $4,sym+16

190 Using as

sW $4,sym+0x8000 ($4)

will cause the assembler to treat ‘sym’, sym+16 and sym+0x8000 as 32-bit values. The
handling of non-symbolic addresses is not affected.

The directive .set nosym32 ends a .set sym32 block and reverts to the normal behavior.
It is also possible to change the symbol size using the command-line options ‘-msym32’ and
‘-mno-sym32’.

These options and directives are always accepted, but at present, they have no effect for
anything other than n64.

9.24.5 Directives to override the ISA level

GNU as supports an additional directive to change the MIPS Instruction Set Architecture
level on the fly: .set mipsn. n should be a number from 0 to 5, or 32, 32r2, 64 or 64r2.
The values other than 0 make the assembler accept instructions for the corresponding ISA
level, from that point on in the assembly. .set mipsn affects not only which instructions
are permitted, but also how certain macros are expanded. .set mipsO restores the 1SA level
to its original level: either the level you selected with command line options, or the default
for your configuration. You can use this feature to permit specific MIPS3 instructions while
assembling in 32 bit mode. Use this directive with care!

The .set arch=cpu directive provides even finer control. It changes the effective CPU
target and allows the assembler to use instructions specific to a particular CPU. All CPUs
supported by the ‘-march’ command line option are also selectable by this directive. The
original value is restored by .set arch=default.

The directive .set mips16 puts the assembler into MIPS 16 mode, in which it will
assemble instructions for the MIPS 16 processor. Use .set nomips16 to return to normal
32 bit mode.

Traditional MIPS assemblers do not support this directive.

The directive .set micromips puts the assembler into microMIPS mode, in which it
will assemble instructions for the microMIPS processor. Use .set nomicromips to return
to normal 32 bit mode.

Traditional MIPS assemblers do not support this directive.

9.24.6 Directives for extending MIPS 16 bit instructions

By default, MIPS 16 instructions are automatically extended to 32 bits when necessary. The
directive .set noautoextend will turn this off. When .set noautoextend is in effect, any
32 bit instruction must be explicitly extended with the .e modifier (e.g., 1i.e $4,1000).
The directive .set autoextend may be used to once again automatically extend instructions
when necessary.

This directive is only meaningful when in MIPS 16 mode. Traditional MIPS assemblers
do not support this directive.

9.24.7 Directive to mark data as an instruction

The .insn directive tells as that the following data is actually instructions. This makes a
difference in MIPS 16 and microMIPS modes: when loading the address of a label which
precedes instructions, as automatically adds 1 to the value, so that jumping to the loaded
address will do the right thing.

Chapter 9: Machine Dependent Features 191

The .global and .globl directives supported by as will by default mark the symbol
as pointing to a region of data not code. This means that, for example, any instructions
following such a symbol will not be disassembled by objdump as it will regard them as data.
To change this behaviour an optional section name can be placed after the symbol name
in the .global directive. If this section exists and is known to be a code section, then the
symbol will be marked as poiting at code not data. Ie the syntax for the directive is:

.global symbol[section] [, symbol[section]] ...,
Here is a short example:

.global foo .text, bar, baz .data

foo:

nop
bar:

.word 0x0
baz:

.word Ox1

9.24.8 Directives to save and restore options

The directives .set push and .set pop may be used to save and restore the current settings
for all the options which are controlled by .set. The .set push directive saves the current
settings on a stack. The .set pop directive pops the stack and restores the settings.

These directives can be useful inside an macro which must change an option such as the
ISA level or instruction reordering but does not want to change the state of the code which
invoked the macro.

Traditional MIPS assemblers do not support these directives.

9.24.9 Directives to control generation of MIPS ASE instructions

The directive .set mips3d makes the assembler accept instructions from the MIPS-3D
Application Specific Extension from that point on in the assembly. The .set nomips3d
directive prevents MIPS-3D instructions from being accepted.

The directive .set smartmips makes the assembler accept instructions from the Smart-
MIPS Application Specific Extension to the MIPS32 1sA from that point on in the assembly.
The .set nosmartmips directive prevents SmartMIPS instructions from being accepted.

The directive .set mdmx makes the assembler accept instructions from the MDMX Ap-
plication Specific Extension from that point on in the assembly. The .set nomdmx directive
prevents MDMX instructions from being accepted.

The directive .set dsp makes the assembler accept instructions from the DSP Release
1 Application Specific Extension from that point on in the assembly. The .set nodsp
directive prevents DSP Release 1 instructions from being accepted.

The directive .set dspr2 makes the assembler accept instructions from the DSP Release
2 Application Specific Extension from that point on in the assembly. This dirctive implies
.set dsp. The .set nodspr2 directive prevents DSP Release 2 instructions from being
accepted.

192 Using as

The directive .set mt makes the assembler accept instructions from the MT Application
Specific Extension from that point on in the assembly. The .set nomt directive prevents
MT instructions from being accepted.

The directive .set mcu makes the assembler accept instructions from the MCU Appli-
cation Specific Extension from that point on in the assembly. The .set nomcu directive
prevents MCU instructions from being accepted.

Traditional MIPS assemblers do not support these directives.

9.24.10 Directives to override floating-point options

The directives .set softfloat and .set hardfloat provide finer control of disabling
and enabling float-point instructions. These directives always override the default (that
hard-float instructions are accepted) or the command-line options (‘-msoft-float’ and
‘-mhard-float’).

The directives .set singlefloat and .set doublefloat provide finer control of dis-
abling and enabling double-precision float-point operations. These directives always over-
ride the default (that double-precision operations are accepted) or the command-line options
(‘-msingle-float’ and ‘-mdouble-float’).

Traditional MIPS assemblers do not support these directives.

9.24.11 Syntactical considerations for the MIPS assembler

9.24.11.1 Special Characters

The presence of a ‘#’ on a line indicates the start of a comment that extends to the end of
the current line.

If a ‘#” appears as the first character of a line, the whole line is treated as a comment, but
in this case the line can also be a logical line number directive (see Section 3.3 [Comments],
page 25) or a preprocessor control command (see Section 3.1 [Preprocessing], page 25).

The ¢;’ character can be used to separate statements on the same line.

Chapter 9: Machine Dependent Features 193

9.25 MMIX Dependent Features

9.25.1 Command-line Options

The MMIX version of as has some machine-dependent options.

When ‘--fixed-special-register-names’ is specified, only the register names speci-
fied in Section 9.25.3.3 [MMIX-Regs|, page 195 are recognized in the instructions PUT and
GET.

You can use the ‘--globalize-symbols’ to make all symbols global. This option is
useful when splitting up a mmixal program into several files.

The ‘--gnu-syntax’ turns off most syntax compatibility with mmixal. Its usability is
currently doubtful.

The ‘--relax’ option is not fully supported, but will eventually make the object file
prepared for linker relaxation.

If you want to avoid inadvertently calling a predefined symbol and would rather get an
error, for example when using as with a compiler or other machine-generated code, specify
‘-—no-predefined-syms’. This turns off built-in predefined definitions of all such symbols,
including rounding-mode symbols, segment symbols, ‘BIT’ symbols, and TRAP symbols used
inmmix “system calls”. It also turns off predefined special-register names, except when used
in PUT and GET instructions.

By default, some instructions are expanded to fit the size of the operand or an external
symbol (see Section 9.25.2 [MMIX-Expand], page 194). By passing ‘--no-expand’, no such
expansion will be done, instead causing errors at link time if the operand does not fit.

The mmixal documentation (see [mmixsite], page 194) specifies that global registers
allocated with the ‘GREG’ directive (see [MMIX-greg], page 196) and initialized to the same
non-zero value, will refer to the same global register. This isn’t strictly enforceable in as
since the final addresses aren’t known until link-time, but it will do an effort unless the
‘~-no-merge-gregs’ option is specified. (Register merging isn’t yet implemented in 1d.)

as will warn every time it expands an instruction to fit an operand unless the option
‘-x’ is specified. It is believed that this behaviour is more useful than just mimicking
mmixal’s behaviour, in which instructions are only expanded if the ‘-x’ option is specified,
and assembly fails otherwise, when an instruction needs to be expanded. It needs to be
kept in mind that mmixal is both an assembler and linker, while as will expand instructions
that at link stage can be contracted. (Though linker relaxation isn’t yet implemented in
1d.) The option ‘-x’ also imples ‘--linker-allocated-gregs’.

If instruction expansion is enabled, as can expand a ‘PUSHJ’ instruction into a series of
instructions. The shortest expansion is to not expand it, but just mark the call as redi-
rectable to a stub, which 1d creates at link-time, but only if the original ‘PUSHJ’ instruction
is found not to reach the target. The stub consists of the necessary instructions to form a
jump to the target. This happens if as can assert that the ‘PUSHJ’ instruction can reach
such a stub. The option ‘--no-pushj-stubs’ disables this shorter expansion, and the longer
series of instructions is then created at assembly-time. The option ‘--no-stubs’ is a syn-
onym, intended for compatibility with future releases, where generation of stubs for other
instructions may be implemented.

Usually a two-operand-expression (see [GREG-base], page 197) without a matching
‘GREG’ directive is treated as an error by as. When the option ‘--linker-allocated-gregs’

194 Using as

is in effect, they are instead passed through to the linker, which will allocate as many global
registers as is needed.

9.25.2 Instruction expansion

When as encounters an instruction with an operand that is either not known or does not fit
the operand size of the instruction, as (and 1d) will expand the instruction into a sequence
of instructions semantically equivalent to the operand fitting the instruction. Expansion
will take place for the following instructions:

‘GETA’ Expands to a sequence of four instructions: SETL, INCML, INCMH and INCH. The
operand must be a multiple of four.

Conditional branches
A branch instruction is turned into a branch with the complemented condition
and prediction bit over five instructions; four instructions setting $255 to the
operand value, which like with GETA must be a multiple of four, and a final GO
$255,$255,0.

‘PUSHJ’ Similar to expansion for conditional branches; four instructions set $255 to the
operand value, followed by a PUSHGO $255,$255,0.

‘JMP’ Similar to conditional branches and PUSHJ. The final instruction is GO
$255,$255,0.

The linker 1d is expected to shrink these expansions for code assembled with ‘--relax’
(though not currently implemented).

9.25.3 Syntax

The assembly syntax is supposed to be upward compatible with that described
in Sections 1.3 and 1.4 of ‘The Art of Computer Programming, Volume 1’. Draft
versions of those chapters as well as other MMIX information is located at
http://www-cs-faculty.stanford.edu/ "knuth/mmix-news.html. Most code examples
from the mmixal package located there should work unmodified when assembled and
linked as single files, with a few noteworthy exceptions (see Section 9.25.4 [MMIX-mmixal],
page 198).

Before an instruction is emitted, the current location is aligned to the next four-byte
boundary. If a label is defined at the beginning of the line, its value will be the aligned
value.

In addition to the traditional hex-prefix ‘0x’, a hexadecimal number can also be specified
by the prefix character ‘#’.

After all operands to an MMIX instruction or directive have been specified, the rest of
the line is ignored, treated as a comment.

9.25.3.1 Special Characters

The characters ‘*’ and ‘#’ are line comment characters; each start a comment at the begin-
ning of a line, but only at the beginning of a line. A ‘#’ prefixes a hexadecimal number if
found elsewhere on a line. If a ‘#" appears at the start of a line the whole line is treated
as a comment, but the line can also act as a logical line number directive (see Section 3.3

http://www-cs-faculty.stanford.edu/~knuth/mmix-news.html

Chapter 9: Machine Dependent Features 195

[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25).
Two other characters, ‘%’ and ‘!’, each start a comment anywhere on the line. Thus you

can’t use the ‘modulus’ and ‘not’ operators in expressions normally associated with these
two characters.

A ;7 is a line separator, treated as a new-line, so separate instructions can be specified
on a single line.

9.25.3.2 Symbols

The character ‘:’ is permitted in identifiers. There are two exceptions to it being treated as
any other symbol character: if a symbol begins with ‘:’) it means that the symbol is in the
global namespace and that the current prefix should not be prepended to that symbol (see
[MMIX-prefix|, page 198). The *:’ is then not considered part of the symbol. For a symbol
in the label position (first on a line), a ‘:” at the end of a symbol is silently stripped off. A

label is permitted, but not required, to be followed by a ‘:’, as with many other assembly
formats.
The character ‘@ in an expression, is a synonym for ‘.’, the current location.

In addition to the common forward and backward local symbol formats (see Section 5.3
[Symbol Names], page 37), they can be specified with upper-case ‘B’ and ‘F’, as in ‘8B’ and
‘9F’. A local label defined for the current position is written with a ‘H’> appended to the
number:

3H LDB $0,$1,2

This and traditional local-label formats cannot be mixed: a label must be defined and
referred to using the same format.

There’s a minor caveat: just as for the ordinary local symbols, the local symbols are
translated into ordinary symbols using control characters are to hide the ordinal number
of the symbol. Unfortunately, these symbols are not translated back in error messages.
Thus you may see confusing error messages when local symbols are used. Control charac-
ters ‘\003’ (control-C) and ‘\004’ (control-D) are used for the MMIX-specific local-symbol
syntax.

The symbol ‘Main’ is handled specially; it is always global.
By defining the symbols ‘__.MMIX.start..text’ and ‘__.MMIX.start..data’, the ad-

dress of respectively the ‘.text’ and ‘.data’ segments of the final program can be defined,
though when linking more than one object file, the code or data in the object file containing
the symbol is not guaranteed to be start at that position; just the final executable. See

[MMIX-loc], page 196.

9.25.3.3 Register names

Local and global registers are specified as ‘$0’ to ‘$255’. The recognized special register
names are ‘rJ’, ‘rA’, ‘rB’, ‘rC’, ‘rD’, ‘rE’, ‘rF’, ‘rG’, ‘rH’, ‘rI’, ‘rK’, ‘rL’, ‘rM’, ‘rN’, ‘r0’, ‘rP’,
‘rQ’, ‘rR’, ‘rS’, ‘rT, ‘U, oV, ‘oW, ‘rX’, ‘rY’, ‘rZ’, ‘rBB’, ‘rTT’, ‘rWW’, ‘rXX’, ‘rYY’ and ‘rZZ’.
A leading ‘:’ is optional for special register names.

Local and global symbols can be equated to register names and used in place of ordinary
registers.

196

Using as

Similarly for special registers, local and global symbols can be used. Also, symbols
equated from numbers and constant expressions are allowed in place of a special reg-
ister, except when either of the options --no-predefined-syms and --fixed-special-
register-names are specified. Then only the special register names above are allowed for
the instructions having a special register operand; GET and PUT.

9.25.3.4 Assembler Directives

LoC

LOCAL

IS

GREG

The LOC directive sets the current location to the value of the operand field,
which may include changing sections. If the operand is a constant, the section
is set to either .data if the value is 0x2000000000000000 or larger, else it
is set to .text. Within a section, the current location may only be changed
to monotonically higher addresses. A LOC expression must be a previously
defined symbol or a “pure” constant.

An example, which sets the label prev to the current location, and updates the
current location to eight bytes forward:
prev LOC @+8

When a LOC has a constant as its operand, a symbol __.MMIX.start..text
or __.MMIX.start..data is defined depending on the address as mentioned
above. Each such symbol is interpreted as special by the linker, locating the
section at that address. Note that if multiple files are linked, the first object
file with that section will be mapped to that address (not necessarily the file
with the LOC definition).

Example:

LOCAL external_symbol

LOCAL 42

.local asymbol
This directive-operation generates a link-time assertion that the operand does
not correspond to a global register. The operand is an expression that at
link-time resolves to a register symbol or a number. A number is treated as
the register having that number. There is one restriction on the use of this
directive: the pseudo-directive must be placed in a section with contents, code
or data.

The IS directive:

asymbol IS an_expression

sets the symbol ‘asymbol’ to ‘an_expression’. A symbol may not be set more
than once using this directive. Local labels may be set using this directive, for
example:

5H IS @+4

This directive reserves a global register, gives it an initial value and optionally
gives it a symbolic name. Some examples:

Chapter 9: Machine Dependent Features 197

BYTE

WYDE
TETRA
OCTA

areg GREG
breg GREG data_value
GREG data_buffer
.greg creg, another_data_value
The symbolic register name can be used in place of a (non-special) register. If a
value isn’t provided, it defaults to zero. Unless the option ‘--no-merge-gregs’
is specified, non-zero registers allocated with this directive may be eliminated
by as; another register with the same value used in its place. Any of the in-
structions ‘CSWAP’, ‘GD’, ‘LDA’, ‘LDBU’, ‘LDB’, ‘LDHT’, ‘LDOU’, ‘LDO’, ‘LDSF’, ‘LDTU’,
‘LDT’, ‘LDUNC’, ‘LDVTS’, ‘LDWU’, ‘LDW’, ‘PREGQ’, ‘PRELD’, ‘PREST’, ‘PUSHGO’, ‘STBU’,
‘STB’, ‘STCQ’, ‘STHT’, ‘STOU’, ‘STSF’, ‘STTU’, ‘STT’, ‘STUNC’, ‘SYNCD’, ‘SYNCID’,
can have a value nearby an initial value in place of its second and third operands.
Here, “nearby” is defined as within the range 0. . .255 from the initial value of
such an allocated register.

bufferl BYTE 0,0,0,0,0
buffer2 BYTE 0,0,0,0,0

GREG bufferi

LDOU $42,buffer2
In the example above, the ‘Y’ field of the LDOUI instruction (LDOU with a
constant Z) will be replaced with the global register allocated for ‘bufferil’,
and the ‘Z’ field will have the value 5, the offset from ‘buffer1’ to ‘buffer2’.
The result is equivalent to this code:

bufferl BYTE 0,0,0,0,0
buffer2 BYTE 0,0,0,0,0

tmpreg GREG bufferil

LDOU $42,tmpreg, (buffer2-bufferl)
Global registers allocated with this directive are allocated in order higher-to-
lower within a file. Other than that, the exact order of register allocation and
elimination is undefined. For example, the order is undefined when more than
one file with such directives are linked together. With the options ‘-x’ and
‘--linker-allocated-gregs’, ‘GREG’ directives for two-operand cases like the
one mentioned above can be omitted. Sufficient global registers will then be
allocated by the linker.

The ‘BYTE’ directive takes a series of operands separated by a comma. If an
operand is a string (see Section 3.6.1.1 [Strings|, page 27), each character of
that string is emitted as a byte. Other operands must be constant expres-
sions without forward references, in the range 0. ..255. If you need operands
having expressions with forward references, use ‘.byte’ (see Section 7.8 [Byte],
page 47). An operand can be omitted, defaulting to a zero value.

The directives ‘WYDE’, ‘TETRA’ and ‘OCTA’ emit constants of two, four and eight
bytes size respectively. Before anything else happens for the directive, the

198 Using as

current location is aligned to the respective constant-size boundary. If a label
is defined at the beginning of the line, its value will be that after the alignment.
A single operand can be omitted, defaulting to a zero value emitted for the
directive. Operands can be expressed as strings (see Section 3.6.1.1 [Strings],
page 27), in which case each character in the string is emitted as a separate
constant of the size indicated by the directive.

PREFIX
The ‘PREFIX’ directive sets a symbol name prefix to be prepended to all sym-
bols (except local symbols, see Section 9.25.3.2 [MMIX-Symbols|, page 195),
that are not prefixed with ‘:’, until the next ‘PREFIX’ directive. Such prefixes
accumulate. For example,
PREFIX a
PREFIX b
cISO
defines a symbol ‘abc’ with the value 0.
BSPEC
ESPEC

A pair of ‘BSPEC’ and ‘ESPEC’ directives delimit a section of special contents
(without specified semantics). Example:

BSPEC 42

TETRA 1,2,3

ESPEC
The single operand to ‘BSPEC’ must be number in the range 0...255. The
‘BSPEC’ number 80 is used by the GNU binutils implementation.

