Using GNU Fortran

For ccc version 4.7.2

(crosstool-NG linaro-1.13.1-2012.09-20120921 - Linaro GCC 2012.09)

The gfortran team

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright (©) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
2012 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

1 Introduction i 1
Part I: Invoking GNU Fortran.............................. 5
2 GNU Fortran Command Options 7
3 Runtime: Influencing runtime behavior with environment
variables 27
Part II: Language Reference 31
4 Fortran 2003 and 2008 Status, 33
5 Compiler Characteristics, 37
6 ExXtensions............iiii 41
7 Mixed-Language Programming 53
8 Intrinsic Procedures 63
9 Intrinsic Modules 213
Contributingo e 217
GNU General Public License........... 221
GNU Free Documentation License 233
Funding Free Software 241
Option Indexot e 243

Keyword Indexo i 245

Table of Contents

1 Introduction................ 1
1.1 About GNU Fortrano 1
1.2 GNU Fortran and GCC ... i 2
1.3 Preprocessing and conditional compilation...................... 2
1.4 GNU Fortran and G77 ... e 3
1.5 Project Status ... 3
1.6 Standards.oiiii 4

1.6.1 Varying Length Character Strings 4

Part I: Invoking GNU Fortran 5

2 GNU Fortran Command Options 7
2.1 Option SUMMATY . .ottt ettt e et et 7
2.2 Options controlling Fortran dialect 8
2.3 Enable and customize preprocessing...............c..oiiii.... 11
2.4 Options to request or suppress errors and warnings............ 14
2.5 Options for debugging your program or GNU Fortran.......... 17
2.6 Options for directory search.......... 18
2.7 Influencing the linking step........ ..o i 18
2.8 Influencing runtime behavior 19
2.9 Options for code generation conventions....................... 19
2.10 Environment variables affecting gfortran.................... 25

3 Runtime: Influencing runtime behavior with

environment variables.................. 27
3.1 GFORTRAN_STDIN_UNIT—Unit number for standard input 27
3.2 GFORTRAN_STDOUT_UNIT-—Unit number for standard output.... 27
3.3 GFORTRAN_STDERR_UNIT-—Unit number for standard error...... 27
3.4 GFORTRAN_TMPDIR—Directory for scratch files.................. 27

3.5 GFORTRAN_UNBUFFERED_ALL—Do not buffer I/O on all units.... 27
3.6 GFORTRAN_UNBUFFERED_PRECONNECTED—Do not buffer I/O on
preconnected UNItS.o 27
3.7 GFORTRAN_SHOW_LOCUS—Show location for runtime errors...... 27
3.8 GFORTRAN_OPTIONAL_PLUS—Print leading + where permitted .. 28
3.9 GFORTRAN_DEFAULT_RECL—Default record length for new files.. 28
3.10 GFORTRAN_LIST_SEPARATOR—Separator for list output........ 28
3.11 GFORTRAN_CONVERT_UNIT—Set endianness for unformatted I/0O
... 28
3.12 GFORTRAN_ERROR_BACKTRACE—Show backtrace on run-time errors
... 29

iii

iv The GNU Fortran Compiler

4 Fortran 2003 and 2008 Status................ 33
4.1 Fortran 2003 statuso 33
4.2 Fortran 2008 Status ...t e 34
4.3 Technical Specification 29113 Status........................... 36

5 Compiler Characteristics 37
5.1 KIND Type Parameters........... ..., 37
5.2 Internal representation of LOGICAL variables................. 37
5.3 Thread-safety of the runtime library.............. 38
5.4 Data consistency and durabilityl 38

6 Extensions.................... 41
6.1 Extensions implemented in GNU Fortran...................... 41

6.1.1 Old-style kind specifications 41
6.1.2 Old-style variable initialization 41
6.1.3 Extensions to namelistl 42
6.1.4 X format descriptor without count field 43
6.1.5 Commas in FORMAT specifications......................... 43
6.1.6 Missing period in FORMAT specifications................... 43
6.1.7 T/Oitem listsoooiiiii 43
6.1.8 Qexponent-letter........... ... i 43
6.1.9 BOZ literal constants., 43
6.1.10 Real array indices.........ccoiiiiiiiiiiiiiiiiiini... 44
6.1.11 Unary operatorscceuieeiiiiiiiiiiiiiieeaeenn.. 44
6.1.12 Implicitly convert LOGICAL and INTEGER values.......... 44
6.1.13 Hollerith constants support.............. ..., 44
6.1.14 Cray poIntersuu ettt 45
6.1.15 CONVERT specifier.ooouiiiii e 47
6.1.16 OpenMP 47
6.1.17 Argument list functions %VAL, %REF and %LOC............ 48
6.2 Extensions not implemented in GNU Fortran.................. 49
6.2.1 STRUCTURE and RECORDcovinieeeiitiiiiieaaaaenn. 49
6.2.2 ENCODE and DECODE statements........................... 50
6.2.3 Variable FORMAT eXPreSSionscooeeeeennnnnuinnnneeen.. 51
6.2.4 Alternate complex function syntax........................ 51

7 Mixed-Language Programming............... 53

7.1 Interoperability with C........ i, 53
7.1.1 Intrinsic Types. ..o 53
7.1.2 Derived Types and struct..............oiiiiiiiia.. 53
7.1.3 Interoperable Global Variables............................ 54
7.1.4 Interoperable Subroutines and Functions.................. 54
7.1.5 Working with Pointers L. 55
7.1.6 Further Interoperability of Fortran with C................ 57

7.2 GNU Fortran Compiler Directives................coooiiii.. 58

7.3 Non-Fortran Main Program 58

7.3.1 _gfortran_set_args — Save command-line arguments... 59

7.3.2 _gfortran_set_options — Set library option flags....... 59
7.3.3 _gfortran_set_convert — Set endian conversion........ 60
7.3.4 _gfortran_set_record_marker — Set length of record

MNATKETS . .ttt 61
7.3.5 _gfortran_set_fpe — Enable floating point exception traps
.. 61

7.3.6 _gfortran_set_max_subrecord_length — Set subrecord
length ... 61
8 Intrinsic Procedures........................... 63
8.1 Introduction to intrinsic procedures 63
8.2 ABORT — Abort the program i, 63
8.3 ABS — Absolute value.......... ... 64
8.4 ACCESS — Checks file access modes. 64
8.5 ACHAR — Character in ASCII collating sequence................ 65
8.6 ACOS — Arccosine function............. ..o 66
8.7 ACOSH — Inverse hyperbolic cosine function.................... 66
8.8 ADJUSTL — Left adjust a string ...t 67
8.9 ADJUSTR — Right adjust a string............, 67
8.10 AIMAG — Imaginary part of complex number 68
8.11 AINT — Truncate to a whole number......................... 69
8.12 ALARM — Execute a routine after a given delay 69
8.13 ALL — All values in MASK along DIM are true.............. 70
8.14 ALLOCATED — Status of an allocatable entity 71
8.15 AND — Bitwise logical AND 71
8.16 ANINT — Nearest whole number.............................. 72
8.17 ANY — Any value in MASK along DIM is true 73
8.18 ASIN — Arcsine function............ ..., 74
8.19 ASINH — Inverse hyperbolic sine function..................... 74
8.20 ASSOCIATED — Status of a pointer or pointer/target pair 75
8.21 ATAN — Arctangent function............ 76
8.22 ATAN2 — Arctangent function............... ... 7
8.23 ATANH — Inverse hyperbolic tangent function................. 77
8.24 ATOMIC_DEFINE — Setting a variable atomically 78
8.25 ATOMIC_REF — Obtaining the value of a variable atomically .. 78
8.26 BESSEL_JO — Bessel function of the first kind of order O...... 79
8.27 BESSEL_J1 — Bessel function of the first kind of order 1...... 80
8.28 BESSEL_JN — Bessel function of the first kind 80
8.29 BESSEL_YO — Bessel function of the second kind of order 0... 81
8.30 BESSEL_Y1 — Bessel function of the second kind of order 1... 81
8.31 BESSEL_YN — Bessel function of the second kind 82
8.32 BGE — Bitwise greater than or equal to....................... 83
8.33 BGT — Bitwise greater than............. 83
8.34 BIT_SIZE — Bit size inquiry function 83
8.35 BLE — Bitwise less than orequal to.......................... 84
8.36 BLT — Bitwise less than............ it 84
8.37 BTEST — Bit test function i, 85
8.38 C_ASSOCIATED — Status of a C pointer....................... 85

The GNU Fortran Compiler

8.39 C_FUNLOC — Obtain the C address of a procedure............ 86
8.40 C_F_PROCPOINTER — Convert C into Fortran procedure pointer
... 86
8.41 C_F_POINTER — Convert C into Fortran pointer.............. 87
8.42 C_LOC — Obtain the C address of an object 88
8.43 C_SIZEOF — Size in bytes of an expression 88
8.44 CEILING — Integer ceiling function........................... 89
8.45 CHAR — Character conversion function 90
8.46 CHDIR — Change working directory 90
8.47 CHMOD — Change access permissions of files................... 91
8.48 CMPLX — Complex conversion function 92
8.49 COMMAND_ARGUMENT_COUNT — Get number of command line
ATGUINENIES . o ot 92
8.50 COMPILER_OPTIONS — Options passed to the compiler........ 93
8.51 COMPILER_VERSION — Compiler version string................ 93
8.52 COMPLEX — Complex conversion function..................... 94
8.53 CONJG — Complex conjugate function........................ 95
8.54 COS — Cosine function.......... ..., 95
8.55 COSH — Hyperbolic cosine function........................... 96
8.56 COUNT — Count function.......... ..., 96
8.57 CPU_TIME — CPU elapsed time in seconds.................... 97
8.58 CSHIFT — Circular shift elements of an array................. 98
8.59 CTIME — Convert a time into a string 99
8.60 DATE_AND_TIME — Date and time subroutine................. 99
8.61 DBLE — Double conversion function......................... 100
8.62 DCMPLX — Double complex conversion function.............. 101
8.63 DIGITS — Significant binary digits function................. 101
8.64 DIM — Positive difference L. 102
8.65 DOT_PRODUCT — Dot product function....................... 103
8.66 DPROD — Double product function 103
8.67 DREAL — Double real part function.......................... 104
8.68 DSHIFTL — Combined left shift 104
8.69 DSHIFTR — Combined right shift............................ 105
8.70 DTIME — Execution time subroutine (or function)........... 105
8.71 EOSHIFT — End-off shift elements of an array 107
8.72 EPSILON — Epsilon function, 107
8.73 ERF — Error function............ ... i, 108
8.74 ERFC — Error function..................ooiiiiiiiiiiii, 108
8.75 ERFC_SCALED — Error function 109
8.76 ETIME — Execution time subroutine (or function)........... 109
8.77 EXECUTE_COMMAND_LINE — Execute a shell command........ 110
8.78 EXIT — Exit the program with status. 111
8.79 EXP — Exponential function 112
8.80 EXPONENT — Exponent function.................. ..., 112
8.81 EXTENDS_TYPE_OF — Query dynamic type for extension 113
8.82 FDATE — Get the current time as a string 113

8.83 FGET — Read a single character in stream mode from stdin.. 114
8.84 FGETC — Read a single character in stream mode............ 115

8.85 FLOOR — Integer floor function.............................. 116
8.86 FLUSH — Flush I/O unit(s)oooiii. 116
8.87 FNUM — File number function.................. 117
8.88 FPUT — Write a single character in stream mode to stdout... 118
8.89 FPUTC — Write a single character in stream mode........... 118
8.90 FRACTION — Fractional part of the model representation 119
8.91 FREE — Frees memoryc.ovviuiiiiiniiniinann... 120
8.92 FSEEK — Low level file positioning subroutine............... 120
8.93 FSTAT — Get filestatus. ..., 121
8.94 FTELL — Current stream position........................... 122
8.95 GAMMA — Gamma function..................c .., 122
8.96 GERROR — Get last system error message.................... 123
8.97 GETARG — Get command line arguments 123
8.98 GET_COMMAND — Get the entire command line............... 124
8.99 GET_COMMAND_ARGUMENT — Get command line arguments.... 125
8.100 GETCWD — Get current working directory................... 126
8.101 GETENV — Get an environmental variable 126
8.102 GET_ENVIRONMENT_VARIABLE — Get an environmental variable
.. 127
8.103 GETGID — Group ID function................... 128
8.104 GETLOG — Get loginname 128
8.105 GETPID — Process ID function............................. 129
8.106 GETUID — User ID function............. 129
8.107 GMTIME — Convert time to GMT info...................... 129
8.108 HOSTNM — Get system host name 130
8.109 HUGE — Largest number of a kind.......................... 130
8.110 HYPOT — Euclidean distance function 131
8.111 TIACHAR — Code in ASCII collating sequence................ 131
8.112 IALL — Bitwise AND of array elements.................... 132
8.113 TIAND — Bitwise logical andol 133
8.114 TIANY — Bitwise OR of array elements...................... 133
8.115 TIARGC — Get the number of command line arguments. 134
8.116 IBCLR — Clear bit...... ..o 135
8.117 IBITS — Bit extraction..............oooiiiiiiiiiiian. 135
8.118 IBSET — Set bit. ..o 135
8.119 ICHAR — Character-to-integer conversion function.......... 136
8.120 IDATE — Get current local time subroutine (day/month/year)
.. 137
8.121 TIEOR — Bitwise logical exclusiveor 137
8.122 IERRNO — Get the last system error number 138
8.123 IMAGE_INDEX — Function that converts a cosubscript to an
image INdeX oottt 138
8.124 INDEX — Position of a substring within a string............ 139
8.125 INT — Convert to integer type..........cooiiiiiiiiia . 139
8.126 INT2 — Convert to 16-bit integer type..................... 140
8.127 INT8 — Convert to 64-bit integer type..................... 140
8.128 IOR — Bitwise logical or......... i 141
8.129 TIPARITY — Bitwise XOR of array elements................. 141

vii

viii The GNU Fortran Compiler

8.130 IRAND — Integer pseudo-random number................... 142
8.131 IS_IOSTAT_END — Test for end-of-file value 143
8.132 IS_IOSTAT_EOR — Test for end-of-record value............. 143
8.133 ISATTY — Whether a unit is a terminal device.............. 144
8.134 ISHFT — Shift bits ... i 144
8.135 ISHFTC — Shift bits circularly 145
8.136 ISNAN — Test fora NaN...... 145
8.137 ITIME — Get current local time subroutine
(hour/minutes/seconds) i 146
8.138 KILL — Send a signal to a processc.coenn. 146
8.139 KIND — Kind of anentity........... ...t 147
8.140 LBOUND — Lower dimension bounds of an array 147
8.141 LCOBOUND — Lower codimension bounds of an array........ 148
8.142 LEADZ — Number of leading zero bits of an integer......... 148
8.143 LEN — Length of a character entity 149
8.144 LEN_TRIM — Length of a character entity without trailing blank
characters 149
8.145 LGE — Lexical greater than or equal 150
8.146 LGT — Lexical greater than 150
8.147 LINK — Create a hard link........... ... oo o, 151
8.148 LLE — Lexical less than orequal........................ ... 151
8.149 LLT — Lexical lessthan...............o, 152
8.150 LNBLNK — Index of the last non-blank character in a string.. 153
8.151 LOC — Returns the address of a variable 153
8.152 LOG — Natural logarithm function 154
8.1563 L0OG10 — Base 10 logarithm function....................... 154
8.154 LOG_GAMMA — Logarithm of the Gamma function........... 155
8.155 LOGICAL — Convert to logical type.............. 155
8.156 LONG — Convert to integer type...........cooviiiiiiii... 156
8.157 LSHIFT — Left shift bits.............. .. .ot 156
8.158 LSTAT — Get file status. ..., 157
8.159 LTIME — Convert time to local time info................... 157
8.160 MALLOC — Allocate dynamic memory 158
8.161 MASKL — Left justified mask 159
8.162 MASKR — Right justified mask.......... 159
8.163 MATMUL — matrix multiplication 159
8.164 MAX — Maximum value of an argument list................. 160
8.165 MAXEXPONENT — Maximum exponent of a real kind......... 160
8.166 MAXLOC — Location of the maximum value within an array.. 161
8.167 MAXVAL — Maximum value of an array 162
8.168 MCLOCK — Time functionciiiiiiiiin.. 162
8.169 MCLOCK8 — Time function (64-bit)............ ..., 163
8.170 MERGE — Merge variables, 163
8.171 MERGE_BITS — Merge of bits under mask 164
8.172 MIN — Minimum value of an argument list 164
8.173 MINEXPONENT — Minimum exponent of a real kind 165

8.174 MINLOC — Location of the minimum value within an array.. 165
8.175 MINVAL — Minimum value of an array 166

8.176 MOD — Remainder function, 166
8.177 MODULO — Modulo function.............. 167
8.178 MOVE_ALLOC — Move allocation from one object to another
.. 168
8.179 MVBITS — Move bits from one integer to another........... 168
8.180 NEAREST — Nearest representable number.................. 169
8.181 NEW_LINE — New line character............................ 169
8.182 NINT — Nearest whole number............................. 170
8.183 NORM2 — Euclidean vector normsooovun... 170
8.184 NOT — Logical negation............. ..., 171
8.185 NULL — Function that returns an disassociated pointer..... 171
8.186 NUM_IMAGES — Function that returns the number of images
.. 172
8.187 OR — Bitwise logical OR............ oot 172
8.188 PACK — Pack an array into an array of rank one............ 173
8.189 PARITY — Reduction with exclusive OR.................... 174
8.190 PERROR — Print system error message...................... 174
8.191 PRECISION — Decimal precision of a real kind.............. 175
8.192 POPCNT — Number of bits set............ ... oL, 175
8.193 POPPAR — Parity of the number of bits set 176
8.194 PRESENT — Determine whether an optional dummy argument is
specifiedo 176
8.195 PRODUCT — Product of array elements...................... 177
8.196 RADIX — Base of a model number.......................... 177
8.197 RAN — Real pseudo-random number........................ 178
8.198 RAND — Real pseudo-random number 178
8.199 RANDOM_NUMBER — Pseudo-random number................. 179
8.200 RANDOM_SEED — Initialize a pseudo-random number sequence
.. 180
8.201 RANGE — Decimal exponent range...............ccoooueo... 180
8.202 RANK — Rank of a data object oL, 181
8.203 REAL — Convert toreal type.... 181
8.204 RENAME — Rename afile.............. 182
8.205 REPEAT — Repeated string concatenation 183
8.206 RESHAPE — Function to reshape an array................... 183
8.207 RRSPACING — Reciprocal of the relative spacing............ 184
8.208 RSHIFT — Right shift bits 184
8.209 SAME_TYPE_AS — Query dynamic types for equality 184
8.210 SCALE — Scale areal value, 185
8.211 SCAN — Scan a string for the presence of a set of characters
.. 185
8.212 SECNDS — Time functioncooiiiiiiiiiiinan. 186
8.213 SECOND — CPU time function....................coovo.... 187
8.214 SELECTED_CHAR_KIND — Choose character kind 187
8.215 SELECTED_INT_KIND — Choose integer kind................ 188
8.216 SELECTED_REAL_KIND — Choose real kind.................. 188
8.217 SET_EXPONENT — Set the exponent of the model 189
8.218 SHAPE — Determine the shape of an array.................. 190

ix

The GNU Fortran Compiler

8.219 SHIFTA — Right shift with fill 190
8.220 SHIFTL — Left shift 191
8.221 SHIFTR — Right shift........., 191
8.222 SIGN — Sign copying function, 192
8.223 SIGNAL — Signal handling subroutine (or function)......... 192
8.224 SIN — Sine function...............oiiiiiiiiiiiiiineann.. 193
8.225 SINH — Hyperbolic sine function................. 194
8.226 SIZE — Determine the size of an array..................... 194
8.227 SIZEOF — Size in bytes of an expression 195
8.228 SLEEP — Sleep for the specified number of seconds......... 195
8.229 SPACING — Smallest distance between two numbers of a given
157 0T N 196
8.230 SPREAD — Add a dimension to an array.................... 196
8.231 SQRT — Square-root function 197
8.232 SRAND — Reinitialize the random number generator........ 197
8.233 STAT — Get file status........ooiiiii e 198
8.234 STORAGE_SIZE — Storage size in bits....................... 199
8.235 SUM — Sum of array elements............. 200
8.236 SYMLNK — Create a symbolic link 200
8.237 SYSTEM — Execute a shell command 201
8.238 SYSTEM_CLOCK — Time functiono.... 201
8.239 TAN — Tangent function......... ..., 202
8.240 TANH — Hyperbolic tangent function....................... 203
8.241 THIS_IMAGE — Function that returns the cosubscript index of
this Imageo 203
8.242 TIME — Time function............., 204
8.243 TIME8 — Time function (64-bit), 205
8.244 TINY — Smallest positive number of a real kind 205
8.245 TRAILZ — Number of trailing zero bits of an integer........ 205
8.246 TRANSFER — Transfer bit patterns 206
8.247 TRANSPOSE — Transpose an array of rank two.............. 207
8.248 TRIM — Remove trailing blank characters of a string 207
8.249 TTYNAM — Get the name of a terminal device............... 207
8.250 UBOUND — Upper dimension bounds of an array 208
8.251 UCOBOUND — Upper codimension bounds of an array........ 209
8.252 UMASK — Set the file creation mask 209
8.253 UNLINK — Remove a file from the file system............... 209
8.254 UNPACK — Unpack an array of rank one into an array 210
8.255 VERIFY — Scan a string for characters not a given set 210
8.256 XOR — Bitwise logical exclusive OR........................ 211
Intrinsic Modules 213
9.1 ISO_FORTRAN _ENVttt 213
9.2 TISO_C_BINDINGttt ettt et e e 214

9.3 OpenMP Modules OMP_LIB and OMP_LIB_KINDS.............. 216

Contributing L. 217
Contributors to GNU Fortran i, 217
Projects ... 218
Proposed EXtensionsouiieiiiiiiiiii i 218

Compiler extensions:ouutieii i 218
Environment Optionso 219

GNU General Public License 221

GNU Free Documentation License 233
ADDENDUM: How to use this License for your documents 240

Funding Free Software........................... 241

Option Index, 243

Keyword Index................................... 245

xi

Chapter 1: Introduction 1

1

Introduction

This manual documents the use of gfortran, the GNU Fortran compiler. You can find in
this manual how to invoke gfortran, as well as its features and incompatibilities.

The GNU Fortran compiler front end was designed initially as a free replacement for,

or alternative to, the unix £95 command; gfortran is the command you will use to invoke
the compiler.

1.1 About GNU Fortran

The GNU Fortran compiler supports the Fortran 77, 90 and 95 standards completely, parts
of the Fortran 2003 and Fortran 2008 standards, and several vendor extensions. The devel-
opment goal is to provide the following features:

Read a user’s program, stored in a file and containing instructions written in Fortran
77, Fortran 90, Fortran 95, Fortran 2003 or Fortran 2008. This file contains source
code.

Translate the user’s program into instructions a computer can carry out more quickly
than it takes to translate the instructions in the first place. The result after compilation
of a program is machine code, code designed to be efficiently translated and processed
by a machine such as your computer. Humans usually are not as good writing machine
code as they are at writing Fortran (or C++, Ada, or Java), because it is easy to make
tiny mistakes writing machine code.

Provide the user with information about the reasons why the compiler is unable to
create a binary from the source code. Usually this will be the case if the source code
is flawed. The Fortran 90 standard requires that the compiler can point out mistakes
to the user. An incorrect usage of the language causes an error message.

The compiler will also attempt to diagnose cases where the user’s program contains a
correct usage of the language, but instructs the computer to do something questionable.
This kind of diagnostics message is called a warning message.

Provide optional information about the translation passes from the source code to
machine code. This can help a user of the compiler to find the cause of certain bugs
which may not be obvious in the source code, but may be more easily found at a lower
level compiler output. It also helps developers to find bugs in the compiler itself.

Provide information in the generated machine code that can make it easier to find bugs
in the program (using a debugging tool, called a debugger, such as the GNU Debugger
gdb).

Locate and gather machine code already generated to perform actions requested by
statements in the user’s program. This machine code is organized into modules and is
located and linked to the user program.

The GNU Fortran compiler consists of several components:

A version of the gcc command (which also might be installed as the system’s cc com-
mand) that also understands and accepts Fortran source code. The gcc command is
the driver program for all the languages in the GNU Compiler Collection (GCC); With
gcc, you can compile the source code of any language for which a front end is available
in GCC.

2 The GNU Fortran Compiler

e The gfortran command itself, which also might be installed as the system’s £95 com-
mand. gfortran is just another driver program, but specifically for the Fortran com-
piler only. The difference with gcc is that gfortran will automatically link the correct
libraries to your program.

e A collection of run-time libraries. These libraries contain the machine code needed
to support capabilities of the Fortran language that are not directly provided by the
machine code generated by the gfortran compilation phase, such as intrinsic functions
and subroutines, and routines for interaction with files and the operating system.

e The Fortran compiler itself, (£951). This is the GNU Fortran parser and code generator,
linked to and interfaced with the GCC backend library. £951 “translates” the source
code to assembler code. You would typically not use this program directly; instead,
the gcc or gfortran driver programs will call it for you.

1.2 GNU Fortran and GCC

GNU Fortran is a part of GCC, the GNU Compiler Collection. GCC consists of a collec-
tion of front ends for various languages, which translate the source code into a language-
independent form called GENERIC. This is then processed by a common middle end which
provides optimization, and then passed to one of a collection of back ends which generate
code for different computer architectures and operating systems.

Functionally, this is implemented with a driver program (gcc) which provides the
command-line interface for the compiler. It calls the relevant compiler front-end program
(e.g., £951 for Fortran) for each file in the source code, and then calls the assembler and
linker as appropriate to produce the compiled output. In a copy of GCC which has been
compiled with Fortran language support enabled, gcc will recognize files with ‘.£’, ‘. for’,
“.ftn’, ©.£90°, .£f95’, ‘.03’ and ‘.f08’ extensions as Fortran source code, and compile it
accordingly. A gfortran driver program is also provided, which is identical to gcc except
that it automatically links the Fortran runtime libraries into the compiled program.

Source files with ‘.f’, ‘.for’, ‘.fpp’, ‘.ftn’, *.F’, *.FOR’, ‘*.FPP’, and ‘.FTN’ extensions
are treated as fixed form. Source files with *.£90°, ‘.£95’, *.£f03’, *.£08’, *.F90’, ‘.F95’,
‘.F03’ and ‘.F08’ extensions are treated as free form. The capitalized versions of either
form are run through preprocessing. Source files with the lower case ‘.fpp’ extension are
also run through preprocessing.

This manual specifically documents the Fortran front end, which handles the program-
ming language’s syntax and semantics. The aspects of GCC which relate to the optimization
passes and the back-end code generation are documented in the GCC manual; see Section
“Introduction” in Using the GNU Compiler Collection (GCC). The two manuals together
provide a complete reference for the GNU Fortran compiler.

1.3 Preprocessing and conditional compilation

Many Fortran compilers including GNU Fortran allow passing the source code through a
C preprocessor (CPP; sometimes also called the Fortran preprocessor, FPP) to allow for
conditional compilation. In the case of GNU Fortran, this is the GNU C Preprocessor
in the traditional mode. On systems with case-preserving file names, the preprocessor is
automatically invoked if the filename extension is ‘.F’, *.FOR’, ‘.FIN’, ‘. fpp’, ‘.FPP’, ‘.F90’,

Chapter 1: Introduction 3

‘.F95’, *.F03’ or ‘.F08’. To manually invoke the preprocessor on any file, use ‘-cpp’, to

disable preprocessing on files where the preprocessor is run automatically, use ‘-nocpp’.

If a preprocessed file includes another file with the Fortran INCLUDE statement, the in-
cluded file is not preprocessed. To preprocess included files, use the equivalent preprocessor
statement #include.

If GNU Fortran invokes the preprocessor, __GFORTRAN__ is defined and __GNUC
_GNUC_MINOR__ and __GNUC_PATCHLEVEL__ can be used to determine the version of the

compiler. See Section “Overview” in The C Preprocessor for details.

- -

While CPP is the de-facto standard for preprocessing Fortran code, Part 3 of the Fortran
95 standard (ISO/IEC 1539-3:1998) defines Conditional Compilation, which is not widely
used and not directly supported by the GNU Fortran compiler. You can use the program
coco to preprocess such files (http://www.daniellnagle.com/coco.html).

1.4 GNU Fortran and G77

The GNU Fortran compiler is the successor to g77, the Fortran 77 front end included in GCC
prior to version 4. It is an entirely new program that has been designed to provide Fortran
95 support and extensibility for future Fortran language standards, as well as providing
backwards compatibility for Fortran 77 and nearly all of the GNU language extensions
supported by g77.

1.5 Project Status

As soon as gfortran can parse all of the statements correctly, it will be in the
“larva” state. When we generate code, the “puppa” state. When gfortran is
done, we'll see if it will be a beautiful butterfly, or just a big bug....

—Andy Vaught, April 2000
The start of the GNU Fortran 95 project was announced on the GCC homepage in March
18, 2000 (even though Andy had already been working on it for a while, of course).

The GNU Fortran compiler is able to compile nearly all standard-compliant Fortran 95,
Fortran 90, and Fortran 77 programs, including a number of standard and non-standard
extensions, and can be used on real-world programs. In particular, the supported extensions
include OpenMP, Cray-style pointers, and several Fortran 2003 and Fortran 2008 features,
including TR 15581. However, it is still under development and has a few remaining rough
edges.

At present, the GNU Fortran compiler passes the NIST Fortran 77 Test Suite, and
produces acceptable results on the LAPACK Test Suite. It also provides respectable per-
formance on the Polyhedron Fortran compiler benchmarks and the Livermore Fortran Ker-
nels test. It has been used to compile a number of large real-world programs, including
the HIRLAM weather-forecasting code and the Tonto quantum chemistry package; see
http://gcc.gnu.org/wiki/GfortranApps for an extended list.

Among other things, the GNU Fortran compiler is intended as a replacement for G77.
At this point, nearly all programs that could be compiled with G77 can be compiled with
GNU Fortran, although there are a few minor known regressions.

The primary work remaining to be done on GNU Fortran falls into three categories:
bug fixing (primarily regarding the treatment of invalid code and providing useful error

http://www.daniellnagle.com/coco.html
http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html
http://www.netlib.org/lapack/faq.html#1.21
http://www.polyhedron.com/pb05.html
http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html
http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html
http://mysite.verizon.net/serveall/moene.pdf
http://www.theochem.uwa.edu.au/tonto/
http://gcc.gnu.org/wiki/GfortranApps

4 The GNU Fortran Compiler

messages), improving the compiler optimizations and the performance of compiled code,
and extending the compiler to support future standards—in particular, Fortran 2003 and
Fortran 2008.

1.6 Standards

The GNU Fortran compiler implements ISO/IEC 1539:1997 (Fortran 95). As such, it can
also compile essentially all standard-compliant Fortran 90 and Fortran 77 programs. It also
supports the ISO/IEC TR-15581 enhancements to allocatable arrays.

In the future, the GNU Fortran compiler will also support ISO/IEC 1539-1:2004 (Fortran
2003), ISO/IEC 1539-1:2010 (Fortran 2008) and future Fortran standards. Partial support
of the Fortran 2003 and Fortran 2008 standard is already provided; the current status of
the support is reported in the Section 4.1 [Fortran 2003 status], page 33 and Section 4.2
[Fortran 2008 status|, page 34 sections of the documentation.

Additionally, the GNU Fortran compilers supports the OpenMP specification (version
3.1, http://openmp.org/wp/openmp-specifications/).

1.6.1 Varying Length Character Strings

The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000) varying length character
strings. While GNU Fortran currently does not support such strings directly, there exist
two Fortran implementations for them, which work with GNU Fortran. They can be found
at http://wuw.fortran.com/iso_varying_string.f95 and at ftp://ftp.nag.co.uk/
sc22wgh/ISO_VARYING_STRING/.

http://openmp.org/wp/openmp-specifications/
http://www.fortran.com/iso_varying_string.f95
ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/
ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/

Chapter 1: Introduction

Part I: Invoking GNU Fortran

Chapter 2: GNU Fortran Command Options 7

2 GNU Fortran Command Options

The gfortran command supports all the options supported by the gcc command. Only
options specific to GNU Fortran are documented here.

See Section “GCC Command Options” in Using the GNU Compiler Collection (GCC),
for information on the non-Fortran-specific aspects of the gcc command (and, therefore,
the gfortran command).

All GCC and GNU Fortran options are accepted both by gfortran and by gcc (as well
as any other drivers built at the same time, such as g++), since adding GNU Fortran to the
GCC distribution enables acceptance of GNU Fortran options by all of the relevant drivers.

In some cases, options have positive and negative forms; the negative form of ‘-ffoo’
would be ‘~fno-foo’. This manual documents only one of these two forms, whichever one
is not the default.

2.1 Option summary

Here is a summary of all the options specific to GNU Fortran, grouped by type. Explanations
are in the following sections.

Fortran Language Options
See Section 2.2 [Options controlling Fortran dialect], page 8.

-fall-intrinsics -fbackslash -fcray-pointer -fd-lines-as-code
-fd-lines-as-comments -fdefault-double-8 -fdefault-integer-8
-fdefault-real-8 -fdollar-ok -ffixed-line-length-n
-ffixed-line-length-none -ffree-form -ffree-line-length-n
-ffree-line-length-none -fimplicit-none -finteger-4-integer-8
-fmax-identifier-length -fmodule-private -fno-fixed-form -fno-range-check
-fopenmp -freal-4-real-10 -freal-4-real-16 -freal-4-real-8
-freal-8-real-10 -freal-8-real-16 -freal-8-real-4 -std=std
Preprocessing Options
See Section 2.3 [Enable and customize preprocessing|, page 11.
-A-question|[=answer| -Aquestion=answer -C -CC -Dmacro[=defn]| -H -P
-Umacro -cpp -dD -dI -dM -dN -dU -fworking-directory -imultilib dir
-iprefix file -iquote -isysroot dir -isystem dir -nocpp -nostdinc
-undef
Error and Warning Options
See Section 2.4 [Options to request or suppress errors and warnings|, page 14.

-Waliasing -Wall -Wampersand -Warray-bounds -Wcharacter-truncation
-Wconversion -Wfunction-elimination -Wimplicit-interface
-Wimplicit-procedure -Wintrinsic-shadow -Wintrinsics-std
-Wline-truncation -Wno-align-commons -Wno-tabs -Wreal-g-constant
-Wsurprising -Wunderflow -Wunused-parameter -fmax-errors=n -fsyntax-only
-pedantic -pedantic-errors

Debugging Options
See Section 2.5 [Options for debugging your program or GNU Fortran|, page 17.
-fbacktrace -fdump-fortran-optimized -fdump-fortran-original
-fdump-parse-tree -ffpe-trap=Ilist
Directory Options
See Section 2.6 [Options for directory search], page 18.

8 The GNU Fortran Compiler

-Idir -Jdir -fintrinsic-modules-path dir

Link Options
See Section 2.7 [Options for influencing the linking step], page 18.

-static-libgfortran

Runtime Options
See Section 2.8 [Options for influencing runtime behavior], page 19.

-fconvert=conversion -fmax-subrecord-length=length -fno-range-check
-frecord-marker=length -fsign-zero

Code Generation Options
See Section 2.9 [Options for code generation conventions|, page 19.

-faggressive-function-elimination -fblas-matmul-limit=n
-fbounds-check -fcheck-array-temporaries
-fcheck=<alllarray-temps|bounds|do|mem|pointer|recursion>
-fcoarray=<none|single|1ib> -fexternal-blas -ff2c -ffrontend-optimize
-finit-character=n -finit-integer=n -finit-local-zero
-finit-logical=<true|false> -finit-real=<zero|inf|-inf|nan|snan>
-fmax-array-constructor=n -fmax-stack-var-size=n -fno-align-commons
-fno-automatic -fno-protect-parens -fno-underscoring -fno-whole-file
-fsecond-underscore -fpack-derived -frealloc-lhs -frecursive
-frepack-arrays -fshort-enums -fstack-arrays

2.2 Options controlling Fortran dialect
The following options control the details of the Fortran dialect accepted by the compiler:

—-ffree-form

-ffixed-form
Specify the layout used by the source file. The free form layout was introduced
in Fortran 90. Fixed form was traditionally used in older Fortran programs.
When neither option is specified, the source form is determined by the file
extension.

-fall-intrinsics
This option causes all intrinsic procedures (including the GNU-specific exten-
sions) to be accepted. This can be useful with ‘~std=£95’ to force standard-
compliance but get access to the full range of intrinsics available with gfortran.
As a consequence, ‘-Wintrinsics-std’ will be ignored and no user-defined pro-
cedure with the same name as any intrinsic will be called except when it is
explicitly declared EXTERNAL.

-fd-lines-as-code

-fd-lines-as-comments
Enable special treatment for lines beginning with d or D in fixed form sources. If
the ‘-fd-lines-as-code’ option is given they are treated as if the first column
contained a blank. If the ‘-fd-lines-as-comments’ option is given, they are
treated as comment lines.

-fdefault-double-8
Set the DOUBLE PRECISION type to an 8 byte wide type. If ‘-~-fdefault-real-8’
is given, DOUBLE PRECISION would instead be promoted to 16 bytes if possible,

Chapter 2: GNU Fortran Command Options 9

and ‘-fdefault-double-8’ can be used to prevent this. The kind of real con-
stants like 1.d0 will not be changed by ‘-fdefault-real-8’ though, so also
‘~fdefault-double-8’ does not affect it.

-fdefault-integer-8
Set the default integer and logical types to an 8 byte wide type. Do nothing if
this is already the default. This option also affects the kind of integer constants
like 42.

-fdefault-real-8
Set the default real type to an 8 byte wide type. Do nothing if this is already
the default. This option also affects the kind of non-double real constants like
1.0, and does promote the default width of DOUBLE PRECISION to 16 bytes if
possible, unless -fdefault-double-8 is given, too.

-fdollar-ok
Allow ‘$’ as a valid non-first character in a symbol name. Symbols that start
with ‘$” are rejected since it is unclear which rules to apply to implicit typing as
different vendors implement different rules. Using ‘¢’ in IMPLICIT statements
is also rejected.

—-fbackslash

Change the interpretation of backslashes in string literals from a single back-
slash character to “C-style” escape characters. The following combinations are
expanded \a, \b, \f, \n, \r, \t, \v, \\, and \0 to the ASCII characters alert,
backspace, form feed, newline, carriage return, horizontal tab, vertical tab,
backslash, and NUL, respectively. Additionally, \xnn, \unnnn and \Unnnnnnnn
(where each n is a hexadecimal digit) are translated into the Unicode charac-
ters corresponding to the specified code points. All other combinations of a
character preceded by \ are unexpanded.

-fmodule-private
Set the default accessibility of module entities to PRIVATE. Use-associated en-
tities will not be accessible unless they are explicitly declared as PUBLIC.

-ffixed-line-length-n
Set column after which characters are ignored in typical fixed-form lines in the
source file, and through which spaces are assumed (as if padded to that length)
after the ends of short fixed-form lines.

Popular values for n include 72 (the standard and the default), 80 (card im-
age), and 132 (corresponding to “extended-source” options in some popular
compilers). n may also be ‘none’, meaning that the entire line is meaningful
and that continued character constants never have implicit spaces appended to
them to fill out the line. ‘-ffixed-line-length-0’ means the same thing as
‘~ffixed-line-length-none’.

-ffree-line-length-n
Set column after which characters are ignored in typical free-form lines in the
source file. The default value is 132. n may be ‘none’, meaning that the
entire line is meaningful. ‘-ffree-line-length-0’ means the same thing as
‘~ffree-line-length-none’.

10 The GNU Fortran Compiler

-fmax-identifier-length=n
Specify the maximum allowed identifier length. Typical values are 31 (Fortran
95) and 63 (Fortran 2003 and Fortran 2008).

-fimplicit-none
Specify that no implicit typing is allowed, unless overridden by explicit
IMPLICIT statements. This is the equivalent of adding implicit none to the
start of every procedure.

-finteger-4-integer-8

Promote all INTEGER(KIND=4) entities to an INTEGER(KIND=8) entities. If
KIND=8 is unavailable, then an error will be issued. This option should be
used with care and may not be suitable for your codes. Areas of possible con-
cern include calls to external procedures, alignment in EQUIVALENCE and/or
COMMON, generic interfaces, BOZ literal constant conversion, and 1/0. Inspec-
tion of the intermediate representation of the translated Fortran code, produced
by ‘~fdump-tree-original’, is suggested.

-fcray-pointer
Enable the Cray pointer extension, which provides C-like pointer functionality.

-fopenmp Enable the OpenMP extensions. This includes OpenMP !$omp directives in
free form and c$omp, *$omp and !$omp directives in fixed form, !'$ conditional
compilation sentinels in free form and c$, *$ and !$ sentinels in fixed form, and
when linking arranges for the OpenMP runtime library to be linked in. The
option ‘~fopenmp’ implies ‘~frecursive’.

-fno-range-check

Disable range checking on results of simplification of constant expressions during
compilation. For example, GNU Fortran will give an error at compile time when
simplifying a = 1. / 0. With this option, no error will be given and a will be
assigned the value +Infinity. If an expression evaluates to a value outside of
the relevant range of [~HUGE () :HUGE ()|, then the expression will be replaced by
-Inf or +Inf as appropriate. Similarly, DATA i/Z’FFFFFFFF’/ will result in an
integer overflow on most systems, but with ‘~fno-range-check’ the value will
“wrap around” and i will be initialized to —1 instead.

-freal-4-real-8

-freal-4-real-10

-freal-8-real-4

-freal-8-real-10

-freal-8-real-16
Promote all REAL (KIND=M) entities to REAL(KIND=N) entities. If REAL (KIND=N)
is unavailable, then an error will be issued. All other real kind types are un-
affected by this option. These options should be used with care and may not
be suitable for your codes. Areas of possible concern include calls to external
procedures, alignment in EQUIVALENCE and/or COMMON, generic interfaces, BOZ
literal constant conversion, and I/O. Inspection of the intermediate representa-
tion of the translated Fortran code, produced by ‘-fdump-tree-original’, is
suggested.

Chapter 2: GNU Fortran Command Options 11

-std=std Specify the standard to which the program is expected to conform, which may
be one of ‘£95’, ‘£2003’, ‘£2008’, ‘gnu’, or ‘legacy’. The default value for std
is ‘gnu’, which specifies a superset of the Fortran 95 standard that includes all
of the extensions supported by GNU Fortran, although warnings will be given
for obsolete extensions not recommended for use in new code. The ‘legacy’
value is equivalent but without the warnings for obsolete extensions, and may
be useful for old non-standard programs. The ‘£95’, ‘£2003’ and ‘£2008’ values
specify strict conformance to the Fortran 95, Fortran 2003 and Fortran 2008
standards, respectively; errors are given for all extensions beyond the relevant
language standard, and warnings are given for the Fortran 77 features that
are permitted but obsolescent in later standards. ‘-std=£2008ts’ allows the
Fortran 2008 standard including the additions of the Technical Specification
(TS) 29113 on Further Interoperability of Fortran with C.

2.3 Enable and customize preprocessing

Preprocessor related options. See section Section 1.3 [Preprocessing and conditional com-
pilation], page 2 for more detailed information on preprocessing in gfortran.

—Cpp

-nocpp Enable preprocessing. The preprocessor is automatically invoked if the file
extension is ‘. fpp’, ‘.FPP’, ‘*.F’, *.FOR’, ‘".FTN’, *.F90’, *.F95’, *.F03’ or ‘.F08’.
Use this option to manually enable preprocessing of any kind of Fortran file.
To disable preprocessing of files with any of the above listed extensions, use the
negative form: ‘-nocpp’.

The preprocessor is run in traditional mode. Any restrictions of the file-
format, especially the limits on line length, apply for preprocessed output
as well, so it might be advisable to use the ‘-ffree-line-length-none’ or
‘-ffixed-line-length-none’ options.

-dM Instead of the normal output, generate a list of >#define’ directives for all the
macros defined during the execution of the preprocessor, including predefined
macros. This gives you a way of finding out what is predefined in your version
of the preprocessor. Assuming you have no file ‘foo.f90’, the command

touch fo00.£90; gfortran -cpp -E -dM foo0.£90

will show all the predefined macros.
-dD Like ‘=dM’ except in two respects: it does not include the predefined macros, and

it outputs both the #define directives and the result of preprocessing. Both
kinds of output go to the standard output file.

-dN Like ‘-dD’, but emit only the macro names, not their expansions.

-du Like ‘dD’ except that only macros that are expanded, or whose definedness is
tested in preprocessor directives, are output; the output is delayed until the use
or test of the macro; and ’#undef’ directives are also output for macros tested
but undefined at the time.

-dI Output *#include’ directives in addition to the result of preprocessing.

12

-fworking-

The GNU Fortran Compiler

directory

Enable generation of linemarkers in the preprocessor output that will let the
compiler know the current working directory at the time of preprocessing.
When this option is enabled, the preprocessor will emit, after the initial line-
marker, a second linemarker with the current working directory followed by
two slashes. GCC will use this directory, when it is present in the prepro-
cessed input, as the directory emitted as the current working directory in some
debugging information formats. This option is implicitly enabled if debug-
ging information is enabled, but this can be inhibited with the negated form
‘~fno-working-directory’. If the ‘-P’ flag is present in the command line,
this option has no effect, since no #line directives are emitted whatsoever.

—-idirafter dir

Search dir for include files, but do it after all directories specified with ‘-I’
and the standard system directories have been exhausted. dir is treated as a
system include directory. If dir begins with =, then the = will be replaced by
the sysroot prefix; see ‘-—sysroot’ and ‘~isysroot’.

—-imultilib dir

Use dir as a subdirectory of the directory containing target-specific C++ headers.

-iprefix prefix

Specify prefix as the prefix for subsequent ‘~iwithprefix’ options. If the prefix
represents a directory, you should include the final */”.

-isysroot dir

This option is like the ‘~-sysroot’ option, but applies only to header files. See
the ‘--sysroot’ option for more information.

-iquote dir

Search dir only for header files requested with #include "file"; they are not
searched for #include <file>, before all directories specified by ‘-1’ and before
the standard system directories. If dir begins with =, then the = will be replaced
by the sysroot prefix; see ‘--sysroot’ and ‘~isysroot’.

-isystem dir

-nostdinc

—-undef

Search dir for header files, after all directories specified by ‘-I’ but before the
standard system directories. Mark it as a system directory, so that it gets the
same special treatment as is applied to the standard system directories. If dir
begins with =, then the = will be replaced by the sysroot prefix; see ‘--sysroot’
and ‘-isysroot’.

Do not search the standard system directories for header files. Only the direc-
tories you have specified with ‘-I” options (and the directory of the current file,
if appropriate) are searched.

Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.

Chapter 2: GNU Fortran Command Options 13

-Apredicate=answer

Make an assertion with the predicate predicate and answer answer. This form
is preferred to the older form -A predicate(answer), which is still supported,
because it does not use shell special characters.

-A-predicate=answer

-C

-CC

—-Dname

Cancel an assertion with the predicate predicate and answer answer.

Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the
directive.

You should be prepared for side effects when using ‘-C’; it causes the prepro-
cessor to treat comments as tokens in their own right. For example, comments
appearing at the start of what would be a directive line have the effect of turn-
ing that line into an ordinary source line, since the first token on the line is no
longer a *#°.

Warning: this currently handles C-Style comments only. The preprocessor does
not yet recognize Fortran-style comments.

Do not discard comments, including during macro expansion. This is like ‘-C’,
except that comments contained within macros are also passed through to the
output file where the macro is expanded.

In addition to the side-effects of the ‘-C’ option, the ‘-CC’ option causes all
C++-style comments inside a macro to be converted to C-style comments. This
is to prevent later use of that macro from inadvertently commenting out the
remainder of the source line. The ‘~CC’ option is generally used to support lint
comiments.

Warning: this currently handles C- and C++-Style comments only. The prepro-
cessor does not yet recognize Fortran-style comments.

Predefine name as a macro, with definition 1.

-Dname=definition

The contents of definition are tokenized and processed as if they appeared
during translation phase three in a ’#define’ directive. In particular, the
definition will be truncated by embedded newline characters.

If you are invoking the preprocessor from a shell or shell-like program you may
need to use the shell’s quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you will need to quote the option.
With sh and csh, -D’name (args...)=definition’ works.

‘-D’ and ‘-U’ options are processed in the order they are given on the command
line. All -imacros file and -include file options are processed after all -D and -U
options.

Print the name of each header file used, in addition to other normal activities.
Each name is indented to show how deep in the ’#include’ stack it is.

14 The GNU Fortran Compiler

-P Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C code,
and will be sent to a program which might be confused by the linemarkers.

-Uname Cancel any previous definition of name, either built in or provided with a ‘-D’
option.

2.4 Options to request or suppress errors and warnings

Errors are diagnostic messages that report that the GNU Fortran compiler cannot compile
the relevant piece of source code. The compiler will continue to process the program in an
attempt to report further errors to aid in debugging, but will not produce any compiled
output.

Warnings are diagnostic messages that report constructions which are not inherently
erroneous but which are risky or suggest there is likely to be a bug in the program. Unless
‘~Werror’ is specified, they do not prevent compilation of the program.

You can request many specific warnings with options beginning ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘~Wno-implicit’. This manual lists only one of the two forms, whichever is not the
default.

These options control the amount and kinds of errors and warnings produced by GNU
Fortran:

-fmax-errors=n
Limits the maximum number of error messages to n, at which point GNU
Fortran bails out rather than attempting to continue processing the source
code. If n is 0, there is no limit on the number of error messages produced.

-fsyntax-only
Check the code for syntax errors, but do not actually compile it. This will

generate module files for each module present in the code, but no other output
file.

-pedantic
Issue warnings for uses of extensions to Fortran 95. ‘-pedantic’ also applies to
C-language constructs where they occur in GNU Fortran source files, such as
use of ‘\e’ in a character constant within a directive like #include.

Valid Fortran 95 programs should compile properly with or without this option.
However, without this option, certain GNU extensions and traditional Fortran
features are supported as well. With this option, many of them are rejected.

¢

Some users try to use ‘-pedantic’ to check programs for conformance. They
soon find that it does not do quite what they want—it finds some nonstandard
practices, but not all. However, improvements to GNU Fortran in this area are
welcome.

This should be wused in conjunction with ‘-std=f95’, ‘-std=£2003" or
‘-std=£2008".

Chapter 2: GNU Fortran Command Options 15

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

-Wall Enables commonly used warning options pertaining to usage that we
recommend avoiding and that we believe are easy to avoid. This
currently includes ‘-Waliasing’, ‘~Wampersand’, ‘~Wconversion’,
‘~Wsurprising’, ‘-Wintrinsics-std’, ‘-Wno-tabs’, ‘-Wintrinsic-shadow’,
‘-Wline-truncation’, ‘~-Wreal-q-constant’ and ‘~Wunused’.

-Waliasing
Warn about possible aliasing of dummy arguments. Specifically, it warns if the

same actual argument is associated with a dummy argument with INTENT (IN)
and a dummy argument with INTENT (OUT) in a call with an explicit interface.

The following example will trigger the warning.

interface
subroutine bar(a,b)
integer, intent(in) :: a
integer, intent(out) :: b

end subroutine
end interface
integer :: a

call bar(a,a)

-Wampersand
Warn about missing ampersand in continued character constants. The
warning is given with ‘~Wampersand’, ‘-pedantic’, ‘-std=£f95’, ‘-std=£2003’
and ‘-std=£2008’. Note: With no ampersand given in a continued character
constant, GNU Fortran assumes continuation at the first non-comment,
non-whitespace character after the ampersand that initiated the continuation.

-Warray-temporaries
Warn about array temporaries generated by the compiler. The information
generated by this warning is sometimes useful in optimization, in order to avoid
such temporaries.

-Wcharacter-truncation
Warn when a character assignment will truncate the assigned string.

-Wline-truncation
Warn when a source code line will be truncated.

-Wconversion
Warn about implicit conversions that are likely to change the value of the
expression after conversion. Implied by ‘-Wall’.

-Wconversion-extra
Warn about implicit conversions between different types and kinds.

-Wimplicit-interface
Warn if a procedure is called without an explicit interface. Note this only
checks that an explicit interface is present. It does not check that the declared
interfaces are consistent across program units.

16 The GNU Fortran Compiler

-Wimplicit-procedure
Warn if a procedure is called that has neither an explicit interface nor has been
declared as EXTERNAL.

-Wintrinsics-std
Warn if gfortran finds a procedure named like an intrinsic not available in the
currently selected standard (with ‘-std’) and treats it as EXTERNAL procedure
because of this. ‘~fall-intrinsics’ can be used to never trigger this behavior
and always link to the intrinsic regardless of the selected standard.

-Wreal-q-constant
Produce a warning if a real-literal-constant contains a q exponent-letter.

-Wsurprising
Produce a warning when “suspicious” code constructs are encountered. While
technically legal these usually indicate that an error has been made.

This currently produces a warning under the following circumstances:

e An INTEGER SELECT construct has a CASE that can never be matched
as its lower value is greater than its upper value.

e A LOGICAL SELECT construct has three CASE statements.
e A TRANSFER specifies a source that is shorter than the destination.

e The type of a function result is declared more than once with the same
type. If ‘-pedantic’ or standard-conforming mode is enabled, this is an
error.

A CHARACTER variable is declared with negative length.

-Wtabs By default, tabs are accepted as whitespace, but tabs are not members of the
Fortran Character Set. For continuation lines, a tab followed by a digit be-
tween 1 and 9 is supported. ‘-Wno-tabs’ will cause a warning to be issued if
a tab is encountered. Note, ‘~Wno-tabs’ is active for ‘-pedantic’, ‘-std=£95’,
‘-std=f2003’, ‘-std=f2008" and ‘-Wall’.

-Wunderflow
Produce a warning when numerical constant expressions are encountered, which
yield an UNDERFLOW during compilation.

-Wintrinsic-shadow
Warn if a user-defined procedure or module procedure has the same name
as an intrinsic; in this case, an explicit interface or EXTERNAL or INTRINSIC
declaration might be needed to get calls later resolved to the desired intrin-
sic/procedure.

-Wunused-dummy-argument
Warn about unused dummy arguments. This option is implied by ‘-Wall’.

-Wunused-parameter
Contrary to gcc’s meaning of ‘-Wunused-parameter’, gfortran’s imple-
mentation of this option does not warn about unused dummy arguments
(see ‘-Wunused-dummy-argument’), but about unused PARAMETER values.
‘~Wunused-parameter’ is not included in ‘-Wall’ but is implied by ‘-Wall
-Wextra’.

Chapter 2: GNU Fortran Command Options 17

-Walign-commons
By default, gfortran warns about any occasion of variables being padded for
proper alignment inside a COMMON block. This warning can be turned off via
‘-Wno-align-commons’. See also ‘~falign-commons’.

-Wfunction-elimination
Warn if any calls to functions are eliminated by the optimizations enabled by
the ‘~ffrontend-optimize’ option.

-Werror Turns all warnings into errors.

See Section “Options to Request or Suppress Errors and Warnings” in Using the GNU
Compiler Collection (GCC), for information on more options offered by the GBE shared by
gfortran, gcc and other GNU compilers.

Some of these have no effect when compiling programs written in Fortran.

2.5 Options for debugging your program or GNU Fortran

GNU Fortran has various special options that are used for debugging either your program
or the GNU Fortran compiler.

-fdump-fortran-original
Output the internal parse tree after translating the source program into internal
representation. Only really useful for debugging the GNU Fortran compiler
itself.

-fdump-optimized-tree
Output the parse tree after front-end optimization. Only really useful for de-
bugging the GNU Fortran compiler itself.

Output the internal parse tree after translating the source program into internal
representation. Only really useful for debugging the GNU Fortran compiler
itself. This option is deprecated; use ~fdump-fortran-original instead.

-ffpe-trap=1list

Specify a list of floating point exception traps to enable. On most systems, if
a floating point exception occurs and the trap for that exception is enabled, a
SIGFPE signal will be sent and the program being aborted, producing a core
file useful for debugging. list is a (possibly empty) comma-separated list of
the following exceptions: ‘invalid’ (invalid floating point operation, such as
SQRT(-1.0)), ‘zero’ (division by zero), ‘overflow’ (overflow in a floating point
operation), ‘underflow’ (underflow in a floating point operation), ‘inexact’
(loss of precision during operation), and ‘denormal’ (operation performed on
a denormal value). The first five exceptions correspond to the five IEEE 754
exceptions, whereas the last one (‘denormal’) is not part of the IEEE 754
standard but is available on some common architectures such as x86.

The first three exceptions (‘invalid’, ‘zero’, and ‘overflow’) often indicate
serious errors, and unless the program has provisions for dealing with these
exceptions, enabling traps for these three exceptions is probably a good idea.

Many, if not most, floating point operations incur loss of precision due to round-
ing, and hence the ffpe-trap=inexact is likely to be uninteresting in practice.

18 The GNU Fortran Compiler

By default no exception traps are enabled.

-fno-backtrace
When a serious runtime error is encountered or a deadly signal is emitted (seg-
mentation fault, illegal instruction, bus error, floating-point exception, and the
other POSIX signals that have the action ‘core’), the Fortran runtime library
tries to output a backtrace of the error. -fno-backtrace disables the backtrace
generation. This option only has influence for compilation of the Fortran main
program.

See Section “Options for Debugging Your Program or GCC” in Using the GNU Compiler
Collection (GCC), for more information on debugging options.

2.6 Options for directory search

These options affect how GNU Fortran searches for files specified by the INCLUDE directive
and where it searches for previously compiled modules.

It also affects the search paths used by cpp when used to preprocess Fortran source.

-Idir These affect interpretation of the INCLUDE directive (as well as of the #include
directive of the cpp preprocessor).

Also note that the general behavior of ‘-I’ and INCLUDE is pretty much the
same as of ‘~I’" with #include in the cpp preprocessor, with regard to looking
for ‘header.gcc’ files and other such things.

This path is also used to search for ‘.mod’ files when previously compiled mod-
ules are required by a USE statement.

See Section “Options for Directory Search” in Using the GNU Compiler Col-
lection (GCC), for information on the ‘~I’ option.

-Jdir This option specifies where to put ‘.mod’ files for compiled modules. It is also
added to the list of directories to searched by an USE statement.

The default is the current directory.

-fintrinsic-modules-path dir
This option specifies the location of pre-compiled intrinsic modules, if they are
not in the default location expected by the compiler.

2.7 Influencing the linking step

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

-static-libgfortran
On systems that provide ‘libgfortran’ as a shared and a static library, this
option forces the use of the static version. If no shared version of ‘libgfortran’
was built when the compiler was configured, this option has no effect.

Chapter 2: GNU Fortran Command Options 19

2.8 Influencing runtime behavior
These options affect the runtime behavior of programs compiled with GNU Fortran.

-fconvert=conversion
Specify the representation of data for unformatted files. Valid values
for conversion are: ‘native’, the default; ‘swap’, swap between big- and
little-endian; ‘big-endian’, use big-endian representation for unformatted
files; ‘little-endian’, use little-endian representation for unformatted files.

This option has an effect only when used in the main program. The CONVERT
specifier and the GFORTRAN_CONVERT_UNIT environment variable over-
ride the default specified by ‘~fconvert’

-fno-range-check
Disable range checking of input values during integer READ operations. For
example, GNU Fortran will give an error if an input value is outside of the rele-
vant range of [-HUGE ():HUGE()|. In other words, with INTEGER (kind=4) :: i,
attempting to read —2147483648 will give an error unless ‘-~fno-range-check’
is given.

-frecord-marker=length
Specify the length of record markers for unformatted files. Valid values for
length are 4 and 8. Default is 4. This s different from previous versions of
gfortran, which specified a default record marker length of 8 on most systems.
If you want to read or write files compatible with earlier versions of gfortran,
use ‘-frecord-marker=8’.

-fmax-subrecord-length=Iength
Specify the maximum length for a subrecord. The maximum permitted value
for length is 2147483639, which is also the default. Only really useful for use
by the gfortran testsuite.

-fsign-zero
When enabled, floating point numbers of value zero with the sign bit set are
written as negative number in formatted output and treated as negative in the
SIGN intrinsic. ‘~fno-sign-zero’ does not print the negative sign of zero values
(or values rounded to zero for I/O) and regards zero as positive number in the
SIGN intrinsic for compatibility with Fortran 77. The default is ‘~-fsign-zero’.

2.9 Options for code generation conventions

These machine-independent options control the interface conventions used in code genera-
tion.

Most of them have both positive and negative forms; the negative form of ‘-ffoo’ would
be ‘-fno-foo’. In the table below, only one of the forms is listed—the one which is not the
default. You can figure out the other form by either removing ‘no-’ or adding it.

-fno-automatic
Treat each program unit (except those marked as RECURSIVE) as if the
SAVE statement were specified for every local variable and array referenced
in it. Does not affect common blocks. (Some Fortran compilers provide

20

-ff2c

The GNU Fortran Compiler

this option under the name ‘-static’ or ‘-save’.) The default, which is

‘~fautomatic’, uses the stack for local variables smaller than the value given
by ‘-fmax-stack-var-size’. Use the option ‘-frecursive’ to use no static
memory.

Generate code designed to be compatible with code generated by g77 and f2c.

The calling conventions used by g77 (originally implemented in f2¢) require
functions that return type default REAL to actually return the C type double,
and functions that return type COMPLEX to return the values via an extra
argument in the calling sequence that points to where to store the return
value. Under the default GNU calling conventions, such functions simply re-
turn their results as they would in GNU C—default REAL functions return
the C type float, and COMPLEX functions return the GNU C type complex.
Additionally, this option implies the ‘-~fsecond-underscore’ option, unless
‘~fno-second-underscore’ is explicitly requested.

This does not affect the generation of code that interfaces with the 1ibgfortran
library.

Caution: It is not a good idea to mix Fortran code compiled with ‘-ff2c’
with code compiled with the default ‘~fno-f2c¢’ calling conventions as, calling
COMPLEX or default REAL functions between program parts which were compiled
with different calling conventions will break at execution time.

Caution: This will break code which passes intrinsic functions of type default
REAL or COMPLEX as actual arguments, as the library implementations use the
‘~fno-f2c’ calling conventions.

-fno-underscoring

Do not transform names of entities specified in the Fortran source file by ap-
pending underscores to them.

With ‘-funderscoring’ in effect, GNU Fortran appends one underscore to
external names with no underscores. This is done to ensure compatibility with
code produced by many UNIX Fortran compilers.

Caution: The default behavior of GNU Fortran is incompatible with £2¢ and
g77, please use the ‘~ff2¢’ option if you want object files compiled with GNU
Fortran to be compatible with object code created with these tools.

Use of ‘~fno-underscoring’ is not recommended unless you are experimenting
with issues such as integration of GNU Fortran into existing system environ-
ments (vis-a-vis existing libraries, tools, and so on).

For example, with ‘-funderscoring’, and assuming other defaults like
‘~fcase-lower’ and that j() and max_count() are external functions while
my_var and lvar are local variables, a statement like

I =JO + MAX_COUNT (MY_VAR, LVAR)

is implemented as something akin to:

i = j_0O + max_count__(&my_var &lvar) ;

—1

With ‘~fno-underscoring’, the same statement is implemented as:

i = j() + max_count(&my_var, &lvar);

Chapter 2: GNU Fortran Command Options 21

Use of ‘~fno-underscoring’ allows direct specification of user-defined names
while debugging and when interfacing GNU Fortran code with other languages.

Note that just because the names match does not mean that the interface
implemented by GNU Fortran for an external name matches the interface im-
plemented by some other language for that same name. That is, getting code
produced by GNU Fortran to link to code produced by some other compiler
using this or any other method can be only a small part of the overall solution—
getting the code generated by both compilers to agree on issues other than
naming can require significant effort, and, unlike naming disagreements, linkers
normally cannot detect disagreements in these other areas.

Also, note that with ‘~fno-underscoring’, the lack of appended underscores in-
troduces the very real possibility that a user-defined external name will conflict
with a name in a system library, which could make finding unresolved-reference
bugs quite difficult in some cases—they might occur at program run time, and
show up only as buggy behavior at run time.

In future versions of GNU Fortran we hope to improve naming and linking
issues so that debugging always involves using the names as they appear in the
source, even if the names as seen by the linker are mangled to prevent accidental
linking between procedures with incompatible interfaces.

-fno-whole-file
This flag causes the compiler to resolve and translate each procedure in a file
separately.

By default, the whole file is parsed and placed in a single front-end tree. During
resolution, in addition to all the usual checks and fixups, references to external
procedures that are in the same file effect resolution of that procedure, if not
already done, and a check of the interfaces. The dependences are resolved
by changing the order in which the file is translated into the backend tree.
Thus, a procedure that is referenced is translated before the reference and the
duplication of backend tree declarations eliminated.

The ‘-fno-whole-file’ option is deprecated and may lead to wrong code.

-fsecond-underscore
By default, GNU Fortran appends an underscore to external names. If this
option is used GNU Fortran appends two underscores to names with underscores
and one underscore to external names with no underscores. GNU Fortran also
appends two underscores to internal names with underscores to avoid naming
collisions with external names.

This option has no effect if ‘~fno-underscoring’ is in effect. It is implied by
the ‘-ff2¢’ option.

Otherwise, with this option, an external name such as MAX_COUNT is imple-
mented as a reference to the link-time external symbol max_count__, instead
of max_count_. This is required for compatibility with g77 and f2c, and is
implied by use of the ‘~ff2c¢’ option.

22

-fcoarray=<keyword>

‘none’

‘single’

‘1ib’

—-fcheck=<keyword>

The GNU Fortran Compiler

Disable coarray support; using coarray declarations and image-
control statements will produce a compile-time error. (Default)

Single-image mode, i.e. num_images () is always one.

Library-based coarray parallelization; a suitable GNU Fortran coar-
ray library needs to be linked.

Enable the generation of run-time checks; the argument shall be a comma-
delimited list of the following keywords.

‘all’

Enable all run-time test of ‘~fcheck’.

‘array-temps’

‘bounds’

‘pointer’

‘recursion’

-fbounds-check

Warns at run time when for passing an actual argument a tempo-
rary array had to be generated. The information generated by this
warning is sometimes useful in optimization, in order to avoid such
temporaries.

Note: The warning is only printed once per location.

Enable generation of run-time checks for array subscripts and
against the declared minimum and maximum values. It also
checks array indices for assumed and deferred shape arrays against
the actual allocated bounds and ensures that all string lengths
are equal for character array constructors without an explicit
typespec.

Some checks require that ‘~fcheck=bounds’ is set for the compila-
tion of the main program.

Note: In the future this may also include other forms of checking,
e.g., checking substring references.

Enable generation of run-time checks for invalid modification of
loop iteration variables.

Enable generation of run-time checks for memory allocation. Note:
This option does not affect explicit allocations using the ALLOCATE
statement, which will be always checked.

Enable generation of run-time checks for pointers and allocatables.

Enable generation of run-time checks for recursively called sub-
routines and functions which are not marked as recursive. See
also ‘~frecursive’. Note: This check does not work for OpenMP
programs and is disabled if used together with ‘~frecursive’ and
‘~fopenmp’.

Deprecated alias for ‘~fcheck=bounds’.

Chapter 2: GNU Fortran Command Options 23

-fcheck-array-temporaries
Deprecated alias for ‘~fcheck=array-temps’.

-fmax-array-constructor=n
This option can be used to increase the upper limit permitted in array con-
structors. The code below requires this option to expand the array at compile
time.

program test

implicit none

integer j

integer, parameter :: n = 100000

integer, parameter :: i(n) = (/ (2*j, j =1, n) /)
print ’(10(I0,1X))’, i

end program test

Caution: This option can lead to long compile times and excessively large object

files.
The default value for n is 65535.

-fmax-stack-var-size=n
This option specifies the size in bytes of the largest array that will be put on
the stack; if the size is exceeded static memory is used (except in procedures
marked as RECURSIVE). Use the option ‘-frecursive’ to allow for recursive
procedures which do not have a RECURSIVE attribute or for parallel programs.
Use ‘-fno-automatic’ to never use the stack.

This option currently only affects local arrays declared with constant bounds,
and may not apply to all character variables. Future versions of GNU Fortran
may improve this behavior.

The default value for n is 32768.

-fstack-arrays
Adding this option will make the Fortran compiler put all local arrays, even
those of unknown size onto stack memory. If your program uses very large
local arrays it is possible that you will have to extend your runtime limits for
stack memory on some operating systems. This flag is enabled by default at
optimization level ‘-0Ofast’.

-fpack-derived
This option tells GNU Fortran to pack derived type members as closely as
possible. Code compiled with this option is likely to be incompatible with code
compiled without this option, and may execute slower.

-frepack-arrays
In some circumstances GNU Fortran may pass assumed shape array sections
via a descriptor describing a noncontiguous area of memory. This option adds
code to the function prologue to repack the data into a contiguous block at
runtime.

This should result in faster accesses to the array. However it can introduce
significant overhead to the function call, especially when the passed data is
noncontiguous.

24 The GNU Fortran Compiler

-fshort-enums
This option is provided for interoperability with C code that was compiled with
the ‘~fshort-enums’ option. It will make GNU Fortran choose the smallest
INTEGER kind a given enumerator set will fit in, and give all its enumerators
this kind.

-fexternal-blas
This option will make gfortran generate calls to BLAS functions for some
matrix operations like MATMUL, instead of using our own algorithms, if the size of
the matrices involved is larger than a given limit (see ‘-fblas-matmul-limit’).
This may be profitable if an optimized vendor BLAS library is available. The
BLAS library will have to be specified at link time.

-fblas-matmul-limit=n
Only significant when ‘~fexternal-blas’ is in effect. Matrix multiplication
of matrices with size larger than (or equal to) n will be performed by calls to
BLAS functions, while others will be handled by gfortran internal algorithms.
If the matrices involved are not square, the size comparison is performed using
the geometric mean of the dimensions of the argument and result matrices.

The default value for n is 30.

-frecursive
Allow indirect recursion by forcing all local arrays to be allocated on the

stack. This flag cannot be used together with ‘~-fmax-stack-var-size=’ or
‘~fno-automatic’.

-finit-local-zero

-finit-integer=n

-finit-real=<zerol|inf|-inf|nan|snan>

-finit-logical=<truel|false>

—-finit-character=n
The ‘-finit-local-zero’ option instructs the compiler to initialize local
INTEGER, REAL, and COMPLEX variables to zero, LOGICAL variables to false,
and CHARACTER variables to a string of null bytes. Finer-grained initialization
options are provided by the ‘~finit-integer=n’, ‘~-finit-real=<zero|inf|-
inf|nan|snan> (which also initializes the real and imaginary parts
of local COMPLEX variables), ‘-finit-logical=<true|false>’, and
‘~finit-character=n’ (where n is an ASCII character value) options. These
options do not initialize

e allocatable arrays
e components of derived type variables
e variables that appear in an EQUIVALENCE statement.

(These limitations may be removed in future releases).

Note that the ‘~-finit-real=nan’ option initializes REAL and COMPLEX variables
with a quiet NaN. For a signalling NaN use ‘~finit-real=snan’; note, however,
that compile-time optimizations may convert them into quiet NaN and that
trapping needs to be enabled (e.g. via ‘~ffpe-trap’).

Chapter 2: GNU Fortran Command Options 25

Finally, note that enabling any of the ‘-~finit-*" options will silence warn-
ings that would have been emitted by ‘~-Wuninitialized’ for the affected local
variables.

-falign-commons

By default, gfortran enforces proper alignment of all variables in a COMMON
block by padding them as needed. On certain platforms this is mandatory,
on others it increases performance. If a COMMON block is not declared with
consistent data types everywhere, this padding can cause trouble, and
‘~fno-align-commons’ can be used to disable automatic alignment. The same
form of this option should be used for all files that share a COMMON block. To
avoid potential alignment issues in COMMON blocks, it is recommended to order
objects from largest to smallest.

—-fno-protect-parens

By default the parentheses in expression are honored for all optimization
levels such that the compiler does not do any re-association. Using
‘~fno-protect-parens’ allows the compiler to reorder REAL and COMPLEX
expressions to produce faster code. Note that for the re-association
optimization ‘-~fno-signed-zeros’ and ‘-fno-trapping-math’ need to be in
effect. The parentheses protection is enabled by default, unless ‘-Ofast’ is
given.

-frealloc-1lhs
An allocatable left-hand side of an intrinsic assignment is automatically
(re)allocated if it is either unallocated or has a different shape. The option is
enabled by default except when ‘-std=£95’ is given.

-faggressive-function-elimination
Functions with identical argument lists are eliminated within statements, re-
gardless of whether these functions are marked PURE or not. For example, in
a = f(b,c) + f£(b,c)
there will only be a single call to f. This option only works if
‘~ffrontend-optimize’ is in effect.

-ffrontend-optimize
This option performs front-end optimization, based on manipulating parts the
Fortran parse tree. Enabled by default by any ‘-0’ option. Optimizations
enabled by this option include elimination of identical function calls within ex-
pressions, removing unnecessary calls to TRIM in comparisons and assignments
and replacing TRIM(a) with a(1:LEN_TRIM(a)). It can be deselected by spec-
ifying ‘~fno-frontend-optimize’.

See Section “Options for Code Generation Conventions” in Using the GNU Compiler
Collection (GCC), for information on more options offered by the GBE shared by gfortran,
gcc, and other GNU compilers.

2.10 Environment variables affecting gfortran

The gfortran compiler currently does not make use of any environment variables to control
its operation above and beyond those that affect the operation of gcc.

26 The GNU Fortran Compiler

See Section “Environment Variables Affecting GCC” in Using the GNU Compiler Col-
lection (GCC), for information on environment variables.

See Chapter 3 [Runtime], page 27, for environment variables that affect the run-time
behavior of programs compiled with GNU Fortran.

Chapter 3: Runtime: Influencing runtime behavior with environment variables 27

3 Runtime: Influencing runtime behavior with
environment variables

The behavior of the gfortran can be influenced by environment variables.

Malformed environment variables are silently ignored.

3.1 GFORTRAN_STDIN_UNIT—Unit number for standard input

This environment variable can be used to select the unit number preconnected to standard
input. This must be a positive integer. The default value is 5.

3.2 GFORTRAN_STDOUT_UNIT—Unit number for standard output

This environment variable can be used to select the unit number preconnected to standard
output. This must be a positive integer. The default value is 6.

3.3 GFORTRAN_STDERR_UNIT—Unit number for standard error

This environment variable can be used to select the unit number preconnected to standard
error. This must be a positive integer. The default value is 0.

3.4 GFORTRAN_TMPDIR—Directory for scratch files

This environment variable controls where scratch files are created. If this environment
variable is missing, GNU Fortran searches for the environment variable TMP, then TEMP. If
these are missing, the default is ‘/tmp’.

3.5 GFORTRAN_UNBUFFERED_ALL—Do not buffer I/O on all units

This environment variable controls whether all 1/O is unbuffered. If the first letter is ‘y’,
‘Y’ or ‘1’, all I/O is unbuffered. This will slow down small sequential reads and writes. If
the first letter is ‘n’, ‘N’ or ‘0’, I/O is buffered. This is the default.

3.6 GFORTRAN_UNBUFFERED_PRECONNECTED—Do not buffer I/O on
preconnected units

The environment variable named GFORTRAN_UNBUFFERED_PRECONNECTED controls whether

I/O on a preconnected unit (i.e. STDOUT or STDERR) is unbuffered. If the first letter is
‘v’, Y’ or ‘1°, /O is unbuffered. This will slow down small sequential reads and writes. If
the first letter is ‘n’, ‘N’ or ‘0’, I/O is buffered. This is the default.

3.7 GFORTRAN_SHQOW_LOCUS—Show location for runtime errors

If the first letter is ‘y’, ‘Y’ or ‘1’, filename and line numbers for runtime errors are printed.
If the first letter is ‘n’, ‘N’ or ‘0’, do not print filename and line numbers for runtime errors.
The default is to print the location.

28 The GNU Fortran Compiler

3.8 GFORTRAN_OPTIONAL_PLUS—Print leading + where
permitted
If the first letter is ‘y’, ‘Y’ or ‘1’, a plus sign is printed where permitted by the Fortran

standard. If the first letter is ‘n’, ‘N’ or ‘0’, a plus sign is not printed in most cases. Default
is not to print plus signs.

3.9 GFORTRAN_DEFAULT_RECL—Default record length for new
files

This environment variable specifies the default record length, in bytes, for files which are
opened without a RECL tag in the OPEN statement. This must be a positive integer. The
default value is 1073741824 bytes (1 GB).

3.10 GFORTRAN_LIST_SEPARATOR—Separator for list output

This environment variable specifies the separator when writing list-directed output. It may
contain any number of spaces and at most one comma. If you specify this on the command
line, be sure to quote spaces, as in
$ GFORTRAN_LIST_SEPARATOR=’ , ° ./a.out
when a.out is the compiled Fortran program that you want to run. Default is a single
space.

3.11 GFORTRAN_CONVERT_UNIT—Set endianness for unformatted
I/0

By setting the GFORTRAN_CONVERT_UNIT variable, it is possible to change the representation
of data for unformatted files. The syntax for the GFORTRAN_CONVERT_UNIT variable is:

GFORTRAN_CONVERT_UNIT: mode | mode ’;’ exception | exception ;
mode: ’native’ | ’swap’ | ’big_endian’ | ’little_endian’ ;
exception: mode ’:’ unit_list | unit_list ;

unit_list: unit_spec | unit_list unit_spec ;

unit_spec: INTEGER | INTEGER ’-’ INTEGER ;

The variable consists of an optional default mode, followed by a list of optional excep-
tions, which are separated by semicolons from the preceding default and each other. Each
exception consists of a format and a comma-separated list of units. Valid values for the
modes are the same as for the CONVERT specifier:

NATIVE Use the native format. This is the default.
SWAP Swap between little- and big-endian.
LITTLE_ENDIAN Use the little-endian format for unformatted files.
BIG_ENDIAN Use the big-endian format for unformatted files.
A missing mode for an exception is taken to mean BIG_ENDIAN. Examples of values for
GFORTRAN_CONVERT_UNIT are:
’big_endian’ Do all unformatted I/O in big_endian mode.

’little_endian;native:10-20,25’ Do all unformatted I/O in little_endian mode,
except for units 10 to 20 and 25, which are in native format.

?10-20’ Units 10 to 20 are big-endian, the rest is native.

Chapter 3: Runtime: Influencing runtime behavior with environment variables 29

Setting the environment variables should be done on the command line or via the export
command for sh-compatible shells and via setenv for csh-compatible shells.

Example for sh:
$ gfortran foo.f90
$ GFORTRAN_CONVERT_UNIT=’big_endian;native:10-20’ ./a.out
Example code for csh:
% gfortran foo.f90
% setenv GFORTRAN_CONVERT_UNIT ’big_endian;native:10-20’
% ./a.out
Using anything but the native representation for unformatted data carries a significant
speed overhead. If speed in this area matters to you, it is best if you use this only for data
that needs to be portable.

See Section 6.1.15 [CONVERT specifier], page 47, for an alternative way to specify the
data representation for unformatted files. See Section 2.8 [Runtime Options], page 19, for
setting a default data representation for the whole program. The CONVERT specifier overrides
the ‘~fconvert’ compile options.

Note that the values specified via the GFORTRAN_CONVERT_UNIT environment vari-
able will override the CONVERT specifier in the open statement. This is to give control
over data formats to users who do not have the source code of their program available.

3.12 GFORTRAN_ERROR_BACKTRACE—Show backtrace on run-time
errors

If the GFORTRAN_ERROR_BACKTRACE variable is set to ‘y’, ‘Y’ or ‘1’ (only the first letter
is relevant) then a backtrace is printed when a serious run-time error occurs. To disable
the backtracing, set the variable to ‘n’, ‘N’; ‘0’. Default is to print a backtrace unless the
‘~fno-backtrace’ compile option was used.