9.25.4 Differences to mmixal

The binutils as and 1d combination has a few differences in function compared to mmixal
(see [mmixsite|, page 194).

The replacement of a symbol with a GREG-allocated register (see [GREG-base],
page 197) is not handled the exactly same way in as as in mmixal. This is apparent in the
mmixal example file inout.mms, where different registers with different offsets, eventually
yielding the same address, are used in the first instruction. This type of difference should
however not affect the function of any program unless it has specific assumptions about
the allocated register number.

Line numbers (in the ‘mmo’ object format) are currently not supported.

Expression operator precedence is not that of mmixal: operator precedence is that of
the C programming language. It’s recommended to use parentheses to explicitly specify
wanted operator precedence whenever more than one type of operators are used.

The serialize unary operator &, the fractional division operator ¢//’, the logical not
operator ! and the modulus operator ‘%’ are not available.

Symbols are not global by default, unless the option ‘--globalize-symbols’ is passed.
Use the ‘.global’ directive to globalize symbols (see Section 7.55 [Global], page 53).

Operand syntax is a bit stricter with as than mmixal. For example, you can’t say addu
1,2,3, instead you must write addu $1,$2, 3.

Chapter 9: Machine Dependent Features 199

You can’t LOC to a lower address than those already visited (i.e., “backwards”).
A LOC directive must come before any emitted code.

Predefined symbols are visible as file-local symbols after use. (In the ELF file, that
is—the linked mmo file has no notion of a file-local symbol.)

Some mapping of constant expressions to sections in LOC expressions is attempted, but
that functionality is easily confused and should be avoided unless compatibility with mmixal
is required. A LOC expression to ‘0x2000000000000000’ or higher, maps to the ‘.data’
section and lower addresses map to the ‘.text’ section (see [MMIX-loc|, page 196).

The code and data areas are each contiguous. Sparse programs with far-away LOC
directives will take up the same amount of space as a contiguous program with zeros filled
in the gaps between the LOC directives. If you need sparse programs, you might try and
get the wanted effect with a linker script and splitting up the code parts into sections (see
Section 7.97 [Section], page 66). Assembly code for this, to be compatible with mmixal,
would look something like:

Lif 0

LOC away_expression
.else

.section away,"ax"
fi

as will not execute the LOC directive and mmixal ignores the lines with .. This construct
can be used generally to help compatibility.

Symbols can’t be defined twice—not even to the same value.

Instruction mnemonics are recognized case-insensitive, though the ‘IS’ and ‘GREG’
pseudo-operations must be specified in upper-case characters.

There’s no unicode support.

The following is a list of programs in ‘mmix.tar.gz’, available at http://www-cs-faculty.stanford.edu/~
last checked with the version dated 2001-08-25 (md5sum ¢393470cfc86fac040487d22d2bf0172)
that assemble with mmixal but do not assemble with as:

silly.mms
LOC to a previous address.

sim.mms Redefines symbol ‘Done’.

test.mms Uses the serial operator ‘&’.

http://www-cs-faculty.stanford.edu/~knuth/mmix-news.html

200 Using as

9.26 MSP 430 Dependent Features

9.26.1 Options

-m select the mpu arch. Currently has no effect.
-mP enables polymorph instructions handler.
-mQ enables relaxation at assembly time. DANGEROUS!

9.26.2 Syntax

9.26.2.1 Macros

The macro syntax used on the MSP 430 is like that described in the MSP 430 Family
Assembler Specification. Normal as macros should still work.

Additional built-in macros are:

llo(exp) Extracts least significant word from 32-bit expression ’exp’.
lhi(exp) Extracts most significant word from 32-bit expression 'exp’.
hlo(exp) Extracts 3rd word from 64-bit expression ’exp’.
hhi(exp) Extracts 4rd word from 64-bit expression ’exp’.

They normally being used as an immediate source operand.

mov #11lo(1), r10 ; == mov #1, ri0
mov #1hi(1), r10 ; == mov #0, ril0

9.26.2.2 Special Characters

¢

A semicolon (‘;’) appearing anywhere on a line starts a comment that extends to the end
of that line.

If a ‘#” appears as the first character of a line then the whole line is treated as a comment,
but it can also be a logical line number directive (see Section 3.3 [Comments|, page 25) or
a preprocessor control command (see Section 3.1 [Preprocessing], page 25).

Multiple statements can appear on the same line provided that they are separated by
the ‘{’ character.

The character ‘$’ in jump instructions indicates current location and implemented only
for TT syntax compatibility.

9.26.2.3 Register Names

General-purpose registers are represented by predefined symbols of the form ‘rN’ (for global
registers), where N represents a number between 0 and 15. The leading letters may be in
either upper or lower case; for example, ‘r13’ and ‘R7’ are both valid register names.

Register names ‘PC’, ‘SP’ and ‘SR’ cannot be used as register names and will be treated
as variables. Use ‘r0’, ‘r1’, and ‘r2’ instead.

Chapter 9: Machine Dependent Features 201

9.26.2.4 Assembler Extensions
@rN As destination operand being treated as ‘0(rn)’
0(xN) As source operand being treated as ‘@rn’

jCOND +N Skips next N bytes followed by jump instruction and equivalent to ‘jCOND
$+N+2’

Also, there are some instructions, which cannot be found in other assemblers. These
are branch instructions, which has different opcodes upon jump distance. They all got PC
relative addressing mode.

beq label A polymorph instruction which is ‘jeq label’ in case if jump distance within
allowed range for cpu’s jump instruction. If not, this unrolls into a sequence of

jne $+6
br label

bne label A polymorph instruction which is ‘jne label’ or ‘jeq +4; br label’
blt label A polymorph instruction which is ‘j1 label’ or ‘jge +4; br label’

bltn label
A polymorph instruction which is ‘jn label’ or ‘jn +2; jmp +4; br label’

bltu label
A polymorph instruction which is ‘jlo label’ or ‘jhs +2; br label’

bge label A polymorph instruction which is ‘jge label’ or ‘j1 +4; br label’

bgeu label
A polymorph instruction which is ‘jhs label’ or ‘jlo +4; br label’

bgt label A polymorph instruction which is ‘jeq +2; jge label’ or ‘jeq +6; j1 +4; br

label’

bgtu label
A polymorph instruction which is ‘jeq +2; jhs label’ or ‘jeq +6; jlo +4; br
label’

bleu label
A polymorph instruction which is ‘jeq label; jlo label’ or ‘jeq +2; jhs +4;
br label’

ble label A polymorph instruction which is ‘jeq label; j1 label’ or ‘jeq +2; jge +4;
br label’

jump label
A polymorph instruction which is ‘jmp label’ or ‘br label’

9.26.3 Floating Point
The MSP 430 family uses IEEE 32-bit floating-point numbers.

202 Using as

9.26.4 MSP 430 Machine Directives

.file This directive is ignored; it is accepted for compatibility with other MSP 430
assemblers.

Warning: in other versions of the GNU assembler, .file is used for
the directive called .app-file in the MSP 430 support.

.line This directive is ignored; it is accepted for compatibility with other MSP 430
assemblers.
.arch Currently this directive is ignored; it is accepted for compatibility with other

MSP 430 assemblers.

.profiler
This directive instructs assembler to add new profile entry to the object file.

9.26.5 Opcodes
as implements all the standard MSP 430 opcodes. No additional pseudo-instructions are
needed on this family.

For information on the 430 machine instruction set, see MSP430 User’s Manual, docu-
ment slau049d, Texas Instrument, Inc.

9.26.6 Profiling Capability

It is a performance hit to use gcc’s profiling approach for this tiny target. Even more —
jtag hardware facility does not perform any profiling functions. However we’ve got gdb’s
built-in simulator where we can do anything.

We define new section ‘.profiler’ which holds all profiling information. We define new
pseudo operation ‘.profiler’ which will instruct assembler to add new profile entry to the
object file. Profile should take place at the present address.

Pseudo operation format:
‘.profiler flags,function_to_profile [, cycle_corrector, extral’

where:

‘flags’ is a combination of the following characters:

S function entry

X function exit

i function is in init section
f function is in fini section
1 library call

C libc standard call
stack value demand
interrupt service routine

prologue start

g Y9 O H O

prologue end

Chapter 9: Machine Dependent Features

E epilogue start

e epilogue end

j long jump / sjlj unwind

a an arbitrary code fragment

t extra parameter saved (a constant value like frame size)

function_to_profile
a function address

cycle_corrector
a value which should be added to the cycle counter, zero if omitted.

extra any extra parameter, zero if omitted.

For example:

.global fxx

.type fxx,@function

fxx:

.LFrameOffset_fxx=0x08

.profiler "scdP", fxx ; function entry.
; we also demand stack value to be saved
push riil
push ri10
push r9
push r8

.profiler "cdpt",fxx,0, .LFrameOffset_fxx ; check stack value at this point
; (this is a prologue end)
; note, that spare var filled with
; the farme size
mov r15,r8

.profiler cdE,fxx ; check stack
pop 18
pop r9
pop rl0
pop rii1
.profiler xcde,fxx,3 ; exit adds 3 to the cycle counter
ret ; cause ’ret’ insn takes 3 cycles

203

204 Using as

9.27 NS32K Dependent Features

9.27.1 Syntax

9.27.1.1 Special Characters

The presence of a ‘#’ appearing anywhere on a line indicates the start of a comment that
extends to the end of that line.

If a ‘#" appears as the first character of a line then the whole line is treated as a com-
ment, but in this case the line can also be a logical line number directive (see Section 3.3
[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25).

If Sequent compatibility has been configured into the assembler then the ‘|’ character
appearing as the first character on a line will also indicate the start of a line comment.

The ¢;’ character can be used to separate statements on the same line.

Chapter 9: Machine Dependent Features 205

9.28 PDP-11 Dependent Features

9.28.1 Options

The PDP-11 version of as has a rich set of machine dependent options.

9.28.1.1 Code Generation Options

-mpic | -mno-pic
Generate position-independent (or position-dependent) code.

The default is to generate position-independent code.

9.28.1.2 Instruction Set Extension Options

These options enables or disables the use of extensions over the base line instruction set
as introduced by the first PDP-11 CPU: the KA11. Most options come in two variants: a
-mextension that enables extension, and a -mno-extension that disables extension.

The default is to enable all extensions.

-mall | -mall-extensions
Enable all instruction set extensions.

-mno-extensions
Disable all instruction set extensions.

-mcis | -mno-cis

Enable (or disable) the use of the commercial instruction set, which consists of
these instructions: ADDNI, ADDN, ADDPI, ADDP, ASHNI, ASHN, ASHPI, ASHP, CMPCI,
CMPC, CMPNI, CMPN, CMPPI, CMPP, CVTLNI, CVTLN, CVTLPI, CVTLP, CVTNLI,
CVTNL, CVTNPI, CVTNP, CVTPLI, CVTPL, CVTPNI, CVTPN, DIVPI, DIVP, L2DR,
L3DR, LOCCI, LOCC, MATCI, MATC, MOVCI, MOVC, MOVRCI, MOVRC, MOVTCI, MOVTC,
MULPI, MULP, SCANCI, SCANC, SKPCI, SKPC, SPANCI, SPANC, SUBNI, SUBN, SUBPI,
and SUBP.

-mcsm | -mno-csm
Enable (or disable) the use of the CSM instruction.

-meis | -mno-eis
Enable (or disable) the use of the extended instruction set, which consists of
these instructions: ASHC, ASH, DIV, MARK, MUL, RTT, SOB SXT, and XOR.

-mfis | -mkevll

-mno-fis | -mno-kevil
Enable (or disable) the use of the KEV11 floating-point instructions: FADD,
FDIV, FMUL, and FSUB.

-mfpp | -mfpu | -mfp-11

-mno-fpp | -mno-fpu | ~mno-fp-11
Enable (or disable) the use of FP-11 floating-point instructions: ABSF, ADDF,
CFCC, CLRF, CMPF, DIVF, LDCFF, LDCIF, LDEXP, LDF, LDFPS, MODF, MULF, NEGF,
SETD, SETF, SETI, SETL, STCFF, STCFI, STEXP, STF, STFPS, STST, SUBF, and
TSTF.

206 Using as

-mlimited-eis | -mno-limited-eis
Enable (or disable) the use of the limited extended instruction set: MARK, RTT,
SOB, SXT, and XOR.

The -mno-limited-eis options also implies -mno-eis.

-mnfpt | -mno-mfpt
Enable (or disable) the use of the MFPT instruction.

-mmultiproc | -mno-multiproc
Enable (or disable) the use of multiprocessor instructions: TSTSET and WRTLCK.

-mmxps | -mno-mxps
Enable (or disable) the use of the MFPS and MTPS instructions.

-mspl | -mno-spl
Enable (or disable) the use of the SPL instruction.
Enable (or disable) the use of the microcode instructions: LDUB, MED, and XFC.

9.28.1.3 CPU Model Options

These options enable the instruction set extensions supported by a particular CPU, and
disables all other extensions.

-mkall KA11 CPU. Base line instruction set only.

-mkb11 KB11 CPU. Enable extended instruction set and SPL.

-mkdila KDI11-A CPU. Enable limited extended instruction set.
-mkd1lb KD11-B CPU. Base line instruction set only.

-mkd11id KD11-D CPU. Base line instruction set only.

-mkdile KDI11-E CPU. Enable extended instruction set, MFPS, and MTPS.

-mkd11f | -mkd11lh | -mkd1llq
KD11-F, KD11-H, or KD11-Q CPU. Enable limited extended instruction set,
MFPS, and MTPS.

-mkdiik KD11-K CPU. Enable extended instruction set, LDUB, MED, MFPS, MFPT, MTPS,

and XFC.

-mkd11z KDI11-Z CPU. Enable extended instruction set, CSM, MFPS, MFPT, MTPS, and
SPL.

-mf11 F11 CPU. Enable extended instruction set, MFPS, MFPT, and MTPS.

-mj11 J11 CPU. Enable extended instruction set, CSM, MFPS, MFPT, MTPS, SPL, TSTSET,
and WRTLCK.

-mt11 T11 CPU. Enable limited extended instruction set, MFPS, and MTPS.

9.28.1.4 Machine Model Options

These options enable the instruction set extensions supported by a particular machine
model, and disables all other extensions.

-m11/03 Same as -mkd11f.

Chapter 9: Machine Dependent Features 207

-m11/04 Same as -mkd11d.

-m11/05 | -m11/10
Same as -mkd11b.

-m11/15 | -m11/20
Same as -mkall.

-mi11/21 Same as -mt11.

-m11/23 | -m11/24
Same as -mf11.

-m11/34 Same as -mkdlle.
-m11/34a Ame as -mkdlle -mfpp.

-m11/35 | -m11/40
Same as -mkdilla.

-m11/44 Same as -mkdiliz.

-m11/45 | -m11/50 | -m11/55 | -m11/70
Same as -mkbi1.

-m11/53 | -m11/73 | -m11/83 | -m11/84 | -m11/93 | -m11/94
Same as -mj11.

-m11/60 Same as -mkd11k.

9.28.2 Assembler Directives

The PDP-11 version of as has a few machine dependent assembler directives.
.bss Switch to the bss section.

.even Align the location counter to an even number.

9.28.3 PDP-11 Assembly Language Syntax

as supports both DEC syntax and BSD syntax. The only difference is that in DEC syntax,
a # character is used to denote an immediate constants, while in BSD syntax the character
for this purpose is $.

general-purpose registers are named rO through r7. Mnemonic alternatives for r6 and
r7 are sp and pc, respectively.

Floating-point registers are named acO through ac3, or alternatively £r0O through fr3.

Comments are started with a # or a / character, and extend to the end of the line.
(FIXME: clash with immediates?)

Multiple statements on the same line can be separated by the ‘;’ character.

9.28.4 Instruction Naming

Some instructions have alternative names.
BCC BHIS
BCS BLO

208 Using as

L2DR L2D
L3DR L3D
SYS TRAP

9.28.5 Synthetic Instructions
The JBR and JCC synthetic instructions are not supported yet.

Chapter 9: Machine Dependent Features 209

9.29 picoJava Dependent Features

9.29.1 Options

as has two additional command-line options for the picoJava architecture.
-ml This option selects little endian data output.

-mb This option selects big endian data output.

9.29.2 PJ Syntax
9.29.2.1 Special Characters

The presence of a ‘!’ or °/” on a line indicates the start of a comment that extends to the
end of the current line.

If a ‘#” appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3
[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25).

The ¢;’ character can be used to separate statements on the same line.

210 Using as

9.30 PowerPC Dependent Features

9.30.1 Options

The PowerPC chip family includes several successive levels, using the same core instruction
set, but including a few additional instructions at each level. There are exceptions to
this however. For details on what instructions each variant supports, please see the chip’s
architecture reference manual.

The following table lists all available PowerPC options.
-a32 Generate ELF32 or XCOFF32.
-a64 Generate ELF64 or XCOFF64.
-K PIC Set EF_PPC_RELOCATABLE_LIB in ELF flags.

-mpwrx | -mpwr2

Generate code for POWER/2 (RIOS2).
-mpwr Generate code for POWER (RIOS1)
-m601 Generate code for PowerPC 601.

-mppc, —-mppc32, -m603, -m604
Generate code for PowerPC 603/604.

-m403, -m405
Generate code for PowerPC 403/405.
-m440 Generate code for PowerPC 440. BookE and some 405 instructions.
-m464 Generate code for PowerPC 464.
-m476 Generate code for PowerPC 476.

-m7400, -m7410, -m7450, -m7455
Generate code for PowerPC 7400/7410/7450/7455.

-m750cl Generate code for PowerPC 750CL.

-mppc64, -m620
Generate code for PowerPC 620/625/630.

-me500, -me500x2
Generate code for Motorola e500 core complex.

-me500mc Generate code for Freescale e500mc core complex.

-me500mc64
Generate code for Freescale e500mc64 core complex.

-mspe Generate code for Motorola SPE instructions.
-mtitan Generate code for AppliedMicro Titan core complex.

-mppc64bridge
Generate code for PowerPC 64, including bridge insns.

-mbooke Generate code for 32-bit BookE.

Chapter 9: Machine Dependent Features 211

-ma2 Generate code for A2 architecture.
-me300 Generate code for PowerPC €300 family.

-maltivec
Generate code for processors with AltiVec instructions.

-mvsx Generate code for processors with Vector-Scalar (VSX) instructions.

-mpower4, —mpwr4
Generate code for Power4 architecture.

-mpowerb, —-mpwrb5, —mpwrbx
Generate code for Powerb architecture.

-mpower6, —mpwr6
Generate code for Power6 architecture.

-mpower7, —mpwr7
Generate code for Power7 architecture.

-mcell Generate code for Cell Broadband Engine architecture.
-mcom Generate code Power/PowerPC common instructions.
-many Generate code for any architecture (PWR/PWRX/PPC).
-mregnames

Allow symbolic names for registers.

-mno-regnames
Do not allow symbolic names for registers.

-mrelocatable
Support for GCC’s -mrelocatable option.

-mrelocatable-1ib
Support for GCC’s -mrelocatable-lib option.

-memb Set PPC_EMB bit in ELF flags.

-mlittle, -mlittle-endian, -le
Generate code for a little endian machine.

-mbig, -mbig-endian, -be
Generate code for a big endian machine.

-msolaris
Generate code for Solaris.

-mno-solaris
Do not generate code for Solaris.

-nops=count
If an alignment directive inserts more than count nops, put a branch at the
beginning to skip execution of the nops.