Chapter 3: Runtime: Influencing runtime behavior with environment variables

Part 1I: Language Reference

31

Chapter 4: Fortran 2003 and 2008 Status 33

4 Fortran 2003 and 2008 Status

4.1 Fortran 2003 status

GNU Fortran supports several Fortran 2003 features; an incomplete list can be found below.
See also the wiki page about Fortran 2003.

Procedure pointers including procedure-pointer components with PASS attribute.
Procedures which are bound to a derived type (type-bound procedures) including PASS,
PROCEDURE and GENERIC, and operators bound to a type.

Abstract interfaces and type extension with the possibility to override type-bound
procedures or to have deferred binding.

Polymorphic entities (“CLASS”) for derived types — including SAME_TYPE_AS, EXTENDS_
TYPE_OF and SELECT TYPE. Note that unlimited polymorphism is currently not sup-
ported.

Generic interface names, which have the same name as derived types, are now sup-
ported. This allows one to write constructor functions. Note that Fortran does not
support static constructor functions. For static variables, only default initialization or
structure-constructor initialization are available.

The ASSOCIATE construct.

Interoperability with C including enumerations,

In structure constructors the components with default values may be omitted.
Extensions to the ALLOCATE statement, allowing for a type-specification with type pa-
rameter and for allocation and initialization from a SOURCE= expression; ALLOCATE and
DEALLOCATE optionally return an error message string via ERRMSG=.

Reallocation on assignment: If an intrinsic assignment is used, an allocatable vari-
able on the left-hand side is automatically allocated (if unallocated) or reallocated (if
the shape is different). Currently, scalar deferred character length left-hand sides are
correctly handled but arrays are not yet fully implemented.

Transferring of allocations via MOVE_ALLOC.

The PRIVATE and PUBLIC attributes may be given individually to derived-type compo-
nents.

In pointer assignments, the lower bound may be specified and the remapping of elements
is supported.

For pointers an INTENT may be specified which affect the association status not the
value of the pointer target.

Intrinsics command_argument_count, get_command, get_command_argument, and get_
environment_variable.

Support for Unicode characters (ISO 10646) and UTF-8, including the SELECTED_CHAR _
KIND and NEW_LINE intrinsic functions.

Support for binary, octal and hexadecimal (BOZ) constants in the intrinsic functions
INT, REAL, CMPLX and DBLE.

Support for namelist variables with allocatable and pointer attribute and nonconstant
length type parameter.

http://gcc.gnu.org/wiki/Fortran2003

34

The GNU Fortran Compiler

Array constructors using square brackets. That is, [...] rather than (/.../). Type-
specification for array constructors like (/ some-type :: ... /).

Extensions to the specification and initialization expressions, including the support for
intrinsics with real and complex arguments.

Support for the asynchronous input/output syntax; however, the data transfer is cur-
rently always synchronously performed.

FLUSH statement.
I0MSG= specifier for I/O statements.

Support for the declaration of enumeration constants via the ENUM and ENUMERATOR
statements. Interoperability with gcc is guaranteed also for the case where the -
fshort-enums command line option is given.

TR 15581:
e ALLOCATABLE dummy arguments.
e ALLOCATABLE function results
e ALLOCATABLE components of derived types

The OPEN statement supports the ACCESS=’STREAM’ specifier, allowing I/O without
any record structure.

Namelist input/output for internal files.

Further I/0 extensions: Rounding during formatted output, using of a decimal comma
instead of a decimal point, setting whether a plus sign should appear for positive
numbers.

The PROTECTED statement and attribute.

The VALUE statement and attribute.

The VOLATILE statement and attribute.

The IMPORT statement, allowing to import host-associated derived types.

The intrinsic modules ISO_FORTRAN_ENVIRONMENT is supported, which contains param-
eters of the I/O units, storage sizes. Additionally, procedures for C interoperability are
available in the ISO_C_BINDING module.

USE statement with INTRINSIC and NON_INTRINSIC attribute; supported intrinsic mod-
ules: ISO_FORTRAN_ENV, ISO_C_BINDING, OMP_LIB and OMP_LIB_KINDS.

Renaming of operators in the USE statement.

4.2 Fortran 2008 status

The latest version of the Fortran standard is ISO/IEC 1539-1:2010, informally known as
Fortran 2008. The official version is available from International Organization for Stan-
dardization (ISO) or its national member organizations. The the final draft (FDIS) can be
downloaded free of charge from http://www.nag.co.uk/sc22wgh/links.html. Fortran is
developed by the Working Group 5 of Sub-Committee 22 of the Joint Technical Committee 1
of the International Organization for Standardization and the International Electrotechnical
Commission (IEC). This group is known as WGH.

The GNU Fortran compiler supports several of the new features of Fortran 2008; the wiki

has some information about the current Fortran 2008 implementation status. In particular,
the following is implemented.

http://www.nag.co.uk/sc22wg5/links.html
http://www.nag.co.uk/sc22wg5/
http://gcc.gnu.org/wiki/Fortran2008Status

Chapter 4: Fortran 2003 and 2008 Status 35

e The ‘-std=f2008’ option and support for the file extensions ‘.£08” and ‘.F08’.

e The OPEN statement now supports the NEWUNIT= option, which returns a unique file
unit, thus preventing inadvertent use of the same unit in different parts of the program.

e The g0 format descriptor and unlimited format items.

e The mathematical intrinsics ASINH, ACOSH, ATANH, ERF, ERFC, GAMMA, LOG_GAMMA,
BESSEL_JO, BESSEL_J1, BESSEL_JN, BESSEL_YO, BESSEL_Y1, BESSEL_YN, HYPOT, NORM2,
and ERFC_SCALED.

e Using complex arguments with TAN, SINH, COSH, TANH, ASIN, ACOS, and ATAN is now
possible; ATAN(Y,X) is now an alias for ATAN2(Y,X).

e Support of the PARITY intrinsic functions.

e The following bit intrinsics: LEADZ and TRAILZ for counting the number of leading and
trailing zero bits, POPCNT and POPPAR for counting the number of one bits and returning
the parity; BGE, BGT, BLE, and BLT for bitwise comparisons; DSHIFTL and DSHIFTR for
combined left and right shifts, MASKL and MASKR for simple left and right justified masks,
MERGE_BITS for a bitwise merge using a mask, SHIFTA, SHIFTL and SHIFTR for shift
operations, and the transformational bit intrinsics TALL, TANY and IPARITY.

e Support of the EXECUTE_COMMAND_LINE intrinsic subroutine.
e Support for the STORAGE_SIZE intrinsic inquiry function.

e The INT{8,16,32} and REAL{32,64,128} kind type parameters and the array-valued
named constants INTEGER_KINDS, LOGICAL_KINDS, REAL_KINDS and CHARACTER_KINDS
of the intrinsic module ISO_FORTRAN_ENV.

e The module procedures C_SIZEOF of the intrinsic module ISO_C_BINDINGS and
COMPILER_VERSION and COMPILER_OPTIONS of ISO_FORTRAN_ENV.

e Coarray support for serial programs with ‘~fcoarray=single’ flag and experimental
support for multiple images with the ‘~fcoarray=1ib’ flag.

e The DO CONCURRENT construct is supported.

e The BLOCK construct is supported.

e The STOP and the new ERROR STOP statements now support all constant expressions.
e Support for the CONTIGUOUS attribute.

e Support for ALLOCATE with MOLD.

e Support for the IMPURE attribute for procedures, which allows for ELEMENTAL procedures
without the restrictions of PURE.

e Null pointers (including NULL ()) and not-allocated variables can be used as actual ar-
gument to optional non-pointer, non-allocatable dummy arguments, denoting an absent
argument.

e Non-pointer variables with TARGET attribute can be used as actual argument to POINTER
dummies with INTENT(IN).

e Pointers including procedure pointers and those in a derived type (pointer components)
can now be initialized by a target instead of only by NULL.

e The EXIT statement (with construct-name) can be now be used to leave not only the
DO but also the ASSOCTIATE, BLOCK, IF, SELECT CASE and SELECT TYPE constructs.

e Internal procedures can now be used as actual argument.

36 The GNU Fortran Compiler

e Minor features: obsolesce diagnostics for ENTRY with ‘-std=f2008’; a line may start
with a semicolon; for internal and module procedures END can be used instead of END
SUBROUTINE and END FUNCTION; SELECTED_REAL_KIND now also takes a RADIX argu-
ment; intrinsic types are supported for TYPE(intrinsic-type-spec); multiple type-bound
procedures can be declared in a single PROCEDURE statement; implied-shape arrays are
supported for named constants (PARAMETER).

4.3 Technical Specification 29113 Status

GNU Fortran supports some of the new features of the Technical Specification (TS) 29113
on Further Interoperability of Fortran with C. The wiki has some information about the
current TS 29113 implementation status. In particular, the following is implemented.

e The ‘-std=£2008ts’ option.
e The OPTIONAL attribute is allowed for dummy arguments of BIND(C) procedures.
e The RANK intrinsic is supported.

e GNU Fortran’s implementation for variables with ASYNCHRONQUS attribute is compati-
ble with TS 29113.

http://gcc.gnu.org/wiki/TS29113Status

Chapter 5: Compiler Characteristics 37

5 Compiler Characteristics

This chapter describes certain characteristics of the GNU Fortran compiler, that are not
specified by the Fortran standard, but which might in some way or another become visible
to the programmer.

5.1 KIND Type Parameters
The KIND type parameters supported by GNU Fortran for the primitive data types are:

INTEGER 1, 2, 4, 8%, 16%, default: 4 (1)
LOGICAL 1,2, 4, 8%, 16, default: 4 (1)
REAL 4, 8, 10*, 16*, default: 4 (2

)
COMPLEX 4, 8, 10%, 16*, default: 4 (2)
CHARACTER

1, 4, default: 1

* = not available on all systems
(1) Unless -fdefault-integer-8 is used
(2) Unless -fdefault-real-8 is used

The KIND value matches the storage size in bytes, except for COMPLEX where the storage size
is twice as much (or both real and imaginary part are a real value of the given size). It is
recommended to use the SELECTED_CHAR_KIND, SELECTED_INT_KIND and SELECTED_REAL_
KIND intrinsics or the INT8, INT16, INT32, INT64, REAL32, REAL64, and REAL128 parameters
of the ISO_FORTRAN_ENV module instead of the concrete values. The available kind parame-
ters can be found in the constant arrays CHARACTER_KINDS, INTEGER_KINDS, LOGICAL_KINDS
and REAL_KINDS in the ISO_FORTRAN_ENV module (see Section 9.1 [[SO_FORTRAN_ENV],
page 213).

5.2 Internal representation of LOGICAL variables

The Fortran standard does not specify how variables of LOGICAL type are represented,
beyond requiring that LOGICAL variables of default kind have the same storage size as default
INTEGER and REAL variables. The GNU Fortran internal representation is as follows.

A LOGICAL(KIND=N) variable is represented as an INTEGER(KIND=N) variable, however,
with only two permissible values: 1 for .TRUE. and O for .FALSE.. Any other integer value
results in undefined behavior.

Note that for mixed-language programming using the ISO_C_BINDING feature, there
is a C_BOOL kind that can be used to create LOGICAL(KIND=C_BOOL) variables which are
interoperable with the C99 _Bool type. The C99 _Bool type has an internal representation
described in the C99 standard, which is identical to the above description, i.e. with 1 for
true and 0 for false being the only permissible values. Thus the internal representation of
LOGICAL variables in GNU Fortran is identical to C99 _Bool, except for a possible difference
in storage size depending on the kind.

38 The GNU Fortran Compiler

5.3 Thread-safety of the runtime library

GNU Fortran can be used in programs with multiple threads, e.g. by using OpenMP, by
calling OS thread handling functions via the ISO_C_BINDING facility, or by GNU Fortran
compiled library code being called from a multi-threaded program.

The GNU Fortran runtime library, (libgfortran), supports being called concurrently
from multiple threads with the following exceptions.

During library initialization, the C getenv function is used, which need not be thread-
safe. Similarly, the getenv function is used to implement the GET_ENVIRONMENT_VARIABLE
and GETENV intrinsics. It is the responsibility of the user to ensure that the environment is
not being updated concurrently when any of these actions are taking place.

The EXECUTE_COMMAND_LINE and SYSTEM intrinsics are implemented with the system
function, which need not be thread-safe. It is the responsibility of the user to ensure that
system is not called concurrently.

Finally, for platforms not supporting thread-safe POSIX functions, further functionality
might not be thread-safe. For details, please consult the documentation for your operating
system.

5.4 Data consistency and durability

This section contains a brief overview of data and metadata consistency and durability
issues when doing I/0.

With respect to durability, GNU Fortran makes no effort to ensure that data is commit-
ted to stable storage. If this is required, the GNU Fortran programmer can use the intrinsic
FNUM to retrieve the low level file descriptor corresponding to an open Fortran unit. Then,
using e.g. the ISO_C_BINDING feature, one can call the underlying system call to flush
dirty data to stable storage, such as fsync on POSIX, _commit on MingW, or fcntl(£fd,
F_FULLSYNC, 0) on Mac OS X. The following example shows how to call fsync:

! Declare the interface for POSIX fsync function
interface
function fsync (£fd) bind(c,name="fsync")
use iso_c_binding, only: c_int
integer(c_int), value :: fd
integer(c_int) :: fsync
end function fsync
end interface

! Variable declaration
integer :: ret

! Opening unit 10
open (10,file="foo")

! Perform I/0 on unit 10
oL

! Flush and sync
flush(10)
ret = fsync(fnum(10))

Chapter 5: Compiler Characteristics 39

! Handle possible error
if (ret /= 0) stop "Error calling FSYNC"

With respect to consistency, for regular files GNU Fortran uses buffered I/0O in order
to improve performance. This buffer is flushed automatically when full and in some other
situations, e.g. when closing a unit. It can also be explicitly flushed with the FLUSH
statement. Also, the buffering can be turned off with the GFORTRAN_UNBUFFERED_ALL and
GFORTRAN_UNBUFFERED_PRECONNECTED environment variables. Special files, such as termi-
nals and pipes, are always unbuffered. Sometimes, however, further things may need to be
done in order to allow other processes to see data that GNU Fortran has written, as follows.

The Windows platform supports a relaxed metadata consistency model, where file meta-
data is written to the directory lazily. This means that, for instance, the dir command can
show a stale size for a file. One can force a directory metadata update by closing the unit,
or by calling _commit on the file descriptor. Note, though, that _commit will force all dirty
data to stable storage, which is often a very slow operation.

The Network File System (NFS) implements a relaxed consistency model called open-to-
close consistency. Closing a file forces dirty data and metadata to be flushed to the server,
and opening a file forces the client to contact the server in order to revalidate cached data.
fsync will also force a flush of dirty data and metadata to the server. Similar to open and
close, acquiring and releasing fcntl file locks, if the server supports them, will also force
cache validation and flushing dirty data and metadata.

Chapter 6: Extensions 41

6 Extensions

The two sections below detail the extensions to standard Fortran that are implemented in
GNU Fortran, as well as some of the popular or historically important extensions that are
not (or not yet) implemented. For the latter case, we explain the alternatives available to
GNU Fortran users, including replacement by standard-conforming code or GNU extensions.

6.1 Extensions implemented in GNU Fortran

GNU Fortran implements a number of extensions over standard Fortran. This chapter con-
tains information on their syntax and meaning. There are currently two categories of GNU
Fortran extensions, those that provide functionality beyond that provided by any standard,
and those that are supported by GNU Fortran purely for backward compatibility with
legacy compilers. By default, ‘-std=gnu’ allows the compiler to accept both types of exten-
sions, but to warn about the use of the latter. Specifying either ‘-std=f95’, ‘~std=£2003’
or ‘-std=£2008’ disables both types of extensions, and ‘-std=legacy’ allows both without
warning.

6.1.1 Old-style kind specifications

GNU Fortran allows old-style kind specifications in declarations. These look like:
TYPESPEC*size x,y,z

where TYPESPEC is a basic type (INTEGER, REAL, etc.), and where size is a byte count
corresponding to the storage size of a valid kind for that type. (For COMPLEX variables,
size is the total size of the real and imaginary parts.) The statement then declares x, y
and z to be of type TYPESPEC with the appropriate kind. This is equivalent to the standard-
conforming declaration

TYPESPEC(k) x,y,z

where k is the kind parameter suitable for the intended precision. As kind parameters are
implementation-dependent, use the KIND, SELECTED_INT_KIND and SELECTED_REAL_KIND
intrinsics to retrieve the correct value, for instance REAL*8 x can be replaced by:

INTEGER, PARAMETER :: dbl = KIND(1.0dO)
REAL (KIND=dbl) :: x

6.1.2 Old-style variable initialization

GNU Fortran allows old-style initialization of variables of the form:
INTEGER i/1/,3/2/
REAL x(2,2) /3%0.,1./

The syntax for the initializers is as for the DATA statement, but unlike in a DATA state-
ment, an initializer only applies to the variable immediately preceding the initialization. In
other words, something like INTEGER I,J/2,3/ is not valid. This style of initialization is
only allowed in declarations without double colons (: :); the double colons were introduced
in Fortran 90, which also introduced a standard syntax for initializing variables in type
declarations.

Examples of standard-conforming code equivalent to the above example are:

! Fortran 90
INTEGER :: i

=1, j=2
REAL :: x(2,2) =

RESHAPE((/0.,0.,0.,1./),SHAPE(x))

42 The GNU Fortran Compiler

! Fortran 77
INTEGER i, j
REAL x(2,2)
DATA i/1/, j/2/, x/3%0.,1./
Note that variables which are explicitly initialized in declarations or in DATA statements
automatically acquire the SAVE attribute.

6.1.3 Extensions to namelist

GNU Fortran fully supports the Fortran 95 standard for namelist I/O including array
qualifiers, substrings and fully qualified derived types. The output from a namelist write is
compatible with namelist read. The output has all names in upper case and indentation to
column 1 after the namelist name. Two extensions are permitted:

Old-style use of ‘$’ instead of ‘&’

$MYNML

X(:)%Y(2) = 1.0 2.0 3.0
CH(1:4) = "abcd"

$END

It should be noted that the default terminator is ‘/’ rather than ‘&END’.

Querying of the namelist when inputting from stdin. After at least one space, entering

*?” sends to stdout the namelist name and the names of the variables in the namelist:
?

&mynml
X
xhy
ch

&end

Entering ‘=7’ outputs the namelist to stdout, as if WRITE(*,NML = mynml) had been
called:

=7

&MYNML

X(1)%Y=0.000000 , 1.000000 , 0.000000 s
X(2)%Y=0.000000 , 2.000000 , 0.000000 ,
X(3)%Y= 0.000000 , 3.000000 , 0.000000 s
CH=abcd, /

To aid this dialog, when input is from stdin, errors send their messages to stderr and
execution continues, even if IOSTAT is set.

PRINT namelist is permitted. This causes an error if ‘-std=£95’ is used.
PROGRAM test_print
REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/)
NAMELIST /mynml/ x
PRINT mynml
END PROGRAM test_print

Expanded namelist reads are permitted. This causes an error if ‘-std=£f95’ is used. In
the following example, the first element of the array will be given the value 0.00 and the
two succeeding elements will be given the values 1.00 and 2.00.

&MYNML
X(1,1) = 0.00 , 1.00 , 2.00
/

Chapter 6: Extensions 43

6.1.4 X format descriptor without count field

To support legacy codes, GNU Fortran permits the count field of the X edit descriptor in
FORMAT statements to be omitted. When omitted, the count is implicitly assumed to be
one.

PRINT 10, 2, 3
10 FORMAT (I1, X, I1)

6.1.5 Commas in FORMAT specifications

To support legacy codes, GNU Fortran allows the comma separator to be omitted immedi-
ately before and after character string edit descriptors in FORMAT statements.

PRINT 10, 2, 3
10 FORMAT (°F00="I1’ BAR=’I2)

6.1.6 Missing period in FORMAT specifications

To support legacy codes, GNU Fortran allows missing periods in format specifications if
and only if ‘-std=legacy’ is given on the command line. This is considered non-conforming
code and is discouraged.

REAL :: value
READ(*,10) value
10 FORMAT (°F4’)

6.1.7 I/0 item lists

To support legacy codes, GNU Fortran allows the input item list of the READ statement,
and the output item lists of the WRITE and PRINT statements, to start with a comma.

6.1.8 Q exponent-letter

GNU Fortran accepts real literal constants with an exponent-letter of Q, for example,
1.23Q45. The constant is interpreted as a REAL(16) entity on targets that support this
type. If the target does not support REAL(16) but has a REAL(10) type, then the real-
literal-constant will be interpreted as a REAL(10) entity. In the absence of REAL(16) and
REAL(10), an error will occur.

6.1.9 BOZ literal constants

Besides decimal constants, Fortran also supports binary (b), octal (o) and hexadecimal (z)
integer constants. The syntax is: ‘prefix quote digits quote’, were the prefix is either b,
o or z, quote is either > or " and the digits are for binary 0 or 1, for octal between 0 and
7, and for hexadecimal between 0 and F. (Example: b’01011101°.)

Up to Fortran 95, BOZ literals were only allowed to initialize integer variables in DATA
statements. Since Fortran 2003 BOZ literals are also allowed as argument of REAL, DBLE,
INT and CMPLX; the result is the same as if the integer BOZ literal had been converted by
TRANSFER to, respectively, real, double precision, integer or complex. As GNU Fortran
extension the intrinsic procedures FLOAT, DFLOAT, COMPLEX and DCMPLX are treated alike.

As an extension, GNU Fortran allows hexadecimal BOZ literal constants to be specified
using the X prefix, in addition to the standard Z prefix. The BOZ literal can also be specified
by adding a suffix to the string, for example, Z>ABC’> and >ABC’Z are equivalent.

44 The GNU Fortran Compiler

Furthermore, GNU Fortran allows using BOZ literal constants outside DATA statements
and the four intrinsic functions allowed by Fortran 2003. In DATA statements, in direct
assignments, where the right-hand side only contains a BOZ literal constant, and for old-
style initializers of the form integer i /0’0173’ /, the constant is transferred as if TRANSFER
had been used; for COMPLEX numbers, only the real part is initialized unless CMPLX is used.
In all other cases, the BOZ literal constant is converted to an INTEGER value with the largest
decimal representation. This value is then converted numerically to the type and kind of the
variable in question. (For instance, real :: r = b’0000001° + 1 initializes r with 2.0.) As
different compilers implement the extension differently, one should be careful when doing
bitwise initialization of non-integer variables.

Note that initializing an INTEGER variable with a statement such as DATA
i/Z’FFFFFFFF’/ will give an integer overflow error rather than the desired result
of —1 when i is a 32-bit integer on a system that supports 64-bit integers. The
‘~fno-range-check’ option can be used as a workaround for legacy code that initializes
integers in this manner.

6.1.10 Real array indices

As an extension, GNU Fortran allows the use of REAL expressions or variables as array
indices.

6.1.11 Unary operators

As an extension, GNU Fortran allows unary plus and unary minus operators to appear as
the second operand of binary arithmetic operators without the need for parenthesis.
X =Y % -Z

6.1.12 Implicitly convert LOGICAL and INTEGER values

As an extension for backwards compatibility with other compilers, GNU Fortran allows the
implicit conversion of LOGICAL values to INTEGER values and vice versa. When converting
from a LOGICAL to an INTEGER, .FALSE. is interpreted as zero, and .TRUE. is interpreted as
one. When converting from INTEGER to LOGICAL, the value zero is interpreted as .FALSE.
and any nonzero value is interpreted as .TRUE..

LOGICAL :: 1
1=1
INTEGER :: i
i = .TRUE.

However, there is no implicit conversion of INTEGER values in if-statements, nor of
LOGICAL or INTEGER values in I/O operations.

6.1.13 Hollerith constants support

GNU Fortran supports Hollerith constants in assignments, function arguments, and DATA
and ASSIGN statements. A Hollerith constant is written as a string of characters preceded
by an integer constant indicating the character count, and the letter H or h, and stored
in bytewise fashion in a numeric (INTEGER, REAL, or complex) or LOGICAL variable. The
constant will be padded or truncated to fit the size of the variable in which it is stored.

Examples of valid uses of Hollerith constants:

Chapter 6: Extensions 45

complex*16 x(2)
data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
x(1) = 16HABCDEFGHIJKLVMNOP
call foo (4h abc)
Invalid Hollerith constants examples:

integer*4 a
a = 8H12345678 ! Valid, but the Hollerith constant will be truncated.
a = OH ! At least one character is needed.

In general, Hollerith constants were used to provide a rudimentary facility for handling
character strings in early Fortran compilers, prior to the introduction of CHARACTER variables
in Fortran 77; in those cases, the standard-compliant equivalent is to convert the program
to use proper character strings. On occasion, there may be a case where the intent is
specifically to initialize a numeric variable with a given byte sequence. In these cases, the
same result can be obtained by using the TRANSFER statement, as in this example.

INTEGER(KIND=4) :: a
a = TRANSFER ("abcd", a) ! equivalent to: a = 4Habcd

6.1.14 Cray pointers

Cray pointers are part of a non-standard extension that provides a C-like pointer in Fortran.
This is accomplished through a pair of variables: an integer "pointer" that holds a memory
address, and a "pointee" that is used to dereference the pointer.

Pointer /pointee pairs are declared in statements of the form:
pointer (<pointer> , <pointee>)
or,

pointer (<pointerl> , <pointeel>), (<pointer2> , <pointee2>), ...

The pointer is an integer that is intended to hold a memory address. The pointee may
be an array or scalar. A pointee can be an assumed size array—that is, the last dimension
may be left unspecified by using a * in place of a value—but a pointee cannot be an assumed
shape array. No space is allocated for the pointee.

The pointee may have its type declared before or after the pointer statement, and its
array specification (if any) may be declared before, during, or after the pointer statement.
The pointer may be declared as an integer prior to the pointer statement. However, some
machines have default integer sizes that are different than the size of a pointer, and so the
following code is not portable:

integer ipt
pointer (ipt, iarr)

If a pointer is declared with a kind that is too small, the compiler will issue a warning;
the resulting binary will probably not work correctly, because the memory addresses stored
in the pointers may be truncated. It is safer to omit the first line of the above example;
if explicit declaration of ipt’s type is omitted, then the compiler will ensure that ipt is an
integer variable large enough to hold a pointer.

Pointer arithmetic is valid with Cray pointers, but it is not the same as C pointer arith-
metic. Cray pointers are just ordinary integers, so the user is responsible for determining
how many bytes to add to a pointer in order to increment it. Consider the following example:

real target(10)
real pointee(10)
pointer (ipt, pointee)

46 The GNU Fortran Compiler

ipt
ipt

= loc (target)
= ipt + 1

The last statement does not set ipt to the address of target (1), as it would in C pointer
arithmetic. Adding 1 to ipt just adds one byte to the address stored in ipt.

Any expression involving the pointee will be translated to use the value stored in the
pointer as the base address.

To get the address of elements, this extension provides an intrinsic function LOC(). The
LOC() function is equivalent to the & operator in C, except the address is cast to an integer
type:

real ar(10)

pointer (ipt, arpte(10))

real arpte

ipt = loc(ar) ! Makes arpte is an alias for ar
arpte(1) = 1.0 ! Sets ar(1) to 1.0

The pointer can also be set by a call to the MALLOC intrinsic (see Section 8.160 [MALLOC],
page 158).

Cray pointees often are used to alias an existing variable. For example:

integer target(10)
integer iarr(10)
pointer (ipt, iarr)
ipt = loc(target)

As long as ipt remains unchanged, iarr is now an alias for target. The optimizer,
however, will not detect this aliasing, so it is unsafe to use iarr and target simultaneously.
Using a pointee in any way that violates the Fortran aliasing rules or assumptions is illegal.
It is the user’s responsibility to avoid doing this; the compiler works under the assumption
that no such aliasing occurs.

Cray pointers will work correctly when there is no aliasing (i.e., when they are used to
access a dynamically allocated block of memory), and also in any routine where a pointee
is used, but any variable with which it shares storage is not used. Code that violates these
rules may not run as the user intends. This is not a bug in the optimizer; any code that
violates the aliasing rules is illegal. (Note that this is not unique to GNU Fortran; any
Fortran compiler that supports Cray pointers will “incorrectly” optimize code with illegal
aliasing.)

There are a number of restrictions on the attributes that can be applied to Cray point-
ers and pointees. Pointees may not have the ALLOCATABLE, INTENT, OPTIONAL, DUMMY,
TARGET, INTRINSIC, or POINTER attributes. Pointers may not have the DIMENSION, POINTER,
TARGET, ALLOCATABLE, EXTERNAL, or INTRINSIC attributes, nor may they be function re-
sults. Pointees may not occur in more than one pointer statement. A pointee cannot be a
pointer. Pointees cannot occur in equivalence, common, or data statements.

A Cray pointer may also point to a function or a subroutine. For example, the following
excerpt is valid:
implicit none
external sub
pointer (subptr,subpte)
external subpte
subptr = loc(sub)
call subpte()
[...]

Chapter 6: Extensions 47

subroutine sub
[...]
end subroutine sub
A pointer may be modified during the course of a program, and this will change the
location to which the pointee refers. However, when pointees are passed as arguments, they
are treated as ordinary variables in the invoked function. Subsequent changes to the pointer
will not change the base address of the array that was passed.

6.1.15 CONVERT specifier

GNU Fortran allows the conversion of unformatted data between little- and big-endian
representation to facilitate moving of data between different systems. The conversion can
be indicated with the CONVERT specifier on the OPEN statement. See Section 3.11 [GFOR-
TRAN_CONVERT_UNIT], page 28, for an alternative way of specifying the data format
via an environment variable.

Valid values for CONVERT are:
CONVERT=’NATIVE’ Use the native format. This is the default.
CONVERT=’SWAP’ Swap between little- and big-endian.
CONVERT=’LITTLE_ENDIAN’ Use the little-endian representation for unformatted files.
CONVERT=’BIG_ENDIAN’ Use the big-endian representation for unformatted files.

Using the option could look like this:
open(file=’big.dat’,form="unformatted’,access=’sequential’, &
convert=’big_endian’)
The value of the conversion can be queried by using INQUIRE (CONVERT=ch). The values
returned are >BIG_ENDIAN’ and ’LITTLE_ENDIAN’.

CONVERT works between big- and little-endian for INTEGER values of all supported kinds
and for REAL on IEEE systems of kinds 4 and 8. Conversion between different “extended
double” types on different architectures such as m68k and x86_64, which GNU Fortran
supports as REAL(KIND=10) and REAL(KIND=16), will probably not work.

Note that the values specified via the GFORTRAN_CONVERT_UNIT environment vari-
able will override the CONVERT specifier in the open statement. This is to give control
over data formats to users who do not have the source code of their program available.

Using anything but the native representation for unformatted data carries a significant
speed overhead. If speed in this area matters to you, it is best if you use this only for data
that needs to be portable.

6.1.16 OpenMP

OpenMP (Open Multi-Processing) is an application programming interface (API) that sup-
ports multi-platform shared memory multiprocessing programming in C/C++ and Fortran
on many architectures, including Unix and Microsoft Windows platforms. It consists of a set
of compiler directives, library routines, and environment variables that influence run-time
behavior.

GNU Fortran strives to be compatible to the OpenMP Application Program Interface
v3.1.

http://www.openmp.org/mp-documents/spec31.pdf
http://www.openmp.org/mp-documents/spec31.pdf

48 The GNU Fortran Compiler

To enable the processing of the OpenMP directive !$omp in free-form source code; the
c$omp, *$omp and !$omp directives in fixed form; the !'$ conditional compilation sentinels in
free form; and the c$, *$ and !'$ sentinels in fixed form, gfortran needs to be invoked with
the ‘~fopenmp’. This also arranges for automatic linking of the GNU OpenMP runtime
library Section “libgomp” in GNU OpenMP runtime library.

The OpenMP Fortran runtime library routines are provided both in a form of a Fortran
90 module named omp_1ib and in a form of a Fortran include file named ‘omp_1ib.h’.

An example of a parallelized loop taken from Appendix A.1 of the OpenMP Application
Program Interface v2.5:

SUBROUTINE A1(N, A, B)
INTEGER I, N
REAL B(N), A(N)
'$OMP PARALLEL DO !I is private by default
DO I=2,N
B(I) = (A(I) + A(I-1)) / 2.0
ENDDO
'$0MP END PARALLEL DO
END SUBROUTINE A1l

Please note:

e ‘—fopenmp’ implies ‘-frecursive’, i.e., all local arrays will be allocated on the stack.
When porting existing code to OpenMP, this may lead to surprising results, especially
to segmentation faults if the stacksize is limited.

e On glibe-based systems, OpenMP enabled applications cannot be statically linked due
to limitations of the underlying pthreads-implementation. It might be possible to get
a working solution if -Wl,--whole-archive -lpthread -Wl,--no-whole-archive is
added to the command line. However, this is not supported by gcc and thus not
recommended.

6.1.17 Argument list functions VAL, %REF and %L0C

GNU Fortran supports argument list functions %VAL, %REF and %LOC statements, for back-
ward compatibility with g77. It is recommended that these should be used only for code
that is accessing facilities outside of GNU Fortran, such as operating system or windowing
facilities. It is best to constrain such uses to isolated portions of a program—portions that
deal specifically and exclusively with low-level, system-dependent facilities. Such portions
might well provide a portable interface for use by the program as a whole, but are them-
selves not portable, and should be thoroughly tested each time they are rebuilt using a new
compiler or version of a compiler.

%VAL passes a scalar argument by value, %REF passes it by reference and %LOC passes its
memory location. Since gfortran already passes scalar arguments by reference, %REF is in
effect a do-nothing. %L0OC has the same effect as a Fortran pointer.

An example of passing an argument by value to a C subroutine foo.:

¢
C prototype void foo_ (float x);
C

external foo

real*4 x

x = 3.14159

call foo (%AVAL (x))

Chapter 6: Extensions 49

end

For details refer to the g77 manual http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/
index.html#Top.

Also, c_by_val.f and its partner c_by_val.c of the GNU Fortran testsuite are worth
a look.

6.2 Extensions not implemented in GNU Fortran

The long history of the Fortran language, its wide use and broad userbase, the large num-
ber of different compiler vendors and the lack of some features crucial to users in the first
standards have lead to the existence of a number of important extensions to the language.
While some of the most useful or popular extensions are supported by the GNU Fortran
compiler, not all existing extensions are supported. This section aims at listing these ex-
tensions and offering advice on how best make code that uses them running with the GNU
Fortran compiler.

6.2.1 STRUCTURE and RECORD

Structures are user-defined aggregate data types; this functionality was standardized in
Fortran 90 with an different syntax, under the name of “derived types”. Here is an example
of code using the non portable structure syntax:

! Declaring a structure named ‘‘item’’ and containing three fields:
! an integer ID, an description string and a floating-point price.
STRUCTURE /item/

INTEGER id

CHARACTER (LEN=200) description

REAL price
END STRUCTURE

‘‘item’’

| Define two variables, an single record of type
| named ‘‘pear’’, and an array of items named °‘store_catalog’’

RECORD /item/ pear, store_catalog(100)

! We can directly access the fields of both variables
pear.id = 92316

pear.description = "juicy D’Anjou pear"

pear.price = 0.15

store_catalog(7).id = 7831

store_catalog(7) .description = "milk bottle"
store_catalog(7) .price = 1.2

I We can also manipulate the whole structure
store_catalog(12) = pear
print *, store_catalog(12)

This code can easily be rewritten in the Fortran 90 syntax as following:

I ““STRUCTURE /name/ ... END STRUCTURE’’ becomes
I ““TYPE name ... END TYPE’’

http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top
http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top

50 The GNU Fortran Compiler

TYPE item
INTEGER id
CHARACTER (LEN=200) description
REAL price

END TYPE

| “‘RECORD /name/ variable’’ becomes ‘‘TYPE(name) variable’’
TYPE(item) pear, store_catalog(100)

! Instead of using a dot (.) to access fields of a record, the
! standard syntax uses a percent sign (%)

pear’%id = 92316

pearfdescription = "juicy D’Anjou pear"

pearyprice = 0.15

store_catalog(7)%id = 7831

store_catalog(7)%description = "milk bottle"
store_catalog(7)%price = 1.2

| Assignments of a whole variable do not change
store_catalog(12) = pear
print *, store_catalog(12)

6.2.2 ENCODE and DECODE statements

GNU Fortran does not support the ENCODE and DECODE statements. These statements are
best replaced by READ and WRITE statements involving internal files (CHARACTER variables
and arrays), which have been part of the Fortran standard since Fortran 77. For example,
replace a code fragment like
INTEGER*1 LINE(80)
REAL A, B, C
c ... Code that sets LINE

DECODE (80, 9000, LINE) A, B, C
9000 FORMAT (1X, 3(F10.5))

with the following:
CHARACTER (LEN=80) LINE
REAL A, B, C
c ... Code that sets LINE
READ (UNIT=LINE, FMT=9000) A, B, C
9000 FORMAT (1X, 3(F10.5))

Similarly, replace a code fragment like
INTEGER*1 LINE(80)
REAL A, B, C
c ... Code that sets A, B and C
ENCODE (80, 9000, LINE) A, B, C
9000 FORMAT (1X, °’O0UTPUT IS ’, 3(F10.5))

with the following:
CHARACTER (LEN=80) LINE
REAL A, B, C
c ... Code that sets A, B and C
WRITE (UNIT=LINE, FMT=9000) A, B, C
9000 FORMAT (1X, °’O0UTPUT IS ’, 3(F10.5))

Chapter 6: Extensions 51

6.2.3 Variable FORMAT expressions

A variable FORMAT expression is format statement which includes angle brackets enclosing a
Fortran expression: FORMAT(I<N>). GNU Fortran does not support this legacy extension.
The effect of variable format expressions can be reproduced by using the more powerful
(and standard) combination of internal output and string formats. For example, replace a
code fragment like this:
WRITE(6,20) INT1
20 FORMAT (I<N+1>)
with the following:

c Variable declaration
CHARACTER (LEN=20) FMT

c

c Other code here...

c
WRITE(FMT,’> ("(I", I0, ")")’) N+1i
WRITE(6,FMT) INT1

or with:
c Variable declaration
CHARACTER (LEN=20) FMT
c
c Other code here...

WRITE(FMT,*) N+1
WRITE(6," (I" // ADJUSTL(FMT) // ")") INT1

6.2.4 Alternate complex function syntax

Some Fortran compilers, including g77, let the user declare complex functions with the
syntax COMPLEX FUNCTION namex16(), as well as COMPLEX*16 FUNCTION name (). Both are
non-standard, legacy extensions. gfortran accepts the latter form, which is more common,
but not the former.

Chapter 7: Mixed-Language Programming 53

7 Mixed-Language Programming

This chapter is about mixed-language interoperability, but also applies if one links Fortran
code compiled by different compilers. In most cases, use of the C Binding features of the
Fortran 2003 standard is sufficient, and their use is highly recommended.

7.1 Interoperability with C

Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a standardized way to generate
procedure and derived-type declarations and global variables which are interoperable with
C (ISO/IEC 9899:1999). The bind(C) attribute has been added to inform the compiler that
a symbol shall be interoperable with C; also, some constraints are added. Note, however,
that not all C features have a Fortran equivalent or vice versa. For instance, neither C’s
unsigned integers nor C’s functions with variable number of arguments have an equivalent
in Fortran.

Note that array dimensions are reversely ordered in C and that arrays in C always start
with index 0 while in Fortran they start by default with 1. Thus, an array declaration
A(n,m) in Fortran matches A[m] [n] in C and accessing the element A(i,j) matches A[j-
1] [i-1]. The element following A(i,j) (C: A[j-1] [i-1]; assuming ¢ < n) in memory is
A(i+1,j) (C: A[j-111[4i]).

7.1.1 Intrinsic Types

In order to ensure that exactly the same variable type and kind is used in C and Fortran, the
named constants shall be used which are defined in the ISO_C_BINDING intrinsic module.
That module contains named constants for kind parameters and character named constants
for the escape sequences in C. For a list of the constants, see Section 9.2 [[SO_C_BINDING],
page 214.

7.1.2 Derived Types and struct

For compatibility of derived types with struct, one needs to use the BIND(C) attribute in
the type declaration. For instance, the following type declaration

USE ISO_C_BINDING

TYPE, BIND(C) :: myType
INTEGER(C_INT) :: i1, i2
INTEGER (C_SIGNED_CHAR) :: i3
REAL(C_DOUBLE) :: di
COMPLEX (C_FLOAT_COMPLEX) :: ci
CHARACTER (KIND=C_CHAR) :: str(5)

END TYPE

matches the following struct declaration in C

struct {
int i1, i2;
/* Note: "char" might be signed or unsigned. */
signed char i3;
double di;
float _Complex cli;
char str[5];

} myType;

Derived types with the C binding attribute shall not have the sequence attribute, type
parameters, the extends attribute, nor type-bound procedures. Every component must be

54 The GNU Fortran Compiler

of interoperable type and kind and may not have the pointer or allocatable attribute.
The names of the variables are irrelevant for interoperability.

As there exist no direct Fortran equivalents, neither unions nor structs with bit field or
variable-length array members are interoperable.

7.1.3 Interoperable Global Variables

Variables can be made accessible from C using the C binding attribute, optionally together
with specifying a binding name. Those variables have to be declared in the declaration part
of a MODULE, be of interoperable type, and have neither the pointer nor the allocatable
attribute.
MODULE m
USE myType_module
USE ISO_C_BINDING
integer (C_INT), bind(C, name="_MyProject_flags") :: global_flag
type (myType), bind(C) :: tp
END MODULE
Here, _MyProject_flags is the case-sensitive name of the variable as seen from C pro-
grams while global_flag is the case-insensitive name as seen from Fortran. If no binding
name is specified, as for tp, the C binding name is the (lowercase) Fortran binding name.
If a binding name is specified, only a single variable may be after the double colon. Note of
warning: You cannot use a global variable to access errno of the C library as the C standard
allows it to be a macro. Use the IERRNO intrinsic (GNU extension) instead.

7.1.4 Interoperable Subroutines and Functions

Subroutines and functions have to have the BIND(C) attribute to be compatible with C.
The dummy argument declaration is relatively straightforward. However, one needs to be
careful because C uses call-by-value by default while Fortran behaves usually similar to
call-by-reference. Furthermore, strings and pointers are handled differently. Note that only
explicit size and assumed-size arrays are supported but not assumed-shape or allocatable
arrays.

To pass a variable by value, use the VALUE attribute. Thus the following C prototype
int func(int i, int *j)
matches the Fortran declaration
integer(c_int) function func(i,j)
use iso_c_binding, only: c_int
integer(c_int), VALUE :: i
integer(c_int) :: j
Note that pointer arguments also frequently need the VALUE attribute, see Section 7.1.5
[Working with Pointers], page 55.

Strings are handled quite differently in C and Fortran. In C a string is a NUL-terminated
array of characters while in Fortran each string has a length associated with it and is thus
not terminated (by e.g. NUL). For example, if one wants to use the following C function,

#include <stdio.h>
void print_C(char *string) /* equivalent: char string[] */
{
printf("%s\n", string);
}

to print “Hello World” from Fortran, one can call it using

Chapter 7: Mixed-Language Programming 55

use iso_c_binding, only: C_CHAR, C_NULL_CHAR
interface
subroutine print_c(string) bind(C, name="print_C")
use iso_c_binding, only: c_char
character(kind=c_char) :: string(x)
end subroutine print_c
end interface
call print_c(C_CHAR_"Hello World"//C_NULL_CHAR)

As the example shows, one needs to ensure that the string is NUL terminated. Addi-
tionally, the dummy argument string of print_C is a length-one assumed-size array; using
character(len=x) is not allowed. The example above uses c_char_"Hello World" to en-
sure the string literal has the right type; typically the default character kind and c_char are

the same and thus "Hello World" is equivalent. However, the standard does not guarantee
this.

The use of strings is now further illustrated using the C library function strncpy, whose
prototype is

char *strncpy(char *restrict sl1, const char *restrict s2, size_t n);

The function strncpy copies at most n characters from string s2 to sl and returns sl.
In the following example, we ignore the return value:

use iso_c_binding

implicit none

character(len=30) :: str,str2

interface
! Ignore the return value of strncpy -> subroutine
! "restrict" is always assumed if we do not pass a pointer
subroutine strncpy(dest, src, n) bind(C)

import

character(kind=c_char), intent(out) :: dest(x)
character(kind=c_char), intent(in) :: src(*)
integer(c_size_t), value, intent(in) :: n

end subroutine strncpy
end interface
str = repeat(’X’,30) ! Initialize whole string with ’X’
call strncpy(str, c_char_"Hello World"//C_NULL_CHAR, &
len(c_char_"Hello World",kind=c_size_t))
print ’(a)’, str ! prints: "Hello WorldXXXXXXXXXXXXXXXXXXX"
end

The intrinsic procedures are described in Chapter 8 [Intrinsic Procedures|, page 63.

7.1.5 Working with Pointers

C pointers are represented in Fortran via the special opaque derived type type (c_ptr) (with
private components). Thus one needs to use intrinsic conversion procedures to convert from
or to C pointers. For example,

use iso_c_binding

type(c_ptr) :: cptrl, cptr2

integer, target :: array(7), scalar

integer, pointer :: pa(:), ps

cptrl = c_loc(array(l)) ! The programmer needs to ensure that the
! array is contiguous if required by the C
! procedure

cptr2 = c_loc(scalar)

call c_f_pointer(cptr2, ps)

56 The GNU Fortran Compiler

call c_f_pointer(cptr2, pa, shape=[7])

When converting C to Fortran arrays, the one-dimensional SHAPE argument has to be
passed.

If a pointer is a dummy-argument of an interoperable procedure, it usually has to be
declared using the VALUE attribute. void* matches TYPE(C_PTR), VALUE, while TYPE(C_
PTR) alone matches void*x*.

Procedure pointers are handled analogously to pointers; the C type is TYPE(C_FUNPTR)
and the intrinsic conversion procedures are C_F_PROCPOINTER and C_FUNLOC.

Let us consider two examples of actually passing a procedure pointer from C to Fortran
and vice versa. Note that these examples are also very similar to passing ordinary pointers
between both languages. First, consider this code in C:

/* Procedure implemented in Fortran. */
void get_values (void (*)(double));

/* Call-back routine we want called from Fortran. */
void
print_it (double x)
{
printf ("Number is %f.\n", x);
}

/* Call Fortran routine and pass call-back to it. */
void
foobar ()
{
get_values (&print_it);
}

A matching implementation for get_values in Fortran, that correctly receives the pro-
cedure pointer from C and is able to call it, is given in the following MODULE:

MODULE m
IMPLICIT NONE

! Define interface of call-back routine.
ABSTRACT INTERFACE
SUBROUTINE callback (x)
USE, INTRINSIC :: ISO_C_BINDING
REAL (KIND=C_DOUBLE), INTENT(IN), VALUE :: x
END SUBROUTINE callback
END INTERFACE

CONTAINS
! Define C-bound procedure.
SUBROUTINE get_values (cproc) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_FUNPTR), INTENT(IN), VALUE :: cproc
PROCEDURE (callback), POINTER :: proc

! Convert C to Fortran procedure pointer.
CALL C_F_PROCPOINTER (cproc, proc)

! Call it.
CALL proc (1.0_C_DOUBLE)

Chapter 7: Mixed-Language Programming 57

CALL proc (-42.0_C_DOUBLE)
CALL proc (18.12_C_DOUBLE)
END SUBROUTINE get_values

END MODULE m

Next, we want to call a C routine that expects a procedure pointer argument and pass
it a Fortran procedure (which clearly must be interoperable!). Again, the C function may
be:

int
call_it (int (*func) (int), int arg)
{

return func (arg);

}
It can be used as in the following Fortran code:

MODULE m
USE, INTRINSIC :: ISO_C_BINDING
IMPLICIT NONE

! Define interface of C function.
INTERFACE
INTEGER(KIND=C_INT) FUNCTION call_it (func, arg) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_FUNPTR), INTENT(IN), VALUE :: func
INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
END FUNCTION call_it
END INTERFACE

CONTAINS

! Define procedure passed to C function.

! It must be interoperable!

INTEGER (KIND=C_INT) FUNCTION double_it (arg) BIND(C)
INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
double_it = arg + arg

END FUNCTION double_it

! Call C function.

SUBROUTINE foobar ()
TYPE(C_FUNPTR) :: cproc
INTEGER (KIND=C_INT) :: i

! Get C procedure pointer.
cproc = C_FUNLOC (double_it)

! Use it.
DO i = 1_C_INT, 10_C_INT
PRINT *, call_it (cproc, i)
END DO
END SUBROUTINE foobar

END MODULE m

7.1.6 Further Interoperability of Fortran with C

Assumed-shape and allocatable arrays are passed using an array descriptor (dope vector).
The internal structure of the array descriptor used by GNU Fortran is not yet documented

58 The GNU Fortran Compiler

and will change. There will also be a Technical Specification (TS 29113) which standardizes
an interoperable array descriptor. Until then, you can use the Chasm Language Interop-
erability Tools, http://chasm-interop.sourceforge.net/, which provide an interface to
GNU Fortran’s array descriptor.

GNU Fortran already supports the C-interoperable OPTIONAL attribute; for absent ar-
guments, a NULL pointer is passed.

7.2 GNU Fortran Compiler Directives

The Fortran standard describes how a conforming program shall behave; however, the
exact implementation is not standardized. In order to allow the user to choose specific
implementation details, compiler directives can be used to set attributes of variables and
procedures which are not part of the standard. Whether a given attribute is supported and
its exact effects depend on both the operating system and on the processor; see Section “C
Extensions” in Using the GNU Compiler Collection (GCC) for details.

For procedures and procedure pointers, the following attributes can be used to change
the calling convention:

e CDECL — standard C calling convention
e STDCALL — convention where the called procedure pops the stack
e FASTCALL — part of the arguments are passed via registers instead using the stack
Besides changing the calling convention, the attributes also influence the decoration of
the symbol name, e.g., by a leading underscore or by a trailing at-sign followed by the

number of bytes on the stack. When assigning a procedure to a procedure pointer, both
should use the same calling convention.

On some systems, procedures and global variables (module variables and COMMON blocks)
need special handling to be accessible when they are in a shared library. The following
attributes are available:

e DLLEXPORT — provide a global pointer to a pointer in the DLL

e DLLIMPORT — reference the function or variable using a global pointer

The attributes are specified using the syntax
IGCC$ ATTRIBUTES attribute-list :: variable-list

where in free-form source code only whitespace is allowed before !'GCC$ and in fixed-form
source code !GCC$, cGCC$ or *GCC$ shall start in the first column.

For procedures, the compiler directives shall be placed into the body of the procedure; for
variables and procedure pointers, they shall be in the same declaration part as the variable
or procedure pointer.

7.3 Non-Fortran Main Program

Even if you are doing mixed-language programming, it is very likely that you do not need
to know or use the information in this section. Since it is about the internal structure of
GNU Fortran, it may also change in GCC minor releases.

When you compile a PROGRAM with GNU Fortran, a function with the name main (in
the symbol table of the object file) is generated, which initializes the libgfortran library

http://chasm-interop.sourceforge.net/

Chapter 7: Mixed-Language Programming 59

and then calls the actual program which uses the name MAIN__, for historic reasons. If
you link GNU Fortran compiled procedures to, e.g., a C or C++ program or to a Fortran
program compiled by a different compiler, the libgfortran library is not initialized and thus
a few intrinsic procedures do not work properly, e.g. those for obtaining the command-line
arguments.

Therefore, if your PROGRAM is not compiled with GNU Fortran and the GNU Fortran
compiled procedures require intrinsics relying on the library initialization, you need to
initialize the library yourself. Using the default options, gfortran calls _gfortran_set_
args and _gfortran_set_options. The initialization of the former is needed if the called
procedures access the command line (and for backtracing); the latter sets some flags based
on the standard chosen or to enable backtracing. In typical programs, it is not necessary
to call any initialization function.

If your PROGRAM is compiled with GNU Fortran, you shall not call any of the follow-
ing functions. The libgfortran initialization functions are shown in C syntax but using C
bindings they are also accessible from Fortran.

7.3.1 _gfortran_set_args — Save command-line arguments

Description:
_gfortran_set_args saves the command-line arguments; this initialization is
required if any of the command-line intrinsics is called. Additionally, it shall
be called if backtracing is enabled (see _gfortran_set_options).

Syntax: void _gfortran_set_args (int argc, char *argv[])
Arguments:
argc number of command line argument strings
argv the command-line argument strings; argv[0] is the pathname

of the executable itself.

Ezample:

int main (int argc, char *argv[])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
return O;

}

7.3.2 _gfortran_set_options — Set library option flags

Description:
_gfortran_set_options sets several flags related to the Fortran standard to be
used, whether backtracing should be enabled and whether range checks should
be performed. The syntax allows for upward compatibility since the number of
passed flags is specified; for non-passed flags, the default value is used. See also
see Section 2.9 [Code Gen Options|, page 19. Please note that not all flags are
actually used.

Syntax: void _gfortran_set_options (int num, int options[])

Arguments:
num number of options passed

60 The GNU Fortran Compiler

argv The list of flag values

option flag list:

option|0] Allowed standard; can give run-time errors if e.g. an
input-output edit descriptor is invalid in a given standard.
Possible values are (bitwise or-ed) GFC_STD_F77 (1), GFC_
STD_F95_0BS (2), GFC_STD_F95_DEL (4), GFC_STD_F95 (8),
GFC_STD_F2003 (16), GFC_STD_GNU (32), GFC_STD_LEGACY
(64), GFC_STD_F2008 (128), GFC_STD_F2008_0BS (256) and
GFC_STD_F2008_.TS (512). Default: GFC_STD_F95_0BS
| GFC_STD_F95_DEL | GFC_STD_F95 | GFC_STD_F2003 |
GFC_STD_F2008 | GFC_STD_F2008_TS | GFC_STD_F2008_0BS
| GFC_STD_F77 | GFC_STD_GNU | GFC_STD_LEGACY.

option|[1] Standard-warning flag; prints a warning to standard error.
Default: GFC_STD_F95_DEL | GFC_STD_LEGACY.

option|2] If non zero, enable pedantic checking. Default: off.

option[3] Unused.

option[4] If non zero, enable backtracing on run-time errors. Default:

off. Note: Installs a signal handler and requires command-line
initialization using _gfortran_set_args.

option[5] If non zero, supports signed zeros. Default: enabled.

option|6] Enables run-time checking. Possible values are
(bitwise or-ed): GFC_RTCHECK_BOUNDS
(1), GFC_RTCHECK_ARRAY_TEMPS (2),

GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO

(16), GFC_RTCHECK_POINTER (32). Default: disabled.
option[7] If non zero, range checking is enabled. Default: enabled. See

-frange-check (see Section 2.9 [Code Gen Options|, page 19).

Example:
/* Use gfortran 4.7 default options. */
static int options[] = {68, 511, 0, 0, 1, 1, 0, 1};
_gfortran_set_options (8, &optioms);
7.3.3 _gfortran_set_convert — Set endian conversion
Description:
_gfortran_set_convert set the representation of data for unformatted files.
Syntaz: void _gfortran_set_convert (int conv)
Arguments:
conv Endian conversion, possible values:
GFC_CONVERT_NATIVE (0, default),
GFC_CONVERT_SWAP (1), GFC_CONVERT_BIG
(2), GFC_CONVERT_LITTLE (3).
Example:

int main (int argc, char *argv[])
{

/* Initialize libgfortran. */

Chapter 7: Mixed-Language Programming 61

_gfortran_set_args (argc, argv);
_gfortran_set_convert (1);
return O;

}

7.3.4 _gfortran_set_record_marker — Set length of record markers

Description:
_gfortran_set_record_marker sets the length of record markers for unfor-
matted files.

Syntax: void _gfortran_set_record_marker (int val)
Arguments:
val Length of the record marker; valid values are 4 and 8. Default
is 4.
Ezample:

int main (int argc, char *argv[])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
_gfortran_set_record_marker (8);
return O;

}

7.3.5 _gfortran_set_fpe — Enable floating point exception traps

Description:
_gfortran_set_fpe enables floating point exception traps for the specified ex-
ceptions. On most systems, this will result in a SIGFPE signal being sent and
the program being aborted.

Syntax: void _gfortran_set_fpe (int val)

Arguments:
option|0] IEEE exceptions. Possible values are (bitwise or-ed) zero
(0, default) no trapping, GFC_FPE_INVALID (1), GFC_FPE_
DENORMAL (2), GFC_FPE_ZERO (4), GFC_FPE_OVERFLOW (8),
GFC_FPE_UNDERFLOW (16), and GFC_FPE_INEXACT (32).

Ezample:

int main (int argc, char *argv[])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
/* FPE for invalid operations such as SQRT(-1.0). */
_gfortran_set_fpe (1);
return O;

}

7.3.6 _gfortran_set_max_subrecord_length — Set subrecord length

Description:
_gfortran_set_max_subrecord_length set the maximum length for a sub-
record. This option only makes sense for testing and debugging of unformatted

1/0.

62 The GNU Fortran Compiler

Syntax: void _gfortran_set_max_subrecord_length (int val)

Arguments:
val the maximum length for a subrecord; the maximum permitted

value is 2147483639, which is also the default.
Ezample:

int main (int argc, char *argv[])

{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
_gfortran_set_max_subrecord_length (8);
return O;

Chapter 8: Intrinsic Procedures 63

8 Intrinsic Procedures

8.1 Introduction to intrinsic procedures

The intrinsic procedures provided by GNU Fortran include all of the intrinsic procedures re-
quired by the Fortran 95 standard, a set of intrinsic procedures for backwards compatibility
with G77, and a selection of intrinsic procedures from the Fortran 2003 and Fortran 2008
standards. Any conflict between a description here and a description in either the Fortran
95 standard, the Fortran 2003 standard or the Fortran 2008 standard is unintentional, and
the standard(s) should be considered authoritative.

The enumeration of the KIND type parameter is processor defined in the Fortran
95 standard. GNU Fortran defines the default integer type and default real type by
INTEGER (KIND=4) and REAL (KIND=4), respectively. The standard mandates that both data
types shall have another kind, which have more precision. On typical target architectures
supported by gfortran, this kind type parameter is KIND=8. Hence, REAL(KIND=8) and
DOUBLE PRECISION are equivalent. In the description of generic intrinsic procedures,
the kind type parameter will be specified by KIND=*, and in the description of specific
names for an intrinsic procedure the kind type parameter will be explicitly given (e.g.,
REAL (KIND=4) or REAL(KIND=8)). Finally, for brevity the optional KIND= syntax will be
omitted.

Many of the intrinsic procedures take one or more optional arguments. This document
follows the convention used in the Fortran 95 standard, and denotes such arguments by
square brackets.

GNU Fortran offers the ‘~std=£f95’ and ‘~std=gnu’ options, which can be used to restrict
the set of intrinsic procedures to a given standard. By default, gfortran sets the ‘-std=gnu’
option, and so all intrinsic procedures described here are accepted. There is one caveat. For
a select group of intrinsic procedures, g77 implemented both a function and a subroutine.
Both classes have been implemented in gfortran for backwards compatibility with g77. It is
noted here that these functions and subroutines cannot be intermixed in a given subprogram.
In the descriptions that follow, the applicable standard for each intrinsic procedure is noted.

8.2 ABORT — Abort the program

Description:
ABORT causes immediate termination of the program. On operating systems
that support a core dump, ABORT will produce a core dump.

Standard: GNU extension
Class: Subroutine
Syntaz: CALL ABORT

Return value:
Does not return.

Example:

program test_abort
integer :: i =1, j =2

64 The GNU Fortran Compiler

if (1 /= j) call abort
end program test_abort

See also: Section 8.78 [EXIT], page 111, Section 8.138 [KILL], page 146

8.3 ABS — Absolute value

Description:
ABS(A) computes the absolute value of A.

Standard: Fortran 77 and later, has overloads that are GNU extensions
Class: Elemental function
Syntaz: RESULT = ABS(A)

Arguments:
A The type of the argument shall be an INTEGER, REAL, or
COMPLEX.

Return value:
The return value is of the same type and kind as the argument except the return
value is REAL for a COMPLEX argument.

Example:

program test_abs
integer :: i
real :: x = -
complex :: z
i = abs(i)
x = abs(x)
x = abs(z)
end program test_abs

-1
.e0
(-1.e0,0.e0)

o=

Specific names:

Name Argument Return type Standard

ABS(A) REAL(4) A REAL(4) Fortran 77 and later
CABS(A) COMPLEX (4) A REAL (4) Fortran 77 and later
DABS (A) REAL(8) A REAL(8) Fortran 77 and later
IABS(A) INTEGER(4) A INTEGER(4) Fortran 77 and later
ZABS(A) COMPLEX(8) A COMPLEX (8) GNU extension
CDABS(A) COMPLEX(8) A COMPLEX (8) GNU extension

8.4 ACCESS — Checks file access modes

Description:
ACCESS(NAME, MODE) checks whether the file NAME exists, is readable, writable
or executable. Except for the executable check, ACCESS can be replaced by
Fortran 95’s INQUIRE.

Standard: GNU extension
Class: Inquiry function

Syntax: RESULT = ACCESS(NAME, MODE)

Chapter 8: Intrinsic Procedures 65

Arguments:

NAME Scalar CHARACTER of default kind with the file name. Tailing
blank are ignored unless the character achar(0) is present,
then all characters up to and excluding achar (0) are used as
file name.

MODE Scalar CHARACTER of default kind with the file access mode,
may be any concatenation of "r" (readable), "w" (writable)
and "x" (executable), or " " to check for existence.

Return value:
Returns a scalar INTEGER, which is 0 if the file is accessible in the given mode;
otherwise or if an invalid argument has been given for MODE the value 1 is
returned.

Example:

program access_test
implicit none

character(len=+*), parameter :: file = ’test.dat’
character(len=%), parameter :: file2 = ’test.dat ’//achar(0)
if (access(file,’ ’) == 0) print *, trim(file),’ is exists’

if (access(file,’r’) == 0) print *, trim(file),’ is readable’
if (access(file,’w’) == 0) print *, trim(file),’ is writable’
if (access(file,’x’) == 0) print *, trim(file),’ is executable’

if (access(file2,’rwx’) == 0) &
print *, trim(file2),’ is readable, writable and executable’
end program access_test

Specific names:
See also:

8.5 ACHAR — Character in ASCII collating sequence

Description:
ACHAR(I) returns the character located at position I in the ASCII collating
sequence.

Standard: Fortran 77 and later, with KIND argument Fortran 2003 and later
Class: Elemental function
Syntaz: RESULT = ACHAR(I [, KIND])

Arguments:
I The type shall be INTEGER.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type CHARACTER with a length of one. If the KIND
argument is present, the return value is of the specified kind and of the default
kind otherwise.

Ezxample:

66 The GNU Fortran Compiler

program test_achar
character c
¢ = achar(32)

end program test_achar

Note: See Section 8.119 [ICHAR], page 136 for a discussion of converting between
numerical values and formatted string representations.

See also: Section 8.45 [CHAR], page 90, Section 8.111 [TACHAR], page 131, Section 8.119
[ICHAR], page 136

8.6 ACOS — Arccosine function

Description:
ACOS(X) computes the arccosine of X (inverse of COS(X)).

Standard: Fortran 77 and later, for a complex argument Fortran 2008 or later
Class: Elemental function
Syntaz: RESULT = ACOS (X)

Arguments:
X The type shall either be REAL with a magnitude that is less
than or equal to one - or the type shall be COMPLEX.

Return value:
The return value is of the same type and kind as X. The real part of the result
is in radians and lies in the range 0 < Racos(z) < 7.

Example:

program test_acos
real(8) :: x = 0.866_8
x = acos(x)

end program test_acos

Specific names:

Name Argument Return type Standard
ACOS (X) REAL(4) X REAL (4) Fortran 77 and later
DACOS (X) REAL(8) X REAL(8) Fortran 77 and later

See also: Inverse function: Section 8.54 [COS], page 95

8.7 ACOSH — Inverse hyperbolic cosine function

Description:
ACOSH(X) computes the inverse hyperbolic cosine of X.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = ACOSH(X)

Arguments:
X The type shall be REAL or COMPLEX.

Chapter 8: Intrinsic Procedures 67

Return value:
The return value has the same type and kind as X. If X is complex, the imagi-
nary part of the result is in radians and lies between 0 < S acosh(x) < .

Example:
PROGRAM test_acosh
REAL(8), DIMENSION(3) :: x = (/ 1.0, 2.0, 3.0 /)
WRITE (*,*) ACOSH(x)
END PROGRAM
Specific names:
Name Argument Return type Standard
DACOSH (X) REAL(8) X REAL(8) GNU extension

See also: Inverse function: Section 8.55 [COSH], page 96

8.8 ADJUSTL — Left adjust a string

Description:
ADJUSTL (STRING) will left adjust a string by removing leading spaces. Spaces
are inserted at the end of the string as needed.

Standard: Fortran 90 and later
Class: Elemental function
Syntaz: RESULT = ADJUSTL (STRING)

Arguments:
STRING The type shall be CHARACTER.

Return value:
The return value is of type CHARACTER and of the same kind as STRING where
leading spaces are removed and the same number of spaces are inserted on the
end of STRING.

Example:

program test_adjustl
character(len=20) :: str = > gfortran’
str = adjustl(str)
print *, str

end program test_adjustl

See also: Section 8.9 [ADJUSTR], page 67, Section 8.248 [TRIM], page 207

8.9 ADJUSTR — Right adjust a string

Description:
ADJUSTR (STRING) will right adjust a string by removing trailing spaces. Spaces
are inserted at the start of the string as needed.

Standard: Fortran 95 and later
Class: Elemental function

Syntaz: RESULT = ADJUSTR (STRING)

68 The GNU Fortran Compiler

Arguments:
STR The type shall be CHARACTER.

Return value:
The return value is of type CHARACTER and of the same kind as STRING where
trailing spaces are removed and the same number of spaces are inserted at the
start of STRING.

Example:

program test_adjustr
character(len=20) :: str = ’gfortran’
str = adjustr(str)
print *, str

end program test_adjustr

See also: Section 8.8 [ADJUSTL], page 67, Section 8.248 [TRIM], page 207

8.10 AIMAG — Imaginary part of complex number

Description:
ATIMAG(Z) yields the imaginary part of complex argument Z. The IMAG(Z) and
IMAGPART(Z) intrinsic functions are provided for compatibility with g77, and
their use in new code is strongly discouraged.

Standard: Fortran 77 and later, has overloads that are GNU extensions
Class: Elemental function
Syntaz: RESULT = AIMAG(Z)

Arguments:
Z The type of the argument shall be COMPLEX.

Return value:
The return value is of type REAL with the kind type parameter of the argument.

Example:

program test_aimag
complex(4) z4
complex(8) z8
z4 = cmplx(1.e0_4, 0.e0_4)
z8 = cmplx(0.e0_8, 1.e0_8)
print *, aimag(z4), dimag(z8)
end program test_aimag

Specific names:

Name Argument Return type Standard

AIMAG(Z) COMPLEX Z REAL GNU extension
DIMAG(Z) COMPLEX(8) Z REAL(8) GNU extension
IMAG(Z) COMPLEX Z REAL GNU extension

IMAGPART(Z) COMPLEX Z REAL GNU extension

Chapter 8: Intrinsic Procedures 69

8.11 AINT — Truncate to a whole number

Description:
AINT(A [, KIND]) truncates its argument to a whole number.

Standard: Fortran 77 and later
Class: Elemental function
Syntaz: RESULT = AINT(A [, KIND])

Arguments:
A The type of the argument shall be REAL.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type REAL with the kind type parameter of the argument
if the optional KIND is absent; otherwise, the kind type parameter will be given
by KIND. If the magnitude of X is less than one, AINT (X) returns zero. If the
magnitude is equal to or greater than one then it returns the largest whole

number that does not exceed its magnitude. The sign is the same as the sign
of X.

Example:

program test_aint
real(4) x4
real(8) x8
x4 = 1.234E0_4
x8 = 4.321_8
print *, aint(x4), dint(x8)
x8 = aint(x4,8)
end program test_aint

Specific names:

Name Argument Return type Standard
AINT(A) REAL(4) A REAL(4) Fortran 77 and later
DINT(A) REAL(8) A REAL(8) Fortran 77 and later

8.12 ALARM — Execute a routine after a given delay

Description:
ALARM(SECONDS, HANDLER [, STATUS]) causes external subroutine HANDLER
to be executed after a delay of SECONDS by using alarm(2) to set up a signal
and signal(2) to catch it. If STATUS is supplied, it will be returned with the
number of seconds remaining until any previously scheduled alarm was due to
be delivered, or zero if there was no previously scheduled alarm.

Standard: GNU extension
Class: Subroutine

Syntax: CALL ALARM(SECONDS, HANDLER [, STATUS])

70 The GNU Fortran Compiler

Arguments:

SECONDS The type of the argument shall be a scalar INTEGER. It is
INTENT(IN).

HANDLER Signal handler (INTEGER FUNCTION or SUBROUTINE) or
dummy /global INTEGER scalar. The scalar values may be ei-
ther SIG_IGN=1 to ignore the alarm generated or SIG_DFL=0
to set the default action. It is INTENT (IN).

STATUS (Optional) STATUS shall be a scalar variable of the default
INTEGER kind. It is INTENT (OUT).

Example:

program test_alarm
external handler_print
integer i
call alarm (3, handler_print, i)
print *, i
call sleep(10)
end program test_alarm

This will cause the external routine handler_print to be called after 3 seconds.

8.13 ALL — All values in MASK along DIM are true

Description:
ALL(MASK [, DIM]) determines if all the values are true in MASK in the array
along dimension DIM.

Standard: Fortran 95 and later
Class: Transformational function

Syntaz: RESULT = ALL(MASK [, DIM])

Arguments:
MASK The type of the argument shall be LOGICAL and it shall not
be scalar.
DIM (Optional) DIM shall be a scalar integer with a value that

lies between one and the rank of MASK.

Return value:
ALL (MASK) returns a scalar value of type LOGICAL where the kind type param-
eter is the same as the kind type parameter of MASK. If DIM is present, then
ALL(MASK, DIM) returns an array with the rank of MASK minus 1. The shape
is determined from the shape of MASK where the DIM dimension is elided.

(A) ALL(MASK) is true if all elements of MASK are true. It also is true
if MASK has zero size; otherwise, it is false.

(B) If the rank of MASK is one, then ALL(MASK,DIM) is equivalent to
ALL(MASK). If the rank is greater than one, then ALL(MASK,DIM)
is determined by applying ALL to the array sections.

Ezxample:

Chapter 8: Intrinsic Procedures 71

program test_all
logical 1
1 = all((/.true., .true., .true./))
print *, 1
call section
contains
subroutine section
integer a(2,3), b(2,3)

a=1
b=1
b(2,2) =2

print *, all(a .eq. b, 1)
print *, all(a .eq. b, 2)
end subroutine section
end program test_all

8.14 ALLOCATED — Status of an allocatable entity

Description:
ALLOCATED (ARRAY) and ALLOCATED (SCALAR) check the allocation status of AR-
RAY and SCALAR, respectively.

Standard: Fortran 95 and later. Note, the SCALAR= keyword and allocatable scalar entities
are available in Fortran 2003 and later.

Class: Inquiry function

Syntax:

RESULT = ALLOCATED (ARRAY)
RESULT = ALLOCATED (SCALAR)

Arguments:
ARRAY The argument shall be an ALLOCATABLE array.
SCALAR The argument shall be an ALLOCATABLE scalar.

Return value:
The return value is a scalar LOGICAL with the default logical kind type parame-
ter. If the argument is allocated, then the result is . TRUE.; otherwise, it returns
.FALSE.

Example:

program test_allocated

integer :: i = 4

real(4), allocatable :: x(:)

if (.not. allocated(x)) allocate(x(i))
end program test_allocated

8.15 AND — Bitwise logical AND

Description:
Bitwise logical AND.

This intrinsic routine is provided for backwards compatibility with GNU For-

tran 77. For integer arguments, programmers should consider the use of the
Section 8.113 [TAND], page 133 intrinsic defined by the Fortran standard.

72 The GNU Fortran Compiler

Standard: GNU extension
Class: Function

Syntaz: RESULT = AND(I, J)

Arguments:
1 The type shall be either a scalar INTEGER type or a scalar
LOGICAL type.
J The type shall be the same as the type of I.

Return value:
The return type is either a scalar INTEGER or a scalar LOGICAL. If the kind type
parameters differ, then the smaller kind type is implicitly converted to larger
kind, and the return has the larger kind.

Example:

PROGRAM test_and
LOGICAL :: T = .TRUE., F = .FALSE.
INTEGER :: a, b
DATA a / Z°F’ /, b / 2°3* /

WRITE (*,%) AND(T, T), AND(T, F), AND(F, T), AND(F, F)
WRITE (*,%) AND(a, b)
END PROGRAM

See also: Fortran 95 elemental function: Section 8.113 [IAND], page 133

8.16 ANINT — Nearest whole number

Description:
ANINT(A [, XKIND]) rounds its argument to the nearest whole number.

Standard: Fortran 77 and later
Class: Elemental function
Syntax: RESULT = ANINT(A [, KIND])

Arguments:
A The type of the argument shall be REAL.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type real with the kind type parameter of the argument if
the optional KIND is absent; otherwise, the kind type parameter will be given
by KIND. If A is greater than zero, ANINT (A) returns AINT (X+0.5). If A is less
than or equal to zero then it returns AINT(X-0.5).

Ezample:

program test_anint
real(4) x4
real(8) x8
x4 = 1.234E0_4
x8 = 4.321_8

Chapter 8: Intrinsic Procedures 73

print *, anint(x4), dnint(x8)
x8 = anint(x4,8)
end program test_anint

Specific names:

Name Argument Return type Standard
AINT(A) REAL(4) A REAL(4) Fortran 77 and later
DNINT(A) REAL(8) A REAL(8) Fortran 77 and later

8.17 ANY — Any value in MASK along DIM is true

Description:

Standard:
Class:
Syntaz:

Arguments:

ANY(MASK [, DIM]) determines if any of the values in the logical array MASK
along dimension DIM are .TRUE..

Fortran 95 and later
Transformational function

RESULT = ANY (MASK [, DIM])

MASK The type of the argument shall be LOGICAL and it shall not
be scalar.
DIM (Optional) DIM shall be a scalar integer with a value that

lies between one and the rank of MASK.

Return value:

Ezample:

ANY (MASK) returns a scalar value of type LOGICAL where the kind type param-
eter is the same as the kind type parameter of MASK. If DIM is present, then
ANY (MASK, DIM) returns an array with the rank of MASK minus 1. The shape
is determined from the shape of MASK where the DIM dimension is elided.

(A) ANY (MASK) is true if any element of MASK is true; otherwise, it is
false. It also is false if MASK has zero size.
(B) If the rank of MASK is one, then ANY(MASK,DIM) is equivalent to

ANY (MASK). If the rank is greater than one, then ANY(MASK,DIM)
is determined by applying ANY to the array sections.

program test_any
logical 1
1 = any((/.true., .true., .true./))
print *, 1
call section
contains
subroutine section
integer a(2,3), b(2,3)

a=1
b=1
b(2,2) =2

print *, any(a .eq. b, 1)
print *, any(a .eq. b, 2)
end subroutine section
end program test_any

74 The GNU Fortran Compiler

8.18 ASIN — Arcsine function

Description:
ASIN(X) computes the arcsine of its X (inverse of SIN(X)).

Standard: Fortran 77 and later, for a complex argument Fortran 2008 or later
Class: FElemental function
Syntaz: RESULT = ASIN(X)

Arguments:
X The type shall be either REAL and a magnitude that is less
than or equal to one - or be COMPLEX.

Return value:
The return value is of the same type and kind as X. The real part of the result
is in radians and lies in the range —7/2 < Rasin(z) < 7/2.

Ezample:

program test_asin
real(8) :: x = 0.866_8
x = asin(x)

end program test_asin

Specific names:

Name Argument Return type Standard
ASIN(X) REAL(4) X REAL (4) Fortran 77 and later
DASIN(X) REAL(8) X REAL(8) Fortran 77 and later

See also: Inverse function: Section 8.224 [SIN], page 193

8.19 ASINH — Inverse hyperbolic sine function

Description:
ASINH(X) computes the inverse hyperbolic sine of X.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = ASINH(X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value is of the same type and kind as X. If X is complex, the
imaginary part of the result is in radians and lies between —7 /2 < Sasinh(z) <

/2.

Example:

PROGRAM test_asinh
REAL(8), DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
WRITE (*,*) ASINH(x)

END PROGRAM

Chapter 8: Intrinsic Procedures 75

Specific names:
Name Argument Return type Standard
DASINH(X) REAL(8) X REAL(8) GNU extension.

See also: Inverse function: Section 8.225 [SINH], page 194

8.20 ASSOCIATED — Status of a pointer or pointer/target pair

Description:
ASSOCIATED (POINTER [, TARGET]) determines the status of the pointer
POINTER or if POINTER is associated with the target TARGET.

Standard: Fortran 95 and later
Class: Inquiry function

Syntax: RESULT = ASSOCIATED (POINTER [, TARGET])

Arguments:
POINTER POINTER shall have the POINTER attribute and it can be of
any type.
TARGET (Optional) TARGET shall be a pointer or a target. It must
have the same type, kind type parameter, and array rank as
POINTER.

The association status of neither POINTER nor TARGET shall be undefined.

Return value:
ASSOCIATED (POINTER) returns a scalar value of type LOGICAL(4). There are
several cases:

(A) When the optional TARGET is not present then
ASSOCIATED(POINTER) is true if POINTER is associated with a
target; otherwise, it returns false.

(B) If TARGET is present and a scalar target, the result is true if
TARGET is not a zero-sized storage sequence and the target associ-
ated with POINTER occupies the same storage units. If POINTER
is disassociated, the result is false.

(C) If TARGET is present and an array target, the result is true if
TARGET and POINTER have the same shape, are not zero-sized
arrays, are arrays whose elements are not zero-sized storage se-
quences, and TARGET and POINTER occupy the same storage
units in array element order. As in case(B), the result is false, if
POINTER is disassociated.

(D) If TARGET is present and an scalar pointer, the result is true
if TARGET is associated with POINTER, the target associated
with TARGET are not zero-sized storage sequences and occupy
the same storage units. The result is false, if either TARGET or
POINTER is disassociated.

76 The GNU Fortran Compiler

(E) If TARGET is present and an array pointer, the result is true if
target associated with POINTER and the target associated with
TARGET have the same shape, are not zero-sized arrays, are ar-
rays whose elements are not zero-sized storage sequences, and TAR-
GET and POINTER occupy the same storage units in array ele-
ment order. The result is false, if either TARGET or POINTER is
disassociated.

Example:

program test_associated
implicit none

real, target :: tgt(2) = (/1., 2./)

real, pointer :: ptr(:)

ptr => tgt

if (associated(ptr) .eqv. .false.) call abort

if (associated(ptr,tgt) .eqv. .false.) call abort
end program test_associated

See also: Section 8.185 [NULLJ, page 171

8.21 ATAN — Arctangent function

Description:
ATAN (X) computes the arctangent of X.

Standard: Fortran 77 and later, for a complex argument and for two arguments Fortran
2008 or later

Class: Elemental function

Syntaz:

RESULT = ATAN (X)
RESULT = ATAN(Y, X)

Arguments:
X The type shall be REAL or COMPLEX; if Y is present, X shall
be REAL.
Y shall be of
the same type
and kind as
X.

Return value:
The return value is of the same type and kind as X. If Y is present, the result
is identical to ATAN2(Y,X). Otherwise, it the arcus tangent of X, where the real
part of the result is in radians and lies in the range —7/2 < Ratan(z) < 7/2.

Example:

program test_atan
real(8) :: x = 2.866_8
x = atan(x)

end program test_atan

Chapter 8: Intrinsic Procedures 77

Specific names:

Name Argument Return type Standard
ATAN(X) REAL(4) X REAL (4) Fortran 77 and later
DATAN (X) REAL(8) X REAL(8) Fortran 77 and later

See also: Inverse function: Section 8.239 [TAN], page 202

8.22 ATAN2 — Arctangent function

Description:
ATAN2(Y, X) computes the principal value of the argument function of the com-
plex number X +:Y . This function can be used to transform from Cartesian into
polar coordinates and allows to determine the angle in the correct quadrant.