212 Using as

9.30.2 PowerPC Assembler Directives

A number of assembler directives are available for PowerPC. The following table is far from
complete.

.machine "string"
This directive allows you to change the machine for which code is generated.
"string" may be any of the -m cpu selection options (without the -m) enclosed
in double quotes, "push", or "pop". .machine "push" saves the currently se-
lected cpu, which may be restored with .machine "pop".

9.30.3 PowerPC Syntax
9.30.3.1 Special Characters

The presence of a ‘#” on a line indicates the start of a comment that extends to the end of
the current line.

If a ‘#” appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3
[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25).

If the assembler has been configured for the ppc-*-solaris* target then the ‘!’ charac-
ter also acts as a line comment character. This can be disabled via the ‘-mno-solaris’
command line option.

The ¢;’ character can be used to separate statements on the same line.

Chapter 9: Machine Dependent Features 213

9.31 RX Dependent Features

9.31.1 RX Options

The Renesas RX port of as has a few target specfic command line options:

-m32bit-doubles
This option controls the ABI and indicates to use a 32-bit float ABI. It has no
effect on the assembled instructions, but it does influence the behaviour of the
‘.double’ pseudo-op. This is the default.

-m64bit-doubles
This option controls the ABI and indicates to use a 64-bit float ABI. It has no
effect on the assembled instructions, but it does influence the behaviour of the
‘.double’ pseudo-op.

-mbig-endian
This option controls the ABI and indicates to use a big-endian data ABI. It
has no effect on the assembled instructions, but it does influence the behaviour
of the ‘.short’, ‘.hword’, ‘.int’, ‘.word’, ‘.long’, ‘.quad’ and ‘.octa’ pseudo-
ops.

-mlittle-endian
This option controls the ABI and indicates to use a little-endian data ABI. It
has no effect on the assembled instructions, but it does influence the behaviour
of the ‘.short’, ‘.hword’, ‘.int’, ‘.word’, ‘.long’, ‘.quad’ and ‘.octa’ pseudo-
ops. This is the default.

-muse-conventional-section-names
This option controls the default names given to the code (.text), initialised data
(.data) and uninitialised data sections (.bss).

-muse-renesas-section-names
This option controls the default names given to the code (.P), initialised data
(.D_1) and uninitialised data sections (.B_1). This is the default.

-msmall-data-limit
This option tells the assembler that the small data limit feature of the RX port
of GCC is being used. This results in the assembler generating an undefined
reference to a symbol called __gp for use by the relocations that are needed to
support the small data limit feature. This option is not enabled by default as
it would otherwise pollute the symbol table.

9.31.2 Symbolic Operand Modifiers

The assembler supports several modifiers when using symbol addresses in RX instruction
operands. The general syntax is the following:

fmodifier (symbol)

hegp

214 Using as

9.31.3 Assembler Directives

The RX version of as has the following specific assembler directives:

.3byte Inserts a 3-byte value into the output file at the current location.

9.31.4 Floating Point

The floating point formats generated by directives are these.
.float Single precision (32-bit) floating point constants.

.double If the ‘-m64bit-doubles’ command line option has been specified then then
double directive generates double precision (64-bit) floating point constants,
otherwise it generates single precision (32-bit) floating point constants. To
force the generation of 64-bit floating point constants used the dc.d directive
instead.

9.31.5 Syntax for the RX
9.31.5.1 Special Characters

The presence of a ¢;’ appearing anywhere on a line indicates the start of a comment that
extends to the end of that line.

If a ‘#” appears as the first character of a line then the whole line is treated as a com-
ment, but in this case the line can also be a logical line number directive (see Section 3.3
[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25).

The ‘!’ character can be used to separate statements on the same line.

Chapter 9: Machine Dependent Features 215

9.32 IBM S/390 Dependent Features

The s390 version of as supports two architectures modes and seven chip levels. The archi-
tecture modes are the Enterprise System Architecture (ESA) and the newer z/Architecture

mode. The chip levels are g5, g6, z900, z990, z9-109, z9-ec, z10 and z196.

9.32.1 Options

The following table lists all available s390 specific options:

-m31 | -m64
Select 31- or 64-bit ABI implying a word size of 32- or 64-bit.
These options are only available with the ELF object file format, and require
that the necessary BFD support has been included (on a 31-bit platform you
must add —enable-64-bit-bfd on the call to the configure script to enable 64-bit
usage and use s390x as target platform).

-mesa | -mzarch
Select the architecture mode, either the Enterprise System Architecture (esa)
mode or the z/Architecture mode (zarch).
The 64-bit instructions are only available with the z/Architecture mode. The
combination of ‘-m64’ and ‘-mesa’ results in a warning message.

-march=CPU
This option specifies the target processor. The following processor names are
recognized: gh, g6, z900, z990, z9-109, z9-ec, z10 and z196. Assembling an
instruction that is not supported on the target processor results in an error
message. Do not specify gb or g6 with ‘-mzarch’.

-mregnames
Allow symbolic names for registers.

-mno-regnames
Do not allow symbolic names for registers.

-mwarn-areg-zero
Warn whenever the operand for a base or index register has been specified but
evaluates to zero. This can indicate the misuse of general purpose register 0 as
an address register.

9.32.2 Special Characters

‘#’ is the line comment character.

If a ‘#” appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3
[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25).

The ;’ character can be used instead of a newline to separate statements.

9.32.3 Instruction syntax

The assembler syntax closely follows the syntax outlined in Enterprise Systems Architec-
ture/390 Principles of Operation (SA22-7201) and the z/Architecture Principles of Opera-
tion (SA22-7832).

216 Using as

Each instruction has two major parts, the instruction mnemonic and the instruction
operands. The instruction format varies.

9.32.3.1 Register naming

The as recognizes a number of predefined symbols for the various processor registers. A
register specification in one of the instruction formats is an unsigned integer between 0
and 15. The specific instruction and the position of the register in the instruction format
denotes the type of the register. The register symbols are prefixed with ‘%

%rN the 16 general purpose registers, 0 <= N <= 15
%IN the 16 floating point registers, 0 <= N <= 15
%aN the 16 access registers, 0 <= N <= 15

%cN the 16 control registers, 0 <= N <= 15

%lit an alias for the general purpose register %r13

%sp an alias for the general purpose register %r15

9.32.3.2 Instruction Mnemonics

All instructions documented in the Principles of Operation are supported with the
mnemonic and order of operands as described. The instruction mnemonic identifies the
instruction format (Section 9.32.3.4 [s390 Formats], page 219) and the specific operation
code for the instruction. For example, the ‘1lr’ mnemonic denotes the instruction format
‘RR’ with the operation code ‘0x18’.

The definition of the various mmnemonics follows a scheme, where the first character
usually hint at the type of the instruction:

a add instruction, for example ‘al’ for add logical 32-bit
b branch instruction, for example ‘bc’ for branch on condition
c compare or convert instruction, for example ‘cr’ for compare

register 32-bit

d divide instruction, for example ‘d1r’ devide logical register
64-bit to 32-bit

i insert instruction, for example ‘ic’ insert character
1 load instruction, for example ‘1tr’ load and test register
mv move instruction, for example ‘mvc’ move character

m multiply instruction, for example ‘mh’ multiply halfword

Chapter 9: Machine Dependent Features 217

n and instruction, for example ‘ni’ and immediate
o) or instruction, for example ‘oc’ or character

sla, sll shift left single instruction

sra, srl shift right single instruction

st store instruction, for example ‘stm’ store multiple

S subtract instruction, for example ‘slr’ subtract
logical 32-bit

t test or translate instruction, of example ‘tm’ test under mask
b exclusive or instruction, for example ‘xc’ exclusive or
character

Certain characters at the end of the mnemonic may describe a property of the instruction:

¢ the instruction uses a 8-bit character operand

f the instruction extends a 32-bit operand to 64 bit

g the operands are treated as 64-bit values

h the operand uses a 16-bit halfword operand

i the instruction uses an immediate operand

1 the instruction uses unsigned, logical operands

m the instruction uses a mask or operates on multiple values

r if r is the last character, the instruction operates on registers

y the instruction uses 20-bit displacements

There are many exceptions to the scheme outlined in the above lists, in particular for the
priviledged instructions. For non-priviledged instruction it works quite well, for example
the instruction ‘clgfr’ ¢: compare instruction, I: unsigned operands, g: 64-bit operands, f:
32- to 64-bit extension, r: register operands. The instruction compares an 64-bit value in a
register with the zero extended 32-bit value from a second register. For a complete list of
all mnemonics see appendix B in the Principles of Operation.

9.32.3.3 Instruction Operands

Instruction operands can be grouped into three classes, operands located in registers, im-
mediate operands, and operands in storage.

218 Using as

A register operand can be located in general, floating-point, access, or control register.
The register is identified by a four-bit field. The field containing the register operand is
called the R field.

Immediate operands are contained within the instruction and can have 8, 16 or 32
bits. The field containing the immediate operand is called the I field. Dependent on the
instruction the I field is either signed or unsigned.

A storage operand consists of an address and a length. The address of a storage operands
can be specified in any of these ways:

e The content of a single general R

e The sum of the content of a general register called the base register B plus the content
of a displacement field D

e The sum of the contents of two general registers called the index register X and the
base register B plus the content of a displacement field

e The sum of the current instruction address and a 32-bit signed immediate field multi-
plied by two.

The length of a storage operand can be:

Implied by the instruction

Specified by a bitmask

Specified by a four-bit or eight-bit length field L
Specified by the content of a general register

The notation for storage operand addresses formed from multiple fields is as follows:

Dn (Bn) the address for operand number n is formed from the content of general register
Bn called the base register and the displacement field Dn.

Dn(Xn,Bn)
the address for operand number n is formed from the content of general register
Xn called the index register, general register Bn called the base register and the
displacement field Dn.

Dn(Ln,Bn)
the address for operand number n is formed from the content of general regiser
Bn called the base register and the displacement field Dn. The length of the
operand n is specified by the field Ln.

The base registers Bn and the index registers Xn of a storage operand can be skipped.
If Bn and Xn are skipped, a zero will be stored to the operand field. The notation changes
as follows:

full notation short notation
Dn(0,Bn) Dn(Bn)

Dn(0,0) Dn

Chapter 9: Machine Dependent Features 219

Dn(0) Dn

Dn(Ln,0) Dn(Ln)

9.32.3.4 Instruction Formats

The Principles of Operation manuals lists 26 instruction formats where some of the formats
have multiple variants. For the ‘.insn’ pseudo directive the assembler recognizes some of
the formats. Typically, the most general variant of the instruction format is used by the
‘.insn’ directive.

The following table lists the abbreviations used in the table of instruction formats:
OpCode / OpCd Part of the op code.

Bx Base register number for operand x.

Dx Displacement for operand x.

DLx Displacement lower 12 bits for operand x.
DHx Displacement higher 8-bits for operand x.
Rx Register number for operand x.

Xx Index register number for operand x.

Ix Signed immediate for operand x.

Ux Unsigned immediate for operand x.

An instruction is two, four, or six bytes in length and must be aligned on a 2 byte
boundary. The first two bits of the instruction specify the length of the instruction, 00
indicates a two byte instruction, 01 and 10 indicates a four byte instruction, and 11 indicates
a six byte instruction.

The following table lists the s390 instruction formats that are available with the ‘. insn’
pseudo directive:

E format
e +
[OpCode |
o +
0 15
RI format: <insn> R1,I2
F————— B e B +
| OpCode | R1 |0pCdl 12 |
- e ettt +

0 8 12 16 31

220

RIE format: <insn> R1,R3,1I2

e e e it L LT Fo—m e +
| OpCode | R1 | R3 | 12 [////////] OpCode |
o s e e F—— +
0 8 12 16 32 40 47
RIL format: <insn> R1,I2
o s St e it E L +
| OpCode | R1 |0OpCdl 12
R e e T e e +
0 8 12 16 47
RILU format: <insn> R1,U2
e s e B it e +
| OpCode | R1 |OpCdl U2 I
e s S B aatatatat +
0 8 12 16 47
RIS format: <insn> R1,I2,M3,D4(B4)
F————— e e ettt e e Fo—— F——— +
| OpCode | R1 | M3 | B4 | D4 | I2 | Opcode |
e s e e o +
0 8 12 16 20 32 36 47
RR format: <insn> R1,R2
F—————— s it
| OpCode | R1 | R2 |
F————— o+
0 8 12 15
RRE format: <insn> R1,R2
o e et
| OpCode \////////1 R1 | R2 |
e - t————t——t
0 16 24 28 31
RRF format: <insn> R1,R2,R3,M4
o to—— et —————+
| OpCode | R3 | M4 | R1 | R2 |
o ot ———+
0 16 20 24 28 31
RRS format: <insn> R1,R2,M3,D4(B4)
o s St S o +
| OpCode | R1 | R3 | B4 | D4 | M3 |////| OpCode |
e e e Sttt L e e +
0 8 12 16 20 32 36 40 47
RS format: <insn> R1,R3,D2(B2)
R e e T +

| OpCode | R1 | R3 | B2 | D2

Using as

Chapter 9: Machine Dependent Features

fmm B e S +
0 8 12 16 20 31
RSE format: <insn> R1,R3,D2(B2)
R — S N S — R — +
| OpCode | R1 | R3 | B2 | D2 1////////1 OpCode |
fmm s T e fmm B +
0 8 12 16 20 32 40 a7
RSI format: <insn> R1,R3,1I2
fmm e T B T +
| OpCode | R1 | R3 | I2 |
e e +
0 8 12 16 47
RSY format: <insn> R1,R3,D2(B2)
fmm———— B e S fmm e +
| OpCode | R1 | R3 | B2 | DL2 | DH2 | OpCode |
R — S T R — - +
0 8 12 16 20 32 40 47
RX format: <insn> R1,D2(X2,B2)
fmmm——— e T +
| OpCode | R1 | X2 | B2 | D2 |
o e e +
0 8 12 16 20 31
RXE format: <insn> R1,D2(X2,B2)
T — e T S — - +
| OpCode | R1 | X2 | B2 | D2 1////////1 OpCode |
fmm———— s e e Fmm—— B +
0 8 12 16 20 32 40 a7
RXF format: <insn> R1,R3,D2(X2,B2)
e e e T T +
| OpCode | R3 | X2 | B2 | D2 | R1 |///] OpCode |
e e T e T S +
0 8 12 16 20 32 36 40 47
RXY format: <insn> R1,D2(X2,B2)
fmm——— B s e S fmm e +
| OpCode | R1 | X2 | B2 | DL2 | DH2 | OpCode |
R — S N S —— - +
0 8 12 16 20 32 36 40 47
S format: <insn> D2(B2)
e s T +
| OpCode | B2 | D2 |
e s T +
0 16 20 31

SI format: <insn> D1(B1),I2
e o ——— e +

221

222 Using as

| OpCode | 12 | Bi | D1 |
Fmm————— e B +
0 8 16 20 31
SIY format: <insn> D1(B1),U2
e fmmm———— B s e e +
| OpCode | I2 | B1 | DL1 | DH1 | OpCode |
o B B e e +
0 8 16 20 32 36 40 a7
SIL format: <insn> D1(B1),I2
e B e +
I OpCode | B1 | D1 | 12 |
e B e +
0 16 20 32 47
SS format: <insn> D1(R1,B1),D2(B3),R3
o B e T s T +
| OpCode | R1 | R3 | B1 | D1 | B2 | D2 I
fmm———— R s e R o +
0 8 12 16 20 32 36 47
SSE format: <insn> D1(B1),D2(B2)
e B s T +
| OpCode | B1 | D1 | B2 | D2 |
e B e +
0 8 12 16 20 32 36 a7
SSF format: <insn> D1(B1),D2(B2),R3
e R s e e fmm +
| OpCode | R3 |0pCd| B1 | D1 | B2 | D2 |
o s T e s TR +
0 8 12 16 20 32 36 47

For the complete list of all instruction format variants see the Principles of Operation
manuals.

9.32.3.5 Instruction Aliases

A specific bit pattern can have multiple mnemonics, for example the bit pattern
‘0xa7000000’ has the mnemonics ‘tmh’ and ‘tmlh’. In addition, there are a number of
mnemonics recognized by as that are not present in the Principles of Operation. These
are the short forms of the branch instructions, where the condition code mask operand is
encoded in the mnemonic. This is relevant for the branch instructions, the compare and
branch instructions, and the compare and trap instructions.

For the branch instructions there are 20 condition code strings that can be used as part
of the mnemonic in place of a mask operand in the instruction format:

instruction short form

Chapter 9: Machine Dependent Features 223

ber M1,R2 b<m>r R2

bec M1,D2(X2,B2) b<m> D2(X2,B2)
brc M1,I2 j<m> 12

brcl M1,12 jg<m> 12

In the mnemonic for a branch instruction the condition code string <m> can be any of
the following:

0 jump on overflow / if ones

h jump on A high

p jump on plus

nle jump on not low or equal

1 jump on A low

m jump on minus

nhe jump on not high or equal

lh jump on low or high

ne jump on A not equal B

nz jump on not zero / if not zeros
e jump on A equal B

z jump on zero / if zeroes

nlh jump on not low or high

he jump on high or equal

nl jump on A not low

nm jump on not minus / if not mixed
le jump on low or equal

nh jump on A not high

224

np jump on not plus

no jump on not overflow / if not ones

Using as

For the compare and branch, and compare and trap instructions there are 12 condition
code strings that can be used as part of the mnemonic in place of a mask operand in the
instruction format:

instruction

crb R1,R2,M3,D4(B4)
cgrb R1,R2,M3,D4(B4)
crj RI1,R2,M3,14

cgrj R1,R2,M3,14

cib R1,I2,M3,D4(B4)
cgib R1,12,M3,D4(B4)
cij R1,12,M3,14

cgij R1,12,M3,14

crt R1,R2,M3

cgrt R1,R2,M3

cit R1,12,M3

cgit R1,12,M3

clrb R1,R2,M3,D4(B4)
clgrb R1,R2,M3,D4(B4)
clrj R1,R2,M3,14

clgrj R1,R2,M3.,14

clib R1,12,M3,D4(B4)

clgib R1,I2,M3,D4(B4)

short form

crb<m> R1,R2,D4(B4)
cgrb<m> R1,R2,D4(B4)
cri<m> R1,R2,14
cgrji<m> R1,R2,14
cib<m> R1,I12,D4(B4)
cgib<m> R1,12,D4(B4)
cij<m> R1,I2,14
cgij<m> RI1,12,14
crt<m> R1,R2
cgrt<m> RI1,R2
cit<m> R1,I2

cgit<m> R1,I2
clrb<m> RI1,R2,D4(B4)
clgrb<m> R1,R2,D4(B4)
clrj<m> RI1,R2,14
clgri<m> R1,R2,14
clib<m> R1,12,D4(B4)

clgib<m> R1,12,D4(B4)

Chapter 9: Machine Dependent Features

clij RI1,12,M3,14
clgij R1,12,M3,14
clrt R1,R2,M3
clgrt R1,R2,M3
clfit R1,12,M3

clgit R1,12,M3

225

clijgm> RI1,12,14
clgij<m> R1,12,14
clrt<m> RI1,R2
clgrt<m> R1,R2
clfit<m> R1,I2

clgit<m> R1,I2

In the mnemonic for a compare and branch and compare and trap instruction the con-
dition code string <m> can be any of the following:

h jump on A high

nle jump on not low or equal
1 jump on A low

nhe jump on not high or equal
ne jump on A not equal B
lh jump on low or high

e jump on A equal B

nlh jump on not low or high
nl jump on A not low

he jump on high or equal
nh jump on A not high

le jump on low or equal

9.32.3.6 Instruction Operand Modifier

If a symbol modifier is attached to a symbol in an expression for an instruction operand
field, the symbol term is replaced with a reference to an object in the global offset
table (GOT) or the procedure linkage table (PLT). The following expressions are
allowed: ‘symbol@modifier + constant’, ‘symbol@modifier + label + constant’, and

‘symbol@modifier - label + constant’.