Standard: Fortran 77 and later
Class: Elemental function
Syntax: RESULT = ATAN2(Y, X)

Arguments:
Y The type shall be REAL.
X The type and kind type parameter shall be the same as Y. If
Y is zero, then X must be nonzero.

Return value:

The return value has the same type and kind type parameter as Y. It is the
principal value of the complex number X + 7Y. If X is nonzero, then it lies in
the range —m < atan(z) < m. The sign is positive if Y is positive. If Y is zero,
then the return value is zero if X is strictly positive, 7 if X is negative and Y
is positive zero (or the processor does not handle signed zeros), and —m if X is
negative and Y is negative zero. Finally, if X is zero, then the magnitude of
the result is 7/2.

Example:

program test_atan2
real(4) :: x = 1.e0_4, y = 0.5e0_4
x = atan2(y,x)

end program test_atan2

Specific names:

Name Argument Return type Standard
ATAN2 (X, Y) REAL(4) X, Y REAL(4) Fortran 77 and later
DATAN2 (X, Y) REAL(8) X, Y REAL(8) Fortran 77 and later

8.23 ATANH — Inverse hyperbolic tangent function

Description:
ATANH(X) computes the inverse hyperbolic tangent of X.

Standard: Fortran 2008 and later

Class: Elemental function

78 The GNU Fortran Compiler

Syntaz: RESULT = ATANH(X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value has same type and kind as X. If X is complex, the imaginary
part of the result is in radians and lies between —7/2 < Satanh(z) < /2.

Ezample:

PROGRAM test_atanh
REAL, DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
WRITE (*,*) ATANH(x)

END PROGRAM

Specific names:
Name Argument Return type Standard
DATANH (X) REAL(8) X REAL(8) GNU extension

See also: Inverse function: Section 8.240 [TANH], page 203

8.24 ATOMIC_DEFINE — Setting a variable atomically

Description:
ATOMIC_DEFINE(ATOM, VALUE) defines the variable ATOM with the value
VALUE atomically.

Standard: Fortran 2008 and later
Class: Atomic subroutine

Syntax: CALL ATOMIC_DEFINE(ATOM, VALUE)

Arguments:
ATOM Scalar coarray or coindexed variable of either integer type
with ATOMIC_INT_KIND kind or logical type with ATOMIC_
LOGICAL_KIND kind.
VALURE Scalar and of the same type as ATOM. If the kind is different,
the value is converted to the kind of ATOM.
Ezxample:

program atomic
use iso_fortran_env
integer(atomic_int_kind) :: atom[*]
call atomic_define (atom[1], this_image())
end program atomic

See also: Section 8.25 [ATOMIC_REF], page 78, Section 9.1 [ISO_.FORTRAN_ENV],
page 213

8.25 ATOMIC_REF — Obtaining the value of a variable
atomically
Description:

ATOMIC_DEFINE(ATOM, VALUE) atomically assigns the value of the variable
ATOM to VALUE.

Chapter 8: Intrinsic Procedures 79

Standard: Fortran 2008 and later
Class: Atomic subroutine

Syntax: CALL ATOMIC_REF(VALUE, ATOM)

Arguments:
VALURE Scalar and of the same type as ATOM. If the kind is different,
the value is converted to the kind of ATOM.
ATOM Scalar coarray or coindexed variable of either integer type
with ATOMIC_INT_KIND kind or logical type with ATOMIC_
LOGICAL_KIND kind.
Ezxample:

program atomic
use iso_fortran_env
logical(atomic_logical_kind) :: atom[*]
logical :: val
call atomic_ref (atom, .false.)
1

call atomic_ref (atom, val)
if (val) then
print *, "Obtained"
end if
end program atomic

See also: Section 8.24 [ATOMIC_DEFINE], page 78, Section 9.1 [[SO_.FORTRAN_ENV],
page 213

8.26 BESSEL_JO0 — Bessel function of the first kind of order 0

Description:
BESSEL_JO(X) computes the Bessel function of the first kind of order 0 of X.
This function is available under the name BESJO as a GNU extension.

Standard: Fortran 2008 and later
Class: Elemental function
Syntax: RESULT = BESSEL_JO(X)

Arguments:
X The type shall be REAL, and it shall be scalar.

Return value:
The return value is of type REAL and lies in the range —0.4027...
Bessel(0,z) < 1. It has the same kind as X.

A

Example:

program test_besjo0
real(8) :: x = 0.0_8
x = bessel_joO(x)

end program test_besjO

Specific names:
Name Argument Return type Standard
DBESJO(X) REAL(8) X REAL(8) GNU extension

80 The GNU Fortran Compiler

8.27 BESSEL_J1 — Bessel function of the first kind of order 1

Description:
BESSEL_J1(X) computes the Bessel function of the first kind of order 1 of X.
This function is available under the name BESJ1 as a GNU extension.

Standard: Fortran 2008
Class: Elemental function
Syntaz: RESULT = BESSEL_J1(X)

Arguments:
X The type shall be REAL, and it shall be scalar.

Return value:
The return wvalue is of type REAL and it lies in the range
—0.5818... < Bessel(0,x) < 0.5818. It has the same kind as X.

Example:

program test_besjl
real(8) :: x = 1.0_8
x = bessel_j1(x)

end program test_besjl

Specific names:
Name Argument Return type Standard
DBESJ1(X) REAL(8) X REAL(8) GNU extension

8.28 BESSEL_JN — Bessel function of the first kind

Description:
BESSEL_JN (N, X) computes the Bessel function of the first kind of order N of
X. This function is available under the name BESJN as a GNU extension. If N
and X are arrays, their ranks and shapes shall conform.

BESSEL_JN (N1, N2, X) returns an array with the Bessel functions of the first
kind of the orders N1 to N2.
Standard: Fortran 2008 and later, negative N is allowed as GNU extension

Class: Elemental function, except for the transformational function BESSEL_JN (N1,
N2, X)
Syntaz:

RESULT = BESSEL_JN(N, X)
RESULT = BESSEL_JN(N1, N2, X)

Arguments:
N Shall be a scalar or an array of type INTEGER.
N1 Shall be a non-negative scalar of type INTEGER.
N2 Shall be a non-negative scalar of type INTEGER.
X Shall be a scalar or an array of type REAL; for BESSEL_JN (N1,

N2, X) it shall be scalar.

Chapter 8: Intrinsic Procedures 81

Return value:
The return value is a scalar of type REAL. It has the same kind as X.

Note: The transformational function uses a recurrence algorithm which might, for
some values of X, lead to different results than calls to the elemental function.

Example:

program test_besjn
real(8) :: x = 1.0_8
x = bessel_jn(5,x)

end program test_besjn

Specific names:

Name Argument Return type Standard
DBESJN(N, X) INTEGER N REAL(8) GNU extension
REAL(8) X

8.29 BESSEL_Y0O — Bessel function of the second kind of
order 0

Description:
BESSEL_YO0 (X) computes the Bessel function of the second kind of order 0 of X.
This function is available under the name BESYO as a GNU extension.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = BESSEL_YO(X)

Arguments:
X The type shall be REAL, and it shall be scalar.

Return value:
The return value is a scalar of type REAL. It has the same kind as X.

Ezample:
program test_besy0
real(8) :: x = 0.0_8
x = bessel_y0(x)
end program test_besy0
Specific names:
Name Argument Return type Standard
DBESYO (X) REAL(8) X REAL(8) GNU extension

8.30 BESSEL_Y1 — Bessel function of the second kind of
order 1

Description:
BESSEL_Y1 (X) computes the Bessel function of the second kind of order 1 of X.
This function is available under the name BESY1 as a GNU extension.

Standard: Fortran 2008 and later

82 The GNU Fortran Compiler

Class: Elemental function
Syntax: RESULT = BESSEL_Y1(X)

Arguments:
X The type shall be REAL, and it shall be scalar.

Return value:
The return value is a scalar of type REAL. It has the same kind as X.

Ezample:
program test_besyl
real(8) :: x = 1.0_8
x = bessel_y1(x)
end program test_besyl
Specific names:
Name Argument Return type Standard
DBESY1 (X) REAL(8) X REAL(8) GNU extension

8.31 BESSEL_YN — Bessel function of the second kind

Description:
BESSEL_YN (N, X) computes the Bessel function of the second kind of order N
of X. This function is available under the name BESYN as a GNU extension. If
N and X are arrays, their ranks and shapes shall conform.
BESSEL_YN (N1, N2, X) returns an array with the Bessel functions of the first
kind of the orders N1 to N2.

Standard: Fortran 2008 and later, negative N is allowed as GNU extension

Class: Elemental function, except for the transformational function BESSEL_YN (N1,
N2, X)
Syntaz:

RESULT = BESSEL_YN(N, X)
RESULT = BESSEL_YN(N1, N2, X)

Arguments:
N Shall be a scalar or an array of type INTEGER .
N1 Shall be a non-negative scalar of type INTEGER.
N2 Shall be a non-negative scalar of type INTEGER.
X Shall be a scalar or an array of type REAL; for BESSEL_YN (N1,

N2, X) it shall be scalar.

Return value:
The return value is a scalar of type REAL. It has the same kind as X.

Note: The transformational function uses a recurrence algorithm which might, for
some values of X, lead to different results than calls to the elemental function.

Example:
program test_besyn
real(8) :: x =1.0_8
x = bessel_yn(5,x)
end program test_besyn

Chapter 8: Intrinsic Procedures 83

Specific names:

Name Argument Return type Standard
DBESYN (N, X) INTEGER N REAL(8) GNU extension
REAL(8) X

8.32 BGE — Bitwise greater than or equal to

Description:

Determines whether an integral is a bitwise greater than or equal to another.
Standard: Fortran 2008 and later
Class: Elemental function

Syntazx: RESULT = BGE(I, J)

Arguments:
1 Shall be of INTEGER type.
J Shall be of INTEGER type, and of the same kind as I.

Return value:
The return value is of type LOGICAL and of the default kind.

See also: Section 8.33 [BGT], page 83, Section 8.35 [BLE], page 84, Section 8.36 [BLT],
page 84

8.33 BGT — Bitwise greater than
Description:
Determines whether an integral is a bitwise greater than another.
Standard: Fortran 2008 and later
Class: Elemental function
Syntax: RESULT = BGT(I, J)

Arguments:
1 Shall be of INTEGER type.
J Shall be of INTEGER type, and of the same kind as I.

Return value:
The return value is of type LOGICAL and of the default kind.

See also: Section 8.32 [BGE], page 83, Section 8.35 [BLE], page 84, Section 8.36 [BLT],
page 84

8.34 BIT_SIZE — Bit size inquiry function

Description:
BIT_SIZE(I) returns the number of bits (integer precision plus sign bit) repre-
sented by the type of I. The result of BIT_SIZE(I) is independent of the actual
value of L

Standard: Fortran 95 and later

84 The GNU Fortran Compiler

Class: Inquiry function
Syntaz: RESULT = BIT_SIZE(I)

Arguments:
I The type shall be INTEGER.

Return value:
The return value is of type INTEGER

Ezample:

program test_bit_size
integer :: i = 123
integer :: size
size = bit_size(i)
print *, size

end program test_bit_size

8.35 BLE — Bitwise less than or equal to
Description:
Determines whether an integral is a bitwise less than or equal to another.
Standard: Fortran 2008 and later
Class: Elemental function
Syntax: RESULT = BLE(I, J)

Arguments:
1 Shall be of INTEGER type.
J Shall be of INTEGER type, and of the same kind as I.

Return value:
The return value is of type LOGICAL and of the default kind.

See also: Section 8.33 [BGT], page 83, Section 8.32 [BGE], page 83, Section 8.36 [BLT],
page 84

8.36 BLT — Bitwise less than
Description:
Determines whether an integral is a bitwise less than another.
Standard: Fortran 2008 and later
Class: FElemental function
Syntax: RESULT = BLT(I, J)

Arguments:
I Shall be of INTEGER type.
J Shall be of INTEGER type, and of the same kind as L.

Return value:
The return value is of type LOGICAL and of the default kind.

See also: Section 8.32 [BGE], page 83, Section 8.33 [BGT], page 83, Section 8.35 [BLE],
page 84

Chapter 8: Intrinsic Procedures 85

8.37 BTEST — Bit test function

Description:
BTEST (I,P0S) returns logical . TRUE. if the bit at POS in I is set. The counting
of the bits starts at 0.

Standard: Fortran 95 and later
Class: Elemental function
Syntaz: RESULT = BTEST(I, P0OS)

Arguments:
I The type shall be INTEGER.
POS The type shall be INTEGER.

Return value:
The return value is of type LOGICAL

Ezample:

program test_btest
integer :: i = 32768 + 1024 + 64

integer :: pos
logical :: bool
do pos=0,16

bool = btest(i, pos)
print *, pos, bool
end do
end program test_btest

8.38 C_ASSOCIATED — Status of a C pointer

Description:
C_ASSOCIATED(c_prt_1[, c_ptr_2]) determines the status of the C pointer
c_ptr_1 or if c_ptr_1 is associated with the target c_ptr_2.

Standard: Fortran 2003 and later
Class: Inquiry function
Syntax: RESULT = C_ASSOCIATED(c_prt_1[, c_ptr_2])

Arguments:
c_ptr_1 Scalar of the type C_PTR or C_FUNPTR.
c_ptr_2 (Optional) Scalar of the same type as c_ptr_1.

Return value:
The return value is of type LOGICAL; it is .false. if either c_ptr_1 is a C NULL
pointer or if c_ptrl and c_ptr_2 point to different addresses.

Example:

subroutine association_test(a,b)
use iso_c_binding, only: c_associated, c_loc, c_ptr
implicit none
real, pointer :: a
type(c_ptr) :: b
if (c_associated(b, c_loc(a))) &

86 The GNU Fortran Compiler

stop ’b and a do not point to same target’
end subroutine association_test

See also: Section 8.42 [C_LOC], page 88, Section 8.39 [C_FUNLOC], page 86

8.39 C_FUNLOC — Obtain the C address of a procedure
Description:
C_FUNLOC(x) determines the C address of the argument.
Standard: Fortran 2003 and later
Class: Inquiry function
Syntaz: RESULT = C_FUNLOC (x)

Arguments:
b'e Interoperable function or pointer to such function.

Return value:
The return value is of type C_FUNPTR and contains the C address of the argu-
ment.

Ezample:
module x
use iso_c_binding
implicit none

contains
subroutine sub(a) bind(c)
real(c_float) :: a

a = sqrt(a)+5.0
end subroutine sub
end module x
program main
use iso_c_binding
use x
implicit none
interface
subroutine my_routine(p) bind(c,name=’myC_func’)
import :: c_funptr
type(c_funptr), intent(in) :: p
end subroutine
end interface
call my_routine(c_funloc(sub))
end program main

See also: Section 8.38 [C_ASSOCIATED], page 85, Section 8.42 [C_LOC], page 88,
Section 8.41 [C_F_POINTER], page 87, Section 8.40 [C_.F_PROCPOINTER],
page 86

8.40 C_F_PROCPOINTER — Convert C into Fortran procedure
pointer
Description:

C_F_PROCPOINTER(CPTR, FPTR) Assign the target of the C function pointer
CPTR to the Fortran procedure pointer FPTR.

Chapter 8: Intrinsic Procedures 87

Standard:
Class:
Syntaz:

Arguments:

Ezample:

See also:

Fortran 2003 and later
Subroutine

CALL C_F_PROCPOINTER(cptr, fptr)

CPTR scalar of the type C_FUNPTR. It is INTENT (IN).
FPTR procedure pointer interoperable with cptr. It is INTENT (OUT).

program main
use iso_c_binding
implicit none
abstract interface
function func(a)

import :: c_float
real(c_float), intent(in) :: a
real(c_float) :: func

end function
end interface

interface
function getIterFunc() bind(c,name="getIterFunc")
import :: c_funptr

type(c_funptr) :: getIterFunc
end function
end interface
type(c_funptr) :: cfunptr
procedure(func), pointer :: myFunc
cfunptr = getIterFunc()
call c_f_procpointer (cfunptr, myFunc)
end program main

Section 8.42 [C_LOC], page 88, Section 8.41 [C_F_POINTER], page 87

8.41 C_F_POINTER — Convert C into Fortran pointer

Description:

Standard:
Class:
Syntaz:

Arguments:

Example:

C_F_POINTER(CPTR, FPTR[, SHAPE]) Assign the target the C pointer CPTR
to the Fortran pointer FPTR and specify its shape.

Fortran 2003 and later
Subroutine

CALL C_F_POINTER(CPTR, FPTR[, SHAPE])

CPTR scalar of the type C_PTR. It is INTENT (IN).
FPTR pointer interoperable with cptr. It is INTENT (QUT).
SHAPE (Optional) Rank-one array of type INTEGER with INTENT (IN).

It shall be present if and only if fptr is an array. The size must
be equal to the rank of fptr.

program main
use iso_c_binding

88 The GNU Fortran Compiler

implicit none

interface
subroutine my_routine(p) bind(c,name=’myC_func’)
import :: c_ptr

type(c_ptr), intent(out) :: p
end subroutine
end interface
type(c_ptr) :: cptr
real,pointer :: a(:)
call my_routine(cptr)
call c_f_pointer(cptr, a, [12])
end program main

See also: Section 8.42 [C_LOC], page 88, Section 8.40 [C_F_PROCPOINTER], page 86

8.42 C_LOC — Obtain the C address of an object

Description:
C_LOC(X) determines the C address of the argument.

Standard: Fortran 2003 and later
Class: Inquiry function
Syntaz: RESULT = C_LOC(X)

Arguments:

X Shall have either the POINTER or TARGET attribute. It shall
not be a coindexed object. It shall either be a variable with inter-
operable type and kind type parameters, or be a scalar, nonpoly-
morphic variable with no length type parameters.

Return value:
The return value is of type C_PTR and contains the C address of the argument.

Ezample:

subroutine association_test(a,b)
use iso_c_binding, only: c_associated, c_loc, c_ptr
implicit none
real, pointer :: a
type(c_ptr) :: b
if (c_associated(b, c_loc(a))) &
stop ’b and a do not point to same target’
end subroutine association_test

See also: Section 8.38 [C_ASSOCIATED], page 85, Section 8.39 [C_.FUNLOC], page 86,
Section 8.41 [C_F_POINTER], page 87, Section 8.40 [C_.F_PROCPOINTER],
page 86

8.43 C_SIZEQOF — Size in bytes of an expression

Description:
C_SIZEOF (X) calculates the number of bytes of storage the expression X occu-
pies.

Chapter 8: Intrinsic Procedures 89

Standard: Fortran 2008
Class: Inquiry function of the module ISO_C_BINDING
Syntaz: N = C_SIZEQOF(X)

Arguments:
X The argument shall be an interoperable data entity.

Return value:
The return value is of type integer and of the system-dependent kind C_SIZE_T
(from the ISO_C_BINDING module). Its value is the number of bytes occupied by
the argument. If the argument has the POINTER attribute, the number of bytes
of the storage area pointed to is returned. If the argument is of a derived type
with POINTER or ALLOCATABLE components, the return value does not account
for the sizes of the data pointed to by these components.

Example:
use iso_c_binding
integer(c_int) :: i
real(c_float) :: r, s(5)
print *, (c_sizeof(s)/c_sizeof(r) == 5)
end
The example will print .TRUE. unless you are using a platform where default

REAL variables are unusually padded.
See also: Section 8.227 [SIZEOF], page 195, Section 8.234 [STORAGE_SIZE], page 199

8.44 CEILING — Integer ceiling function

Description:
CEILING(A) returns the least integer greater than or equal to A.

Standard: Fortran 95 and later
Class: Elemental function
Syniax: RESULT = CEILING(A [, KIND])

Arguments:
A The type shall be REAL.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type INTEGER(KIND) if KIND is present and a default-
kind INTEGER otherwise.

Ezxample:
program test_ceiling
real :: x = 63.29
real :: y = -63.59
print *, ceiling(x) ! returns 64
print *, ceiling(y) ! returns -63
end program test_ceiling

See also: Section 8.85 [FLOOR], page 116, Section 8.182 [NINT], page 170

90 The GNU Fortran Compiler

8.45 CHAR — Character conversion function

Description:
CHAR(TI [, KIND]) returns the character represented by the integer L

Standard: Fortran 77 and later
Class: Elemental function
Syntax: RESULT = CHAR(I [, KIND])

Arguments:
I The type shall be INTEGER.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type CHARACTER (1)

Example:
program test_char
integer :: i =74
character(1) :: c

¢ = char(i)
print *, i, c ! returns ’J’
end program test_char

Specific names:

Name Argument Return type Standard
CHAR(I) INTEGER I CHARACTER (LEN=1)}77 and later
Note: See Section 8.119 [ICHARJ, page 136 for a discussion of converting between

numerical values and formatted string representations.

See also: Section 8.5 [ACHAR], page 65, Section 8.111 [TACHARJ, page 131, Section 8.119
[ICHAR], page 136

8.46 CHDIR — Change working directory

Description:
Change current working directory to a specified path.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.
Standard: GNU extension

Class: Subroutine, function

Syntaz:

CALL CHDIR(NAME [, STATUS])
STATUS = CHDIR(NAME)

Arguments:
NAME The type shall be CHARACTER of default kind and shall specify
a valid path within the file system.

Chapter 8: Intrinsic Procedures 91

Example:

See also:

STATUS (Optional) INTEGER status flag of the default kind. Returns
0 on success, and a system specific and nonzero error code
otherwise.

PROGRAM test_chdir
CHARACTER (len=255) :: path
CALL getcwd(path)
WRITE(*,*) TRIM(path)
CALL chdir("/tmp")
CALL getcwd(path)
WRITE(*,*) TRIM(path)

END PROGRAM

Section 8.100 [GETCWD], page 126

8.47 CHMOD — Change access permissions of files

Description:

Standard:
Class:
Syntaz:

Arguments:

CHMOD changes the permissions of a file.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

GNU extension

Subroutine, function

CALL CHMOD(NAME, MODE[, STATUS])
STATUS = CHMOD (NAME, MODE)

NAME Scalar CHARACTER of default kind with the file name. Trailing
blanks are ignored unless the character achar(0) is present,
then all characters up to and excluding achar (0) are used as
the file name.

MODE Scalar CHARACTER of default kind giving the file permission.
MODE uses the same syntax as the chmod utility as defined
by the POSIX standard. The argument shall either be a string
of a nonnegative octal number or a symbolic mode.

STATUS (optional) scalar INTEGER, which is 0 on success and nonzero
otherwise.

Return value:

Ezample:

In either syntax, STATUS is set to 0 on success and nonzero otherwise.

CHMOD as subroutine
program chmod_test
implicit none
integer :: status

92 The GNU Fortran Compiler

call chmod(’test.dat’,’u+x’,status)
print *, ’Status: ’, status
end program chmod_test

CHMOD as function:

program chmod_test
implicit none

integer :: status
status = chmod(’test.dat’,’u+x’)
print *, ’Status: ’, status

end program chmod_test

8.48 CMPLX — Complex conversion function

Description:
CMPLX(X [, Y [, KIND]]) returns a complex number where X is converted to
the real component. If Y is present it is converted to the imaginary component.
If Y is not present then the imaginary component is set to 0.0. If X is complex
then Y must not be present.

Standard: Fortran 77 and later
Class: Elemental function

Syntaz: RESULT = CMPLX(X [, Y [, KIND]])

Arguments:
X The type may be INTEGER, REAL, or COMPLEX.
Y (Optional; only allowed if X is not COMPLEX.) May be INTEGER
or REAL.
KIND (Optional) An INTEGER initialization expression indicating

the kind parameter of the result.

Return value:
The return value is of COMPLEX type, with a kind equal to KIND if it is specified.
If KIND is not specified, the result is of the default COMPLEX kind, regardless
of the kinds of X and Y.

Example:
program test_cmplx
integer :: i = 42
real :: x = 3.14
complex :: z

z = cmplx(i, x)
print *, z, cmplx(x)
end program test_cmplx

See also: Section 8.52 [COMPLEX], page 94

8.49 COMMAND_ARGUMENT_COUNT — Get number of command
line arguments
Description:

COMMAND_ARGUMENT_COUNT returns the number of arguments passed on the com-
mand line when the containing program was invoked.

Chapter 8: Intrinsic Procedures 93

Standard: Fortran 2003 and later
Class: Inquiry function
Syntax: RESULT = COMMAND_ARGUMENT_COUNT ()

Arguments:
None

Return value:
The return value is an INTEGER of default kind.

Ezample:

program test_command_argument_count
integer :: count
count = command_argument_count ()
print *, count

end program test_command_argument_count

See also: Section 8.98 [GET_COMMAND], page 124, Section 8.99 [GET_COMMAND_ARGUMENT] }
page 125

8.50 COMPILER_OPTIONS — Options passed to the compiler

Description:
COMPILER_OPTIONS returns a string with the options used for compiling.

Standard: Fortran 2008
Class: Inquiry function of the module ISO_FORTRAN_ENV
Syntax: STR = COMPILER_OPTIONS()

Arguments:
None.

Return value:
The return value is a default-kind string with system-dependent length. It
contains the compiler flags used to compile the file, which called the COMPILER_
OPTIONS intrinsic.

Example:

use iso_fortran_env

print ’(4a)’, ’This file was compiled by ’, &
compiler_version(), ’ using the options ’, &
compiler_options()

end

See also: Section 851 [COMPILER_VERSION], page 93, Section 9.1
[ISO_.FORTRAN_ENV], page 213

8.51 COMPILER_VERSION — Compiler version string

Description:
COMPILER_VERSION returns a string with the name and the version of the com-
piler.

94

The GNU Fortran Compiler

Standard: Fortran 2008

Class: Inquiry function of the module ISO_FORTRAN_ENV

Syntaz:

Arguments:

STR = COMPILER_VERSION()

None.

Return value:

The return value is a default-kind string with system-dependent length. It
contains the name of the compiler and its version number.

Example:
use iso_fortran_env
print ’(4a)’, ’This file was compiled by ’, &
compiler_version(), ’ using the options ’, &
compiler_options()
end
See also: Section 850 [COMPILER_OPTIONS|, page 93, Section 9.1
[ISO_FORTRAN_ENV], page 213
8.52 COMPLEX — Complex conversion function
Description:
COMPLEX (X, Y) returns a complex number where X is converted to the real
component and Y is converted to the imaginary component.
Standard: GNU extension
Class: Elemental function
Syntaz: RESULT = COMPLEX (X, Y)
Arguments:

X The type may be INTEGER or REAL.
Y The type may be INTEGER or REAL.

Return value:

Example:

See also:

If X and Y are both of INTEGER type, then the return value is of default COMPLEX
type.

If X and Y are of REAL type, or one is of REAL type and one is of INTEGER type,
then the return value is of COMPLEX type with a kind equal to that of the REAL
argument with the highest precision.

program test_complex
integer :: i = 42
real :: x = 3.14
print *, complex(i, x)

end program test_complex

Section 8.48 [CMPLX], page 92

Chapter 8: Intrinsic Procedures 95

8.53 CONJG — Complex conjugate function

Description:
CONJG(Z) returns the conjugate of Z. If Z is (x, y) then the result is (x, -y)

Standard: Fortran 77 and later, has overloads that are GNU extensions
Class: Elemental function
Syntaz: Z = CONJG(Z)

Arguments:
Z The type shall be COMPLEX.

Return value:
The return value is of type COMPLEX.

Example:

program test_conjg
complex :: z = (2.0, 3.0)
complex(8) :: dz = (2.71_.8, -3.14_.8)
z= conjg(z)
print *, z
dz = dconjg(dz)
print *, dz
end program test_conjg

Specific names:

Name Argument Return type Standard
CONJG(Z) COMPLEX Z COMPLEX GNU extension
DCONJG(Z) COMPLEX(8) Z COMPLEX(8) GNU extension

8.54 C0S — Cosine function

Description:
COS(X) computes the cosine of X.

Standard: Fortran 77 and later, has overloads that are GNU extensions
Class: Elemental function
Syntaz: RESULT = COS(X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value is of the same type and kind as X. The real part of the result
is in radians. If X is of the type REAL, the return value lies in the range
—1 < cos(z) < 1.

Example:

program test_cos
real :: x = 0.0
x = cos(x)

end program test_cos

96 The GNU Fortran Compiler

Specific names:

Name Argument Return type Standard

COS (X) REAL(4) X REAL(4) Fortran 77 and later
DCOS (X) REAL(8) X REAL(8) Fortran 77 and later
CCOS(X) COMPLEX (4) X COMPLEX (4) Fortran 77 and later
ZC0S(X) COMPLEX(8) X COMPLEX (8) GNU extension
CDCOS (X) COMPLEX (8) X COMPLEX (8) GNU extension

See also: Inverse function: Section 8.6 [ACOS], page 66

8.55 COSH — Hyperbolic cosine function

Description:
COSH(X) computes the hyperbolic cosine of X.

Standard: Fortran 77 and later, for a complex argument Fortran 2008 or later
Class: Elemental function
Syntaz: X = COSH(X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value has same type and kind as X. If X is complex, the imaginary
part of the result is in radians. If X is REAL, the return value has a lower bound
of one, cosh(z) > 1.

Example:

program test_cosh
real(8) :: x = 1.0_8
x = cosh(x)

end program test_cosh

Specific names:

Name Argument Return type Standard
COSH(X) REAL(4) X REAL(4) Fortran 77 and later
DCOSH (X) REAL(8) X REAL(8) Fortran 77 and later

See also: Inverse function: Section 8.7 [ACOSH], page 66

8.56 COUNT — Count function

Description:
Counts the number of .TRUE. elements in a logical MASK, or, if the DIM
argument is supplied, counts the number of elements along each row of the
array in the DIM direction. If the array has zero size, or all of the elements of
MASK are .FALSE., then the result is 0.

Standard: Fortran 95 and later, with KIND argument Fortran 2003 and later
Class: Transformational function

Syntax: RESULT = COUNT(MASK [, DIM, KIND])

Chapter 8: Intrinsic Procedures 97

Arguments:

MASK The type shall be LOGICAL.
DIM (Optional) The type shall be INTEGER.
KIND (Optional) An INTEGER initialization expression indicating

the kind parameter of the result.

Return value:

Ezample:

The return value is of type INTEGER and of kind KIND. If KIND is absent, the
return value is of default integer kind. If DIM is present, the result is an array
with a rank one less than the rank of ARRAY, and a size corresponding to the
shape of ARRAY with the DIM dimension removed.

program test_count

integer, dimension(2,3) :: a, b

logical, dimension(2,3) :: mask

a = reshape((/ 1, 2, 3, 4, 5,6 /), (/2,3)/))
b = reshape((/ 0, 7, 3, 4, 5, 8 /), (/ 2, 3/))
print ’(3i3)’, a(1,:)

print ’(313)’, a(2,:)

print *

print ’(313)’, b(1,:)

print ’(3i3)’, b(2,:)

print *

mask = a.ne.b

print ’(313)’, mask(1,:)

print ’(313)°’, mask(2,:)

print *

print ’(3i3)°’, count(mask)

print *

print ’(3i3)’, count(mask, 1)

print *

print ’(3i3)’, count(mask, 2)
end program test_count

8.57 CPU_TIME — CPU elapsed time in seconds

Description:

Standard:
Class:
Syntaz:

Arguments:

Returns a REAL value representing the elapsed CPU time in seconds. This is
useful for testing segments of code to determine execution time.

If a time source is available, time will be reported with microsecond resolution.
If no time source is available, TIME is set to =1.0.

Note that TIME may contain a, system dependent, arbitrary offset and may not
start with 0.0. For CPU_TIME, the absolute value is meaningless, only differences
between subsequent calls to this subroutine, as shown in the example below,
should be used.

Fortran 95 and later
Subroutine

CALL CPU_TIME(TIME)

TIME The type shall be REAL with INTENT (QUT).

98 The GNU Fortran Compiler

Return value:
None

Example:

program test_cpu_time
real :: start, finish
call cpu_time(start)
! put code to test here
call cpu_time(finish)
print ’("Time = ",f6.3," seconds.")’,finish-start
end program test_cpu_time

See also: Section 8.238 [SYSTEM_CLOCK], page 201, Section 8.60 [DATE_AND_TIME],
page 99

8.58 CSHIFT — Circular shift elements of an array

Description:

CSHIFT(ARRAY, SHIFT [, DIM]) performs a circular shift on elements of AR-
RAY along the dimension of DIM. If DIM is omitted it is taken to be 1. DIM
is a scalar of type INTEGER in the range of 1 < DIM < n) where n is the rank
of ARRAY. If the rank of ARRAY is one, then all elements of ARRAY are
shifted by SHIF'T places. If rank is greater than one, then all complete rank
one sections of ARRAY along the given dimension are shifted. Elements shifted
out one end of each rank one section are shifted back in the other end.

Standard: Fortran 95 and later
Class: Transformational function

Syntaz: RESULT = CSHIFT(ARRAY, SHIFT [, DIM])

Arguments:
ARRAY Shall be an array of any type.
SHIFT The type shall be INTEGER.
DIM The type shall be INTEGER.

Return value:
Returns an array of same type and rank as the ARRAY argument.

Example:

program test_cshift
integer, dimension(3,3) :: a
a = reshape((/ 1, 2, 3, 4, 5,6, 7,8,9/), (/3,3/))
print ’(3i3)’, a(1,:)
print ’(3i3)’, a(2,:)
print ’(3i3)’, a(3,:)
a = cshift(a, SHIFT=(/1, 2, -1/), DIM=2)
print *
print ’(313)’, a(1,:)
print ’(3i3)’, a(2,:)
print ’(3i3)’, a(3,:)
end program test_cshift

Chapter 8: Intrinsic Procedures 99

8.59 CTIME — Convert a time into a string

Description:

Standard:
Class:
Syntazx:

Arguments:

CTIME converts a system time value, such as returned by TIMES8, to a string.
Unless the application has called setlocale, the output will be in the default
locale, of length 24 and of the form ‘Sat Aug 19 18:13:14 1995’. In other
locales, a longer string may result.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

GNU extension

Subroutine, function

CALL CTIME(TIME, RESULT).
RESULT = CTIME(TIME).

TIME The type shall be of type INTEGER.

RESULT The type shall be of type CHARACTER and of default kind. It
is an INTENT(OUT) argument. If the length of this variable is
too short for the time and date string to fit completely, it will
be blank on procedure return.

Return value:

Example:

See Also:

The converted date and time as a string.

program test_ctime

integer(8) :: i
character (len=30) :: date
i = time8()

! Do something, main part of the program

call ctime(i,date)
print *, ’Program was started on ’, date
end program test_ctime

Section 8.60 [DATE_AND_TIME], page 99, Section 8.107 [GMTIME], page 129,
Section 8.159 [LTIME], page 157, Section 8.242 [TIME], page 204, Section 8.243
[TIMES], page 205

8.60 DATE_AND_TIME — Date and time subroutine

Description:

DATE_AND_TIME(DATE, TIME, ZONE, VALUES) gets the corresponding date and
time information from the real-time system clock. DATE is INTENT (OUT) and
has form ccyymmdd. TIME is INTENT(OUT) and has form hhmmss.sss. ZONE
is INTENT(OUT) and has form (+-)hhmm, representing the difference with re-
spect to Coordinated Universal Time (UTC). Unavailable time and date pa-
rameters return blanks.

100 The GNU Fortran Compiler
VALUES is INTENT(OUT) and provides the following:
VALUE(1): The year
VALUE(2): The month
VALUE(3): The day of the month
VALUE(4): Time difference with UTC in
minutes
VALUE(5): The hour of the day
VALUE(6): The minutes of the hour
VALUE(7): The seconds of the minute
VALUE(8): The milliseconds of the second
Standard: Fortran 95 and later
Class: Subroutine
S@ntax: CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])
Arguments:
DATE (Optional) The type shall be CHARACTER(LEN=8) or larger,
and of default kind.
TIME (Optional) The type shall be CHARACTER (LEN=10) or larger,
and of default kind.
ZONE (Optional) The type shall be CHARACTER(LEN=5) or larger,
and of default kind.
VALUES (Optional) The type shall be INTEGER(8).
Return value:
None
Example:
program test_time_and_date
character(8) :: date
character(10) :: time
character(5) :: zone
integer,dimension(8) :: values
! using keyword arguments
call date_and_time(date,time,zone,values)
call date_and_time(DATE=date,Z0ONE=zone)
call date_and_time(TIME=time)
call date_and_time(VALUES=values)
print ’(a,2x,a,2x,a)’, date, time, zone
print ’(8ib))’, values
end program test_time_and_date
See also: Section 8.57 [CPU_TIME], page 97, Section 8.238 [SYSTEM_CLOCK], page 201
8.61 DBLE — Double conversion function
Description:
DBLE(A) Converts A to double precision real type.
Standard: Fortran 77 and later

Class:

Elemental function

Chapter 8: Intrinsic Procedures 101

Syntaz: RESULT = DBLE(A)

Arguments:
A The type shall be INTEGER, REAL, or COMPLEX.

Return value:
The return value is of type double precision real.

Ezxample:
program test_dble
real 11 x = 2.18
integer :: i =5
complex :: z = (2.3,1.14)

print *, dble(x), dble(i), dble(z)
end program test_dble

See also: Section 8.203 [REAL], page 181

8.62 DCMPLX — Double complex conversion function

Description:
DCMPLX (X [,Y]) returns a double complex number where X is converted to the
real component. If Y is present it is converted to the imaginary component. If
Y is not present then the imaginary component is set to 0.0. If X is complex
then Y must not be present.

Standard: GNU extension
Class: Elemental function
Syntaz: RESULT = DCMPLX(X [, Y1)

Arguments:
X The type may be INTEGER, REAL, or COMPLEX.
Y (Optional if X is not COMPLEX.) May be INTEGER or REAL.

Return value:
The return value is of type COMPLEX (8)

Ezxample:
program test_dcmplx
integer :: i = 42
real :: x = 3.14
complex :: z

z = cmplx(i, x)
print *, dcmplx(i)
print *, dcmplx(x)
print *, dcmplx(z)
print *, dcmplx(x,i)
end program test_dcmplx

8.63 DIGITS — Significant binary digits function

Description:
DIGITS(X) returns the number of significant binary digits of the internal model
representation of X. For example, on a system using a 32-bit floating point
representation, a default real number would likely return 24.

102 The GNU Fortran Compiler

Standard: Fortran 95 and later
Class: Inquiry function
Syntaz: RESULT = DIGITS (X)

Arguments:
X The type may be INTEGER or REAL.

Return value:
The return value is of type INTEGER.

Example:

program test_digits
integer :: i = 12345
real :: x = 3.143
real(8) :: y = 2.33
print *, digits(i)
print *, digits(x)
print *, digits(y)

end program test_digits

8.64 DIM — Positive difference

Description:
DIM(X,Y) returns the difference X-Y if the result is positive; otherwise returns
Z€ro.

Standard: Fortran 77 and later
Class: Elemental function
Syntaz: RESULT = DIM(X, Y)

Arguments:
X The type shall be INTEGER or REAL
Y The type shall be the same type and kind as X.

Return value:
The return value is of type INTEGER or REAL.

Example:

program test_dim
integer :: i
real(8) :: x
i = dim(4, 15)
x = dim(4.345_8, 2.111_8)
print *, i
print *, x
end program test_dim

Specific names:

Name Argument Return type Standard

DIM(X,Y) REAL(4) X, Y REAL(4) Fortran 77 and later

IDIM(X,Y) INTEGER(4) X, INTEGER(4) Fortran 77 and later
Y

DDIM(X,Y) REAL(8) X, Y REAL(8) Fortran 77 and later

Chapter 8: Intrinsic Procedures 103

8.65 DOT_PRODUCT — Dot product function

Description:
DOT_PRODUCT (VECTOR_A, VECTOR_B) computes the dot product multiplication
of two vectors VECTOR_-A and VECTOR_B. The two vectors may be either
numeric or logical and must be arrays of rank one and of equal size. If the
vectors are INTEGER or REAL, the result is SUM(VECTOR_A*VECTOR_B). If the
vectors are COMPLEX, the result is SUM(CONJG(VECTOR_A)*VECTOR_B). If the
vectors are LOGICAL, the result is ANY(VECTOR_A .AND. VECTOR_B).