The term ‘symbol’ is the symbol that will be

entered into the GOT or PLT, ‘label’ is a local label, and ‘constant’ is an arbitrary
expression that the assembler can evaluate to a constant value.

226 Using as

The term ‘(symbol + constantl)@modifier +/- label + constant2’ is also accepted
but a warning message is printed and the term is converted to ‘symbol@modifier +/-
label + constantl + constant2’.

QGgot

Qgot12 The @got modifier can be used for displacement fields, 16-bit immediate fields
and 32-bit pc-relative immediate fields. The @got12 modifier is synonym to
@got. The symbol is added to the GOT. For displacement fields and 16-bit
immediate fields the symbol term is replaced with the offset from the start of
the GOT to the GOT slot for the symbol. For a 32-bit pc-relative field the
pe-relative offset to the GOT slot from the current instruction address is used.

@gotent The @gotent modifier can be used for 32-bit pc-relative immediate fields. The
symbol is added to the GOT and the symbol term is replaced with the pc-
relative offset from the current instruction to the GOT slot for the symbol.

@gotoff The @gotoff modifier can be used for 16-bit immediate fields. The symbol term
is replaced with the offset from the start of the GOT to the address of the
symbol.

@gotplt The @gotplt modifier can be used for displacement fields, 16-bit immediate
fields, and 32-bit pc-relative immediate fields. A procedure linkage table entry
is generated for the symbol and a jump slot for the symbol is added to the GOT.
For displacement fields and 16-bit immediate fields the symbol term is replaced
with the offset from the start of the GOT to the jump slot for the symbol. For
a 32-bit pc-relative field the pc-relative offset to the jump slot from the current
instruction address is used.

@plt The @plt modifier can be used for 16-bit and 32-bit pc-relative immediate fields.
A procedure linkage table entry is generated for the symbol. The symbol term
is replaced with the relative offset from the current instruction to the PLT entry
for the symbol.

@pltoff The @pltoff modifier can be used for 16-bit immediate fields. The symbol term is
replaced with the offset from the start of the PLT to the address of the symbol.

Ogotntpoff
The @gotntpoff modifier can be used for displacement fields. The symbol is
added to the static TLS block and the negated offset to the symbol in the
static TLS block is added to the GOT. The symbol term is replaced with the
offset to the GOT slot from the start of the GOT.

Q@indntpoff
The @indntpoff modifier can be used for 32-bit pc-relative immediate fields. The
symbol is added to the static TLS block and the negated offset to the symbol
in the static TLS block is added to the GOT. The symbol term is replaced with
the pc-relative offset to the GOT slot from the current instruction address.

For more information about the thread local storage modifiers ‘gotntpoff’ and
‘indntpoff’ see the ELF extension documentation °‘ELF Handling For Thread-Local
Storage’.

Chapter 9: Machine Dependent Features 227

9.32.3.7 Instruction Marker

The thread local storage instruction markers are used by the linker to perform code opti-
mization.

:tls_load
The :tls_load marker is used to flag the load instruction in the initial exec TLS
model that retrieves the offset from the thread pointer to a thread local storage
variable from the GOT.

:tls_gdcall
The :tls_gdcall marker is used to flag the branch-and-save instruction to the
__tls_get_offset function in the global dynamic TLS model.

:tls_ldcall
The :tls_ldcall marker is used to flag the branch-and-save instruction to the
__tls_get_offset function in the local dynamic TLS model.

For more information about the thread local storage instruction marker and the linker
optimizations see the ELF extension documentation ‘ELF Handling For Thread-Local
Storage’.

9.32.3.8 Literal Pool Entries

A literal pool is a collection of values. To access the values a pointer to the literal pool is
loaded to a register, the literal pool register. Usually, register %r13 is used as the literal
pool register (Section 9.32.3.1 [s390 Register|, page 216). Literal pool entries are created
by adding the suffix :1it1, :1it2, :1it4, or :1it8 to the end of an expression for an instruction
operand. The expression is added to the literal pool and the operand is replaced with the
offset to the literal in the literal pool.

:litl The literal pool entry is created as an 8-bit value. An operand modifier must
not be used for the original expression.

:1it2 The literal pool entry is created as a 16 bit value. The operand modifier @got
may be used in the original expression. The term ‘x@got:1it2’ will put the got
offset for the global symbol x to the literal pool as 16 bit value.

:1it4d The literal pool entry is created as a 32-bit value. The operand modifier @got
and @plt may be used in the original expression. The term ‘x@got:1it4’ will
put the got offset for the global symbol x to the literal pool as a 32-bit value.
The term ‘x@plt:1it4’ will put the plt offset for the global symbol x to the
literal pool as a 32-bit value.

:1it8 The literal pool entry is created as a 64-bit value. The operand modifier @got
and @plt may be used in the original expression. The term ‘x@got:1it8’ will
put the got offset for the global symbol x to the literal pool as a 64-bit value.
The term ‘x@plt:1it8’ will put the plt offset for the global symbol x to the
literal pool as a 64-bit value.

The assembler directive ‘.1torg’ is used to emit all literal pool entries to the current
position.

228

Using as

9.32.4 Assembler Directives

as for 8390 supports all of the standard ELF assembler directives as outlined in the main
part of this document. Some directives have been extended and there are some additional
directives, which are only available for the s390 as.

.insn

.short
.long
.quad

This directive permits the numeric representation of an instructions and
makes the assembler insert the operands according to one of the instructions
formats for ‘.insn’ (Section 9.32.3.4 [s390 Formats], page 219). For
example, the instruction ‘1 %r1,24(%r15)’ could be written as ‘.insn
rx,0x58000000,%r1,24 (%r15)’ .

This directive places one or more 16-bit (.short), 32-bit (.long), or 64-bit
(.quad) values into the current section. If an ELF or TLS modifier is used
only the following expressions are allowed: ‘symbol@modifier + constant’,
‘symbol@modifier + label + constant’, and ‘symbol@modifier - label +
constant’. The following modifiers are available:

Ggot

Qgot12 The @got modifier can be used for .short, .long and .quad. The
@got12 modifier is synonym to @got. The symbol is added to the
GOT. The symbol term is replaced with offset from the start of the
GOT to the GOT slot for the symbol.

@gotoff The @gotoff modifier can be used for .short, .long and .quad. The
symbol term is replaced with the offset from the start of the GOT
to the address of the symbol.

@gotplt The @gotplt modifier can be used for .long and .quad. A procedure
linkage table entry is generated for the symbol and a jump slot
for the symbol is added to the GOT. The symbol term is replaced
with the offset from the start of the GOT to the jump slot for the
symbol.

@plt The @plt modifier can be used for .long and .quad. A procedure
linkage table entry us generated for the symbol. The symbol term
is replaced with the address of the PLT entry for the symbol.

@pltoff The @pltoff modifier can be used for .short, .long and .quad. The
symbol term is replaced with the offset from the start of the PLT
to the address of the symbol.

Otlsgd

@tlsldm The @tlsgd and @tlsldm modifier can be used for .long and .quad.
A tls_index structure for the symbol is added to the GOT. The
symbol term is replaced with the offset from the start of the GOT
to the tls_index structure.

Chapter 9: Machine Dependent Features 229

.ltorg

@gotntpoff

O@indntpoff
The @gotntpoff and @indntpoff modifier can be used for .long and
.quad. The symbol is added to the static TLS block and the negated
offset to the symbol in the static TLS block is added to the GOT.
For @gotntpoff the symbol term is replaced with the offset from the
start of the GOT to the GOT slot, for @indntpoff the symbol term
is replaced with the address of the GOT slot.

@dtpoff The @dtpoff modifier can be used for .long and .quad. The symbol
term is replaced with the offset of the symbol relative to the start
of the TLS block it is contained in.

@ntpoff The @ntpoff modifier can be used for .long and .quad. The symbol
term is replaced with the offset of the symbol relative to the TCB
pointer.

For more information about the thread local storage modifiers see the ELF
extension documentation ‘ELF Handling For Thread-Local Storage’.

This directive causes the current contents of the literal pool to be dumped to
the current location (Section 9.32.3.8 [s390 Literal Pool Entries|, page 227).

.machine string

This directive allows you to change the machine for which code is generated.
string may be any of the -march= selection options (without the -march=),
push, or pop. .machine push saves the currently selected cpu, which may be
restored with .machine pop. Be aware that the cpu string has to be put into
double quotes in case it contains characters not appropriate for identifiers. So
you have to write "z9-109" instead of just z9-109.

9.32.5 Floating Point

The assembler recognizes both the IEEE floating-point instruction and the hexadecimal
floating-point instructions. The floating-point constructors ‘.float’, ‘.single’, and
‘.double’ always emit the IEEE format. To assemble hexadecimal floating-point constants
the ‘.long’ and ‘.quad’ directives must be used.

230 Using as

9.33 SCORE Dependent Features

9.33.1 Options
The following table lists all available SCORE options.

-G num This option sets the largest size of an object that can be referenced implicitly
with the gp register. The default value is 8.

-EB Assemble code for a big-endian cpu
-EL Assemble code for a little-endian cpu

-FIXDD Assemble code for fix data dependency
-NWARN Assemble code for no warning message for fix data dependency

-SCORE5 Assemble code for target is SCORES

-SCORE5U Assemble code for target is SCORE5SU

-SCORE7 Assemble code for target is SCORE7, this is default setting
-SCORE3 Assemble code for target is SCORE3

-march=score7
Assemble code for target is SCORET7, this is default setting

-march=score3
Assemble code for target is SCORE3

-USE_R1 Assemble code for no warning message when using temp register rl

-KPIC Generate code for PIC. This option tells the assembler to generate score
position-independent macro expansions. It also tells the assembler to mark the
output file as PIC.

-00 Assembler will not perform any optimizations

-V Sunplus release version

9.33.2 SCORE Assembler Directives

A number of assembler directives are available for SCORE. The following table is far from
complete.

.set nwarn
Let the assembler not to generate warnings if the source machine language
instructions happen data dependency.

.set fixdd
Let the assembler to insert bubbles (32 bit nop instruction / 16 bit nop! In-
struction) if the source machine language instructions happen data dependency.

.set nofixdd
Let the assembler to generate warnings if the source machine language instruc-
tions happen data dependency. (Default)

.set rl Let the assembler not to generate warnings if the source program uses rl. allow
user to use rl

Chapter 9: Machine Dependent Features 231

set norl Let the assembler to generate warnings if the source program uses rl. (Default)
.sdata Tell the assembler to add subsequent data into the sdata section
.rdata Tell the assembler to add subsequent data into the rdata section

.frame "frame-register", "offset", "return-pc-register"
Describe a stack frame. "frame-register" is the frame register, "offset" is the dis-
tance from the frame register to the virtual frame pointer, "return-pc-register"
is the return program register. You must use ".ent" before ".frame" and only
one ".frame" can be used per ".ent".

.mask "bitmask", "frameoffset"
Indicate which of the integer registers are saved in the current function’s stack
frame, this is for the debugger to explain the frame chain.

.ent "proc-name"
Set the beginning of the procedure "proc_name". Use this directive when you
want to generate information for the debugger.

.end proc-name
Set the end of a procedure. Use this directive to generate information for the
debugger.

.bss Switch the destination of following statements into the bss section, which is
used for data that is uninitialized anywhere.

9.33.3 SCORE Syntax
9.33.3.1 Special Characters

The presence of a ‘#’ appearing anywhere on a line indicates the start of a comment that
extends to the end of that line.

If a ‘#’ appears as the first character of a line then the whole line is treated as a com-
ment, but in this case the line can also be a logical line number directive (see Section 3.3
[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25).

The ¢;’ character can be used to separate statements on the same line.

232 Using as

9.34 Renesas / SuperH SH Dependent Features

9.34.1 Options

as has following command-line options for the Renesas (formerly Hitachi) / SuperH SH
family.

--little Generate little endian code.
--big Generate big endian code.
--relax Alter jump instructions for long displacements.

--small Align sections to 4 byte boundaries, not 16.

--dsp Enable sh-dsp insns, and disable sh3e / sh4 insns.

--renesas
Disable optimization with section symbol for compatibility with Renesas as-
sembler.

--allow-reg-prefix
Allow ’$’ as a register name prefix.

--fdpic Generate an FDPIC object file.

--isa=sh4 | sh4a
Specify the sh4 or sh4a instruction set.

--isa=dsp
Enable sh-dsp insns, and disable sh3e / sh4 insns.

--isa=fp Enable sh2e, sh3e, sh4, and sh4a insn sets.

--isa=all
Enable shl, sh2, sh2e, sh3, sh3e, sh4, sh4a, and sh-dsp insn sets.

-h-tick-hex
Support H’00 style hex constants in addition to 0x00 style.

9.34.2 Syntax
9.34.2.1 Special Characters

‘17 is the line comment character.
You can use ‘;’ instead of a newline to separate statements.

If a ‘#’ appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3
[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25).

Since ‘$’ has no special meaning, you may use it in symbol names.

Chapter 9: Machine Dependent Features 233

9.34.2.2 Register Names
You can use the predefined symbols ‘r0’, ‘r1’, ‘r2’, ‘r3’, ‘rd’, ‘rb, ‘ré’, ‘r7’, ‘r8, ‘r9’,
‘r10’, ‘r11’, ‘r12’, ‘r13’, ‘r14’, and ‘r15’ to refer to the SH registers.

The SH also has these control registers:

pr procedure register (holds return address)

pc program counter

mach

macl high and low multiply accumulator registers
ST status register

gbr global base register

vbr vector base register (for interrupt vectors)

9.34.2.3 Addressing Modes

as understands the following addressing modes for the SH. Rn in the following refers to any
of the numbered registers, but not the control registers.

Rn Register direct

©@Rn Register indirect

©@-Rn Register indirect with pre-decrement
@Rn+ Register indirect with post-increment
@(disp, Rn)

Register indirect with displacement

@(RO, Rn)
Register indexed

@(disp, GBR)

GBR offset

@(RO, GBR)
GBR indexed

addr

@(disp, PC)
PC relative address (for branch or for addressing memory). The as implemen-
tation allows you to use the simpler form addr anywhere a PC relative address
is called for; the alternate form is supported for compatibility with other as-
semblers.

#imm Immediate data

9.34.3 Floating Point

SH2E, SH3E and SH4 groups have on-chip floating-point unit (FPU). Other SH groups can
use .float directive to generate IEEE floating-point numbers.

234 Using as

SH2E and SH3E support single-precision floating point calculations as well as entirely
PCAPI compatible emulation of double-precision floating point calculations. SH2E and
SH3E instructions are a subset of the floating point calculations conforming to the IEEE754
standard.

In addition to single-precision and double-precision floating-point operation capability,
the on-chip FPU of SH4 has a 128-bit graphic engine that enables 32-bit floating-point
data to be processed 128 bits at a time. It also supports 4 * 4 array operations and inner
product operations. Also, a superscalar architecture is employed that enables simultaneous
execution of two instructions (including FPU instructions), providing performance of up to
twice that of conventional architectures at the same frequency.

9.34.4 SH Machine Directives

uaword

ualong as will issue a warning when a misaligned .word or .long directive is used.
You may use .uaword or .ualong to indicate that the value is intentionally
misaligned.

9.34.5 Opcodes

For detailed information on the SH machine instruction set, see SH-Microcomputer User’s
Manual (Renesas) or SH-4 32-bit CPU Core Architecture (SuperH) and SuperH (SH) 64-Bit
RISC Series (SuperH).

as implements all the standard SH opcodes. No additional pseudo-instructions are
needed on this family. Note, however, that because as supports a simpler form of PC-
relative addressing, you may simply write (for example)

mov.l bar,r0

where other assemblers might require an explicit displacement to bar from the program
counter:

mov.l @(disp, PC)

Chapter 9: Machine Dependent Features 235

9.35 SuperH SH64 Dependent Features

9.35.1 Options

-isa=sh4 | shda
Specify the sh4 or sh4a instruction set.

-isa=dsp Enable sh-dsp insns, and disable sh3e / sh4 insns.
-isa=fp Enable sh2e, sh3e, sh4, and sh4a insn sets.
-isa=all Enable shl, sh2, sh2e, sh3, sh3e, sh4, sh4a, and sh-dsp insn sets.

-isa=shmedia | -isa=shcompact
Specify the default instruction set. SHmedia specifies the 32-bit opcodes, and
SHcompact specifies the 16-bit opcodes compatible with previous SH families.
The default depends on the ABI selected; the default for the 64-bit ABI is
SHmedia, and the default for the 32-bit ABI is SHcompact. If neither the ABI
nor the ISA is specified, the default is 32-bit SHcompact.
Note that the .mode pseudo-op is not permitted if the ISA is not specified on
the command line.

-abi=32 | -abi=64
Specify the default ABI. If the ISA is specified and the ABI is not, the default
ABI depends on the ISA, with SHmedia defaulting to 64-bit and SHcompact
defaulting to 32-bit.
Note that the .abi pseudo-op is not permitted if the ABI is not specified on
the command line. When the ABI is specified on the command line, any .abi
pseudo-ops in the source must match it.

-shcompact-const-crange
Emit code-range descriptors for constants in SHcompact code sections.

-no-mix Disallow SHmedia code in the same section as constants and SHcompact code.

-no-expand
Do not expand MOVI, PT, PTA or PTB instructions.

-expand-pt32

With -abi=64, expand PT, PTA and PTB instructions to 32 bits only.
-h-tick-hex

Support H’00 style hex constants in addition to 0x00 style.

9.35.2 Syntax
9.35.2.1 Special Characters

‘17 is the line comment character.

If a ‘#” appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3
[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25).

236 Using as

You can use ‘;’ instead of a newline to separate statements.

Since ‘$’ has no special meaning, you may use it in symbol names.

9.35.2.2 Register Names

You can use the predefined symbols ‘r0’ through ‘r63’ to refer to the SH64 general registers,
‘cr0’ through cr63 for control registers, ‘tr0’ through ‘tr7’ for target address registers,
‘fr0’ through ‘fr63’ for single-precision floating point registers, ‘dr0’ through ‘dr62’ (even
numbered registers only) for double-precision floating point registers, ‘fv0’ through ‘fv60’
(multiples of four only) for single-precision floating point vectors, ‘fp0’ through ‘fp62’ (even
numbered registers only) for single-precision floating point pairs, ‘mtrx0’ through ‘mtrx48’
(multiples of 16 only) for 4x4 matrices of single-precision floating point registers, ‘pc’ for
the program counter, and ‘fpscr’ for the floating point status and control register.

You can also refer to the control registers by the mnemonics ‘sr’, ‘ssr’, ‘pssr’, ‘intevt’,
‘expevt’, ‘pexpevt’, ‘tra’, ‘spc’, ‘pspc’, ‘resvec’, ‘vbr’, ‘tea’, ‘dcr’, ‘kcr0’, ‘kcrl’, ‘ctc’,

and ‘usr’.

9.35.2.3 Addressing Modes

SH64 operands consist of either a register or immediate value. The immediate value can be
a constant or label reference (or portion of a label reference), as in this example:

movi 4,r2

pt function, tr4

movi (function >> 16) & 65535,r0
shori function & 65535, r0

1d.1 r0,4,x0

Instruction label references can reference labels in either SHmedia or SHcompact. To
differentiate between the two, labels in SHmedia sections will always have the least signifi-
cant bit set (i.e. they will be odd), which SHcompact labels will have the least significant
bit reset (i.e. they will be even). If you need to reference the actual address of a label, you
can use the datalabel modifier, as in this example:

.long function
.long datalabel function

In that example, the first longword may or may not have the least significant bit set
depending on whether the label is an SHmedia label or an SHcompact label. The second
longword will be the actual address of the label, regardless of what type of label it is.

9.35.3 SH64 Machine Directives
In addition to the SH directives, the SH64 provides the following directives:

.mode [shmedia|shcompact]

.isa [shmedial|shcompact]
Specify the ISA for the following instructions (the two directives are equivalent).
Note that programs such as objdump rely on symbolic labels to determine when
such mode switches occur (by checking the least significant bit of the label’s
address), so such mode/isa changes should always be followed by a label (in
practice, this is true anyway). Note that you cannot use these directives if you
didn’t specify an ISA on the command line.

Chapter 9: Machine Dependent Features 237

.abi [32]64]
Specify the ABI for the following instructions. Note that you cannot use this di-
rective unless you specified an ABI on the command line, and the ABIs specified
must match.

.uaquad Like .uaword and .ualong, this allows you to specify an intentionally unaligned
quadword (64 bit word).

9.35.4 Opcodes

For detailed information on the SH64 machine instruction set, see SuperH 64 bit RISC
Series Architecture Manual (SuperH, Inc.).

as implements all the standard SH64 opcodes. In addition, the following pseudo-opcodes
may be expanded into one or more alternate opcodes:

movi If the value doesn’t fit into a standard movi opcode, as will replace the movi
with a sequence of movi and shori opcodes.

pt This expands to a sequence of movi and shori opcode, followed by a ptrel
opcode, or to a pta or ptb opcode, depending on the label referenced.

238 Using as

9.36 SPARC Dependent Features

9.36.1 Options

The SPARC chip family includes several successive versions, using the same core instruction
set, but including a few additional instructions at each version. There are exceptions to
this however. For details on what instructions each variant supports, please see the chip’s
architecture reference manual.

By default, as assumes the core instruction set (SPARC v6), but “bumps” the archi-
tecture level as needed: it switches to successively higher architectures as it encounters
instructions that only exist in the higher levels.

If not configured for SPARC v9 (sparc64-*-*) GAS will not bump past sparclite by
default, an option must be passed to enable the v9 instructions.

GAS treats sparclite as being compatible with v8, unless an architecture is explicitly
requested. SPARC v9 is always incompatible with sparclite.

-Av6 | -Av7 | -Av8 | -Asparclet | -Asparclite

-Av8plus | -Av8plusa | -Av8plusb | -Av8plusc | -Av8plusd | -Av8plusv

-Av9 | -Av9a | -Av9b | -Av9c | -Av9d | -AvIv

-Asparc | -Asparcvis | -Asparcvis2 | -Asparcfmaf | -Asparcima

-Asparcvis3 | -Asparcvis3r
Use one of the ‘~A’ options to select one of the SPARC architectures explicitly.
If you select an architecture explicitly, as reports a fatal error if it encounters
an instruction or feature requiring an incompatible or higher level.
‘-Av8plus’, ‘-Av8plusa’, ‘-Av8plusb’, ‘-Av8plusc’, ‘-Av8plusd’, and
‘~Av8plusv’ select a 32 bit environment.
‘-Av9’, ‘-Av9a’, ‘-Avob’, ‘-Av9c’, ‘-Av9d’, and ‘-Av9v’ select a 64 bit envi-
ronment and are not available unless GAS is explicitly configured with 64 bit
environment support.

‘~Av8plusa’ and ‘-Av9a’ enable the SPARC V9 instruction set with Ultra-
SPARC VIS 1.0 extensions.

‘~Av8plusb’ and ‘~Av9b’ enable the UltraSPARC VIS 2.0 instructions, as well
as the instructions enabled by ‘-~Av8plusa’ and ‘-Av9a’.

‘~Av8plusc’ and ‘-Av9c’ enable the UltraSPARC Niagara instructions, as well
as the instructions enabled by ‘-~Av8plusb’ and ‘-Av9b’.

‘~Av8plusd’ and ‘-Av9d’ enable the floating point fused multiply-add, VIS
3.0, and HPC extension instructions, as well as the instructions enabled by
‘-Av8plusc’ and ‘-Av9c’.

‘~Av8plusv’ and ‘-Av9v’ enable the 'random’, transactional memory, floating
point unfused multiply-add, integer multiply-add, and cache sparing store in-
structions, as well as the instructions enabled by ‘~Av8plusd’ and ‘-Av9d’.

‘~Asparc’ specifies a v9 environment. It is equivalent to ‘~Av9’ if the word size
is 64-bit, and ‘~Av8plus’ otherwise.

‘~Asparcvis’ specifies a vOa environment. It is equivalent to ‘~Av9a’ if the word
size is 64-bit, and ‘-Av8plusa’ otherwise.

Chapter 9: Machine Dependent Features 239

‘~Asparcvis?2’ specifies a v9b environment. It is equivalent to ‘-Av9b’ if the
word size is 64-bit, and ‘-Av8plusb’ otherwise.

‘~Asparcfmaf’ specifies a v9b environment with the floating point fused
multiply-add instructions enabled.

‘~Asparcima’ specifies a v9b environment with the integer multiply-add instruc-
tions enabled.

‘~Asparcvis3’ specifies a v9b environment with the VIS 3.0, HPC | and floating
point fused multiply-add instructions enabled.

‘~Asparcvis3r’ specifies a v9b environment with the VIS 3.0, HPC, transac-
tional memory, random, and floating point unfused multiply-add instructions
enabled.

-xarch=v8plus | -xarch=v8plusa | -xarch=v8plusb | -xarch=v8plusc

-xarch=v8plusd | -xarch=v8plusv | -xarch=v9 | -xarch=v9a

-xarch=v9b | -xarch=v9c | -xarch=v9d | -xarch=v9v

-xarch=sparc | -xarch=sparcvis | -xarch=sparcvis2

-xarch=sparcfmaf | -xarch=sparcima | -xarch=sparcvis3

-xarch=sparcvis3r
For compatibility with the SunOS v9 assembler. These options are equiva-
lent to -Av8plus, -Av8plusa, -Av8plusb, -Av8plusc, -Av8plusd, -Av8plusv, -
Av9, -Av9a, -Av9b, -Av9c, -Av9d, -Av9v, -Asparc, -Asparcvis, -Asparcvis2,
-Asparctfmaf, -Asparcima, -Asparcvis3, and -Asparcvis3r, respectively.

-bump Warn whenever it is necessary to switch to another level. If an architecture level
is explicitly requested, GAS will not issue warnings until that level is reached,
and will then bump the level as required (except between incompatible levels).

-32 | -64 Select the word size, either 32 bits or 64 bits. These options are only available
with the ELF object file format, and require that the necessary BFD support
has been included.

9.36.2 Enforcing aligned data

SPARC GAS normally permits data to be misaligned. For example, it permits the .long
pseudo-op to be used on a byte boundary. However, the native SunOS assemblers issue an
error when they see misaligned data.

You can use the -—enforce-aligned-data option to make SPARC GAS also issue an
error about misaligned data, just as the SunOS assemblers do.

The --enforce-aligned-data option is not the default because gcc issues misaligned
data pseudo-ops when it initializes certain packed data structures (structures defined using
the packed attribute). You may have to assemble with GAS in order to initialize packed
data structures in your own code.

9.36.3 Sparc Syntax

The assembler syntax closely follows The Sparc Architecture Manual, versions 8 and 9, as
well as most extensions defined by Sun for their UltraSPARC and Niagara line of processors.

240 Using as

9.36.3.1 Special Characters

A ‘1’ character appearing anywhere on a line indicates the start of a comment that extends
to the end of that line.

If a ‘#” appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3
[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25).

‘;7 can be used instead of a newline to separate statements.

9.36.3.2 Register Names

The Sparc integer register file is broken down into global, outgoing, local, and incoming.

e The 8 global registers are referred to as ‘Ygn’.

e The 8 outgoing registers are referred to as ‘J,on’.

e The 8 local registers are referred to as ‘%1n’.

e The 8 incoming registers are referred to as ‘%in’.

e The frame pointer register ‘%16’ can be referenced using the alias ‘%fp’.

e The stack pointer register ‘%06’ can be referenced using the alias ‘%sp’.

Floating point registers are simply referred to as ‘%fn’. When assembling for pre-V9,

only 32 floating point registers are available. For V9 and later there are 64, but there are
restrictions when referencing the upper 32 registers. They can only be accessed as double

or quad, and thus only even or quad numbered accesses are allowed. For example, ‘%£34’
is a legal floating point register, but ‘%£35’ is not.

Certain V9 instructions allow access to ancillary state registers. Most simply they can
be referred to as ‘hjasrn’ where n can be from 16 to 31. However, there are some aliases
defined to reference ASR registers defined for various UltraSPARC processors:

e The tick compare register is referred to as ‘%tick_cmpr’.

e The system tick register is referred to as ‘Ystick’. An alias, ‘%isys_tick’, exists but is
deprecated and should not be used by new software.

e The system tick compare register is referred to as ‘Ystick_cmpr’. An alias,
‘hsys_tick_cmpr’, exists but is deprecated and should not be used by new software.

e The software interrupt register is referred to as ‘%softint’.

e The set software interrupt register is referred to as ‘Y%set_softint’. The mnemonic
‘hsoftint_set’ is provided as an alias.

e The clear software interrupt register is referred to as ‘%,clear_softint’. The mnemonic
‘hsoftint_clear’ is provided as an alias.

e The performance instrumentation counters register is referred to as ‘Ypic’.
e The performance control register is referred to as ‘%pcr’.

e The graphics status register is referred to as ‘Jgsr’.

e The V9 dispatch control register is referred to as ‘%dcr’.

Various V9 branch and conditional move instructions allow specification of which set of
integer condition codes to test. These are referred to as ‘%xcc’ and ‘%icc’.

Chapter 9: Machine Dependent Features 241

In V9, there are 4 sets of floating point condition codes which are referred to as ‘%fccn’.
Several special privileged and non-privileged registers exist:
e The V9 address space identifier register is referred to as ‘%asi’.
e The V9 restorable windows register is referred to as ‘%,canrestore’.
e The V9 savable windows register is referred to as ‘%cansave’.
e The V9 clean windows register is referred to as ‘%cleanwin’.
e The V9 current window pointer register is referred to as ‘%cwp’.
e The floating-point queue register is referred to as ‘%fq’.
e The V8 co-processor queue register is referred to as ‘%cq’.
e The floating point status register is referred to as ‘%fsr’.
e The other windows register is referred to as ‘4otherwin’.
e The V9 program counter register is referred to as ‘%pc’.
e The V9 next program counter register is referred to as ‘%npc’.
e The V9 processor interrupt level register is referred to as ‘%pil’.
e The V9 processor state register is referred to as ‘/pstate’.
e The trap base address register is referred to as ‘%tba’.
e The V9 tick register is referred to as ‘%tick’.
e The V9 trap level is referred to as ‘%tl1’.
e The V9 trap program counter is referred to as ‘%tpc’.
e The V9 trap next program counter is referred to as ‘Jtnpc’.
e The V9 trap state is referred to as ‘Yitstate’.
e The V9 trap type is referred to as ‘Jtt’.
e The V9 condition codes is referred to as ‘Jiccr’.
e The V9 floating-point registers state is referred to as ‘%fprs’.
e The V9 version register is referred to as ‘%ver’.
e The V9 window state register is referred to as ‘Yjwstate’.
e The Y register is referred to as ‘%y’.
e The V8 window invalid mask register is referred to as ‘%wim’.
e The V8 processor state register is referred to as ‘Y%psr’.

e The V9 global register level register is referred to as ‘%gl’.

Several special register names exist for hypervisor mode code:
e The hyperprivileged processor state register is referred to as ‘%4hpstate’.
e The hyperprivileged trap state register is referred to as ‘4htstate’.
e The hyperprivileged interrupt pending register is referred to as ‘4hintp’.
e The hyperprivileged trap base address register is referred to as ‘%4htba’.
e The hyperprivileged implementation version register is referred to as ‘%hver’.

e The hyperprivileged system tick compare register is referred to as ‘4hstick_cmpr’.
Note that there is no ‘%,hstick’ register, the normal ‘%stick’ is used.

242 Using as

9.36.3.3 Constants

Several Sparc instructions take an immediate operand field for which mnemonic names
exist. Two such examples are ‘membar’ and ‘prefetch’. Another example are the set of V9
memory access instruction that allow specification of an address space identifier.

The ‘membar’ instruction specifies a memory barrier that is the defined by the operand
which is a bitmask. The supported mask mnemonics are:

e ‘#Sync’ requests that all operations (including nonmemory reference operations) ap-
pearing prior to the membar must have been performed and the effects of any excep-
tions become visible before any instructions after the membar may be initiated. This
corresponds to membar cmask field bit 2.

o ‘#MemIssue’ requests that all memory reference operations appearing prior to the
membar must have been performed before any memory operation after the membar
may be initiated. This corresponds to membar cmask field bit 1.

e ‘#Lookaside’ requests that a store appearing prior to the membar must complete before
any load following the membar referencing the same address can be initiated. This
corresponds to membar cmask field bit 0.

e ‘#StoreStore’ defines that the effects of all stores appearing prior to the membar in-
struction must be visible to all processors before the effect of any stores following the
membar. Equivalent to the deprecated stbar instruction. This corresponds to membar
mmask field bit 3.

e ‘#LoadStore’ defines all loads appearing prior to the membar instruction must have
been performed before the effect of any stores following the membar is visible to any
other processor. This corresponds to membar mmask field bit 2.

e ‘#StoreLoad’ defines that the effects of all stores appearing prior to the membar in-
struction must be visible to all processors before loads following the membar may be
performed. This corresponds to membar mmask field bit 1.

e ‘#LoadLoad’ defines that all loads appearing prior to the membar instruction must have
been performed before any loads following the membar may be performed. This corre-
sponds to membar mmask field bit 0.

These values can be ored together, for example:

membar #Sync
membar #Storeload | #LoadLoad
membar #Storeload | #StoreStore

The prefetch and prefetcha instructions take a prefetch function code. The following
prefetch function code constant mnemonics are available:

e ‘#n_reads’ requests a prefetch for several reads, and corresponds to a prefetch function

code of 0.

‘#one_read’ requests a prefetch for one read, and corresponds to a prefetch function
code of 1.

‘#n_writes’ requests a prefetch for several writes (and possibly reads), and corresponds
to a prefetch function code of 2.

‘#one_write’ requests a prefetch for one write, and corresponds to a prefetch function
code of 3.

Chapter 9: Machine Dependent Features 243

‘#page’ requests a prefetch page, and corresponds to a prefetch function code of 4.

‘#invalidate’ requests a prefetch invalidate, and corresponds to a prefetch function
code of 16.
‘#unified’ requests a prefetch to the nearest unified cache, and corresponds to a
prefetch function code of 17.
‘#n_reads_strong’ requests a strong prefetch for several reads, and corresponds to a
prefetch function code of 20.
‘#one_read_strong’ requests a strong prefetch for one read, and corresponds to a
prefetch function code of 21.
‘#n_writes_strong’ requests a strong prefetch for several writes, and corresponds to
a prefetch function code of 22.
‘#one_write_strong’ requests a strong prefetch for one write, and corresponds to a
prefetch function code of 23.
Onle one prefetch code may be specified. Here are some examples:

prefetch [%10 + %12], #one_read

prefetch [%g2 + 8], #n_writes

prefetcha [%gl] 0x8, #unified

prefetcha [%o0 + 0x10] %asi, #n_reads
The actual behavior of a given prefetch function code is processor specific. If a processor
does not implement a given prefetch function code, it will treat the prefetch instruction
as a nop.
For instructions that accept an immediate address space identifier, as provides many
mnemonics corresponding to V9 defined as well as UltraSPARC and Niagara extended
values. For example, ‘#ASI_P’ and ‘#ASI_BLK_INIT_QUAD_LDD_AIUS’. See the V9 and
processor specific manuals for details.

9.36.3.4 Relocations

ELF relocations are available as defined in the 32-bit and 64-bit Sparc ELF specifications.

R_SPARC_HI22 is obtained using ‘4hi’ and R_SPARC_L010 is obtained using ‘%1lo’. Like-
wise R_SPARC_HIX22 is obtained from ‘%hix’ and R_SPARC_LOX10 is obtained using ‘%lox’.
For example:

sethi %hi(symbol), %gl
or %gl, %lo(symbol), %gl

sethi %hix(symbol), %gl
xor %gl, %lox(symbol), %gl

These “high” mnemonics extract bits 31:10 of their operand, and the “low” mnemonics
extract bits 9:0 of their operand.

V9 code model relocations can be requested as follows:
e R_SPARC_HH22 is requested using ‘%4hh’. It can also be generated using ‘Juhi’.
e R_SPARC_HM10 is requested using ‘%hm’. It can also be generated using ‘Yulo’.
e R_SPARC_LM22 is requested using ‘%1m’.
e R_SPARC_H44 is requested using ‘%h44’.

244 Using as

e R_SPARC_M44 is requested using ‘%m44’.

e R_SPARC_L44 is requested using ‘%144’.
The PC relative relocation R_SPARC_PC22 can be obtained by enclosing an operand inside
of ‘%pc22’. Likewise, the R_SPARC_PC10 relocation can be obtained using ‘%pc10’. These
are mostly used when assembling PIC code. For example, the standard PIC sequence on

Sparc to get the base of the global offset table, PC relative, into a register, can be performed
as:

sethi %pc22(_GLOBAL_QFFSET_TABLE_-4), %17
add %17, %pc10(_GLOBAL_OFFSET_TABLE_+4), %17

Several relocations exist to allow the link editor to potentially optimize GOT data refer-
ences. The R_SPARC_GOTDATA_OP_HIX22 relocation can obtained by enclosing an operand
inside of ‘%gdop_hix22’. The R_SPARC_GOTDATA_OP_L0X10 relocation can obtained by en-
closing an operand inside of ‘/,gdop_lox10’. Likewise, R_SPARC_GOTDATA_OP can be ob-
tained by enclosing an operand inside of ‘%gdop’. For example, assuming the GOT base is
in register %17:

sethi %gdop_hix22(symbol), %11
xor %11, %gdop_lox10(symbol), %11
1d (%17 + %111, %12, %gdop(symbol)

There are many relocations that can be requested for access to thread local storage
variables. All of the Sparc TLS mnemonics are supported:

e R_SPARC_TLS_GD_HI22 is requested using ‘%tgd_hi22’.

e R_SPARC_TLS_GD_L010 is requested using ‘%tgd_lo10’.

e R_SPARC_TLS_GD_ADD is requested using ‘/tgd_add’.
R_SPARC_TLS_GD_CALL is requested using ‘%tgd_call’.

e R_SPARC_TLS_LDM_HI22 is requested using ‘%tldm_hi22’.
R_SPARC_TLS_LDM_LO10 is requested using ‘%tldm_lo010’.
R_SPARC_TLS_LDM_ADD is requested using ‘%tldm_add’.
R_SPARC_TLS_LDM_CALL is requested using ‘%tldm_call’.

e R_SPARC_TLS_LDO_HIX22 is requested using ‘%tldo_hix22’.
R_SPARC_TLS_LDO_LOX10 is requested using ‘%tldo_lox10’.
R_SPARC_TLS_LDO_ADD is requested using ‘%tldo_add’.
R_SPARC_TLS_IE_HI22 is requested using ‘%tie_hi22’.

e R_SPARC_TLS_IE_L010 is requested using ‘%tie_lo10".
R_SPARC_TLS_IE_LD is requested using ‘/tie_1d’.
R_SPARC_TLS_IE_LDX is requested using ‘/tie_ldx’.
R_SPARC_TLS_IE_ADD is requested using ‘/tie_add’.
R_SPARC_TLS_LE_HIX22 is requested using ‘%tle_hix22’.
R_SPARC_TLS_LE_LOX10 is requested using ‘%tle_lox10’.