Standard: Fortran 95 and later
Class: Transformational function
S@niax: RESULT = DOT_PRODUCT (VECTOR_A, VECTOR_B)

Arguments:
VECTOR_-A The type shall be numeric or LOGICAL, rank 1.
VECTOR_B The type shall be numeric if VECTOR_A is of numeric type

or LOGICAL if VECTOR_A is of type LOGICAL. VECTOR_B
shall be a rank-one array.

Return value:
If the arguments are numeric, the return value is a scalar of numeric type,
INTEGER, REAL, or COMPLEX. If the arguments are LOGICAL, the return value is
.TRUE. or .FALSE..

Example:

program test_dot_prod
integer, dimension(3) :: a, b
a=(1,2,3/)
b=(/4,5,6/)
print ’(3i3)’, a
print *
print ’(3i3)’, b
print *
print *, dot_product(a,b)
end program test_dot_prod

8.66 DPROD — Double product function

Description:
DPROD (X,Y) returns the product X*Y.

Standard: Fortran 77 and later
Class: Elemental function
Syntaz: RESULT = DPROD(X, Y)

Arguments:
X The type shall be REAL.
Y The type shall be REAL.

Return value:
The return value is of type REAL(8).

104 The GNU Fortran Compiler

Example:
program test_dprod
real :: x = 5.2
real :: y = 2.3

real(8) :: d '
d = dprod(x,y)
print *, d
end program test_dprod
Specific names:
Name Argument Return type Standard
DPROD(X,Y) REAL(4) X, Y REAL(4) Fortran 77 and later

8.67 DREAL — Double real part function

Description:
DREAL (Z) returns the real part of complex variable Z.

Standard: GNU extension
Class: Elemental function
Syntaz: RESULT = DREAL(A)

Arguments:
A The type shall be COMPLEX (8).

Return value:
The return value is of type REAL(8).

Ezample:

program test_dreal
complex(8) :: z = (1.3.8,7.2_.8)
print *, dreal(z)

end program test_dreal

See also: Section 8.10 [AIMAG], page 68

8.68 DSHIFTL — Combined left shift

Description:
DSHIFTL(I, J, SHIFT) combines bits of I and J. The rightmost SHIFT bits
of the result are the leftmost SHIF'T bits of J, and the remaining bits are the
rightmost bits of L.

Standard: Fortran 2008 and later
Class: Elemental function
Syniax: RESULT = DSHIFTL(I, J, SHIFT)

Arguments:
I Shall be of type INTEGER or a BOZ constant.
J Shall be of type INTEGER or a BOZ constant. If both I and
J have integer type, then they shall have the same kind type
parameter. I and J shall not both be BOZ constants.

Chapter 8: Intrinsic Procedures 105

SHIFT Shall be of type INTEGER. It shall be nonnegative. If I is not
a BOZ constant, then SHIF'T shall be less than or equal to
BIT_SIZE(I); otherwise, SHIFT shall be less than or equal
to BIT_SIZE(J).

Return value:
If either I or J is a BOZ constant, it is first converted as if by the intrinsic
function INT to an integer type with the kind type parameter of the other.

See also: Section 8.69 [DSHIFTR], page 105

8.69 DSHIFTR — Combined right shift

Description:
DSHIFTR(I, J, SHIFT) combines bits of I and J. The leftmost SHIFT bits of
the result are the rightmost SHIFT bits of I, and the remaining bits are the
leftmost bits of J.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = DSHIFTR(I, J, SHIFT)

Arguments:

—~

Shall be of type INTEGER or a BOZ constant.

J Shall be of type INTEGER or a BOZ constant. If both I and
J have integer type, then they shall have the same kind type
parameter. I and J shall not both be BOZ constants.

SHIF'T Shall be of type INTEGER. It shall be nonnegative. If I is not

a BOZ constant, then SHIF'T shall be less than or equal to

BIT_SIZE(I); otherwise, SHIFT shall be less than or equal

to BIT_SIZE(J).

Return value:
If either I or J is a BOZ constant, it is first converted as if by the intrinsic
function INT to an integer type with the kind type parameter of the other.

See also: Section 8.68 [DSHIFTL], page 104

8.70 DTIME — Execution time subroutine (or function)

Description:
DTIME(VALUES, TIME) initially returns the number of seconds of runtime since
the start of the process’s execution in TIME. VALUES returns the user and sys-
tem components of this time in VALUES (1) and VALUES(2) respectively. TIME
is equal to VALUES (1) + VALUES(2).

Subsequent invocations of DTIME return values accumulated since the previous
invocation.

On some systems, the underlying timings are represented using types with
sufficiently small limits that overflows (wrap around) are possible, such as 32-
bit types. Therefore, the values returned by this intrinsic might be, or become,

106

Standard:
Class:

Syntaz:

Arguments:

The GNU Fortran Compiler

negative, or numerically less than previous values, during a single run of the
compiled program.

Please note, that this implementation is thread safe if used within OpenMP
directives, i.e., its state will be consistent while called from multiple threads.
However, if DTIME is called from multiple threads, the result is still the time
since the last invocation. This may not give the intended results. If possible,
use CPU_TIME instead.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

VALUES and TIME are INTENT(OUT) and provide the following;:

VALUES (1): User time in seconds.
VALUES(2): System time in seconds.
TIME: Run time since start in seconds.

GNU extension

Subroutine, function

CALL DTIME(VALUES, TIME).
TIME = DTIME(VALUES), (not recommended).

VALUES The type shall be REAL(4) , DIMENSION(2).
TIME The type shall be REAL(4).

Return value:

Example:

See also:

Elapsed time in seconds since the last invocation or since the start of program
execution if not called before.

program test_dtime
integer(8) :: i, j
real, dimension(2) :: tarray
real :: result
call dtime(tarray, result)
print *, result
print *, tarray(1)
print *, tarray(2)
do i=1,100000000 ! Just a delay
j=i*i-i
end do
call dtime(tarray, result)
print *, result
print *, tarray(1l)
print *, tarray(2)
end program test_dtime

Section 8.57 [CPU_TIME], page 97

Chapter 8: Intrinsic Procedures 107

8.71 EOSHIFT — End-off shift elements of an array

Description:

Standard:
Class:
Syntazx:

Arguments:

EOSHIFT(ARRAY, SHIFT[, BOUNDARY, DIM]) performs an end-off shift on ele-
ments of ARRAY along the dimension of DIM. If DIM is omitted it is taken to
be 1. DIM is a scalar of type INTEGER in the range of 1 < DIM < n) where n is
the rank of ARRAY. If the rank of ARRAY is one, then all elements of ARRAY
are shifted by SHIF'T places. If rank is greater than one, then all complete rank
one sections of ARRAY along the given dimension are shifted. Elements shifted
out one end of each rank one section are dropped. If BOUNDARY is present
then the corresponding value of from BOUNDARY is copied back in the other
end. If BOUNDARY is not present then the following are copied in depending
on the type of ARRAY.

Array Type Boundary Value

Numeric 0 of the type and kind of ARRAY.
Logical .FALSE..

Character(len) len blanks.

Fortran 95 and later
Transformational function

RESULT = EOSHIFT (ARRAY, SHIFT [, BOUNDARY, DIM])

ARRAY May be any type, not scalar.
SHIFT The type shall be INTEGER.
BOUNDARY Same type as ARRAY.

DIM The type shall be INTEGER.

Return value:

Ezample:

Returns an array of same type and rank as the ARRAY argument.

program test_eoshift
integer, dimension(3,3) :: a
a = reshape((/ 1, 2, 3, 4, 5,6, 7,8, 9/), (/3,3/))
print ’(3i3)°’, a(1,:)
print ’(3i3)’, a(2,:)
print ’(3i3)’, a(3,:)
a = EOSHIFT(a, SHIFT=(/1, 2, 1/), BOUNDARY=-5, DIM=2)
print *
print ’(3i3)’, a(1,:)
print ’(3i3)’, a(2,:)
print ’(3i3)’, a(3,:)
end program test_eoshift

8.72 EPSILON — Epsilon function

Description:

Standard:

EPSILON(X) returns the smallest number E of the same kind as X such that
1+FE>1.

Fortran 95 and later

108 The GNU Fortran Compiler

Class: Inquiry function
Syntax: RESULT = EPSILON(X)

Arguments:
X The type shall be REAL.

Return value:
The return value is of same type as the argument.

Ezample:

program test_epsilon
real :: x = 3.143
real(8) :: y = 2.33
print *, EPSILON(x)
print *, EPSILON(y)

end program test_epsilon

8.73 ERF — Error function
Description:
ERF (X) computes the error function of X.
Standard: Fortran 2008 and later
Class: Elemental function
Syntax: RESULT = ERF (X)

Arguments:
X The type shall be REAL.

Return value:
The return value is of type REAL, of the same kind as X and lies in the range
—1<erf(z) <1l

Ezample:

program test_erf
real(8) :: x = 0.17_8
x = erf(x)

end program test_erf

Specific names:
Name Argument Return type Standard
DERF (X) REAL(8) X REAL(8) GNU extension

8.74 ERFC — Error function

Description:
ERFC(X) computes the complementary error function of X.

Standard: Fortran 2008 and later
Class: Elemental function

Syntax: RESULT = ERFC(X)

Chapter 8: Intrinsic Procedures 109

Arguments:
X The type shall be REAL.

Return value:
The return value is of type REAL and of the same kind as X. It lies in the range
0<erfe(z) <2

Example:

program test_erfc
real(8) :: x = 0.17_8
x = erfc(x)

end program test_erfc

Specific names:
Name Argument Return type Standard
DERFC(X) REAL(8) X REAL(8) GNU extension

8.75 ERFC_SCALED — Error function

Description:
ERFC_SCALED (X) computes the exponentially-scaled complementary error func-
tion of X.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = ERFC_SCALED (X)

Arguments:
X The type shall be REAL.

Return value:
The return value is of type REAL and of the same kind as X.

Example:

program test_erfc_scaled
real(8) :: x = 0.17_8
x = erfc_scaled(x)

end program test_erfc_scaled

8.76 ETIME — Execution time subroutine (or function)

Description:
ETIME(VALUES, TIME) returns the number of seconds of runtime since the start
of the process’s execution in TIME. VALUES returns the user and system
components of this time in VALUES(1) and VALUES(2) respectively. TIME is
equal to VALUES (1) + VALUES(2).

On some systems, the underlying timings are represented using types with
sufficiently small limits that overflows (wrap around) are possible, such as 32-
bit types. Therefore, the values returned by this intrinsic might be, or become,
negative, or numerically less than previous values, during a single run of the
compiled program.

110

Standard:
Class:
Syntaz:

Arguments:

The GNU Fortran Compiler

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

VALUES and TIME are INTENT(OUT) and provide the following;:

VALUES (1): User time in seconds.
VALUES(2): System time in seconds.
TIME: Run time since start in seconds.

GNU extension

Subroutine, function

CALL ETIME(VALUES, TIME).
TIME = ETIME(VALUES), (not recommended).

VALUES The type shall be REAL(4) , DIMENSION(2).
TIME The type shall be REAL(4).

Return value:

Example:

See also:

Elapsed time in seconds since the start of program execution.

program test_etime
integer(8) :: i, j
real, dimension(2) :: tarray
real :: result
call ETIME(tarray, result)
print *, result
print *, tarray(1l)
print *, tarray(2)
do i=1,100000000 ! Just a delay
j=ixi-i
end do
call ETIME(tarray, result)
print *, result
print *, tarray(1l)
print *, tarray(2)
end program test_etime

Section 8.57 [CPU_TIME], page 97

8.77 EXECUTE_COMMAND_LINE — Execute a shell command

Description:

EXECUTE_COMMAND_LINE runs a shell command, synchronously or
asynchronously.

The COMMAND argument is passed to the shell and executed, using the C library’s
system call. (The shell is sh on Unix systems, and cmd.exe on Windows.)
If WAIT is present and has the value false, the execution of the command is
asynchronous if the system supports it; otherwise, the command is executed
synchronously.

The three last arguments allow the user to get status information. After syn-
chronous execution, EXITSTAT contains the integer exit code of the command,

Chapter 8:

Standard:
Class:
Syntaz:

Arguments:

Ezample:

Note:

See also:

Intrinsic Procedures 111

as returned by system. CMDSTAT is set to zero if the command line was executed
(whatever its exit status was). CMDMSG is assigned an error message if an error
has occurred.

Note that the system function need not be thread-safe. It is the responsibility
of the user to ensure that system is not called concurrently.

Fortran 2008 and later
Subroutine

CALL EXECUTE_COMMAND_LINE (COMMAND [, WAIT, EXITSTAT, CMDSTAT,
CMDMSG 1)

COMMAND Shall be a default CHARACTER scalar.

WAIT (Optional) Shall be a default LOGICAL scalar.

EXITSTAT (Optional) Shall be an INTEGER of the default kind.
CMDSTAT (Optional) Shall be an INTEGER of the default kind.
CMDMSG (Optional) Shall be an CHARACTER scalar of the default kind.

program test_exec
integer :: i

call execute_command_line ("external_prog.exe", exitstat=i)
print *, "Exit status of external_prog.exe was ", i

call execute_command_line ("reindex_files.exe", wait=.false.)
print *, "Now reindexing files in the background"

end program test_exec

Because this intrinsic is implemented in terms of the system function call, its
behavior with respect to signaling is processor dependent. In particular, on
POSIX-compliant systems, the SIGINT and SIGQUIT signals will be ignored,
and the SIGCHLD will be blocked. As such, if the parent process is terminated,
the child process might not be terminated alongside.

Section 8.237 [SYSTEM], page 201

8.78 EXIT — Exit the program with status.

Description:

Standard:
Class:
Syntaz:

EXIT causes immediate termination of the program with status. If status is
omitted it returns the canonical success for the system. All Fortran I/O units
are closed.

GNU extension
Subroutine

CALL EXIT([STATUS])

112 The GNU Fortran Compiler

Arguments:
STATUS Shall be an INTEGER of the default kind.

Return value:
STATUS is passed to the parent process on exit.

Example:

program test_exit
integer :: STATUS = 0
print *, ’This program is going to exit.’
call EXIT(STATUS)

end program test_exit

See also: Section 8.2 [ABORT], page 63, Section 8.138 [KILL], page 146

8.79 EXP — Exponential function

Description:

EXP(X) computes the base e exponential of X.
Standard: Fortran 77 and later, has overloads that are GNU extensions
Class: Elemental function

Syntazx: RESULT = EXP(X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value has same type and kind as X.

Example:
program test_exp
real :: x = 1.0
x = exp(x)
end program test_exp

Specific names:

Name Argument Return type Standard

EXP(X) REAL(4) X REAL(4) Fortran 77 and later
DEXP (X) REAL(8) X REAL(8) Fortran 77 and later
CEXP(X) COMPLEX (4) X COMPLEX (4) Fortran 77 and later
ZEXP (X) COMPLEX(8) X COMPLEX (8) GNU extension
CDEXP (X) COMPLEX(8) X COMPLEX (8) GNU extension

8.80 EXPONENT — Exponent function

Description:
EXPONENT (X) returns the value of the exponent part of X. If X is zero the value
returned is zero.

Standard: Fortran 95 and later

Class: Elemental function

Chapter 8: Intrinsic Procedures 113

Syntaz: RESULT = EXPONENT (X)

Arguments:
X The type shall be REAL.

Return value:
The return value is of type default INTEGER.

Ezample:

program test_exponent
real :: x = 1.0
integer :: i
i = exponent(x)
print *, i
print *, exponent(0.0)
end program test_exponent

8.81 EXTENDS_TYPE_OF — Query dynamic type for extension

Description:
Query dynamic type for extension.

Standard: Fortran 2003 and later
Class: Inquiry function

Syntaz: RESULT = EXTENDS_TYPE_OF (A, MOLD)

Arguments:
A Shall be an object of extensible declared type or unlimited
polymorphic.
MOLD Shall be an object of extensible declared type or unlimited
polymorphic.

Return value:
The return value is a scalar of type default logical. It is true if and only if the
dynamic type of A is an extension type of the dynamic type of MOLD.

See also: Section 8.209 [SAME_TYPE_AS], page 184

8.82 FDATE — Get the current time as a string

Description:
FDATE(DATE) returns the current date (using the same format as CTIME) in
DATE. 1t is equivalent to CALL CTIME(DATE, TIMEQ)).

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Standard: GNU extension
Class: Subroutine, function

Syntax:

CALL FDATE(DATE).
DATE = FDATE().

114 The GNU Fortran Compiler

Arguments:

DATE The type shall be of type CHARACTER of the default kind. It
is an INTENT(OUT) argument. If the length of this variable is
too short for the date and time string to fit completely, it will
be blank on procedure return.

Return value:
The current date and time as a string.

Example:

program test_fdate
integer(8) :: i, j

character (len=30) :: date
call fdate(date)
print *, ’Program started on ’, date

do i = 1, 100000000 ! Just a delay
j=ixi-i

end do
call fdate(date)
print *, ’Program ended on ’, date

end program test_fdate

See also: Section 8.60 [DATE_AND_TIME], page 99, Section 8.59 [CTIME], page 99

8.83 FGET — Read a single character in stream mode from
stdin

Description:
Read a single character in stream mode from stdin by bypassing normal for-
matted output. Stream I/O should not be mixed with normal record-oriented
(formatted or unformatted) I/O on the same unit; the results are unpredictable.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Note that the FGET intrinsic is provided for backwards compatibility with g77.
GNU Fortran provides the Fortran 2003 Stream facility. Programmers should
consider the use of new stream IO feature in new code for future portability.
See also Section 4.1 [Fortran 2003 status|, page 33.

Standard: GNU extension
Class: Subroutine, function

Syntaz:

CALL FGET(C [, STATUS])
STATUS = FGET(C)

Arguments:
C The type shall be CHARACTER and of default kind.
STATUS (Optional) status flag of type INTEGER. Returns 0 on success,
-1 on end-of-file, and a system specific positive error code
otherwise.

Ezxample:

Chapter 8: Intrinsic Procedures 115

PROGRAM test_fget
INTEGER, PARAMETER :: strlen
INTEGER :: status, i =1
CHARACTER(len=strlen) :: str = ""

100

WRITE (*,*) ’Enter text:’

DO
CALL fget(str(i:i), status)
if (status /= 0 .0OR. i > strlen) exit
i=1i+1

END DO

WRITE (*,*) TRIM(str)

END PROGRAM

See also: Section 8.84 [FGETC], page 115, Section 8.88 [FPUT], page 118, Section 8.89

[FPUTC], page 118

8.84 FGETC — Read a single character in stream mode
Description:

Read a single character in stream mode by bypassing normal formatted output.

Stream I/O should not be mixed with normal record-oriented (formatted or

unformatted) I/O on the same unit; the results are unpredictable.

This intrinsic is provided in both subroutine and function forms; however, only

one form can be used in any given program unit.

Note that the FGET intrinsic is provided for backwards compatibility with g77.

GNU Fortran provides the Fortran 2003 Stream facility. Programmers should

consider the use of new stream IO feature in new code for future portability.

See also Section 4.1 [Fortran 2003 status|, page 33.

Standard: GNU extension
Class: Subroutine, function
Syntax:
CALL FGETC(UNIT, C [, STATUS])
STATUS = FGETC(UNIT, C)
Arguments:

UNIT The type shall be INTEGER.

C The type shall be CHARACTER and of default kind.

STATUS (Optional) status flag of type INTEGER. Returns 0 on suc-
cess, -1 on end-of-file and a system specific positive error code
otherwise.

Ezample:

PROGRAM test_fgetc
INTEGER :: fd = 42, status
CHARACTER :: c

OPEN(UNIT=fd, FILE="/etc/passwd”, ACTION="READ", STATUS = "QOLD")
DO

CALL fgetc(fd, c, status)

IF (status /= 0) EXIT

116 The GNU Fortran Compiler

call fput(c)
END DO
CLOSE(UNIT=£d)
END PROGRAM

See also: Section 8.83 [FGET], page 114, Section 8.88 [FPUT], page 118, Section 8.89
[FPUTC], page 118

8.85 FLOOR — Integer floor function

Description:
FLOOR(A) returns the greatest integer less than or equal to X.

Standard: Fortran 95 and later
Class: Elemental function
Syntaz: RESULT = FLOOR(A [, KIND])

Arguments:
A The type shall be REAL.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type INTEGER(KIND) if KIND is present and of default-
kind INTEGER otherwise.

Ezample:

program test_floor
real :: x = 63.29
real :: y = -63.59
print *, floor(x) ! returns 63
print *, floor(y) ! returns -64
end program test_floor

See also: Section 8.44 [CEILING], page 89, Section 8.182 [NINT], page 170

8.86 FLUSH — Flush I/O unit(s)

Description:
Flushes Fortran unit(s) currently open for output. Without the optional argu-
ment, all units are flushed, otherwise just the unit specified.

Standard: GNU extension
Class: Subroutine
Syntaz: CALL FLUSH(UNIT)

Arguments:
UNIT (Optional) The type shall be INTEGER.

Note: Beginning with the Fortran 2003 standard, there is a FLUSH statement that
should be preferred over the FLUSH intrinsic.

Chapter 8: Intrinsic Procedures 117

The FLUSH intrinsic and the Fortran 2003 FLUSH statement have identical effect:
they flush the runtime library’s I/O buffer so that the data becomes visible to
other processes. This does not guarantee that the data is committed to disk.

On POSIX systems, you can request that all data is transferred to the storage
device by calling the fsync function, with the POSIX file descriptor of the I/O
unit as argument (retrieved with GNU intrinsic FNUM). The following example
shows how:

! Declare the interface for POSIX fsync function
interface
function fsync (£fd) bind(c,name="fsync")
use iso_c_binding, only: c_int
integer(c_int), value :: fd
integer(c_int) :: fsync
end function fsync
end interface

! Variable declaration
integer :: ret

! Opening unit 10
open (10,file="foo")

! Perform I/0 on unit 10
L.

! Flush and sync
flush(10)
ret = fsync(fnum(10))

! Handle possible error
if (ret /= 0) stop "Error calling FSYNC"

8.87 FNUM — File number function

Description:
FNUM(UNIT) returns the POSIX file descriptor number corresponding to the
open Fortran I/O unit UNIT.

Standard: GNU extension
Class: Function
Syntaz: RESULT = FNUM(UNIT)

Arguments:
UNIT The type shall be INTEGER.

Return value:
The return value is of type INTEGER

Ezample:

program test_fnum
integer :: i
open (unit=10, status = "scratch")
i = fnum(10)

118 The GNU Fortran Compiler

print *, i
close (10)
end program test_fnum

8.88 FPUT — Write a single character in stream mode to
stdout

Description:
Write a single character in stream mode to stdout by bypassing normal for-
matted output. Stream I/O should not be mixed with normal record-oriented
(formatted or unformatted) I/O on the same unit; the results are unpredictable.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Note that the FGET intrinsic is provided for backwards compatibility with g77.
GNU Fortran provides the Fortran 2003 Stream facility. Programmers should
consider the use of new stream IO feature in new code for future portability.
See also Section 4.1 [Fortran 2003 status|, page 33.

Standard: GNU extension
Class: Subroutine, function

Syntaz:

CALL FPUT(C [, STATUS])
STATUS = FPUT(C)

Arguments:

C The type shall be CHARACTER and of default kind.

STATUS (Optional) status flag of type INTEGER. Returns 0 on suc-
cess, -1 on end-of-file and a system specific positive error code
otherwise.

Ezample:

PROGRAM test_fput
CHARACTER(len=10) :: str = "gfortran"
INTEGER :: i
DO i = 1, len_trim(str)
CALL fput(str(i:i))
END DO
END PROGRAM

See also: Section 8.89 [FPUTC], page 118, Section 8.83 [FGET], page 114, Section 8.84
[FGETC], page 115

8.89 FPUTC — Write a single character in stream mode

Description:
Write a single character in stream mode by bypassing normal formatted output.
Stream I/O should not be mixed with normal record-oriented (formatted or
unformatted) I/O on the same unit; the results are unpredictable.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Chapter 8: Intrinsic Procedures 119

Note that the FGET intrinsic is provided for backwards compatibility with g77.
GNU Fortran provides the Fortran 2003 Stream facility. Programmers should
consider the use of new stream IO feature in new code for future portability.
See also Section 4.1 [Fortran 2003 status|, page 33.

Standard: GNU extension
Class: Subroutine, function

Syntaz:

CALL FPUTC(UNIT, C [, STATUS])
STATUS = FPUTC(UNIT, C)

Arguments:

UNIT The type shall be INTEGER.

C The type shall be CHARACTER and of default kind.

STATUS (Optional) status flag of type INTEGER. Returns 0 on suc-
cess, -1 on end-of-file and a system specific positive error code
otherwise.

Example:

PROGRAM test_fputc
CHARACTER(len=10) :: str = "gfortran"
INTEGER :: fd = 42, i

OPEN(UNIT = fd, FILE = "out", ACTION = "WRITE", STATUS="NEW")
DO i = 1, len_trim(str)
CALL fputc(fd, str(i:i))
END DO
CLOSE(£fd)
END PROGRAM

See also: Section 8.88 [FPUT], page 118, Section 8.83 [FGET], page 114, Section 8.84
[FGETC], page 115

8.90 FRACTION — Fractional part of the model representation

Description:

FRACTION(X) returns the fractional part of the model representation of X.
Standard: Fortran 95 and later
Class: Elemental function

Syntax: Y = FRACTION(X)

Arguments:
X The type of the argument shall be a REAL.

Return value:
The return value is of the same type and kind as the argument. The frac-
tional part of the model representation of X is returned; it is X * RADIX (X) ** (-
EXPONENT (X)).

Ezxample:

120 The GNU Fortran Compiler

program test_fraction

real :: x

x = 178.1387e-4

print *, fraction(x), x * radix(x)**(-exponent(x))
end program test_fraction

8.91 FREE — Frees memory

Description:
Frees memory previously allocated by MALLOC. The FREE intrinsic is an exten-
sion intended to be used with Cray pointers, and is provided in GNU Fortran
to allow user to compile legacy code. For new code using Fortran 95 pointers,
the memory de-allocation intrinsic is DEALLOCATE.

Standard: GNU extension
Class: Subroutine
Syntaz: CALL FREE(PTR)

Arguments:
PTR The type shall be INTEGER. It represents the location of the
memory that should be de-allocated.

Return value:
None

Example: See MALLOC for an example.
See also: Section 8.160 [MALLOC], page 158

8.92 FSEEK — Low level file positioning subroutine

Description:

Moves UNIT to the specified OFFSET. If WHENCE is set to 0, the OFFSET
is taken as an absolute value SEEK_SET, if set to 1, OFFSET is taken to be
relative to the current position SEEK_CUR, and if set to 2 relative to the end of
the file SEEK_END. On error, STATUS is set to a nonzero value. If STATUS
the seek fails silently.

This intrinsic routine is not fully backwards compatible with g77. In g77, the
FSEEK takes a statement label instead of a STATUS variable. If FSEEK is used
in old code, change

CALL FSEEK(UNIT, OFFSET, WHENCE, *label)

to

INTEGER :: status

CALL FSEEK(UNIT, OFFSET, WHENCE, status)

IF (status /= 0) GOTO label
Please note that GNU Fortran provides the Fortran 2003 Stream facility. Pro-
grammers should consider the use of new stream IO feature in new code for
future portability. See also Section 4.1 [Fortran 2003 status], page 33.

Standard: GNU extension

Chapter 8: Intrinsic Procedures 121

Class: Subroutine

Syntax: CALL FSEEK(UNIT, OFFSET, WHENCE[, STATUS])

Arguments:
UNIT Shall be a scalar of type INTEGER.
OFFSET Shall be a scalar of type INTEGER.
WHENCE Shall be a scalar of type INTEGER. Its value shall be either 0,
1or 2.
STATUS (Optional) shall be a scalar of type INTEGER(4).
Example:

PROGRAM test_fseek
INTEGER, PARAMETER :: SEEK_SET = 0, SEEK_CUR = 1, SEEK_END = 2
INTEGER :: fd, offset, ierr

ierr =0
offset = 5
fd = 10

OPEN(UNIT=fd, FILE="fseek.test")
CALL FSEEK(fd, offset, SEEK_SET, ierr) ! move to OFFSET
print *, FTELL(fd), ierr

CALL FSEEK(fd, O, SEEK_END, ierr) ! move to end
print *, FTELL(fd), ierr

CALL FSEEK(fd, O, SEEK_SET, ierr) ! move to beginning
print *, FTELL(fd), ierr

CLOSE(UNIT=£fd)
END PROGRAM

See also: Section 8.94 [FTELL], page 122

8.93 FSTAT — Get file status

Description:
FSTAT is identical to Section 8.233 [STAT], page 198, except that information
about an already opened file is obtained.

The elements in VALUES are the same as described by Section 8.233 [STAT],
page 198.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Standard: GNU extension
Class: Subroutine, function

Syntaz:

CALL FSTAT(UNIT, VALUES [, STATUS])
STATUS = FSTAT(UNIT, VALUES)

Arguments:
UNIT An open I/O unit number of type INTEGER.

122 The GNU Fortran Compiler

VALUES The type shall be INTEGER(4) , DIMENSION(13).
STATUS (Optional) status flag of type INTEGER (4). Returns 0 on suc-
cess and a system specific error code otherwise.

Ezample: See Section 8.233 [STAT], page 198 for an example.

See also: To stat a link: Section 8.158 [LSTAT], page 157, to stat a file: Section 8.233
[STAT], page 198

8.94 FTELL — Current stream position

Description:
Retrieves the current position within an open file.
This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Standard: GNU extension
Class: Subroutine, function

Syntaz:

CALL FTELL(UNIT, OFFSET)
OFFSET = FTELL(UNIT)

Arguments:
OFFSET Shall of type INTEGER.
UNIT Shall of type INTEGER.

Return value:
In either syntax, OFFSET is set to the current offset of unit number UNIT, or
to —1 if the unit is not currently open.

Ezample:

PROGRAM test_ftell
INTEGER :: i
OPEN(10, FILE="temp.dat")
CALL ftell(10,i)
WRITE(*,*) i

END PROGRAM

See also: Section 8.92 [FSEEK], page 120

8.95 GAMMA — Gamma function

Description:
GAMMA (X) computes Gamma (I') of X. For positive, integer values of X the
Gamma function simplifies to the factorial function I'(z) = (z — 1)L

I'(z) = / t"le tdt
0

Standard: Fortran 2008 and later

Class: Elemental function

Chapter 8: Intrinsic Procedures 123

Syntaz: X = GAMMA (X)

Arguments:
X Shall be of type REAL and neither zero nor a negative integer.

Return value:
The return value is of type REAL of the same kind as X.

Ezample:
program test_gamma
real :: x = 1.0
x = gamma(x) ! returns 1.0
end program test_gamma

Specific names:

Name Argument Return type Standard
GAMMA (X) REAL(4) X REAL(4) GNU Extension
DGAMMA (X) REAL(8) X REAL(8) GNU Extension

See also: Logarithm of the Gamma function: Section 8.154 [LOG_GAMMA], page 155

8.96 GERROR — Get last system error message

Description:
Returns the system error message corresponding to the last system error. This
resembles the functionality of strerror(3) in C.

Standard: GNU extension
Class: Subroutine
Syntax: CALL GERROR (RESULT)

Arguments:
RESULT Shall of type CHARACTER and of default

Ezample:

PROGRAM test_gerror
CHARACTER(1en=100) :: msg
CALL gerror (msg)
WRITE(*,*) msg

END PROGRAM

See also: Section 8.122 [IERRNO], page 138, Section 8.190 [PERROR], page 174

8.97 GETARG — Get command line arguments

Description:
Retrieve the POS-th argument that was passed on the command line when the
containing program was invoked.

This intrinsic routine is provided for backwards compatibility with GNU Fortran
77. In new code, programmers should consider the use of the Section 8.99
[GET_COMMAND_ARGUMENT], page 125 intrinsic defined by the Fortran
2003 standard.

124 The GNU Fortran Compiler

Standard: GNU extension
Class: Subroutine

Syntax: CALL GETARG(POS, VALUE)

Arguments:
POS Shall be of type INTEGER and not wider than the default in-
teger kind; POS > 0
VALUE Shall be of type CHARACTER and of default kind.
VALUE Shall be of type CHARACTER.

Return value:
After GETARG returns, the VALUE argument holds the POSth command line
argument. If VALUE can not hold the argument, it is truncated to fit the length
of VALUE. If there are less than POS arguments specified at the command line,
VALUE will be filled with blanks. If POS = 0, VALUE is set to the name of
the program (on systems that support this feature).

Example:

PROGRAM test_getarg
INTEGER :: i
CHARACTER(len=32) :: arg

DO i =1, iargcQ
CALL getarg(i, arg)
WRITE (*,*) arg

END DO

END PROGRAM

See also: GNU Fortran 77 compatibility function: Section 8.115 [TARGC], page 134

Fortran 2003 functions and subroutines: Section 8.98 [GET_COMMAND],
page 124, Section 8.99 [GET-COMMAND_ARGUMENT], page 125,
Section 8.49 [COMMAND_ARGUMENT_COUNT], page 92

8.98 GET_COMMAND — Get the entire command line

Description:
Retrieve the entire command line that was used to invoke the program.

Standard: Fortran 2003 and later
Class: Subroutine
Syniax: CALL GET_COMMAND ([COMMAND, LENGTH, STATUS])

Arguments:
COMMAND (Optional) shall be of type CHARACTER and of default kind.
LENGTH (Optional) Shall be of type INTEGER and of default kind.
STATUS (Optional) Shall be of type INTEGER and of default kind.

Return value:
If COMMAND is present, stores the entire command line that was used to
invoke the program in COMMAND. If LENGTH is present, it is assigned the
length of the command line. If STATUS is present, it is assigned 0 upon success

Chapter 8: Intrinsic Procedures 125

Ezample:

See also:

of the command, -1 if COMMAND is too short to store the command line, or
a positive value in case of an error.

PROGRAM test_get_command
CHARACTER(len=255) :: cmd
CALL get_command (cmd)
WRITE (*,*) TRIM(cmd)

END PROGRAM

Section 8.99 [GET_-COMMAND_ARGUMENT], page 125, Section 8.49 [COM-
MAND_ARGUMENT_COUNT], page 92

8.99 GET_COMMAND_ARGUMENT — (et command line arguments

Description:

Standard:
Class:
Syntazx:

Arguments:

Retrieve the NUMBER-th argument that was passed on the command line when
the containing program was invoked.

Fortran 2003 and later
Subroutine

CALL GET_COMMAND_ARGUMENT (NUMBER [, VALUE, LENGTH, STATUS])

NUMBER Shall be a scalar of type INTEGER and of default kind,
NUMBER > 0

VALUE (Optional) Shall be a scalar of type CHARACTER and of default
kind.

LENGTH (Optional) Shall be a scalar of type INTEGER and of default
kind.

STATUS (Optional) Shall be a scalar of type INTEGER and of default
kind.

Return value:

Example:

After GET_COMMAND_ARGUMENT returns, the VALUE argument holds the
NUMBER-th command line argument. If VALUE can not hold the argument,
it is truncated to fit the length of VALUE. If there are less than NUMBER
arguments specified at the command line, VALUE will be filled with blanks.
If NUMBER = 0, VALUE is set to the name of the program (on systems
that support this feature). The LENGTH argument contains the length of
the NUMBER-th command line argument. If the argument retrieval fails,
STATUS is a positive number; if VALUE contains a truncated command line
argument, STATUS is -1; and otherwise the STATUS is zero.

PROGRAM test_get_command_argument
INTEGER :: i
CHARACTER(len=32) :: arg

i=0
DO

126 The GNU Fortran Compiler

CALL get_command_argument(i, arg)
IF (LEN_TRIM(arg) == 0) EXIT

WRITE (*,*) TRIM(arg)
i=1i+1
END DO
END PROGRAM

See also: Section 898 [GET_COMMAND], page 124, Section 8.49 [COM-
MAND_ARGUMENT_COUNT], page 92

8.100 GETCWD — Get current working directory

Description:
Get current working directory.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Standard: GNU extension
Class: Subroutine, function

Syntaz:

CALL GETCWD(C [, STATUS])
STATUS = GETCWD (C)

Arguments:
C The type shall be CHARACTER and of default kind.
STATUS (Optional) status flag. Returns 0 on success, a system specific
and nonzero error code otherwise.
Example:

PROGRAM test_getcwd
CHARACTER (len=255) :: cwd
CALL getcwd(cwd)
WRITE(*,*) TRIM(cwd)

END PROGRAM

See also: Section 8.46 [CHDIR], page 90

8.101 GETENV — Get an environmental variable

Description:

Get the VALUE of the environmental variable NAME.

This intrinsic routine is provided for backwards compatibility with GNU For-

tran 77. In new code, programmers should consider the use of the Section 8.102

[GET_ENVIRONMENT_VARIABLE]|, page 127 intrinsic defined by the For-
tran 2003 standard.

Note that GETENV need not be thread-safe. It is the responsibility of the user
to ensure that the environment is not being updated concurrently with a call
to the GETENV intrinsic.

Standard: GNU extension

Chapter 8: Intrinsic Procedures 127

Class: Subroutine
Syniaxz CALL GETENV(NAME, VALUE)

Arguments:
NAME Shall be of type CHARACTER and of default kind.
VALUE Shall be of type CHARACTER and of default kind.

Return value:
Stores the value of NAME in VALUE. If VALUE is not large enough to hold
the data, it is truncated. If NAME is not set, VALUE will be filled with blanks.

Example:

PROGRAM test_getenv
CHARACTER (1len=255) :: homedir
CALL getenv("HOME", homedir)
WRITE (*,*) TRIM(homedir)

END PROGRAM

See also: Section 8.102 [GET_.ENVIRONMENT_VARIABLE], page 127

8.102 GET_ENVIRONMENT _VARIABLE — Get an environmental
variable

Description:
Get the VALUE of the environmental variable NAME.

Note that GET_ENVIRONMENT_VARIABLE need not be thread-safe. It is the re-
sponsibility of the user to ensure that the environment is not being updated
concurrently with a call to the GET_ENVIRONMENT_VARIABLE intrinsic.

Standard: Fortran 2003 and later
Class: Subroutine

Syntaz: CALL GET_ENVIRONMENT_VARIABLE(NAME[, VALUE, LENGTH, STATUS,

TRIM_NAME)
Arguments:

NAME Shall be a scalar of type CHARACTER and of default kind.

VALUE (Optional) Shall be a scalar of type CHARACTER and of default
kind.

LENGTH (Optional) Shall be a scalar of type INTEGER and of default
kind.

STATUS (Optional) Shall be a scalar of type INTEGER and of default
kind.

TRIM_NAME (Optional) Shall be a scalar of type LOGICAL and of default
kind.

Return value:
Stores the value of NAME in VALUE. If VALUE is not large enough to hold the
data, it is truncated. If NAME is not set, VALUE will be filled with blanks.
Argument LENGTH contains the length needed for storing the environment
variable NAME or zero if it is not present. STATUS is -1 if VALUE is present

128

Example:

The GNU Fortran Compiler

but too short for the environment variable; it is 1 if the environment variable
does not exist and 2 if the processor does not support environment variables;
in all other cases STATUS is zero. If TRIM_NAME is present with the value
.FALSE., the trailing blanks in NAME are significant; otherwise they are not
part of the environment variable name.

PROGRAM test_getenv
CHARACTER(len=255) :: homedir
CALL get_environment_variable("HOME", homedir)
WRITE (*,*) TRIM(homedir)

END PROGRAM

8.103 GETGID — Group ID function

Description:

Standard:
Class:
Syntaz:

Returns the numerical group ID of the current process.
GNU extension
Function

RESULT = GETGID()

Return value:

Example:

See also:

The return value of GETGID is an INTEGER of the default kind.