Here are some example TLS model sequences.

First, General Dynamic:

Chapter 9: Machine Dependent Features 245

sethi %tgd_hi22(symbol), %11

add %11, %tgd_lo10(symbol), %11

add %17, %11, %00, %tgd_add(symbol)
call __tls_get_addr, %tgd_call(symbol)
nop

Local Dynamic:

sethi ¥%tldm_hi22(symbol), %11

add %11, %tldm_lo10(symbol), %11

add %17, %11, %00, %tldm_add(symbol)
call __tls_get_addr, %tldm_call(symbol)
nop

sethi %tldo_hix22(symbol), %11
xXor %11, %tldo_lox10(symbol), %11
add %00, %11, %11, %tldo_add(symbol)

Initial Exec:

sethi Y%tie_hi22(symbol), %11

add %11, %tie_lo10(symbol), %11

1d (%17 + %111, %00, %tie_ld(symbol)
add %egT, %00, %00, %tie_add(symbol)

sethi Y%tie_hi22(symbol), %11

add %11, Ytie_lol0O(symbol), %11

ldx (%17 + %111, %00, %tie_ldx(symbol)
add g7, %00, %00, %tie_add(symbol)

And finally, Local Exec:

sethi Ytle_hix22(symbol), %11
add %11, %tle_lox10(symbol), %11
add %g7, %11, %11
When assembling for 64-bit, and a secondary constant addend is specified in an address

expression that would normally generate an R_SPARC_L010 relocation, the assembler will
emit an R_SPARC_0LO10 instead.

9.36.3.5 Size Translations

Often it is desirable to write code in an operand size agnostic manner. as provides support
for this via operand size opcode translations. Translations are supported for loads, stores,
shifts, compare-and-swap atomics, and the ‘clr’ synthetic instruction.

If generating 32-bit code, as will generate the 32-bit opcode. Whereas if 64-bit code is

being generated, the 64-bit opcode will be emitted. For example 1dn will be transformed
into 1d for 32-bit code and 1dx for 64-bit code.

Here is an example meant to demonstrate all the supported opcode translations:

1dn [%00], %ol
ldna [%00] %asi, %02
stn Y%ol, [%o0]

246

stna
slln
srln
sran
casn

Using as

%02, [%o0] %asi
%03, 3, %o3
%04, 8, %o4
%05, 12, %05
[%001, %ol, %o2

casna [%00] %asi, %ol, %o2

clrn

hgl

In 32-bit mode as will emit:

1d
1lda
st
sta
sll
srl
sra
cas
casa
clr

[%00], %ol

[%00] %asi, %o2

%ol, [%o0]

%02, [%o0] %asi

%03, 3, %03

%04, 8, %ol

%05, 12, %05

[%00], %ol, %02
[%00] %asi, %ol, %o2
%hgl

And in 64-bit mode as will emit:

1ldx

ldxa
stx

stxa
sllx
srlx
srax
casx

[%o0], %ol
[%00] %asi, %o?2
%ol, [%o0]

%02, [%o0] %asi
%03, 3, %03
%od, 8, %o4
%05, 12, %ob
[%00]1, %ol, %02

casxa [%00] %asi, %ol, %o2

clrx

el

Finally, the ‘.nword’ translating directive is supported as well. It is documented in the
section on Sparc machine directives.

9.36.4 Floating Point

The Sparc uses IEEE floating-point numbers.

9.36.5 Sparc Machine Directives

The Sparc version of as supports the following additional machine directives:

.align

.common

.half

.nword

This must be followed by the desired alignment in bytes.

This must be followed by a symbol name, a positive number, and "bss". This
behaves somewhat like . comm, but the syntax is different.

This is functionally identical to .short.

On the Sparc, the .nword directive produces native word sized value, ie. if as-
sembling with -32 it is equivalent to .word, if assembling with -64 it is equivalent
to .xword.

Chapter 9: Machine Dependent Features 247

.proc

.register

.reserve

.seg

.skip

.word

.xword

This directive is ignored. Any text following it on the same line is also ignored.

This directive declares use of a global application or system register. It must
be followed by a register name %g2, %g3, %g6 or %g7, comma and the symbol
name for that register. If symbol name is #scratch, it is a scratch register, if it
is #ignore, it just suppresses any errors about using undeclared global register,
but does not emit any information about it into the object file. This can be
useful e.g. if you save the register before use and restore it after.

This must be followed by a symbol name, a positive number, and "bss". This
behaves somewhat like .1lcomm, but the syntax is different.

This must be followed by "text", "data", or "datal". It behaves like .text,
.data, or .data 1.

This is functionally identical to the .space directive.

On the Sparc, the .word directive produces 32 bit values, instead of the 16 bit
values it produces on many other machines.

On the Sparc V9 processor, the .xword directive produces 64 bit values.

248 Using as

9.37 TIC54X Dependent Features

9.37.1 Options
The TMS320C54X version of as has a few machine-dependent options.

You can use the ‘-mfar-mode’ option to enable extended addressing mode. All addresses
will be assumed to be > 16 bits, and the appropriate relocation types will be used. This
option is equivalent to using the ‘.far_mode’ directive in the assembly code. If you do not
use the ‘-mfar-mode’ option, all references will be assumed to be 16 bits. This option may
be abbreviated to ‘-mf’.

You can use the ‘-mcpu’ option to specify a particular CPU. This option is equivalent

to using the ‘.version’ directive in the assembly code. For recognized CPU codes, see See
Section 9.37.9 [.version], page 251. The default CPU version is ‘542’

You can use the ‘-merrors-to-file’ option to redirect error output to a file (this pro-
vided for those deficient environments which don’t provide adequate output redirection).
This option may be abbreviated to ‘-me’.

9.37.2 Blocking

A blocked section or memory block is guaranteed not to cross the blocking boundary (usually
a page, or 128 words) if it is smaller than the blocking size, or to start on a page boundary
if it is larger than the blocking size.

9.37.3 Environment Settings

‘C54XDSP_DIR’ and ‘A_DIR’ are semicolon-separated paths which are added to the list of di-
rectories normally searched for source and include files. ‘C54XDSP_DIR’ will override ‘A_DIR’.

9.37.4 Constants Syntax

The TIC54X version of as allows the following additional constant formats, using a suffix
to indicate the radix:

Binary 000000B, 011000b
Octal 10Q, 224q
Hexadecimal 45h, OFH

9.37.5 String Substitution

A subset of allowable symbols (which we’ll call subsyms) may be assigned arbitrary string
values. This is roughly equivalent to C preprocessor #define macros. When as encounters
one of these symbols, the symbol is replaced in the input stream by its string value. Subsym
names must begin with a letter.

Subsyms may be defined using the .asg and .eval directives (See Section 9.37.9 [.asg],
page 251, See Section 9.37.9 [.eval], page 251.

Expansion is recursive until a previously encountered symbol is seen, at which point
substitution stops.

In this example, x is replaced with SYM2; SYM2 is replaced with SYM1, and SYMI is
replaced with x. At this point, x has already been encountered and the substitution stops.

Chapter 9: Machine Dependent Features 249

.asg "x",SYM1

.asg "SYM1",SYM2

.asg "SYM2",x

add X,a ; final code assembled is "add x, a"

Macro parameters are converted to subsyms; a side effect of this is the normal as "\ARG’
dereferencing syntax is unnecessary. Subsyms defined within a macro will have global
scope, unless the .var directive is used to identify the subsym as a local macro variable see
Section 9.37.9 [.var]|, page 251.

Substitution may be forced in situations where replacement might be ambiguous by
placing colons on either side of the subsym. The following code:

.eval "10",x
LAB:X: add #x, a

When assembled becomes:

LAB10 add #10, a
Smaller parts of the string assigned to a subsym may be accessed with the following
syntax:

:symbol (char_index) :
Evaluates to a single-character string, the character at char_index.

:symbol (start,length):
Evaluates to a substring of symbol beginning at start with length length.

9.37.6 Local Labels

Local labels may be defined in two ways:
e 3N, where N is a decimal number between 0 and 9
e LABEL?, where LABEL is any legal symbol name.
Local labels thus defined may be redefined or automatically generated. The scope of a

local label is based on when it may be undefined or reset. This happens when one of the
following situations is encountered:

e .newblock directive see Section 9.37.9 [.newblock], page 251
e The current section is changed (.sect, .text, or .data)
e Entering or leaving an included file

e The macro scope where the label was defined is exited

9.37.7 Math Builtins

The following built-in functions may be used to generate a floating-point value. All return
a floating-point value except ‘$cvi’, ‘$int’, and ‘$sgn’, which return an integer value.

$acos(expr)
Returns the floating point arccosine of expr.

250 Using as

$asin(expr)
Returns the floating point arcsine of expr.

$atan(expr)
Returns the floating point arctangent of expr.

$atan2(exprl ,expr2)
Returns the floating point arctangent of exprl / expr2.

$ceil (expr)
Returns the smallest integer not less than expr as floating point.

$cosh(expr)
Returns the floating point hyperbolic cosine of expr.

$cos(expr)
Returns the floating point cosine of expr.

$cvf (expr)
Returns the integer value expr converted to floating-point.

$cvi(expr)
Returns the floating point value expr converted to integer.

$exp(expr)
Returns the floating point value e ~ expr.

$fabs(expr)
Returns the floating point absolute value of expr.

$floor (expr)
Returns the largest integer that is not greater than expr as floating point.

$fmod (exprl ,expr2)
Returns the floating point remainder of exprl / expr2.

$int (expr)
Returns 1 if expr evaluates to an integer, zero otherwise.

$1dexp(exprl ,expr2)
Returns the floating point value exprl * 2 ~ expr2.

$logl0(expr)
Returns the base 10 logarithm of expr.

$log(expr)
Returns the natural logarithm of expr.

$max (exprl ,expr2)
Returns the floating point maximum of exprl and expr2.

$min(expril ,expr2)
Returns the floating point minimum of exprl and expr2.

$pow(exprl ,expr2)
Returns the floating point value exprl ~ expr2.

Chapter 9: Machine Dependent Features 251

$round (expr)
Returns the nearest integer to expr as a floating point number.

$sgn(expr)
Returns -1, 0, or 1 based on the sign of expr.

$sin(expr)
Returns the floating point sine of expr.

$sinh(expr)
Returns the floating point hyperbolic sine of expr.

$sqrt (expr)
Returns the floating point square root of expr.

$tan(expr)
Returns the floating point tangent of expr.

$tanh (expr)
Returns the floating point hyperbolic tangent of expr.

$trunc (expr)
Returns the integer value of expr truncated towards zero as floating point.

9.37.8 Extended Addressing

The LDX pseudo-op is provided for loading the extended addressing bits of a label or address.
For example, if an address _label resides in extended program memory, the value of _label
may be loaded as follows:

1dx #_label,16,a ; loads extended bits of _label
or #_label,a ; loads lower 16 bits of _label
bacc a ; full address is in accumulator A

9.37.9 Directives

.align [size]
.even Align the section program counter on the next boundary, based on size. size
may be any power of 2. .even is equivalent to .align with a size of 2.

1 Align SPC to word boundary
2 Align SPC to longword boundary (same as .even)
128 Align SPC to page boundary

.asg string, name
Assign name the string string. String replacement is performed on string before
assignment.

.eval string, name
Evaluate the contents of string string and assign the result as a string to the
subsym name. String replacement is performed on string before assignment.

252 Using as

.bss symbol, size [, [blocking_flag] [,alignment_flag]]
Reserve space for symbol in the .bss section. size is in words. If present, block-
ing_flag indicates the allocated space should be aligned on a page boundary if
it would otherwise cross a page boundary. If present, alignment_flag causes the
assembler to allocate size on a long word boundary.

.byte value [,...,value_n]
.ubyte value [,...,value_n]
.char value [,...,value_n]
.uchar value [,...,value_n]

Place one or more bytes into consecutive words of the current section. The
upper 8 bits of each word is zero-filled. If a label is used, it points to the word
allocated for the first byte encountered.

.clink ["section_name"]
Set STYP_CLINK flag for this section, which indicates to the linker that if no
symbols from this section are referenced, the section should not be included in
the link. If section_name is omitted, the current section is used.

.c_mode TBD.

.copy "filename" | filename

.include "filename" | filename
Read source statements from filename. The normal include search path is used.
Normally .copy will cause statements from the included file to be printed in
the assembly listing and .include will not, but this distinction is not currently

implemented.
.data Begin assembling code into the .data section.
.double value [,...,value_n]
.ldouble value [,...,value_n]
.float value [,...,value_n]
.xfloat value [,...,value_n]

Place an IEEE single-precision floating-point representation of one or more
floating-point values into the current section. All but .xfloat align the result
on a longword boundary. Values are stored most-significant word first.

.drlist
.drnolist
Control printing of directives to the listing file. Ignored.

.emsg string
.mmsg string
.wmsg string
Emit a user-defined error, message, or warning, respectively.

.far_mode
Use extended addressing when assembling statements. This should appear only
once per file, and is equivalent to the -mfar-mode option see Section 9.37.1
[-mfar-mode|, page 248.

Chapter 9: Machine Dependent Features 253

.fclist
.fcnolist
Control printing of false conditional blocks to the listing file.

.field value [,size]

Initialize a bitfield of size bits in the current section. If value is relocatable,
then size must be 16. size defaults to 16 bits. If value does not fit into size
bits, the value will be truncated. Successive .field directives will pack starting
at the current word, filling the most significant bits first, and aligning to the
start of the next word if the field size does not fit into the space remaining in
the current word. A .align directive with an operand of 1 will force the next
.field directive to begin packing into a new word. If a label is used, it points
to the word that contains the specified field.

.global symbol [,...,symbol_n]

.def symbol [,...,symbol_n]

.ref symbol [,...,symbol_n]
.def nominally identifies a symbol defined in the current file and available
to other files. .ref identifies a symbol used in the current file but defined
elsewhere. Both map to the standard .global directive.

.half value [,...,value_n]
.uhalf value [,...,value_n]
.short value [,...,value_n]
.ushort value [,...,value_n]
.int value [,...,value_n]
.uint value [,...,value_n]
.word value [,...,value_n]
.uword value [,...,value_n]

Place one or more values into consecutive words of the current section. If a
label is used, it points to the word allocated for the first value encountered.

.label symbol
Define a special symbol to refer to the load time address of the current section
program counter.

.length
.width Set the page length and width of the output listing file. Ignored.

.list
.nolist Control whether the source listing is printed. Ignored.

.long value [,...,value_n]
.ulong value [,...,value_n]
.xlong value [,...,value_n]

Place one or more 32-bit values into consecutive words in the current section.
The most significant word is stored first. .long and .ulong align the result on
a longword boundary; xlong does not.

254

Using as

.loop [count]
.break [condition]

.endloop Repeatedly assemble a block of code. .loop begins the block, and .endloop
marks its termination. count defaults to 1024, and indicates the number of times
the block should be repeated. .break terminates the loop so that assembly
begins after the .endloop directive. The optional condition will cause the loop
to terminate only if it evaluates to zero.

macro_name .macro [paraml]l[,...param_n]

[.mexit]

.endm See the section on macros for more explanation (See Section 9.37.10 [TIC54X-
Macros|, page 256.

.mlib "filename" | filename
Load the macro library filename. filename must be an archived library (BFD
ar-compatible) of text files, expected to contain only macro definitions. The
standard include search path is used.

.mlist

.mnolist Control whether to include macro and loop block expansions in the listing
output. Ignored.

.mmregs Define global symbolic names for the ’cb4x registers. Supposedly equivalent to
executing .set directives for each register with its memory-mapped value, but
in reality is provided only for compatibility and does nothing.

.newblock

This directive resets any TIC54X local labels currently defined. Normal as
local labels are unaffected.

.option option_list

Set listing options. Ignored.

.sblock "section_name" | section_name [,"name_n" | name_n]

Designate section_name for blocking. Blocking guarantees that a section will
start on a page boundary (128 words) if it would otherwise cross a page bound-
ary. Only initialized sections may be designated with this directive. See also
See Section 9.37.2 [TIC54X-Block]|, page 248.

.sect "section_name"

Define a named initialized section and make it the current section.

symbol .set "value"
symbol .equ "value"

Equate a constant value to a symbol, which is placed in the symbol table.
symbol may not be previously defined.

.space size_in_bits
.bes size_in_bits

Reserve the given number of bits in the current section and zero-fill them. If a
label is used with .space, it points to the first word reserved. With .bes, the
label points to the last word reserved.

Chapter 9: Machine Dependent Features 255

.sslist
.ssnolist
Controls the inclusion of subsym replacement in the listing output. Ignored.
.string "string" [,...,"string n"]
.pstring "string" [,...,"string_n"]

Place 8-bit characters from string into the current section. .string zero-fills
the upper 8 bits of each word, while .pstring puts two characters into each
word, filling the most-significant bits first. Unused space is zero-filled. If a label
is used, it points to the first word initialized.

[stag] .struct [offset]

[name_1] element [count_1]
[name_2] element [count_2]
[tname] .tag stagx [tcount]

[name_n] element [count_n]
[ssize] .endstruct
label .tag [stag]

.tab

Assign symbolic offsets to the elements of a structure. stag defines a symbol
to use to reference the structure. offset indicates a starting value to use for the
first element encountered; otherwise it defaults to zero. Each element can have
a named offset, name, which is a symbol assigned the value of the element’s
offset into the structure. If stag is missing, these become global symbols. count
adjusts the offset that many times, as if element were an array. element may
be one of .byte, .word, .long, .float, or any equivalent of those, and the
structure offset is adjusted accordingly. .field and .string are also allowed;
the size of .field is one bit, and .string is considered to be one word in
size. Only element descriptors, structure/union tags, .align and conditional
assembly directives are allowed within .struct/.endstruct. .align aligns
member offsets to word boundaries only. ssize, if provided, will always be
assigned the size of the structure.

The .tag directive, in addition to being used to define a structure/union ele-
ment within a structure, may be used to apply a structure to a symbol. Once
applied to label, the individual structure elements may be applied to label to
produce the desired offsets using label as the structure base.

Set the tab size in the output listing. Ignored.

256

Using as

[utag] .union

[name_1] element [count_1]
[name_2] element [count_2]
[tname] .tag utagx[,tcount]

[name_n] element [count_n]
[usize] .endstruct
label .tag [utag]

Similar to .struct, but the offset after each element is reset to zero, and the
usize is set to the maximum of all defined elements. Starting offset for the
union is always zero.

[symbol] .usect "section_name", size, [,[blocking_flag] [,alignment_flag]]

Reserve space for variables in a named, uninitialized section (similar to .bss).
.usect allows definitions sections independent of .bss. symbol points to the
first location reserved by this allocation. The symbol may be used as a variable
name. size is the allocated size in words. blocking_flag indicates whether to
block this section on a page boundary (128 words) (see Section 9.37.2 [TIC54X-
Block], page 248). alignment flag indicates whether the section should be
longword-aligned.

.var sym[,..., sym_n]

Define a subsym to be a local variable within a macro. See See Section 9.37.10
[TIC54X-Macros|, page 256.

.version version

Set which processor to build instructions for. Though the following values are
accepted, the op is ignored.

541
542
543
545
545LP
546LP
548
549

9.37.10 Macros

Macros do not require explicit dereferencing of arguments (i.e., \ARG).

During macro expansion, the macro parameters are converted to subsyms. If the number
of arguments passed the macro invocation exceeds the number of parameters defined, the last
parameter is assigned the string equivalent of all remaining arguments. If fewer arguments
are given than parameters, the missing parameters are assigned empty strings. To include
a comma in an argument, you must enclose the argument in quotes.

The following built-in subsym functions allow examination of the string value of subsyms
(or ordinary strings). The arguments are strings unless otherwise indicated (subsyms passed
as args will be replaced by the strings they represent).

Chapter 9: Machine Dependent Features 257

$symlen(str)
Returns the length of str.
$symcmp (strl,str2)
Returns 0 if strl == str2, non-zero otherwise.

$firstch(str,ch)
Returns index of the first occurrence of character constant ch in str.

$lastch(str,ch)
Returns index of the last occurrence of character constant ch in str.

$isdefed(symbol)
Returns zero if the symbol symbol is not in the symbol table, non-zero other-
wise.

$ismember (symbol,list)
Assign the first member of comma-separated string list to symbol; list is re-
assigned the remainder of the list. Returns zero if list is a null string. Both
arguments must be subsyms.

$iscons(expr)
Returns 1 if string expr is binary, 2 if octal, 3 if hexadecimal, 4 if a character,
5 if decimal, and zero if not an integer.

$isname (name)

Returns 1 if name is a valid symbol name, zero otherwise.
$isreg(reg)

Returns 1 if reg is a valid predefined register name (AR0-ART only).

$structsz(stag)
Returns the size of the structure or union represented by stag.

$structacc(stag)
Returns the reference point of the structure or union represented by stag. Al-
ways returns zero.

9.37.11 Memory-mapped Registers

The following symbols are recognized as memory-mapped registers:

9.37.12 TIC54X Syntax
9.37.12.1 Special Characters

The presence of a ¢;’ appearing anywhere on a line indicates the start of a comment that
extends to the end of that line.

If a ‘4" appears as the first character of a line then the whole line is treated as a com-
ment, but in this case the line can also be a logical line number directive (see Section 3.3
[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25).

The presence of an asterisk (‘*’) at the start of a line also indicates a comment that
extends to the end of that line.

The TIC54X assembler does not currently support a line separator character.

258 Using as

9.38 TIC6X Dependent Features

9.38.1 TIC6X Options

-march=arch
Enable (only) instructions from architecture arch. By default, all instructions
are permitted.

The following values of arch are accepted: c62x, c64x, c64x+, c67x, c67x+,
c674x.

-mdsbt

-mno-dsbt
The ‘-mdsbt’ option causes the assembler to generate the Tag_ABI_DSBT at-
tribute with a value of 1, indicating that the code is using DSBT addressing.
The ‘-mno-dsbt’ option, the default, causes the tag to have a value of 0, in-
dicating that the code does not use DSBT addressing. The linker will emit a
warning if objects of different type (DSBT and non-DSBT) are linked together.

-mpid=no

-mpid=near

-mpid=far
The ‘-mpid=’ option causes the assembler to generate the Tag_ABI_PID
attribute with a value indicating the form of data addressing used by the
code. ‘-mpid=no’, the default, indicates position-dependent data addressing,
‘-mpid=near’ indicates position-independent addressing with GOT accesses
using near DP addressing, and ‘-mpid=far’ indicates position-independent
addressing with GOT accesses using far DP addressing. The linker will emit
a warning if objects built with different settings of this option are linked
together.

-mpic

-mno-pic The ‘-mpic’ option causes the assembler to generate the Tag_ABI_PIC attribute
with a value of 1, indicating that the code is using position-independent code
addressing, The -mno-pic option, the default, causes the tag to have a value of
0, indicating position-dependent code addressing. The linker will emit a warning
if objects of different type (position-dependent and position-independent) are
linked together.

-mbig-endian
-mlittle-endian
Generate code for the specified endianness. The default is little-endian.

9.38.2 TIC6X Syntax

The presence of a ‘;’ on a line indicates the start of a comment that extends to the end

of the current line. If a ‘#’ or ‘*’ appears as the first character of a line, the whole line
is treated as a comment. Note that if a line starts with a ‘#’ character then it can also
be a logical line number directive (see Section 3.3 [Comments], page 25) or a preprocessor
control command (see Section 3.1 [Preprocessing|, page 25).

The ‘@ character can be used instead of a newline to separate statements.

Chapter 9: Machine Dependent Features 259

Instruction, register and functional unit names are case-insensitive. as requires fully-
specified functional unit names, such as ‘.81’ *.L1X’ or ‘*.D1T2’, on all instructions using a
functional unit.

For some instructions, there may be syntactic ambiguity between register or functional
unit names and the names of labels or other symbols. To avoid this, enclose the ambiguous
symbol name in parentheses; register and functional unit names may not be enclosed in
parentheses.

9.38.3 TIC6X Directives

Directives controlling the set of instructions accepted by the assembler have effect for in-
structions between the directive and any subsequent directive overriding it.

.arch arch
This has the same effect as ‘-march=arch’.

.cantunwind
Prevents unwinding through the current function. No personality routine or
exception table data is required or permitted.

If this is not specified then frame unwinding information will be constructed
from CFT directives. see Section 7.9 [CFI directives], page 47.

.cbxabi_attribute tag, value
Set the C6000 EABI build attribute tag to value.

The tag is either an attribute number or one of Tag_ISA, Tag_ABI_wchar_t,
Tag_ABI_stack_align_needed, Tag_ABI_stack_align_preserved, Tag_ ABI_
DSBT, Tag_ABI_PID, Tag_ABI_PIC, TAG_ABI_array_object_alignment, TAG_
ABI_array_object_align_expected, Tag_ABI_compatibility and Tag_ABI_
conformance. The value is either a number, "string", or number, "string"
depending on the tag.

.ehtype symbol
Output an exception type table reference to symbol.

.endp Marks the end of and exception table or function. If preceeded by a
.handlerdata directive then this also switched back to the previous text
section.

.handlerdata

Marks the end of the current function, and the start of the exception table entry
for that function. Anything between this directive and the .endp directive will
be added to the exception table entry.

Must be preceded by a CFI block containing a .cfi_lsda directive. directive.
.nocmp Disallow use of C64x+ compact instructions in the current text section.

.personalityindex index
Sets the personality routine for the current function to the ABI specified com-
pact routine number index

.personality name
Sets the personality routine for the current function to name.

260 Using as

.scomm symbol, size, align
Like .comm, creating a common symbol symbol with size size and alignment
align, but unlike when using .comm, this symbol will be placed into the small
BSS section by the linker.

Chapter 9: Machine Dependent Features 261

9.39 TILE-Gx Dependent Features

9.39.1 Options
The following table lists all available TILE-Gx specific options:

-m32 | -m64
Select the word size, either 32 bits or 64 bits.

9.39.2 Syntax

Block comments are delimited by ‘/*” and ‘*/’. End of line comments may be introduced
by ‘#.

Instructions consist of a leading opcode or macro name followed by whitespace and an
optional comma-separated list of operands:

opcode [operand, ...]
Instructions must be separated by a newline or semicolon.

There are two ways to write code: either write naked instructions, which the assembler
is free to combine into VLIW bundles, or specify the VLIW bundles explicitly.

Bundles are specified using curly braces:
{ add r3,r4,r5 ; add r7,r8,r9 ; 1w ri10,ri1l }

A bundle can span multiple lines. If you want to put multiple instructions on a line,
whether in a bundle or not, you need to separate them with semicolons as in this example.

A bundle may contain one or more instructions, up to the limit specified by the ISA
(currently three). If fewer instructions are specified than the hardware supports in a bundle,
the assembler inserts fnop instructions automatically.

The assembler will prefer to preserve the ordering of instructions within the bundle,
putting the first instruction in a lower-numbered pipeline than the next one, etc. This fact,
combined with the optional use of explicit fnop or nop instructions, allows precise control
over which pipeline executes each instruction.

If the instructions cannot be bundled in the listed order, the assembler will automatically
try to find a valid pipeline assignment. If there is no way to bundle the instructions together,
the assembler reports an error.

The assembler does not yet auto-bundle (automatically combine multiple instructions
into one bundle), but it reserves the right to do so in the future. If you want to force an
instruction to run by itself, put it in a bundle explicitly with curly braces and use nop
instructions (not fnop) to fill the remaining pipeline slots in that bundle.

9.39.2.1 Opcode Names

For a complete list of opcodes and descriptions of their semantics, see TILE-Gx Instruction
Set Architecture, available upon request at www.tilera.com.

9.39.2.2 Register Names

General-purpose registers are represented by predefined symbols of the form ‘rN’, where
N represents a number between 0 and 63. However, the following registers have canonical
names that must be used instead:

262

rb54
r55
r56
r57
r58
r59
r60
r61
r62
r63

Using as

sp
Ir

sn
idn0
idnl
udnO
udnl
udn?2
udn3

Zero

The assembler will emit a warning if a numeric name is used instead of the non-numeric
name. The .no_require_canonical_reg_names assembler pseudo-op turns off this warn-
ing. .require_canonical_reg_names turns it back on.

9.39.2.3 Symbolic Operand Modifiers

The assembler supports several modifiers when using symbol addresses in TILE-Gx instruc-
tion operands. The general syntax is the following:

modifier (symbol)

The following modifiers are supported:

hwO

hwil

hw2

hw3

hwO_last

hwl_last

hw2_last

This modifier is used to load bits 0-15 of the symbol’s address.

This modifier is used to load bits 16-31 of the symbol’s address.

This modifier is used to load bits 32-47 of the symbol’s address.

This modifier is used to load bits 48-63 of the symbol’s address.

This modifier yields the same value as hw0, but it also checks that the value
does not overflow.

This modifier yields the same value as hwl, but it also checks that the value
does not overflow.

This modifier yields the same value as hw2, but it also checks that the value
does not overflow.

A 48-bit symbolic value is constructed by using the following idiom:

Chapter 9:

hwO_got

hwl_got

hw2_got

hw3_got

Machine Dependent Features 263

moveli rO, hw2_last(sym)
sh116insli r0, rO, hwl(sym)
sh116insli r0, rO, hwO(sym)

This modifier is used to load bits 0-15 of the symbol’s offset in the GOT entry
corresponding to the symbol.

This modifier is used to load bits 16-31 of the symbol’s offset in the GOT entry
corresponding to the symbol.

This modifier is used to load bits 32-47 of the symbol’s offset in the GOT entry
corresponding to the symbol.

This modifier is used to load bits 48-63 of the symbol’s offset in the GOT entry
corresponding to the symbol.

hwO_last_got

This modifier yields the same value as hwO_got, but it also checks that the
value does not overflow.

hwl_last_got

This modifier yields the same value as hwl_got, but it also checks that the
value does not overflow.

hw2_last_got

plt

This modifier yields the same value as hw2_got, but it also checks that the
value does not overflow.

This modifier is used for function symbols. It causes a procedure linkage table,
an array of code stubs, to be created at the time the shared object is created
or linked against, together with a global offset table entry. The value is a pc-
relative offset to the corresponding stub code in the procedure linkage table.
This arrangement causes the run-time symbol resolver to be called to look up
and set the value of the symbol the first time the function is called (at latest;
depending environment variables). It is only safe to leave the symbol unresolved
this way if all references are function calls.

hwO_tls_gd

This modifier is used to load bits 0-15 of the offset of the GOT entry of the
symbol’s TLS descriptor, to be used for general-dynamic TLS accesses.

hwl_tls_gd

This modifier is used to load bits 16-31 of the offset of the GOT entry of the
symbol’s TLS descriptor, to be used for general-dynamic TLS accesses.

hw2_tls_gd

This modifier is used to load bits 32-47 of the offset of the GOT entry of the
symbol’s TLS descriptor, to be used for general-dynamic TLS accesses.

264 Using as

hw3_tls_gd
This modifier is used to load bits 48-63 of the offset of the GOT entry of the
symbol’s TLS descriptor, to be used for general-dynamic TLS accesses.

hwO_last_tls_gd
This modifier yields the same value as hwO_t1ls_gd, but it also checks that the
value does not overflow.

hwl_last_tls_gd
This modifier yields the same value as hwl_tls_gd, but it also checks that the
value does not overflow.

hw2_last_tls_gd
This modifier yields the same value as hw2_tls_gd, but it also checks that the
value does not overflow.

hwO_tls_ie
This modifier is used to load bits 0-15 of the offset of the GOT entry containing
the offset of the symbol’s address from the TCB, to be used for initial-exec TLS
accesses.

hwl_tls_ie
This modifier is used to load bits 16-31 of the offset of the GOT entry containing
the offset of the symbol’s address from the TCB, to be used for initial-exec TLS
accesses.

hw2_tls_ie
This modifier is used to load bits 32-47 of the offset of the GOT entry containing
the offset of the symbol’s address from the TCB, to be used for initial-exec TLS
accesses.

hw3_tls_ie
This modifier is used to load bits 48-63 of the offset of the GOT entry containing
the offset of the symbol’s address from the TCB, to be used for initial-exec TLS
accesses.

hwO_last_tls_ie
This modifier yields the same value as hwO_t1ls_ie, but it also checks that the
value does not overflow.

hwil_last_tls_ie
This modifier yields the same value as hwl_tls_ie, but it also checks that the
value does not overflow.

hw2_last_tls_ie
This modifier yields the same value as hw2_t1ls_ie, but it also checks that the
value does not overflow.

9.39.3 TILE-Gx Directives

.align expression [, expression]
This is the generic .align directive. The first argument is the requested align-
ment in bytes.

Chapter 9: Machine Dependent Features 265

.allow_suspicious_bundles
Turns on error checking for combinations of instructions in a bundle that prob-
ably indicate a programming error. This is on by default.

.no_allow_suspicious_bundles
Turns off error checking for combinations of instructions in a bundle that prob-
ably indicate a programming error.

.require_canonical_reg_names
Require that canonical register names be used, and emit a warning if the nu-
meric names are used. This is on by default.

.no_require_canonical_reg_names
Permit the use of numeric names for registers that have canonical names.

266 Using as

9.40 TILEPro Dependent Features

9.40.1 Options

as has no machine-dependent command-line options for TILEPro.

9.40.2 Syntax

Block comments are delimited by ‘/*’ and ‘*/’. End of line comments may be introduced
by ‘#’.

Instructions consist of a leading opcode or macro name followed by whitespace and an
optional comma-separated list of operands:

opcode [operand, ...]
Instructions must be separated by a newline or semicolon.

There are two ways to write code: either write naked instructions, which the assembler
is free to combine into VLIW bundles, or specify the VLIW bundles explicitly.

Bundles are specified using curly braces:
{ add r3,r4,r5 ; add r7,r8,r9 ; lw ri10,ri1l }

A bundle can span multiple lines. If you want to put multiple instructions on a line,
whether in a bundle or not, you need to separate them with semicolons as in this example.

A bundle may contain one or more instructions, up to the limit specified by the ISA
(currently three). If fewer instructions are specified than the hardware supports in a bundle,
the assembler inserts fnop instructions automatically.

The assembler will prefer to preserve the ordering of instructions within the bundle,
putting the first instruction in a lower-numbered pipeline than the next one, etc. This fact,
combined with the optional use of explicit fnop or nop instructions, allows precise control
over which pipeline executes each instruction.

If the instructions cannot be bundled in the listed order, the assembler will automatically
try to find a valid pipeline assignment. If there is no way to bundle the instructions together,
the assembler reports an error.

The assembler does not yet auto-bundle (automatically combine multiple instructions
into one bundle), but it reserves the right to do so in the future. If you want to force an
instruction to run by itself, put it in a bundle explicitly with curly braces and use nop
instructions (not fnop) to fill the remaining pipeline slots in that bundle.

9.40.2.1 Opcode Names

For a complete list of opcodes and descriptions of their semantics, see TILE Processor User
Architecture Manual, available upon request at www.tilera.com.

9.40.2.2 Register Names

General-purpose registers are represented by predefined symbols of the form ‘rN’, where
N represents a number between 0 and 63. However, the following registers have canonical
names that must be used instead:

rb54 Sp
r55 Ir

Chapter 9: Machine Dependent Features 267

r56
r57
r58
r59
r60
r61l
r62
r63

sn
idn0O

idnl

udnO
udnl
udn?2
udn3

Zero

The assembler will emit a warning if a numeric name is used instead of the canonical
name. The .no_require_canonical_reg_names assembler pseudo-op turns off this warn-
ing. .require_canonical_reg_names turns it back on.

9.40.2.3 Symbolic Operand Modifiers

The assembler supports several modifiers when using symbol addresses in TILEPro instruc-
tion operands. The general syntax is the following:

modifier (symbol)

The following modifiers are supported:

lo16

hil6

hal6

got

got_lol6

got_hil6

This modifier is used to load the low 16 bits of the symbol’s address, sign-
extended to a 32-bit value (sign-extension allows it to be range-checked against
signed 16 bit immediate operands without complaint).

This modifier is used to load the high 16 bits of the symbol’s address, also
sign-extended to a 32-bit value.

hal6(N) is identical to hi16(N), except if 1016 (N) is negative it adds one to
the hi16(N) value. This way lo16 and hal6 can be added to create any 32-
bit value using auli. For example, here is how you move an arbitrary 32-bit
address into r3:

moveli r3, lol6(sym)
auli r3, r3, hal6(sym)

This modifier is used to load the offset of the GOT entry corresponding to the
symbol.

This modifier is used to load the sign-extended low 16 bits of the offset of the
GOT entry corresponding to the symbol.

This modifier is used to load the sign-extended high 16 bits of the offset of the
GOT entry corresponding to the symbol.

268

got_hal6

plt

tls_gd

Using as

This modifier is like got_hi16, but it adds one if got_lo16 of the input value
is negative.

This modifier is used for function symbols. It causes a procedure linkage table,
an array of code stubs, to be created at the time the shared object is created
or linked against, together with a global offset table entry. The value is a pc-
relative offset to the corresponding stub code in the procedure linkage table.
This arrangement causes the run-time symbol resolver to be called to look up
and set the value of the symbol the first time the function is called (at latest;
depending environment variables). It is only safe to leave the symbol unresolved
this way if all references are function calls.

This modifier is used to load the offset of the GOT entry of the symbol’s TLS
descriptor, to be used for general-dynamic TLS accesses.

tls_gd_lol6

This modifier is used to load the sign-extended low 16 bits of the offset of the
GOT entry of the symbol’s TLS descriptor, to be used for general dynamic TLS
accesses.

tls_gd_hi16

This modifier is used to load the sign-extended high 16 bits of the offset of the
GOT entry of the symbol’s TLS descriptor, to be used for general dynamic TLS
accesses.

tls_gd_hal6

tls_ie

This modifier is like t1s_gd_hi16, but it adds one to the value if t1s_gd_lo16
of the input value is negative.

This modifier is used to load the offset of the GOT entry containing the offset
of the symbol’s address from the TCB, to be used for initial-exec TLS accesses.

tls_ie_lol6

This modifier is used to load the low 16 bits of the offset of the GOT entry
containing the offset of the symbol’s address from the TCB, to be used for
initial-exec TLS accesses.

tls_ie_hil6

This modifier is used to load the high 16 bits of the offset of the GOT entry
containing the offset of the symbol’s address from the TCB, to be used for
initial-exec TLS accesses.

tls_ie_halé6

This modifier is like t1s_ie_hi16, but it adds one to the value if t1s_ie_lo16
of the input value is negative.