See GETPID for an example.
Section 8.105 [GETPID], page 129, Section 8.106 [GETUID], page 129

8.104 GETLOG — Get login name

Description:

Standard:
Class:
Syntaz:

Arguments:

Gets the username under which the program is running.
GNU extension
Subroutine

CALL GETLOG(C)

C Shall be of type CHARACTER and of default kind.

Return value:

Ezample:

See also:

Stores the current user name in LOGIN. (On systems where POSIX functions
geteuid and getpwuid are not available, and the getlogin function is not
implemented either, this will return a blank string.)

PROGRAM TEST_GETLOG
CHARACTER(32) :: login
CALL GETLOG(login)
WRITE(*,*) login

END PROGRAM

Section 8.106 [GETUID], page 129

Chapter 8: Intrinsic Procedures 129

8.105 GETPID — Process ID function
Description:
Returns the numerical process identifier of the current process.
Standard: GNU extension
Class: Function
Syntax: RESULT = GETPID()

Return value:
The return value of GETPID is an INTEGER of the default kind.

Example:
program info
print *, "The current process ID is ", getpid()
print *, "Your numerical user ID is ", getuid()
print *, "Your numerical group ID is ", getgid()

end program info

See also: Section 8.103 [GETGID], page 128, Section 8.106 [GETUID], page 129

8.106 GETUID — User ID function

Description:
Returns the numerical user ID of the current process.

Standard: GNU extension
Class: Function
Syntaz: RESULT = GETUID()

Return value:
The return value of GETUID is an INTEGER of the default kind.

Ezxample: See GETPID for an example.
See also: Section 8.105 [GETPID], page 129, Section 8.104 [GETLOG], page 128

8.107 GMTIME — Convert time to GMT info

Description:
Given a system time value TIME (as provided by the TIME8 intrinsic), fills
VALUES with values extracted from it appropriate to the UTC time zone
(Universal Coordinated Time, also known in some countries as GMT, Greenwich
Mean Time), using gmtime (3).

Standard: GNU extension
Class: Subroutine
Synta,x: CALL GMTIME(TIME, VALUES)

Arguments:
TIME An INTEGER scalar expression corresponding to a system time,
with INTENT (IN).
VALUES A default INTEGER array with 9 elements, with INTENT (OUT).

130 The GNU Fortran Compiler

Return value:
The elements of VALUES are assigned as follows:

1. Seconds after the minute, range 0-59 or 0-61 to allow for leap seconds
Minutes after the hour, range 0-59

Hours past midnight, range 0-23

Day of month, range 0-31

Number of months since January, range 0-12

Years since 1900

Number of days since Sunday, range 0-6

Days since January 1

© 00N o U N

Daylight savings indicator: positive if daylight savings is in effect, zero if
not, and negative if the information is not available.

See also: Section 8.59 [CTIME], page 99, Section 8.159 [LTIME], page 157, Section 8.242
[TIME], page 204, Section 8.243 [TIMES|, page 205

8.108 HOSTNM — Get system host name

Description:
Retrieves the host name of the system on which the program is running.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Standard: GNU extension
Class: Subroutine, function

Syntaz:

CALL HOSTNM(C [, STATUS])
STATUS = HOSTNM (NAME)

Arguments:
C Shall of type CHARACTER and of default kind.
STATUS (Optional) status flag of type INTEGER. Returns 0 on success,
or a system specific error code otherwise.

Return value:
In either syntax, NAME is set to the current hostname if it can be obtained,
or to a blank string otherwise.

8.109 HUGE — Largest number of a kind

Description:
HUGE (X) returns the largest number that is not an infinity in the model of the
type of X.

Standard: Fortran 95 and later

Class: Inquiry function

Chapter 8: Intrinsic Procedures 131

Syntaz: RESULT = HUGE (X)

Arguments:
X Shall be of type REAL or INTEGER.

Return value:
The return value is of the same type and kind as X

Example:

program test_huge_tiny
print *, huge(0), huge(0.0), huge(0.0d0)
print *, tiny(0.0), tiny(0.0d0)

end program test_huge_tiny

8.110 HYPOT — Euclidean distance function

Description:
HYPOT (X,Y) is the Euclidean distance function. It is equal to v/ X? + Y2, with-
out undue underflow or overflow.

Standard: Fortran 2008 and later
Class: Elemental function
Syntax: RESULT = HYPOT (X, Y)

Arguments:
X The type shall be REAL.
Y The type and kind type parameter shall be the same as X.

Return value:
The return value has the same type and kind type parameter as X.

Example:

program test_hypot
real(4) :: x = 1.e0_4, y = 0.5e0_4
x = hypot(x,y)

end program test_hypot

8.111 IACHAR — Code in ASCII collating sequence

Description:
TIACHAR(C) returns the code for the ASCII character in the first character posi-
tion of C.

Standard: Fortran 95 and later, with KIND argument Fortran 2003 and later
Class: Elemental function
Syntaz: RESULT = IACHAR(C [, KIND])

Arguments:
C Shall be a scalar CHARACTER, with INTENT (IN)
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

132 The GNU Fortran Compiler

Return value:
The return value is of type INTEGER and of kind KIND. If KIND is absent, the
return value is of default integer kind.

Ezample:
program test_iachar
integer i
i = iachar(’ ?)
end program test_iachar
Note: See Section 8.119 [ICHARJ, page 136 for a discussion of converting between

numerical values and formatted string representations.

See also: Section 8.5 [ACHAR], page 65, Section 8.45 [CHAR], page 90, Section 8.119
[ICHARJ, page 136

8.112 IALL — Bitwise AND of array elements

Description:
Reduces with bitwise AND the elements of ARRAY along dimension DIM if
the corresponding element in MASK is TRUE.

Standard: Fortran 2008 and later
Class: Transformational function

Syntaz:

RESULT = TALL (ARRAY[, MASK])
RESULT = TALL(ARRAY, DIM[, MASK])

Arguments:
ARRAY Shall be an array of type INTEGER
DIM (Optional) shall be a scalar of type INTEGER with a value in
the range from 1 to n, where n equals the rank of ARRAY.
MASK (Optional) shall be of type LOGICAL and either be a scalar or

an array of the same shape as ARRAY.

Return value:
The result is of the same type as ARRAY.
If DIM is absent, a scalar with the bitwise ALL of all elements in ARRAY is
returned. Otherwise, an array of rank n-1, where n equals the rank of AR-
RAY, and a shape similar to that of ARRAY with dimension DIM dropped is
returned.

Ezample:

PROGRAM test_iall
INTEGER(1) :: a(2)

a(1)
a(2)

b’00100100°
b’01101010°

! prints 00100000
PRINT °(b8.8)’, IALL(a)
END PROGRAM

Chapter 8: Intrinsic Procedures 133

See also: Section 8.114 [IANY], page 133, Section 8.129 [IPARITY], page 141,
Section 8.113 [IAND], page 133

8.113 IAND — Bitwise logical and

Description:
Bitwise logical AND.

Standard: Fortran 95 and later
Class: Elemental function
Syntaz: RESULT = IAND(I, J)

Arguments:
1 The type shall be INTEGER.
J The type shall be INTEGER, of the same kind as I. (As a GNU
extension, different kinds are also permitted.)

Return value:
The return type is INTEGER, of the same kind as the arguments. (If the argument
kinds differ, it is of the same kind as the larger argument.)

Example:

PROGRAM test_iand
INTEGER :: a, b
DATA a / Z°F’ /, b / 2°3* /
WRITE (*,*) IAND(a, b)

END PROGRAM

See also: Section 8.128 [IOR], page 141, Section 8.121 [IEOR], page 137, Section 8.117
[IBITS]|, page 135, Section 8.118 [IBSET], page 135, Section 8.116 [IBCLR],
page 135, Section 8.184 [NOT], page 171

8.114 IANY — Bitwise OR of array elements

Description:
Reduces with bitwise OR (inclusive or) the elements of ARRAY along dimen-
sion DIM if the corresponding element in MASK is TRUE.

Standard: Fortran 2008 and later
Class: Transformational function

Syntaz:

RESULT = IANY (ARRAY [, MASK])
RESULT = IANY(ARRAY, DIM[, MASK])

Arguments:
ARRAY Shall be an array of type INTEGER
DIM (Optional) shall be a scalar of type INTEGER with a value in
the range from 1 to n, where n equals the rank of ARRAY.
MASK (Optional) shall be of type LOGICAL and either be a scalar or

an array of the same shape as ARRAY.

134

The GNU Fortran Compiler

Return value:

The result is of the same type as ARRAY.

If DIM is absent, a scalar with the bitwise OR of all elements in ARRAY is
returned. Otherwise, an array of rank n-1, where n equals the rank of AR-
RAY, and a shape similar to that of ARRAY with dimension DIM dropped is
returned.

Ezample:
PROGRAM test_iany
INTEGER(1) :: a(2)
a(1) = b’00100100°
a(2) = b’01101010°
! prints 01101110
PRINT ’(b8.8)’, IANY(a)
END PROGRAM
See also: Section 8.129 [IPARITY], page 141, Section 8.112 [IALL], page 132,
Section 8.128 [IOR], page 141
8.115 IARGC — Get the number of command line arguments
Description:
IARGC returns the number of arguments passed on the command line when the
containing program was invoked.
This intrinsic routine is provided for backwards compatibility with GNU Fortran
77. In new code, programmers should consider the use of the Section 8.49
[COMMAND_ARGUMENT_COUNT], page 92 intrinsic defined by the Fortran
2003 standard.
Standard: GNU extension
Class: Function
Syntax: RESULT = TARGC()
Arguments:

None.

Return value:

Ezample:

See also:

The number of command line arguments, type INTEGER (4).
See Section 8.97 [GETARG], page 123

GNU Fortran 77 compatibility subroutine: Section 8.97 [GETARG], page 123

Fortran 2003 functions and subroutines: Section 8.98 [GET_COMMAND],
page 124, Section 8.99 [GET_-COMMAND_ARGUMENT], page 125,
Section 8.49 [COMMAND_ARGUMENT_COUNT], page 92

Chapter 8: Intrinsic Procedures 135

8.116 IBCLR — Clear bit

Description:

IBCLR returns the value of I with the bit at position POS set to zero.
Standard: Fortran 95 and later
Class: Elemental function

Syntax: RESULT = IBCLR(I, POS)

Arguments:
1 The type shall be INTEGER.
POS The type shall be INTEGER.

Return value:
The return value is of type INTEGER and of the same kind as I.

See also: Section 8.117 [IBITS], page 135, Section 8.118 [IBSET], page 135, Section 8.113
[IAND], page 133, Section 8.128 [IOR], page 141, Section 8.121 [IEOR],
page 137, Section 8.179 [MVBITS], page 168

8.117 IBITS — Bit extraction

Description:
IBITS extracts a field of length LEN from I, starting from bit position POS
and extending left for LEN bits. The result is right-justified and the remaining
bits are zeroed. The value of POS+LEN must be less than or equal to the value
BIT_SIZE(I).

Standard: Fortran 95 and later
Class: Elemental function

Syntaz: RESULT = IBITS(I, POS, LEN)

Arguments:
I The type shall be INTEGER.
POS The type shall be INTEGER.
LEN The type shall be INTEGER.

Return value:
The return value is of type INTEGER and of the same kind as L.

See also: Section 8.34 [BIT_SIZE], page 83, Section 8.116 [IBCLR|, page 135,
Section 8.118 [IBSET], page 135, Section 8.113 [IAND], page 133, Section 8.128
[IOR], page 141, Section 8.121 [IEOR], page 137

8.118 IBSET — Set bit

Description:
IBSET returns the value of I with the bit at position POS set to one.

Standard: Fortran 95 and later

Class: Elemental function

136 The GNU Fortran Compiler

Syntax: RESULT = IBSET(I, POS)

Arguments:
1 The type shall be INTEGER.
POS The type shall be INTEGER.

Return value:
The return value is of type INTEGER and of the same kind as L

See also: Section 8.116 [IBCLR], page 135, Section 8.117 [IBITS], page 135, Section 8.113
[IAND], page 133, Section 8.128 [IOR], page 141, Section 8.121 [IEOR],
page 137, Section 8.179 [MVBITS], page 168

8.119 ICHAR — Character-to-integer conversion function

Description:
ICHAR(C) returns the code for the character in the first character position of
C in the system’s native character set. The correspondence between charac-
ters and their codes is not necessarily the same across different GNU Fortran
implementations.

Standard: Fortran 95 and later, with KIND argument Fortran 2003 and later
Class: Elemental function
Syntax: RESULT = ICHAR(C [, KIND])

Arguments:
C Shall be a scalar CHARACTER, with INTENT (IN)
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type INTEGER and of kind KIND. If KIND is absent, the
return value is of default integer kind.

Ezample:
program test_ichar
integer i
i = ichar(’ ?)
end program test_ichar

Specific names:

Name Argument Return type Standard
ICHAR(C) CHARACTER C INTEGER(4) Fortran 77 and later
Note: No intrinsic exists to convert between a numeric value and a formatted character

string representation — for instance, given the CHARACTER value > 154’ obtaining
an INTEGER or REAL value with the value 154, or vice versa. Instead, this
functionality is provided by internal-file I/O, as in the following example:
program read_val
integer value

character(len=10) string, string2
string = ’154°

Chapter 8: Intrinsic Procedures 137

! Convert a string to a numeric value
read (string,’(I10)’) value
print *, value

! Convert a value to a formatted string
write (string2,’(I10)’) value
print *, string2
end program read_val
See also: Section 8.5 [ACHAR], page 65, Section 8.45 [CHAR], page 90, Section 8.111
[IACHAR], page 131

8.120 IDATE — Get current local time subroutine
(day/month /year)

Description:
IDATE(VALUES) Fills VALUES with the numerical values at the current local
time. The day (in the range 1-31), month (in the range 1-12), and year appear
in elements 1, 2, and 3 of VALUES, respectively. The year has four significant
digits.

Standard: GNU extension

Class: Subroutine

Syntaz: CALL IDATE(VALUES)

Arguments:
VALUES The type shall be INTEGER, DIMENSION(3) and the kind shall

be the default integer kind.

Return value:
Does not return anything.

Example:

program test_idate
integer, dimension(3) :: tarray
call idate(tarray)
print *, tarray(1)
print *, tarray(2)
print *, tarray(3)
end program test_idate

8.121 IEOR — Bitwise logical exclusive or

Description:
IEOR returns the bitwise Boolean exclusive-OR of I and J.

Standard: Fortran 95 and later
Class: Elemental function
Syntax: RESULT = IEOR(I, J)

Arguments:
I The type shall be INTEGER.

138 The GNU Fortran Compiler

J The type shall be INTEGER, of the same kind as I. (As a GNU
extension, different kinds are also permitted.)

Return value:
The return type is INTEGER, of the same kind as the arguments. (If the argument
kinds differ, it is of the same kind as the larger argument.)

See also: Section 8.128 [IOR], page 141, Section 8.113 [IAND], page 133, Section 8.117
[IBITS], page 135, Section 8.118 [IBSET], page 135, Section 8.116 [IBCLR],
page 135, Section 8.184 [NOT], page 171

8.122 IERRNO — Get the last system error number

Description:
Returns the last system error number, as given by the C errno variable.

Standard: GNU extension
Class: Function
Syntax: RESULT = IERRNO()

Arguments:
None.

Return value:
The return value is of type INTEGER and of the default integer kind.

See also: Section 8.190 [PERRORJ, page 174

8.123 IMAGE_INDEX — Function that converts a cosubscript to
an image index

Description:
Returns the image index belonging to a cosubscript.

Standard: Fortran 2008 and later
Class: Inquiry function.
Syntaz: RESULT = IMAGE_INDEX (COARRAY, SUB)

Arguments: None.
COARRAY Coarray of any type.
SUB default integer rank-1 array of a size equal to the corank of
COARRAY.

Return value:
Scalar default integer with the value of the image index which corresponds to
the cosubscripts. For invalid cosubscripts the result is zero.

Ezample:
INTEGER :: array[2,-1:4,8,%]
! Writes 28 (or O if there are fewer than 28 images)
WRITE (*,*) IMAGE_INDEX (array, [2,0,3,1])
See also: Section 8.241 [THIS_.IMAGE], page 203, Section 8.186 [NUM_IMAGES],

page 172

Chapter 8: Intrinsic Procedures 139

8.124 INDEX — Position of a substring within a string

Description:
Returns the position of the start of the first occurrence of string SUBSTRING
as a substring in STRING, counting from one. If SUBSTRING is not present
in STRING, zero is returned. If the BACK argument is present and true, the
return value is the start of the last occurrence rather than the first.

Standard: Fortran 77 and later, with KIND argument Fortran 2003 and later
Class: Elemental function

Syntaz: RESULT = INDEX (STRING, SUBSTRING [, BACK [, KIND]])

Arguments:
STRING Shall be a scalar CHARACTER, with INTENT (IN)
SUBSTRING Shall be a scalar CHARACTER, with INTENT (IN)
BACK (Optional) Shall be a scalar LOGICAL, with INTENT (IN)
KIND (Optional) An INTEGER initialization expression indicating

the kind parameter of the result.

Return value:
The return value is of type INTEGER and of kind KIND. If KIND is absent, the
return value is of default integer kind.

Specific names:

Name Argument Return type Standard
INDEX (STRING, CHARACTER INTEGER (4) Fortran 77 and later
SUBSTRING)

See also: Section 8.211 [SCAN], page 185, Section 8.255 [VERIFY], page 210

8.125 INT — Convert to integer type

Description:
Convert to integer type

Standard: Fortran 77 and later
Class: Elemental function
Syntaz: RESULT = INT(A [, KIND))

Arguments:
A Shall be of type INTEGER, REAL, or COMPLEX.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
These functions return a INTEGER variable or array under the following rules:

(A) If A is of type INTEGER, INT(A) = A

(B) If A is of type REAL and |A| < 1, INT(A) equals 0. If [A| > 1, then
INT(A) equals the largest integer that does not exceed the range of
A and whose sign is the same as the sign of A.

140 The GNU Fortran Compiler

(C) If A is of type COMPLEX, rule B is applied to the real part of A.

Example:

program test_int
integer :: i = 42
complex :: z = (-3.7, 1.0)
print *, int(i)
print *, int(z), int(z,8)
end program

Specific names:

Name Argument Return type Standard

INT(A) REAL(4) A INTEGER Fortran 77 and later
IFIX(A) REAL(4) A INTEGER Fortran 77 and later
IDINT(A) REAL(8) A INTEGER Fortran 77 and later

8.126 INT2 — Convert to 16-bit integer type

Description:
Convert to a KIND=2 integer type. This is equivalent to the standard INT intrin-
sic with an optional argument of KIND=2, and is only included for backwards
compatibility.

The SHORT intrinsic is equivalent to INT2.
Standard: GNU extension
Class: Elemental function
Syntaz: RESULT = INT2(A)

Arguments:
A Shall be of type INTEGER, REAL, or COMPLEX.

Return value:
The return value is a INTEGER(2) variable.

See also: Section 8.125 [INT], page 139, Section 8.127 [INTS], page 140, Section 8.156
[LONG], page 156

8.127 INT8 — Convert to 64-bit integer type

Description:
Convert to a KIND=8 integer type. This is equivalent to the standard INT intrin-
sic with an optional argument of KIND=8, and is only included for backwards
compatibility.

Standard: GNU extension
Class: Elemental function
Syntaz: RESULT = INT8(A)

Arguments:
A Shall be of type INTEGER, REAL, or COMPLEX.

Chapter 8: Intrinsic Procedures 141

Return value:
The return value is a INTEGER(8) variable.

See also: Section 8.125 [INT], page 139, Section 8.126 [INT2], page 140, Section 8.156
[LONG], page 156

8.128 IO0R — Bitwise logical or

Description:
IOR returns the bitwise Boolean inclusive-OR of I and J.

Standard: Fortran 95 and later
Class: Elemental function
Syntaz: RESULT = IOR(I, J)

Arguments:
I The type shall be INTEGER.
J The type shall be INTEGER, of the same kind as I. (As a GNU
extension, different kinds are also permitted.)

Return value:
The return type is INTEGER, of the same kind as the arguments. (If the argument
kinds differ, it is of the same kind as the larger argument.)

See also: Section 8.121 [IEOR], page 137, Section 8.113 [IAND], page 133, Section 8.117
[IBITS], page 135, Section 8.118 [IBSET], page 135, Section 8.116 [IBCLR],
page 135, Section 8.184 [NOT], page 171

8.129 IPARITY — Bitwise XOR of array elements

Description:
Reduces with bitwise XOR (exclusive or) the elements of ARRAY along dimen-
sion DIM if the corresponding element in MASK is TRUE.

Standard: Fortran 2008 and later
Class: Transformational function

Syntaz:

RESULT = IPARITY (ARRAY[, MASK])
RESULT = IPARITY (ARRAY, DIM[, MASK])

Arguments:
ARRAY Shall be an array of type INTEGER
DIM (Optional) shall be a scalar of type INTEGER with a value in
the range from 1 to n, where n equals the rank of ARRAY.
MASK (Optional) shall be of type LOGICAL and either be a scalar or

an array of the same shape as ARRAY.

Return value:
The result is of the same type as ARRAY.

142

Ezample:

See also:

The GNU Fortran Compiler

If DIM is absent, a scalar with the bitwise XOR of all elements in ARRAY
is returned. Otherwise, an array of rank n-1, where n equals the rank of AR-
RAY, and a shape similar to that of ARRAY with dimension DIM dropped is
returned.

PROGRAM test_iparity
INTEGER(1) :: a(2)

b’00100100°
b’01101010°

a(1)
a(2)

! prints 01001110
PRINT ’(b8.8)°, IPARITY(a)
END PROGRAM

Section 8.114 [IANY], page 133, Section 8.112 [IALLJ, page 132, Section 8.121
[IEOR], page 137, Section 8.189 [PARITY], page 174

8.130 IRAND — Integer pseudo-random number

Description:

Standard:
Class:
Syntaz:

Arguments:

IRAND (FLAG) returns a pseudo-random number from a uniform distribution
between 0 and a system-dependent limit (which is in most cases 2147483647).
If FLAG is 0, the next number in the current sequence is returned; if FLAG is
1, the generator is restarted by CALL SRAND(O); if FLAG has any other value,
it is used as a new seed with SRAND.

This intrinsic routine is provided for backwards compatibility with GNU Fortran
77. It implements a simple modulo generator as provided by g77. For new code,
one should consider the use of Section 8.199 [RANDOM_NUMBER], page 179

as it implements a superior algorithm.
GNU extension
Function

RESULT = IRAND(I)

1 Shall be a scalar INTEGER of kind 4.

Return value:

Example:

The return value is of INTEGER (kind=4) type.

program test_irand
integer,parameter :: seed = 86456

call srand(seed)

print *, irand(), irand(), irand(), irand()

print *, irand(seed), irand(), irand(), irand()
end program test_irand

Chapter 8: Intrinsic Procedures 143

8.131 IS_IOSTAT_END — Test for end-of-file value

Description:
IS_IOSTAT_END tests whether an variable has the value of the I/O status “end of
file”. The function is equivalent to comparing the variable with the IOSTAT_END
parameter of the intrinsic module ISO_FORTRAN_ENV.

Standard: Fortran 2003 and later
Class: Elemental function
Syntaz: RESULT = IS_IOSTAT_END(I)

Arguments:
1 Shall be of the type INTEGER.

Return value:
Returns a LOGICAL of the default kind, which .TRUE. if I has the value which
indicates an end of file condition for IOSTAT= specifiers, and is .FALSE. other-
wise.

Ezample:

PROGRAM iostat
IMPLICIT NONE
INTEGER :: stat, i
OPEN(88, FILE=’test.dat’)
READ(88, *, IOSTAT=stat) i
IF(IS_IOSTAT_END(stat)) STOP ’END OF FILE’
END PROGRAM

8.132 IS_IOSTAT_EOR — Test for end-of-record value

Description:
IS_IOSTAT_EOR tests whether an variable has the value of the I/O status “end of
record”. The function is equivalent to comparing the variable with the TOSTAT_
EOR parameter of the intrinsic module ISO_FORTRAN_ENV.

Standard: Fortran 2003 and later
Class: Elemental function
Syntaz: RESULT = IS_IOSTAT_EOR(I)

Arguments:
I Shall be of the type INTEGER.

Return value:
Returns a LOGICAL of the default kind, which .TRUE. if I has the value which
indicates an end of file condition for IOSTAT= specifiers, and is .FALSE. other-
wise.

Example:

PROGRAM iostat
IMPLICIT NONE
INTEGER :: stat, i(50)
OPEN(88, FILE=’test.dat’, FORM=’UNFORMATTED’)

144 The GNU Fortran Compiler

READ(88, IOSTAT=stat) i
IF(IS_IOSTAT_EOR(stat)) STOP ’END OF RECORD’
END PROGRAM

8.133 ISATTY — Whether a unit is a terminal device.

Description:
Determine whether a unit is connected to a terminal device.

Standard: GNU extension
Class: Function
Syntaz: RESULT = ISATTY (UNIT)

Arguments:
UNIT Shall be a scalar INTEGER.

Return value:
Returns .TRUE. if the UNIT is connected to a terminal device, .FALSE. other-
wise.

Example:

PROGRAM test_isatty
INTEGER (kind=1) :: unit
DO unit = 1, 10
write(*,*) isatty(unit=unit)
END DO
END PROGRAM

See also: Section 8.249 [TTYNAM], page 207

8.134 ISHFT — Shift bits

Description:
ISHFT returns a value corresponding to I with all of the bits shifted SHIFT
places. A value of SHIF'T greater than zero corresponds to a left shift, a value
of zero corresponds to no shift, and a value less than zero corresponds to a right
shift. If the absolute value of SHIFT is greater than BIT_SIZE(I), the value
is undefined. Bits shifted out from the left end or right end are lost; zeros are
shifted in from the opposite end.

Standard: Fortran 95 and later
Class: Elemental function
Syniax: RESULT = ISHFT(I, SHIFT)

Arguments:
1 The type shall be INTEGER.
SHIFT The type shall be INTEGER.

Return value:
The return value is of type INTEGER and of the same kind as I.

See also: Section 8.135 [ISHFTC], page 145

Chapter 8: Intrinsic Procedures 145

8.135 ISHFTC — Shift bits circularly

Description:
ISHFTC returns a value corresponding to I with the rightmost SIZE bits shifted
circularly SHIF'T places; that is, bits shifted out one end are shifted into the
opposite end. A value of SHIF'T greater than zero corresponds to a left shift,
a value of zero corresponds to no shift, and a value less than zero corresponds
to a right shift. The absolute value of SHIFT must be less than SIZE. If the
SIZE argument is omitted, it is taken to be equivalent to BIT_SIZE(I).

Standard: Fortran 95 and later
Class: Elemental function

Syntax: RESULT = ISHFTC(I, SHIFT [, SIZE])

Arguments:
1 The type shall be INTEGER.
SHIFT The type shall be INTEGER.
SIZE (Optional) The type shall be INTEGER; the value must be

greater than zero and less than or equal to BIT_SIZE(I).

Return value:
The return value is of type INTEGER and of the same kind as I

See also: Section 8.134 [ISHFT], page 144

8.136 ISNAN — Test for a NalN

Description:
ISNAN tests whether a floating-point value is an IEEE Not-a-Number (NaN).

Standard: GNU extension
Class: Elemental function
Syntaz: ISNAN (X)

Arguments:
X Variable of the type REAL.

Return value:
Returns a default-kind LOGICAL. The returned value is TRUE if X is a NaN and
FALSE otherwise.

Ezample:

program test_nan
implicit none

real :: x
x = -1.0
x = sqrt(x)

if (isnan(x)) stop ’"x" is a NaN’
end program test_nan

146 The GNU Fortran Compiler

8.137 ITIME — Get current local time subroutine
(hour /minutes/seconds)

Description:
IDATE(VALUES) Fills VALUES with the numerical values at the current local
time. The hour (in the range 1-24), minute (in the range 1-60), and seconds (in
the range 1-60) appear in elements 1, 2, and 3 of VALUES, respectively.

Standard: GNU extension
Class: Subroutine
Syntaz: CALL ITIME(VALUES)

Arguments:
VALUES The type shall be INTEGER, DIMENSION(3) and the kind shall
be the default integer kind.

Return value:
Does not return anything.

Example:

program test_itime
integer, dimension(3) :: tarray
call itime(tarray)
print *, tarray(1)
print *, tarray(2)
print *, tarray(3)
end program test_itime

8.138 KILL — Send a signal to a process
Description:
Standard: Sends the signal specified by SIGNAL to the process PID. See kil11(2).

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Class: Subroutine, function

Syntaz:

CALL KILL(C, VALUE [, STATUS])
STATUS = KILL(C, VALUE)

Arguments:
C Shall be a scalar INTEGER, with INTENT (IN)
VALUE Shall be a scalar INTEGER, with INTENT (IN)
STATUS (Optional) status flag of type INTEGER(4) or INTEGER(8).
Returns 0 on success, or a system-specific error code
otherwise.

See also: Section 8.2 [ABORT], page 63, Section 8.78 [EXIT], page 111

Chapter 8: Intrinsic Procedures 147

8.139 KIND — Kind of an entity
Description:

KIND(X) returns the kind value of the entity X.
Standard: Fortran 95 and later
Class: Inquiry function
Syntax: K = KIND(X)

Arguments:
X Shall be of type LOGICAL, INTEGER, REAL, COMPLEX or
CHARACTER.

Return value:
The return value is a scalar of type INTEGER and of the default integer kind.

Ezample:
program test_kind
integer,parameter :: kc
integer,parameter :: kl

kind(’)
kind(.true.)

print *, "The default character kind is ", kc
print *, "The default logical kind is ", kl
end program test_kind

8.140 LBOUND — Lower dimension bounds of an array

Description:
Returns the lower bounds of an array, or a single lower bound along the DIM
dimension.

Standard: Fortran 95 and later, with KIND argument Fortran 2003 and later
Class: Inquiry function

Syntaz: RESULT = LBOUND (ARRAY [, DIM [, KIND]])

Arguments:
ARRAY Shall be an array, of any type.
DIM (Optional) Shall be a scalar INTEGER.
KIND (Optional) An INTEGER initialization expression indicating

the kind parameter of the result.

Return value:

The return value is of type INTEGER and of kind KIND. If KIND is absent,
the return value is of default integer kind. If DIM is absent, the result is an
array of the lower bounds of ARRAY. If DIM is present, the result is a scalar
corresponding to the lower bound of the array along that dimension. If ARRAY
is an expression rather than a whole array or array structure component, or if
it has a zero extent along the relevant dimension, the lower bound is taken to
be 1.

See also: Section 8.250 [UBOUND)], page 208, Section 8.141 [LCOBOUND)], page 148

148 The GNU Fortran Compiler

8.141 LCOBOUND — Lower codimension bounds of an array

Description:
Returns the lower bounds of a coarray, or a single lower cobound along the DIM
codimension.

Standard: Fortran 2008 and later
Class: Inquiry function

Syntaz: RESULT = LCOBOUND (COARRAY [, DIM [, KIND]])

Arguments:
ARRAY Shall be an coarray, of any type.
DIM (Optional) Shall be a scalar INTEGER.
KIND (Optional) An INTEGER initialization expression indicating

the kind parameter of the result.

Return value:
The return value is of type INTEGER and of kind KIND. If KIND is absent, the
return value is of default integer kind. If DIM is absent, the result is an array
of the lower cobounds of COARRAY. If DIM is present, the result is a scalar
corresponding to the lower cobound of the array along that codimension.

See also: Section 8.251 [UCOBOUND], page 209, Section 8.140 [LBOUND], page 147

8.142 LEADZ — Number of leading zero bits of an integer

Description:
LEADZ returns the number of leading zero bits of an integer.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = LEADZ(I)

Arguments:
I Shall be of type INTEGER.

Return value:
The type of the return value is the default INTEGER. If all the bits of I are zero,
the result value is BIT_SIZE(I).

Ezample:

PROGRAM test_leadz
WRITE (*,*) BIT_SIZE(1) ! prints 32
WRITE (*,*) LEADZ(1) ! prints 31
END PROGRAM

See also: Section 8.34 [BIT_SIZE]|, page 83, Section 8.245 [TRAILZ], page 205,
Section 8.192 [POPCNT], page 175, Section 8.193 [POPPAR], page 176

Chapter 8: Intrinsic Procedures 149

8.143 LEN — Length of a character entity

Description:
Returns the length of a character string. If STRING is an array, the length of an
element of STRING is returned. Note that STRING need not be defined when
this intrinsic is invoked, since only the length, not the content, of STRING is
needed.

Standard: Fortran 77 and later, with KIND argument Fortran 2003 and later
Class: Inquiry function
Syntax: L = LEN(STRING [, KIND])

Arguments:
STRING Shall be a scalar or array of type CHARACTER, with INTENT (IN)
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type INTEGER and of kind KIND. If KIND is absent, the
return value is of default integer kind.

Specific names:
Name Argument Return type Standard
LEN (STRING) CHARACTER INTEGER Fortran 77 and later

See also: Section 8.144 [LEN_TRIM], page 149, Section 8.8 [ADJUSTL], page 67,
Section 8.9 [ADJUSTR], page 67

8.144 LEN_TRIM — Length of a character entity without
trailing blank characters

Description:
Returns the length of a character string, ignoring any trailing blanks.

Standard: Fortran 95 and later, with KIND argument Fortran 2003 and later
Class: Elemental function
Syntaz: RESULT = LEN_TRIM(STRING [, KIND])

Arguments:
STRING Shall be a scalar of type CHARACTER, with INTENT (IN)
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type INTEGER and of kind KIND. If KIND is absent, the
return value is of default integer kind.

See also: Section 8.143 [LEN], page 149, Section 8.8 [ADJUSTL|, page 67, Section 8.9
[ADJUSTR], page 67

150

The GNU Fortran Compiler

8.145 LGE — Lexical greater than or equal

Description:

Standard:
Class:
Syntaz:

Arguments:

Determines whether one string is lexically greater than or equal to another
string, where the two strings are interpreted as containing ASCII character
codes. If the String A and String B are not the same length, the shorter is
compared as if spaces were appended to it to form a value that has the same
length as the longer.

In general, the lexical comparison intrinsics LGE, LGT, LLE, and LLT differ from
the corresponding intrinsic operators .GE., .GT., .LE., and .LT., in that the
latter use the processor’s character ordering (which is not ASCII on some tar-
gets), whereas the former always use the ASCII ordering.

Fortran 77 and later
Elemental function

RESULT = LGE(STRING_A, STRING_B)

STRING_A Shall be of default CHARACTER type.
STRING_B Shall be of default CHARACTER type.

Return value:

Returns .TRUE. if STRING_A >= STRING_B, and .FALSE. otherwise, based on
the ASCII ordering.

Specific names:

See also:

Name Argument Return type Standard
LGE(STRING_A, CHARACTER LOGICAL Fortran 77 and later
STRING_B)

Section 8.146 [LGT], page 150, Section 8.148 [LLE], page 151, Section 8.149
[LLT], page 152

8.146 LGT — Lexical greater than

Description:

Standard:
Class:
Syntaz:

Determines whether one string is lexically greater than another string, where
the two strings are interpreted as containing ASCII character codes. If the
String A and String B are not the same length, the shorter is compared as if
spaces were appended to it to form a value that has the same length as the
longer.

In general, the lexical comparison intrinsics LGE, LGT, LLE, and LLT differ from
the corresponding intrinsic operators .GE., .GT., .LE., and .LT., in that the
latter use the processor’s character ordering (which is not ASCII on some tar-
gets), whereas the former always use the ASCII ordering.

Fortran 77 and later
Elemental function

RESULT = LGT (STRING_A, STRING_B)

Chapter 8: Intrinsic Procedures 151

Arguments:
STRING_A Shall be of default CHARACTER type.
STRING_B Shall be of default CHARACTER type.

Return value:
Returns .TRUE. if STRING_A > STRING_B, and .FALSE. otherwise, based on the
ASCII ordering.

Specific names:

Name Argument Return type Standard
LGT(STRING_A, CHARACTER LOGICAL Fortran 77 and later
STRING_B)

See also: Section 8.145 [LGE], page 150, Section 8.148 [LLE], page 151, Section 8.149
[LLT], page 152

8.147 LINK — Create a hard link

Description:
Makes a (hard) link from file PATHI to PATH2. A null character (CHAR(0)) can
be used to mark the end of the names in PATHI and PATH2; otherwise, trailing
blanks in the file names are ignored. If the STATUS argument is supplied, it
contains 0 on success or a nonzero error code upon return; see 1ink(2).

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.
Standard: GNU extension

Class: Subroutine, function

Syntaz:

CALL LINK(PATH1, PATH2 [, STATUS])
STATUS = LINK(PATH1, PATH2)

Arguments:
PATHI1 Shall be of default CHARACTER type.
PATH?2 Shall be of default CHARACTER type.
STATUS (Optional) Shall be of default INTEGER type.

See also: Section 8.236 [SYMLNK], page 200, Section 8.253 [UNLINK], page 209

8.148 LLE — Lexical less than or equal

Description:
Determines whether one string is lexically less than or equal to another string,
where the two strings are interpreted as containing ASCII character codes. If
the String A and String B are not the same length, the shorter is compared as
if spaces were appended to it to form a value that has the same length as the
longer.

In general, the lexical comparison intrinsics LGE, LGT, LLE, and LLT differ from
the corresponding intrinsic operators .GE., .GT., .LE., and .LT., in that the

152 The GNU Fortran Compiler

latter use the processor’s character ordering (which is not ASCII on some tar-
gets), whereas the former always use the ASCII ordering.

Standard: Fortran 77 and later
Class: Elemental function
Syntaa:: RESULT = LLE(STRING_A, STRING_B)

Arguments:
STRING_A Shall be of default CHARACTER type.
STRING_B Shall be of default CHARACTER type.

Return value:
Returns .TRUE. if STRING_A <= STRING_B, and .FALSE. otherwise, based on
the ASCII ordering.

Specific names:

Name Argument Return type Standard
LLE(STRING_A, CHARACTER LOGICAL Fortran 77 and later
STRING_B)

See also: Section 8.145 [LGE], page 150, Section 8.146 [LGT], page 150, Section 8.149
[LLT], page 152

8.149 LLT — Lexical less than

Description:
Determines whether one string is lexically less than another string, where the
two strings are interpreted as containing ASCII character codes. If the String
A and String B are not the same length, the shorter is compared as if spaces
were appended to it to form a value that has the same length as the longer.

In general, the lexical comparison intrinsics LGE, LGT, LLE, and LLT differ from
the corresponding intrinsic operators .GE., .GT., .LE., and .LT., in that the
latter use the processor’s character ordering (which is not ASCII on some tar-
gets), whereas the former always use the ASCII ordering.

Standard: Fortran 77 and later
Class: Elemental function
Syntax: RESULT = LLT(STRING_A, STRING_B)

Arguments:
STRING_A Shall be of default CHARACTER type.
STRING_B Shall be of default CHARACTER type.

Return value:
Returns . TRUE. if STRING_A < STRING_B, and .FALSE. otherwise, based on the
ASCII ordering.

Specific names:
Name Argument Return type Standard
LLT(STRING_A, CHARACTER LOGICAL Fortran 77 and later
STRING_B)

Chapter 8: Intrinsic Procedures 153

See also: Section 8.145 [LGE], page 150, Section 8.146 [LGT], page 150, Section 8.148
[LLE], page 151

8.150 LNBLNK — Index of the last non-blank character in a
string

Description:
Returns the length of a character string, ignoring any trailing blanks. This is
identical to the standard LEN_TRIM intrinsic, and is only included for backwards
compatibility.

Standard: GNU extension
Class: Elemental function
Syniaxz RESULT = LNBLNK (STRING)

Arguments:
STRING Shall be a scalar of type CHARACTER, with INTENT (IN)

Return value:
The return value is of INTEGER (kind=4) type.

See also: Section 8.124 [INDEX intrinsic|, page 139, Section 8.144 [LEN_TRIM], page 149

8.151 LOC — Returns the address of a variable

Description:
LOC(X) returns the address of X as an integer.

Standard: GNU extension
Class: Inquiry function
Syntaz: RESULT = LOC(X)

Arguments:
X Variable of any type.