Chapter 9: Machine Dependent Features 269

9.40.3 TILEPro Directives

.align expression [, expression]
This is the generic .align directive. The first argument is the requested align-
ment in bytes.

.allow_suspicious_bundles
Turns on error checking for combinations of instructions in a bundle that prob-
ably indicate a programming error. This is on by default.

.no_allow_suspicious_bundles
Turns off error checking for combinations of instructions in a bundle that prob-
ably indicate a programming error.

.require_canonical_reg_names
Require that canonical register names be used, and emit a warning if the nu-
meric names are used. This is on by default.

.no_require_canonical_reg_names
Permit the use of numeric names for registers that have canonical names.

270 Using as

9.41 780 Dependent Features

9.41.1 Options

The Zilog 780 and Ascii R800 version of as have a few machine dependent options.

‘-z80’ Produce code for the Z80 processor. There are additional options to request
warnings and error messages for undocumented instructions.

‘~ignore-undocumented-instructions’
‘~Wnud’ Silently assemble undocumented Z80-instructions that have been adopted as
documented R800-instructions.

‘~ignore-unportable-instructions’
‘~Wnup’ Silently assemble all undocumented Z80-instructions.

‘-warn-undocumented-instructions’
‘=Wud’ Issue warnings for undocumented Z80-instructions that work on R800, do not
assemble other undocumented instructions without warning.

‘-warn-unportable-instructions’
‘~Wup’ Issue warnings for other undocumented Z80-instructions, do not treat any un-
documented instructions as errors.

‘~forbid-undocumented-instructions’
‘~Fud’ Treat all undocumented z80-instructions as errors.

‘~forbid-unportable-instructions’
‘~Fup’ Treat undocumented z80-instructions that do not work on R800 as errors.

‘-r800’ Produce code for the R800 processor. The assembler does not support undoc-
umented instructions for the R800. In line with common practice, as uses Z80
instruction names for the R800 processor, as far as they exist.

9.41.2 Syntax

The assembler syntax closely follows the ’Z80 family CPU User Manual’ by Zilog. In
expressions a single ‘=" may be used as “is equal to” comparison operator.

Suffices can be used to indicate the radix of integer constants; ‘H’ or ‘h’ for hexadecimal,
‘D’ or ‘d’ for decimal, ‘Q’, ‘0’, ‘q’ or ‘o’ for octal, and ‘B’ for binary.

The suffix ‘b’ denotes a backreference to local label.

9.41.2.1 Special Characters

The semicolon ¢;’ is the line comment character;

If a ‘#” appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3
[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25).

The Z80 assembler does not support a line separator character.

The dollar sign ‘$’ can be used as a prefix for hexadecimal numbers and as a symbol
denoting the current location counter.

Chapter 9: Machine Dependent Features 271

A backslash ‘\’ is an ordinary character for the Z80 assembler.

The single quote >’ must be followed by a closing quote. If there is one character in
between, it is a character constant, otherwise it is a string constant.

9.41.2.2 Register Names

The registers are referred to with the letters assigned to them by Zilog. In addition as
recognizes ‘ix1’ and ‘ixh’ as the least and most significant octet in ‘ix’, and similarly ‘iyl’
and ‘iyh’ as parts of ‘iy’.

9.41.2.3 Case Sensitivity

Upper and lower case are equivalent in register names, opcodes, condition codes and as-
sembler directives. The case of letters is significant in labels and symbol names. The case
is also important to distinguish the suffix ‘b’ for a backward reference to a local label from
the suffix ‘B’ for a number in binary notation.

9.41.3 Floating Point

Floating-point numbers are not supported.

9.41.4 780 Assembler Directives

as for the Z80 supports some additional directives for compatibility with other assemblers.
These are the additional directives in as for the Z80:

db expression|stringl[,expression|string...]

defb expression|stringl[,expression|string...]
For each string the characters are copied to the object file, for each other
expression the value is stored in one byte. A warning is issued in case of an
overflow.

dw expression[,expression...]
defw expression[,expression...]
For each expression the value is stored in two bytes, ignoring overflow.

d24 expressionl[,expression...]
def24 expression[,expression...]
For each expression the value is stored in three bytes, ignoring overflow.

d32 expression[,expression...]
def32 expression[,expression...]
For each expression the value is stored in four bytes, ignoring overflow.

ds count [, value]

defs count [, value]
Fill count bytes in the object file with value, if value is omitted it defaults to
zero.

symbol equ expression

symbol defl expression
These directives set the value of symbol to expression. If equ is used, it is an
error if symbol is already defined. Symbols defined with equ are not protected
from redefinition.

272 Using as

set This is a normal instruction on Z80, and not an assembler directive.

psect name
A synonym for See Section 7.97 [Section|, page 66, no second argument should
be given.

9.41.5 Opcodes

In line with common practice, Z80 mnemonics are used for both the Z80 and the R800.

In many instructions it is possible to use one of the half index registers
(‘ix1’,ixh’,‘iy1l’‘iyh’) in stead of an 8-bit general purpose register. This yields
instructions that are documented on the R800 and undocumented on the Z80. Similarly
in f, (¢) is documented on the R800 and undocumented on the Z80.

The assembler also supports the following undocumented Z80-instructions, that have not
been adopted in the R800 instruction set:

out (c),0 Sends zero to the port pointed to by register c.

slim Equivalent to m = (m<<1)+1, the operand m can be any operand that is valid
for ‘sla’. One can use ‘s1l’ as a synonym for ‘s1i’.

op (ix+d), r
This is equivalent to
1d r, (ix+d)
opc r
1d (ix+d), r
The operation ‘opc’ may be any of ‘res b,’; ‘set b,’, ‘rl’, ‘rlc’, ‘rr’, ‘rrc’,
‘sla’; ‘s1i’, ‘sra’ and ‘srl’, and the register ‘r’ may be any of ‘a’, ‘b’, ‘c’, ‘d’,
‘e’, ‘b’ and ‘1.
opc (iy+d), r
As above, but with ‘iy’ instead of ‘ix’.

The web site at http://www.z80.info is a good starting place to find more information
on programming the Z80.

http://www.z80.info

Chapter 9: Machine Dependent Features 273

9.42 78000 Dependent Features

The Z8000 as supports both members of the Z8000 family: the unsegmented Z8002, with
16 bit addresses, and the segmented Z8001 with 24 bit addresses.

When the assembler is in unsegmented mode (specified with the unsegm directive), an
address takes up one word (16 bit) sized register. When the assembler is in segmented
mode (specified with the segm directive), a 24-bit address takes up a long (32 bit) register.
See Section 9.42.3 [Assembler Directives for the Z8000], page 274, for a list of other Z8000
specific assembler directives.

9.42.1 Options
‘-z8001’ Generate segmented code by default.

‘-z8002’ Generate unsegmented code by default.

9.42.2 Syntax
9.42.2.1 Special Characters

‘1" is the line comment character.
If a ‘#” appears as the first character of a line then the whole line is treated as a comment,
but in this case the line could also be a logical line number directive (see Section 3.3

[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25).

You can use ‘;’ instead of a newline to separate statements.

9.42.2.2 Register Names

The Z8000 has sixteen 16 bit registers, numbered 0 to 15. You can refer to different sized
groups of registers by register number, with the prefix ‘r’ for 16 bit registers, ‘rr’ for 32 bit
registers and ‘rq’ for 64 bit registers. You can also refer to the contents of the first eight
(of the sixteen 16 bit registers) by bytes. They are named ‘rln’ and ‘rhn’.

byte registers

r1l0 rhO rll rhl rl2 rh2 rl3 rh3
rl4 rh4 rl5 rhb rl6 rh6 rl7 rh7

word registers
r0 rl r2 r3 r4 r5 r6 r7 r8 r9 r10 ri1l r12 r13 ri14 rib

long word registers
rr0 rr2 rr4d rr6 rr8 rrl0 rri2 rri4d

quad word registers
rq0 rq4 rq8 rql2

9.42.2.3 Addressing Modes
as understands the following addressing modes for the Z8000:

274 Using as

rln

rhn

rn

rrn

rqn Register direct: 8bit, 16bit, 32bit, and 64bit registers.

Orn
Qrrn Indirect register: @rrn in segmented mode, @rn in unsegmented mode.

addr Direct: the 16 bit or 24 bit address (depending on whether the assembler is in
segmented or unsegmented mode) of the operand is in the instruction.

address(rn)
Indexed: the 16 or 24 bit address is added to the 16 bit register to produce the
final address in memory of the operand.

rn (#imm)

rrn (#imm)
Base Address: the 16 or 24 bit register is added to the 16 bit sign extended
immediate displacement to produce the final address in memory of the operand.

rn(rm)
rrn(rm) Base Index: the 16 or 24 bit register rn or rrn is added to the sign extended 16
bit index register rm to produce the final address in memory of the operand.

#xx Immediate data xx.

9.42.3 Assembler Directives for the Z8000

The Z8000 port of as includes additional assembler directives, for compatibility with other
78000 assemblers. These do not begin with ‘.’ (unlike the ordinary as directives).

segm
.z8001 Generate code for the segmented Z8001.

unsegm
.z8002 Generate code for the unsegmented Z8002.

name Synonym for .file

global Synonym for .global

wval Synonym for .word
lval Synonym for .long
bval Synonym for .byte
sval Assemble a string. sval expects one string literal, delimited by single

quotes. It assembles each byte of the string into consecutive addresses.
You can use the escape sequence ‘%xx’ (where xx represents a two-digit
hexadecimal number) to represent the character whose ASCII value is xx.
Use this feature to describe single quote and other characters that may
not appear in string literals as themselves. For example, the C statement
‘char *a = "he said \"it’s 50% off\"";’ is represented in Z8000 assembly
language (shown with the assembler output in hex at the left) as

Chapter 9: Machine Dependent Features 275

68652073 sval ’he said %22it%27s 50%25 off%227,00’
61696420

22697427

73203530

25206F66

662200

rsect synonym for .section
block synonym for .space

even special case of .align; aligns output to even byte boundary.

9.42.4 Opcodes

For detailed information on the Z8000 machine instruction set, see Z8000 Technical Manual.
9.43 VAX Dependent Features

9.43.1 VAX Command-Line Options

The Vax version of as accepts any of the following options, gives a warning message that the
option was ignored and proceeds. These options are for compatibility with scripts designed
for other people’s assemblers.

-D (Debug)
-S (Symbol Table)
-T (Token Trace)
These are obsolete options used to debug old assemblers.

-d (Displacement size for JUMPs)
This option expects a number following the ‘-d’. Like options that expect file-
names, the number may immediately follow the ‘~-d’ (old standard) or constitute
the whole of the command line argument that follows ‘-d’ (GNU standard).

-V (Virtualize Interpass Temporary File)
Some other assemblers use a temporary file. This option commanded them to
keep the information in active memory rather than in a disk file. as always
does this, so this option is redundant.

-J (JUMPify Longer Branches)
Many 32-bit computers permit a variety of branch instructions to do the same
job. Some of these instructions are short (and fast) but have a limited range;
others are long (and slow) but can branch anywhere in virtual memory. Often
there are 3 flavors of branch: short, medium and long. Some other assemblers
would emit short and medium branches, unless told by this option to emit short
and long branches.

-t (Temporary File Directory)
Some other assemblers may use a temporary file, and this option takes a filename
being the directory to site the temporary file. Since as does not use a temporary
disk file, this option makes no difference. ‘-t’ needs exactly one filename.

The Vax version of the assembler accepts additional options when compiled for VMS:

276 Using as

‘~h n’ External symbol or section (used for global variables) names are not case sensi-
tive on VAX/VMS and always mapped to upper case. This is contrary to the C
language definition which explicitly distinguishes upper and lower case. To im-
plement a standard conforming C compiler, names must be changed (mapped)
to preserve the case information. The default mapping is to convert all lower
case characters to uppercase and adding an underscore followed by a 6 digit
hex value, representing a 24 digit binary value. The one digits in the binary
value represent which characters are uppercase in the original symbol name.

The ‘-h n’ option determines how we map names. This takes several values.
No ‘-h’ switch at all allows case hacking as described above. A value of zero
(‘-h0’) implies names should be upper case, and inhibits the case hack. A value
of 2 (‘-h2’) implies names should be all lower case, with no case hack. A value
of 3 (‘-h3’) implies that case should be preserved. The value 1 is unused. The
-H option directs as to display every mapped symbol during assembly.

Symbols whose names include a dollar sign ‘$’ are exceptions to the general
name mapping. These symbols are normally only used to reference VMS library
names. Such symbols are always mapped to upper case.

=+ The -+’ option causes as to truncate any symbol name larger than 31 char-
acters. The ‘-+’ option also prevents some code following the ‘_main’ symbol
normally added to make the object file compatible with Vax-11 "C".

=1’ This option is ignored for backward compatibility with as version 1.x.
-0 The ‘-H’ option causes as to print every symbol which was changed by case
mapping.

9.43.2 VAX Floating Point

Conversion of flonums to floating point is correct, and compatible with previous assemblers.
Rounding is towards zero if the remainder is exactly half the least significant bit.

D, F, G and H floating point formats are understood.

Immediate floating literals (e.g. ‘S‘$6.9’) are rendered correctly. Again, rounding is
towards zero in the boundary case.

The .float directive produces f format numbers. The .double directive produces d
format numbers.

9.43.3 Vax Machine Directives

The Vax version of the assembler supports four directives for generating Vax floating point
constants. They are described in the table below.

.dfloat This expects zero or more flonums, separated by commas, and assembles Vax
d format 64-bit floating point constants.

.ffloat This expects zero or more flonums, separated by commas, and assembles Vax
f format 32-bit floating point constants.

.gfloat This expects zero or more flonums, separated by commas, and assembles Vax
g format 64-bit floating point constants.

Chapter 9: Machine Dependent Features 277

.hfloat This expects zero or more flonums, separated by commas, and assembles Vax
h format 128-bit floating point constants.

9.43.4 VAX Opcodes

All DEC mnemonics are supported. Beware that case... instructions have exactly 3
operands. The dispatch table that follows the case. .. instruction should be made with
.word statements. This is compatible with all unix assemblers we know of.

9.43.5 VAX Branch Improvement

Certain pseudo opcodes are permitted. They are for branch instructions. They expand
to the shortest branch instruction that reaches the target. Generally these mnemonics are
made by substituting ‘j’ for ‘b’ at the start of a DEC mnemonic. This feature is included
both for compatibility and to help compilers. If you do not need this feature, avoid these
opcodes. Here are the mnemonics, and the code they can expand into.

jbsb ‘Jsb’ is already an instruction mnemonic, so we chose ‘jbsb’.

(byte displacement)
bsbb ...

(word displacement)
bsbw ...

(long displacement)
jsb ...
jbr
jr Unconditional branch.

(byte displacement)
brb ...

(word displacement)
brw ...

(long displacement)

jmp ...
jCOND COND may be any one of the conditional branches neq, nequ, eql, eqlu, gtr,
geq, lss, gtru, lequ, vc, vs, gequ, cc, 1ssu, cs. COND may also be one of

the bit tests bs, bc, bss, bes, bsc, bec, bssi, beci, 1bs, 1bc. NOTCOND is
the opposite condition to COND.

(byte displacement)
bCOND . ..

(word displacement)
bNOTCOND foo ; brw ... ; foo:

(long displacement)
bNOTCOND foo ; jmp ... ; foo:

jacbX X may beoneofbdf ghlw.

278 Using as

(word displacement)
OPCODE . ..

(long displacement)
OPCODE ..., foo ;

brb bar ;
foo: jmp ... ;
bar:

jaobYYY YYY may be one of 1ss leq.
jsobZZZ ZZZ may be one of geq gtr.

(byte displacement)
OPCODE . ..

(word displacement)
OPCODE ..., foo ;

brb bar ;
foo: brw destination ;
bar:

(long displacement)
OPCODE ..., foo ;

brb bar ;
foo: jmp destination ;
bar:

aobleq

aoblss

sobgeq

sobgtr

(byte displacement)
OPCODE . ..

(word displacement)
OPCODE ..., foo ;

brb bar ;
foo: brw destination ;
bar:

(long displacement)
OPCODE ..., foo ;

brb bar ;
foo: jmp destination ;
bar:

9.43.6 VAX Operands
The immediate character is ‘$’ for Unix compatibility, not ‘#’ as DEC writes it.

The indirect character is ‘*’ for Unix compatibility, not ‘@’ as DEC writes it.

Chapter 9: Machine Dependent Features 279

The displacement sizing character is ‘¢’ (an accent grave) for Unix compatibility, not ‘~’
as DEC writes it. The letter preceding ‘¢’ may have either case. ‘G’ is not understood, but
all other letters (b i 1 s w) are understood.

Register names understood are rO r1 r2 ... r15 ap fp sp pc. Upper and lower case
letters are equivalent.
For instance
tstb *w‘$4(r5)
Any expression is permitted in an operand. Operands are comma separated.

9.43.7 Not Supported on VAX

Vax bit fields can not be assembled with as. Someone can add the required code if they
really need it.

9.43.8 VAX Syntax
9.43.8.1 Special Characters

The presence of a ‘#’ appearing anywhere on a line indicates the start of a comment that

extends to the end of that line.

If a ‘#’ appears as the first character of a line then the whole line is treated as a com-
ment, but in this case the line can also be a logical line number directive (see Section 3.3
[Comments], page 25) or a preprocessor control command (see Section 3.1 [Preprocessing],
page 25).

The ¢;’ character can be used to separate statements on the same line.

9.44 v850 Dependent Features

9.44.1 Options
as supports the following additional command-line options for the V850 processor family:

-wsigned_overflow
Causes warnings to be produced when signed immediate values overflow the
space available for then within their opcodes. By default this option is disabled
as it is possible to receive spurious warnings due to using exact bit patterns as
immediate constants.

-wunsigned_overflow
Causes warnings to be produced when unsigned immediate values overflow the
space available for then within their opcodes. By default this option is disabled
as it is possible to receive spurious warnings due to using exact bit patterns as
immediate constants.

-mv850 Specifies that the assembled code should be marked as being targeted at the
V850 processor. This allows the linker to detect attempts to link such code
with code assembled for other processors.

-mv850e Specifies that the assembled code should be marked as being targeted at the
V850E processor. This allows the linker to detect attempts to link such code
with code assembled for other processors.

280

-mv350e1l

-mv850any

-mv850e2

-mv350e2v3

-mrelax

Using as

Specifies that the assembled code should be marked as being targeted at the
V850E1 processor. This allows the linker to detect attempts to link such code
with code assembled for other processors.

Specifies that the assembled code should be marked as being targeted at the
V850 processor but support instructions that are specific to the extended vari-
ants of the process. This allows the production of binaries that contain target
specific code, but which are also intended to be used in a generic fashion. For
example libgce.a contains generic routines used by the code produced by GCC
for all versions of the v850 architecture, together with support routines only
used by the V850E architecture.

Specifies that the assembled code should be marked as being targeted at the
V850E2 processor. This allows the linker to detect attempts to link such code
with code assembled for other processors.

Specifies that the assembled code should be marked as being targeted at the
V850E2V3 processor. This allows the linker to detect attempts to link such
code with code assembled for other processors.

Enables relaxation. This allows the .longcall and .longjump pseudo ops to be
used in the assembler source code. These ops label sections of code which are
either a long function call or a long branch. The assembler will then flag these
sections of code and the linker will attempt to relax them.

9.44.2 Syntax

9.44.2.1

Special Characters

‘#’ is the line comment character. If a ‘#’ appears as the first character of a line, the whole
line is treated as a comment, but in this case the line can also be a logical line number
directive (see Section 3.3 [Comments|, page 25) or a preprocessor control command (see

Section 3.1

[Preprocessing], page 25).

Two dashes