Return value:
The return value is of type INTEGER, with a KIND corresponding to the size (in
bytes) of a memory address on the target machine.

Ezample:

program test_loc
integer :: i
real :: r
i = loc(r)
print *, i
end program test_loc

154

The GNU Fortran Compiler

8.152 LOG — Natural logarithm function

Description:

LOG(X) computes the natural logarithm of X, i.e. the logarithm to the base e.

Standard: Fortran 77 and later
Class: FElemental function
Syntax: RESULT = LOG (X)
Arguments:

X The type shall be REAL or COMPLEX.

Return value:

The return value is of type REAL or COMPLEX. The kind type parameter is the
same as X. If X is COMPLEX, the imaginary part w is in the range —7 < w < 7.

Example:

program test_log

real(8) :: x

complex :: z
x = log(x)
z = log(z)

(1.0, 2.0)

2.7182818284590451_8

! will yield (approximately) 1

end program test_log

Specific names:
Name
ALOG(X)
DLOG (X)
CLOG (X)
ZLOG(X)
CDLOG (X)

Argument
REAL(4) X
REAL(8) X
COMPLEX (4) X
COMPLEX(8) X
COMPLEX(8) X

Return type
REAL(4)
REAL(8)
COMPLEX (4)
COMPLEX (8)
COMPLEX (8)

8.153 L0G10 — Base 10 logarithm function

Description:

L0OG10(X) computes the base 10 logarithm of X.

Standard: Fortran 77 and later
Class: Elemental function
Syntaz: RESULT = L0OG10(X)
Arguments:

X The type shall be REAL.

Return value:

Standard
95, gnu
f95, gnu
95, gnu
95, gnu
95, gnu

The return value is of type REAL or COMPLEX. The kind type parameter is the

same as X.

Example:

program test_loglO

real(8) :: x
x = logl0(x)

= 10.0_8

end program test_loglO

Chapter 8: Intrinsic Procedures 155

Specific names:

Name Argument Return type Standard
ALOG10(X) REAL(4) X REAL (4) Fortran 95 and later
DL0OG10(X) REAL(8) X REAL(8) Fortran 95 and later

8.154 LOG_GAMMA — Logarithm of the Gamma function

Description:
LOG_GAMMA (X) computes the natural logarithm of the absolute value of the
Gamma (I') function.

Standard: Fortran 2008 and later
Class: Elemental function
Syntax: X = LOG_GAMMA (X)

Arguments:
X Shall be of type REAL and neither zero nor a negative integer.

Return value:
The return value is of type REAL of the same kind as X.

Ezample:
program test_log_gamma
real :: x = 1.0
x = lgamma(x) ! returns 0.0
end program test_log_gamma

Specific names:

Name Argument Return type Standard

LGAMMA (X) REAL(4) X REAL (4) GNU Extension
ALGAMA (X) REAL(4) X REAL (4) GNU Extension
DLGAMA (X) REAL(8) X REAL(8) GNU Extension

See also: Gamma function: Section 8.95 [GAMMA], page 122

8.155 LOGICAL — Convert to logical type
Description:

Converts one kind of LOGICAL variable to another.
Standard: Fortran 95 and later
Class: Elemental function
Syntaz: RESULT = LOGICAL(L [, KIND])

Arguments:
L The type shall be LOGICAL.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is a LOGICAL value equal to L, with a kind corresponding to
KIND, or of the default logical kind if KIND is not given.

156 The GNU Fortran Compiler

See also: Section 8.125 [INT], page 139, Section 8.203 [REAL], page 181, Section 8.48
[CMPLX], page 92

8.156 LONG — Convert to integer type

Description:
Convert to a KIND=4 integer type, which is the same size as a C long integer.
This is equivalent to the standard INT intrinsic with an optional argument of
KIND=4, and is only included for backwards compatibility.

Standard: GNU extension
Class: Elemental function
Syntax: RESULT = LONG(A)

Arguments:
A Shall be of type INTEGER, REAL, or COMPLEX.

Return value:
The return value is a INTEGER (4) variable.

See also: Section 8.125 [INT], page 139, Section 8.126 [INT2], page 140, Section 8.127
[INTS], page 140

8.157 LSHIFT — Left shift bits

Description:
LSHIFT returns a value corresponding to I with all of the bits shifted left by
SHIFT places. If the absolute value of SHIFT is greater than BIT_SIZE(I),
the value is undefined. Bits shifted out from the left end are lost; zeros are
shifted in from the opposite end.

This function has been superseded by the ISHFT intrinsic, which is standard in
Fortran 95 and later, and the SHIFTL intrinsic, which is standard in Fortran
2008 and later.

Standard: GNU extension
Class: Elemental function
Syntax: RESULT = LSHIFT(I, SHIFT)

Arguments:
I The type shall be INTEGER.
SHIF'T The type shall be INTEGER.

Return value:
The return value is of type INTEGER and of the same kind as L

See also: Section 8.134 [ISHFT]|, page 144, Section 8.135 [I[SHFTC], page 145,
Section 8.208 [RSHIFT], page 184, Section 8.219 [SHIFTA], page 190,
Section 8.220 [SHIFTL], page 191, Section 8.221 [SHIFTR], page 191

Chapter 8: Intrinsic Procedures 157

8.158 LSTAT — Get file status

Description:

Standard:
Class:
Syntaz:

Arguments:

Example:

See also:

LSTAT is identical to Section 8.233 [STAT], page 198, except that if path is a
symbolic link, then the link itself is statted, not the file that it refers to.

The elements in VALUES are the same as described by Section 8.233 [STAT],
page 198.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

GNU extension

Subroutine, function

CALL LSTAT(NAME, VALUES [, STATUS])
STATUS = LSTAT(NAME, VALUES)

NAME The type shall be CHARACTER of the default kind, a valid path
within the file system.

VALUES The type shall be INTEGER(4) , DIMENSION(13).

STATUS (Optional) status flag of type INTEGER(4). Returns 0 on suc-

cess and a system specific error code otherwise.
See Section 8.233 [STAT], page 198 for an example.

To stat an open file: Section 8.93 [FSTAT], page 121, to stat a file: Section 8.233
[STAT], page 198

8.159 LTIME — Convert time to local time info

Description:

Standard:
Class:
Syntaz:

Arguments:

Given a system time value TIME (as provided by the TIME8 intrinsic), fills
VALUES with values extracted from it appropriate to the local time zone using
localtime(3).

GNU extension
Subroutine

CALL LTIME(TIME, VALUES)

TIME An INTEGER scalar expression corresponding to a system time,
with INTENT(IN).
VALUES A default INTEGER array with 9 elements, with INTENT (OUT).

Return value:

The elements of VALUES are assigned as follows:
1. Seconds after the minute, range 0-59 or 061 to allow for leap seconds

2. Minutes after the hour, range 0-59

158

See also:

The GNU Fortran Compiler

Hours past midnight, range 0-23

Day of month, range 0-31

Number of months since January, range 0—12
Years since 1900

Number of days since Sunday, range 0-6
Days since January 1

© 00N STt

Daylight savings indicator: positive if daylight savings is in effect, zero if
not, and negative if the information is not available.

Section 8.59 [CTIME]|, page 99, Section 8.107 [GMTIME], page 129,
Section 8.242 [TIME], page 204, Section 8.243 [TIMES]|, page 205

8.160 MALLOC — Allocate dynamic memory

Description:

Standard:
Class:
Syntaz:

Arguments:

MALLOC(SIZE) allocates SIZE bytes of dynamic memory and returns the address
of the allocated memory. The MALLOC intrinsic is an extension intended to be
used with Cray pointers, and is provided in GNU Fortran to allow the user
to compile legacy code. For new code using Fortran 95 pointers, the memory
allocation intrinsic is ALLOCATE.

GNU extension
Function
PTR = MALLOC(SIZE)

SIZE The type shall be INTEGER.

Return value:

Ezample:

See also:

The return value is of type INTEGER(K), with K such that variables of type
INTEGER(K) have the same size as C pointers (sizeof (void *)).

The following example demonstrates the use of MALLOC and FREE with Cray
pointers.
program test_malloc
implicit none
integer i
real*8 x(x), z
pointer(ptr_x,x)

ptr_x = malloc(20%8)

doi=1, 20

x(i) = sqrt(1.0d0 / i)
end do
z =0

doi=1, 20
z =z + x(1)
print *, z
end do
call free(ptr_x)
end program test_malloc

Section 8.91 [FREE], page 120

Chapter 8: Intrinsic Procedures 159

8.161 MASKL — Left justified mask

Description:
MASKL(I[, KIND]) has its leftmost I bits set to 1, and the remaining bits set
to 0.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = MASKL(I[, KIND])

Arguments:
I Shall be of type INTEGER.
KIND Shall be a scalar constant expression of type INTEGER.

Return value:
The return value is of type INTEGER. If KIND is present, it specifies the kind
value of the return type; otherwise, it is of the default integer kind.

See also: Section 8.162 [MASKR], page 159

8.162 MASKR — Right justified mask

Description:
MASKL(I[, KIND]) has its rightmost I bits set to 1, and the remaining bits set
to 0.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = MASKR(I[, KIND])

Arguments:
I Shall be of type INTEGER.
KIND Shall be a scalar constant expression of type INTEGER.

Return value:
The return value is of type INTEGER. If KIND is present, it specifies the kind
value of the return type; otherwise, it is of the default integer kind.

See also: Section 8.161 [MASKL], page 159

8.163 MATMUL — matrix multiplication

Description:
Performs a matrix multiplication on numeric or logical arguments.

Standard: Fortran 95 and later
Class: Transformational function

Syntax: RESULT = MATMUL (MATRIX_A, MATRIX_B)

160 The GNU Fortran Compiler

Arguments:

MATRIX_A An array of INTEGER, REAL, COMPLEX, or LOGICAL type, with
a rank of one or two.

MATRIX_B An array of INTEGER, REAL, or COMPLEX type if MATRIX_A is
of a numeric type; otherwise, an array of LOGICAL type. The
rank shall be one or two, and the first (or only) dimension of
MATRIX_B shall be equal to the last (or only) dimension of
MATRIX_A.

Return value:
The matrix product of MATRIX_A and MATRIX_B. The type and kind of the
result follow the usual type and kind promotion rules, as for the * or .AND.

operators.
See also:
8.164 MAX — Maximum value of an argument list
Description:

Returns the argument with the largest (most positive) value.
Standard: Fortran 77 and later
Class: FElemental function
Syntax: RESULT = MAX (A1, A2 [, A3 [, ...1D)

Arguments:
Al The type shall be INTEGER or REAL.
A2 A3, ... An expression of the same type and kind as Al. (As a GNU
extension, arguments of different kinds are permitted.)

Return value:
The return value corresponds to the maximum value among the arguments, and
has the same type and kind as the first argument.

Specific names:

Name Argument Return type Standard

MAXO (A1) INTEGER(4) A1 INTEGER(4) Fortran 77 and later
AMAXO (A1) INTEGER(4) A1 REAL(MAX(X)) Fortran 77 and later
MAX1 (A1) REAL A1 INT (MAX (X)) Fortran 77 and later
AMAX1 (A1) REAL(4) Al REAL (4) Fortran 77 and later
DMAX1 (A1) REAL(8) A1l REAL(8) Fortran 77 and later

See also: Section 8.166 [MAXLOC], page 161 Section 8.167 [MAXVALJ, page 162,
Section 8.172 [MIN], page 164

8.165 MAXEXPONENT — Maximum exponent of a real kind

Description:
MAXEXPONENT (X) returns the maximum exponent in the model of the type of X.

Standard: Fortran 95 and later

Chapter 8: Intrinsic Procedures 161

Class: Inquiry function
Syntaz: RESULT = MAXEXPONENT (X)

Arguments:
X Shall be of type REAL.

Return value:
The return value is of type INTEGER and of the default integer kind.

Example:

program exponents
real(kind=4) :: x
real(kind=8) :: y

print *, minexponent(x), maxexponent (x)
print *, minexponent(y), maxexponent (y)
end program exponents

8.166 MAXLOC — Location of the maximum value within an
array

Description:

Determines the location of the element in the array with the maximum value,
or, if the DIM argument is supplied, determines the locations of the maximum
element along each row of the array in the DIM direction. If MASK is present,
only the elements for which MASK is .TRUE. are considered. If more than one
element in the array has the maximum value, the location returned is that of
the first such element in array element order. If the array has zero size, or all
of the elements of MASK are .FALSE., then the result is an array of zeroes.
Similarly, if DIM is supplied and all of the elements of MASK along a given
row are zero, the result value for that row is zero.

Standard: Fortran 95 and later
Class: Transformational function

Syntaz:

RESULT = MAXLOC (ARRAY, DIM [, MASK])
RESULT = MAXLOC (ARRAY [, MASK])

Arguments:

ARRAY Shall be an array of type INTEGER or REAL.

DIM (Optional) Shall be a scalar of type INTEGER, with a value
between one and the rank of ARRAY, inclusive. It may not
be an optional dummy argument.

MASK Shall be an array of type LOGICAL, and conformable with

ARRAY.

Return value:
If DIM is absent, the result is a rank-one array with a length equal to the rank
of ARRAY. If DIM is present, the result is an array with a rank one less than
the rank of ARRAY, and a size corresponding to the size of ARRAY with the

162

See also:

The GNU Fortran Compiler

DIM dimension removed. If DIM is present and ARRAY has a rank of one,
the result is a scalar. In all cases, the result is of default INTEGER type.

Section 8.164 [MAX], page 160, Section 8.167 [MAXVALJ, page 162

8.167 MAXVAL — Maximum value of an array

Description:

Standard:
Class:
Syntaz:

Arguments:

Determines the maximum value of the elements in an array value, or, if the
DIM argument is supplied, determines the maximum value along each row of
the array in the DIM direction. If MASK is present, only the elements for
which MASK is .TRUE. are considered. If the array has zero size, or all of the
elements of MASK are .FALSE., then the result is ~-HUGE (ARRAY) if ARRAY is
numeric, or a string of nulls if ARRAY is of character type.

Fortran 95 and later

Transformational function

RESULT = MAXVAL (ARRAY, DIM [, MASK])
RESULT = MAXVAL (ARRAY [, MASK])

ARRAY Shall be an array of type INTEGER or REAL.

DIM (Optional) Shall be a scalar of type INTEGER, with a value
between one and the rank of ARRAY, inclusive. It may not
be an optional dummy argument.

MASK Shall be an array of type LOGICAL, and conformable with
ARRAY.

Return value:

See also:

If DIM is absent, or if ARRAY has a rank of one, the result is a scalar. If DIM is
present, the result is an array with a rank one less than the rank of ARRAY, and
a size corresponding to the size of ARRAY with the DIM dimension removed.
In all cases, the result is of the same type and kind as ARRAY.

Section 8.164 [MAX], page 160, Section 8.166 [MAXLOC], page 161

8.168 MCLOCK — Time function

Description:

Standard:
Class:

Returns the number of clock ticks since the start of the process, based on the
function clock(3) in the C standard library.

This intrinsic is not fully portable, such as to systems with 32-bit INTEGER
types but supporting times wider than 32 bits. Therefore, the values returned
by this intrinsic might be, or become, negative, or numerically less than previous
values, during a single run of the compiled program.

GNU extension

Function

Chapter 8: Intrinsic Procedures 163

Syntaz:

RESULT = MCLOCK ()

Return value:

See also:

The return value is a scalar of type INTEGER(4), equal to the number of clock
ticks since the start of the process, or -1 if the system does not support
clock(3).

Section 8.59 [CTIME], page 99, Section 8.107 [GMTIME], page 129,
Section 8.159 [LTIME], page 157, Section 8.168 [MCLOCK], page 162,
Section 8.242 [TIME], page 204

8.169 MCLOCK8 — Time function (64-bit)

Description:

Standard:
Class:
Syntaz:

Returns the number of clock ticks since the start of the process, based on the
function clock(3) in the C standard library.

Warning: this intrinsic does not increase the range of the timing values over
that returned by clock(3). On a system with a 32-bit clock(3), MCLOCK8 will
return a 32-bit value, even though it is converted to a 64-bit INTEGER (8) value.
That means overflows of the 32-bit value can still occur. Therefore, the values
returned by this intrinsic might be or become negative or numerically less than
previous values during a single run of the compiled program.

GNU extension
Function

RESULT = MCLOCK8()

Return value:

See also:

The return value is a scalar of type INTEGER(8), equal to the number of clock
ticks since the start of the process, or -1 if the system does not support
clock(3).

Section 8.59 [CTIME], page 99, Section 8.107 [GMTIME], page 129,
Section 8.159 [LTIME], page 157, Section 8.168 [MCLOCK], page 162,
Section 8.243 [TIMES]|, page 205

8.170 MERGE — Merge variables

Description:

Standard:
Class:
Syntaz:

Arguments:

Select values from two arrays according to a logical mask. The result is equal
to TSOURCE if MASK is .TRUE., or equal to FSOURCE if it is .FALSE..

Fortran 95 and later
Elemental function

RESULT = MERGE (TSOURCE, FSOURCE, MASK)

TSOURCE May be of any type.
FSOURCE Shall be of the same type and type parameters as TSOURCE.
MASK Shall be of type LOGICAL.

164 The GNU Fortran Compiler

Return value:
The result is of the same type and type parameters as TSOURCE.

8.171 MERGE_BITS — Merge of bits under mask

Description:
MERGE_BITS(I, J, MASK) merges the bits of I and J as determined by the mask.
The i-th bit of the result is equal to the i-th bit of I if the i-th bit of MASK is
1; it is equal to the i-th bit of J otherwise.

Standard: Fortran 2008 and later
Class: Elemental function

Syntax: RESULT = MERGE_BITS(I, J, MASK)

Arguments:
I Shall be of type INTEGER.
J Shall be of type INTEGER and of the same kind as I.
MASK Shall be of type INTEGER and of the same kind as I.

Return value:
The result is of the same type and kind as .

8.172 MIN — Minimum value of an argument list
Description:

Returns the argument with the smallest (most negative) value.
Standard: Fortran 77 and later
Class: Elemental function
Syntax: RESULT = MIN(A1, A2 [, A3, ...])

Arguments:
Al The type shall be INTEGER or REAL.
A2 A3, ... An expression of the same type and kind as Al. (As a GNU
extension, arguments of different kinds are permitted.)

Return value:
The return value corresponds to the maximum value among the arguments, and
has the same type and kind as the first argument.

Specific names:

Name Argument Return type Standard

MINO (A1) INTEGER(4) A1 INTEGER(4) Fortran 77 and later
AMINO (A1) INTEGER(4) A1 REAL(4) Fortran 77 and later
MIN1(A1) REAL A1 INTEGER(4) Fortran 77 and later
AMIN1 (A1) REAL(4) Al REAL (4) Fortran 77 and later
DMIN1 (A1) REAL(8) A1 REAL(8) Fortran 77 and later

See also: Section 8.164 [MAX], page 160, Section 8.174 [MINLOC]|, page 165,
Section 8.175 [MINVAL], page 166

Chapter 8: Intrinsic Procedures 165

8.173 MINEXPONENT — Minimum exponent of a real kind

Description:
MINEXPONENT (X) returns the minimum exponent in the model of the type of X.

Standard: Fortran 95 and later
Class: Inquiry function
Syntaz: RESULT = MINEXPONENT (X)

Arguments:
X Shall be of type REAL.

Return value:
The return value is of type INTEGER and of the default integer kind.

Ezxample: See MAXEXPONENT for an example.

8.174 MINLOC — Location of the minimum value within an
array

Description:

Determines the location of the element in the array with the minimum value,
or, if the DIM argument is supplied, determines the locations of the minimum
element along each row of the array in the DIM direction. If MASK is present,
only the elements for which MASK is .TRUE. are considered. If more than one
element in the array has the minimum value, the location returned is that of
the first such element in array element order. If the array has zero size, or all
of the elements of MASK are .FALSE., then the result is an array of zeroes.
Similarly, if DIM is supplied and all of the elements of MASK along a given
row are zero, the result value for that row is zero.

Standard: Fortran 95 and later
Class: Transformational function

Syntaz:

RESULT = MINLOC(ARRAY, DIM [, MASK])
RESULT = MINLOC(ARRAY [, MASK])

Arguments:

ARRAY Shall be an array of type INTEGER or REAL.

DIM (Optional) Shall be a scalar of type INTEGER, with a value
between one and the rank of ARRAY, inclusive. It may not
be an optional dummy argument.

MASK Shall be an array of type LOGICAL, and conformable with

ARRAY.

Return value:
If DIM is absent, the result is a rank-one array with a length equal to the rank
of ARRAY. If DIM is present, the result is an array with a rank one less than
the rank of ARRAY, and a size corresponding to the size of ARRAY with the

166 The GNU Fortran Compiler

DIM dimension removed. If DIM is present and ARRAY has a rank of one,
the result is a scalar. In all cases, the result is of default INTEGER type.

See also: Section 8.172 [MIN], page 164, Section 8.175 [MINVAL], page 166

8.175 MINVAL — Minimum value of an array

Description:
Determines the minimum value of the elements in an array value, or, if the
DIM argument is supplied, determines the minimum value along each row of
the array in the DIM direction. If MASK is present, only the elements for
which MASK is .TRUE. are considered. If the array has zero size, or all of the
elements of MASK are .FALSE., then the result is HUGE (ARRAY) if ARRAY is
numeric, or a string of CHAR(255) characters if ARRAY is of character type.

Standard: Fortran 95 and later
Class: Transformational function

Syntaz:

RESULT = MINVAL (ARRAY, DIM [, MASK])
RESULT = MINVAL (ARRAY [, MASK])

Arguments:

ARRAY Shall be an array of type INTEGER or REAL.

DIM (Optional) Shall be a scalar of type INTEGER, with a value
between one and the rank of ARRAY, inclusive. It may not
be an optional dummy argument.

MASK Shall be an array of type LOGICAL, and conformable with

ARRAY.

Return value:
If DIM is absent, or if ARRAY has a rank of one, the result is a scalar. If DIM is
present, the result is an array with a rank one less than the rank of ARRAY, and
a size corresponding to the size of ARRAY with the DIM dimension removed.
In all cases, the result is of the same type and kind as ARRAY.

See also: Section 8.172 [MIN], page 164, Section 8.174 [MINLOC], page 165

8.176 MOD — Remainder function

Description:
MOD(A,P) computes the remainder of the division of A by P. It is calculated as
A - (INT(A/P) * P).

Standard: Fortran 77 and later
Class: Elemental function
Syntaz: RESULT = MOD(A, P)

Arguments:
A Shall be a scalar of type INTEGER or REAL
P Shall be a scalar of the same type as A and not equal to zero

Chapter 8: Intrinsic Procedures

Return value:
The kind of the return value is the result of cross-promoting the kinds of the

Ezample:

arguments.

program test_mod

print
print
print
print

print
print
print
print

print
print
print
print

mod (17,3)
mod(17.5,5.5)
mod(17.5d0,5.5)
mod(17.5,5.5d0)

mod (-17,3)
mod(-17.5,5.5)
mod (-17.5d0,5.5)
mod(-17.5,5.5d0)

mod (17,-3)
mod(17.5,-5.5)
mod (17.5d0,-5.5)
mod (17.5,-5.5d0)

end program test_mod

Specific names:

8.177 MODULO — Modulo function

Name
MOD(A,P)
AMOD (A, P)
DMOD(A,P)

Description:
MODULO(A,P) computes the A modulo P.

Standard:
Class:
Syntaz:

Arguments:

Arguments

INTEGER A,P
REAL(4) A,P
REAL(8) A,P

Fortran 95 and later

Elemental function

RESULT = MODULO(A, P)

A
P

Return value:
The type and kind of the result are those of the arguments.

Ezxample:

If A and P are of type INTEGER:
MODULO(A,P) has the value R such that A=Q*P+R, where @) is an
integer and R is between 0 (inclusive) and P (exclusive).

If A and P are of type REAL:
MODULO(A,P) has the value of A - FLOOR (A / P) * P.

Return type
INTEGER
REAL(4)
REAL(8)

167

Standard

Fortran 95 and later
Fortran 95 and later
Fortran 95 and later

Shall be a scalar of type INTEGER or REAL
Shall be a scalar of the same type and kind as A

In all cases, if P is zero the result is processor-dependent.

168 The GNU Fortran Compiler

program test_modulo
print *, modulo(17,3)
print *, modulo(17.5,5.5)

print *, modulo(-17,3)
print *, modulo(-17.5,5.5)

print *, modulo(17,-3)
print *, modulo(17.5,-5.5)
end program

8.178 MOVE_ALLOC — Move allocation from one object to
another

Description:
MOVE_ALLOC(FROM, TO) moves the allocation from FROM to TO. FROM will
become deallocated in the process.

Standard: Fortran 2003 and later
Class: Pure subroutine
S@ntax: CALL MOVE_ALLOC(FROM, TO)

Arguments:
FROM ALLOCATABLE, INTENT (INOUT), may be of any type and kind.
TO ALLOCATABLE, INTENT(QUT), shall be of the same type, kind
and rank as FROM.

Return value:
None

Ezample:

program test_move_alloc
integer, allocatable :: a(:), b(:)

allocate(a(3))
a=1[1,2, 3]
call move_alloc(a, b)
print *, allocated(a), allocated(b)
print *, b
end program test_move_alloc

8.179 MVBITS — Move bits from one integer to another

Description:
Moves LEN bits from positions FROMPOS through FROMPOS+LEN-1 of FROM
to positions TOPOS through TOPOS+LEN-1 of T'O. The portion of argument T'O
not affected by the movement of bits is unchanged. The values of FROMPOS+LEN-
1 and TOPOS+LEN-1 must be less than BIT_SIZE(FROM).

Standard: Fortran 95 and later
Class: Elemental subroutine

Syntax: CALL MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)

Chapter 8: Intrinsic Procedures 169

Arguments:
FROM The type shall be INTEGER.
FROMPOS The type shall be INTEGER.
LEN The type shall be INTEGER.
TO The type shall be INTEGER, of the same kind as FROM.
TOPOS The type shall be INTEGER.

See also: Section 8.116 [IBCLR|, page 135, Section 8.118 [IBSET], page 135,
Section 8.117 [IBITS], page 135, Section 8.113 [IAND], page 133, Section 8.128
[IOR], page 141, Section 8.121 [IEOR], page 137

8.180 NEAREST — Nearest representable number

Description:
NEAREST (X, S) returns the processor-representable number nearest to X in the
direction indicated by the sign of S.

Standard: Fortran 95 and later
Class: Elemental function
Syntaz: RESULT = NEAREST (X, S)

Arguments:
X Shall be of type REAL.
S (Optional) shall be of type REAL and not equal to zero.

Return value:
The return value is of the same type as X. If S is positive, NEAREST returns
the processor-representable number greater than X and nearest to it. If S is
negative, NEAREST returns the processor-representable number smaller than X
and nearest to it.

Example:

program test_nearest

real :: x, y

x = nearest(42.0, 1.0)

y = nearest(42.0, -1.0)

write (*,"(3(G20.15))") x, y, x -y
end program test_nearest

8.181 NEW_LINE — New line character

Description:
NEW_LINE(C) returns the new-line character.

Standard: Fortran 2003 and later
Class: Inquiry function
Syntaz: RESULT = NEW_LINE(C)

Arguments:
C The argument shall be a scalar or array of the type
CHARACTER.

170 The GNU Fortran Compiler

Return value:
Returns a CHARACTER scalar of length one with the new-line character of
the same kind as parameter C.

Example:

program newline

implicit none

write(*,’(A)’) ’This is record 1.’//NEW_LINE(’A’)//’This is record 2.’
end program newline

8.182 NINT — Nearest whole number

Description:
NINT(A) rounds its argument to the nearest whole number.

Standard: Fortran 77 and later, with KIND argument Fortran 90 and later
Class: Elemental function
Syntax: RESULT = NINT(A [, KIND])

Arguments:
A The type of the argument shall be REAL.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
Returns A with the fractional portion of its magnitude eliminated by round-
ing to the nearest whole number and with its sign preserved, converted to an
INTEGER of the default kind.

Ezample:

program test_nint

real(4) x4

real(8) x8

x4 = 1.234E0_4

x8 = 4.321_8

print *, nint(x4), idnint(x8)
end program test_nint

Specific names:

Name Argument Return Type Standard
NINT(A) REAL(4) A INTEGER Fortran 95 and later
IDNINT(A) REAL(8) A INTEGER Fortran 95 and later

See also: Section 8.44 [CEILING], page 89, Section 8.85 [FLOOR], page 116

8.183 NORM2 — Euclidean vector norms

Description:
Calculates the Euclidean vector norm (L, norm) of of ARRAY along dimension
DIM.

Standard: Fortran 2008 and later

Chapter 8: Intrinsic Procedures 171

Class: Transformational function
Syntaz:
RESULT = NORM2 (ARRAY [, DIM])
Arguments:
ARRAY Shall be an array of type REAL
DIM (Optional) shall be a scalar of type INTEGER with a value in

the range from 1 to n, where n equals the rank of ARRAY.

Return value:
The result is of the same type as ARRAY.
If DIM is absent, a scalar with the square root of the sum of all elements in
ARRAY squared is returned. Otherwise, an array of rank n — 1, where n equals
the rank of ARRAY, and a shape similar to that of ARRAY with dimension
DIM dropped is returned.

Example:

PROGRAM test_sum
REAL :: x(5) = [real :: 1, 2, 3, 4, 5]
print *, NORM2(x) ! = sqrt(55.) ~ 7.416
END PROGRAM

8.184 NOT — Logical negation

Description:
NOT returns the bitwise Boolean inverse of I.

Standard: Fortran 95 and later
Class: Elemental function
Syntaz: RESULT = NOT(I)

Arguments:
I The type shall be INTEGER.

Return value:
The return type is INTEGER, of the same kind as the argument.

See also: Section 8.113 [IAND], page 133, Section 8.121 [IEOR], page 137, Section 8.128
[IOR], page 141, Section 8.117 [IBITS], page 135, Section 8.118 [IBSET],
page 135, Section 8.116 [IBCLRJ, page 135

8.185 NULL — Function that returns an disassociated pointer

Description:
Returns a disassociated pointer.

If MOLD is present, a disassociated pointer of the same type is returned, oth-
erwise the type is determined by context.

In Fortran 95, MOLD is optional. Please note that Fortran 2003 includes cases
where it is required.

172 The GNU Fortran Compiler

Standard: Fortran 95 and later
Class: Transformational function
Syntax: PTR => NULL ([MOLD])

Arguments:
MOLD (Optional) shall be a pointer of any association status and of

any type.
Return value:
A disassociated pointer.

Example:
REAL, POINTER, DIMENSION(:) :: VEC => NULL ()

See also: Section 8.20 [ASSOCIATED)], page 75

8.186 NUM_IMAGES — Function that returns the number of
images

Description:
Returns the number of images.

Standard: Fortran 2008 and later
Class: Transformational function
Syntax: RESULT = NUM_IMAGES ()

Arguments: None.
Return value:
Scalar default-kind integer.

Example:

INTEGER :: value[*]
INTEGER :: i
value = THIS_IMAGE(Q)
SYNC ALL
IF (THIS_IMAGE() == 1) THEN
DO i = 1, NUM_IMAGESQ)
WRITE(*,’(2(a,i0))’) ’valuel’, i, ’] is ’, valuel[i]
END DO
END IF

See also: Section 8.241 [THIS_.IMAGE], page 203, Section 8.123 [IMAGE_INDEX],
page 138

8.187 OR — Bitwise logical OR

Description:
Bitwise logical OR.

This intrinsic routine is provided for backwards compatibility with GNU For-

tran 77. For integer arguments, programmers should consider the use of the
Section 8.128 [IOR], page 141 intrinsic defined by the Fortran standard.

Chapter 8: Intrinsic Procedures 173

Standard: GNU extension
Class: Function
Syntazx: RESULT = OR(I, J)

Arguments:
1 The type shall be either a scalar INTEGER type or a scalar
LOGICAL type.
J The type shall be the same as the type of J.

Return value:
The return type is either a scalar INTEGER or a scalar LOGICAL. If the kind type
parameters differ, then the smaller kind type is implicitly converted to larger
kind, and the return has the larger kind.

Ezxample:

PROGRAM test_or
LOGICAL :: T = .TRUE., F = .FALSE.
INTEGER :: a, b
DATA a / Z’F’ /, b / 72’3’ /

WRITE (*,%) OR(T, T), OR(T, F), OR(F, T), OR(F, F)
WRITE (*,*) OR(a, b)
END PROGRAM

See also: Fortran 95 elemental function: Section 8.128 [IOR], page 141

8.188 PACK — Pack an array into an array of rank one

Description:
Stores the elements of ARRAY in an array of rank one.
The beginning of the resulting array is made up of elements whose MASK equals
TRUE. Afterwards, positions are filled with elements taken from VECTOR.

Standard: Fortran 95 and later
Class: Transformational function
Syntaz: RESULT = PACK (ARRAY, MASK[,VECTOR]

Arguments:

ARRAY Shall be an array of any type.

MASK Shall be an array of type LOGICAL and of the same size as
ARRAY. Alternatively, it may be a LOGICAL scalar.

VECTOR (Optional) shall be an array of the same type as ARRAY and
of rank one. If present, the number of elements in VECTOR
shall be equal to or greater than the number of true elements
in MASK. If MASK is scalar, the number of elements in VEC-
TOR shall be equal to or greater than the number of elements
in ARRAY.

Return value:
The result is an array of rank one and the same type as that of ARRAY. If
VECTOR is present, the result size is that of VECTOR, the number of TRUE
values in MASK otherwise.

174 The GNU Fortran Compiler

Example: Gathering nonzero elements from an array:

PROGRAM test_pack_1

INTEGER :: m(6)

m=(/1, 0, 0, 0, 5, 0 /)

WRITE(*, FMT="(6(I0, ’ ’))") pack(m, m /= 0) ! "1 5"
END PROGRAM

Gathering nonzero elements from an array and appending elements from VEC-

TOR:

PROGRAM test_pack_2

INTEGER :: m(4)

m=(1,0,0,2)/)

WRITE(*, FMT="(4(I0, ’> ’))") pack(m, m /=0, (/ 0, 0, 3, 4 /)) ! "1234"Q
END PROGRAM

See also: Section 8.254 [UNPACK], page 210

8.189 PARITY — Reduction with exclusive OR

Description:
Calculates the parity, i.e. the reduction using .X0R., of MASK along dimension
DIM.
Standard: Fortran 2008 and later
Class: Transformational function
Syntaz:
RESULT = PARITY(MASK[, DIM])
Arguments:
LOGICAL Shall be an array of type LOGICAL
DIM (Optional) shall be a scalar of type INTEGER with a value in

the range from 1 to n, where n equals the rank of MASK.

Return value:
The result is of the same type as MASK.

If DIM is absent, a scalar with the parity of all elements in MASK is returned,
i.e. true if an odd number of elements is .true. and false otherwise. If DIM
is present, an array of rank n — 1, where n equals the rank of ARRAY, and a
shape similar to that of MASK with dimension DIM dropped is returned.

Example:

PROGRAM test_sum
LOGICAL :: x(2) = [.true., .false.]
print *, PARITY(x) ! prints "T" (true).
END PROGRAM

8.190 PERROR — Print system error message

Description:
Prints (on the C stderr stream) a newline-terminated error message corre-
sponding to the last system error. This is prefixed by STRING, a colon and a
space. See perror(3).

Chapter 8: Intrinsic Procedures 175

Standard: GNU extension
Class: Subroutine
Syntax: CALL PERROR(STRING)

Arguments:
STRING A scalar of type CHARACTER and of the default kind.

See also: Section 8.122 [IERRNO], page 138

8.191 PRECISION — Decimal precision of a real kind

Description:
PRECISION(X) returns the decimal precision in the model of the type of X.

Standard: Fortran 95 and later
Class: Inquiry function
Syntaz: RESULT = PRECISION (X)

Arguments:
X Shall be of type REAL or COMPLEX.

Return value:
The return value is of type INTEGER and of the default integer kind.

See also: Section 8.216 [SELECTED_REAL_KIND], page 188, Section 8.201 [RANGE],
page 180

Ezample:

program prec_and_range
real(kind=4) :: x(2)
complex(kind=8) :: y

print *, precision(x), range(x)

print *, precision(y), range(y)
end program prec_and_range

8.192 POPCNT — Number of bits set

Description:
POPCNT (I) returns the number of bits set ("1’ bits) in the binary representation
of I.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = POPCNT (1)

Arguments:
I Shall be of type INTEGER.

Return value:
The return value is of type INTEGER and of the default integer kind.

176 The GNU Fortran Compiler

See also: Section 8.193 [POPPAR], page 176, Section 8.142 [LEADZ], page 148,
Section 8.245 [TRAILZ], page 205

Example:

program test_population
print *, popcnt(127), poppar (127)
print *, popcnt(huge(0_4)), poppar (huge(0_4))
print *, popcnt(huge(0_8)), poppar (huge(0_8))
end program test_population

8.193 POPPAR — Parity of the number of bits set

Description:
POPPAR(I) returns parity of the integer I, i.e. the parity of the number of bits
set ("1’ bits) in the binary representation of I. It is equal to 0 if I has an even
number of bits set, and 1 for an odd number of 1’ bits.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = POPPAR(I)

Arguments:
I Shall be of type INTEGER.

Return value:
The return value is of type INTEGER and of the default integer kind.

See also: Section 8.192 [POPCNT], page 175, Section 8.142 [LEADZ|, page 148,
Section 8.245 [TRAILZ], page 205

Example:

program test_population
print *, popcnt(127), poppar (127)
print *, popcnt(huge(0_4)), poppar (huge(0_4))
print *, popcnt(huge(0_8)), poppar (huge(0_8))
end program test_population

8.194 PRESENT — Determine whether an optional dummy
argument is specified

Description:
Determines whether an optional dummy argument is present.

Standard: Fortran 95 and later
Class: Inquiry function
Syntaz: RESULT = PRESENT (A)

Arguments:

A May be of any type and may be a pointer, scalar or array
value, or a dummy procedure. It shall be the name of an
optional dummy argument accessible within the current sub-
routine or function.

Chapter 8: Intrinsic Procedures 177

Return value:

Ezample:

Returns either TRUE if the optional argument A is present, or FALSE otherwise.

PROGRAM test_present
WRITE(*,*) £(), £(42) ! "F T"
CONTAINS
LOGICAL FUNCTION f(x)
INTEGER, INTENT(IN), OPTIONAL :: x
f = PRESENT(x)
END FUNCTION
END PROGRAM

8.195 PRODUCT — Product of array elements

Description:

Standard:
Class:
Syntazx:

Arguments:

Multiplies the elements of ARRAY along dimension DIM if the corresponding
element in MASK is TRUE.

Fortran 95 and later

Transformational function

RESULT = PRODUCT (ARRAY [, MASK])
RESULT = PRODUCT (ARRAY, DIM[, MASK])

ARRAY Shall be an array of type INTEGER, REAL or COMPLEX.

DIM (Optional) shall be a scalar of type INTEGER with a value in
the range from 1 to n, where n equals the rank of ARRAY.

MASK (Optional) shall be of type LOGICAL and either be a scalar or

an array of the same shape as ARRAY.

Return value:

Example:

See also:

The result is of the same type as ARRAY.

If DIM is absent, a scalar with the product of all elements in ARRAY is re-
turned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY,
and a shape similar to that of ARRAY with dimension DIM dropped is re-
turned.

PROGRAM test_product
INTEGER :: x(6) = (/ 1, 2, 3, 4 ,5 /)
print *, PRODUCT(x) ! all elements, product
print *, PRODUCT(x, MASK=MOD(x, 2)==1) ! odd elements, product
END PROGRAM

Section 8.235 [SUM], page 200

120
15

8.196 RADIX — Base of a model number

Description:

RADIX (X) returns the base of the model representing the entity X.

178 The GNU Fortran Compiler

Standard: Fortran 95 and later
Class: Inquiry function
Syntax: RESULT = RADIX(X)

Arguments:
X Shall be of type INTEGER or REAL

Return value:
The return value is a scalar of type INTEGER and of the default integer kind.

See also: Section 8.216 [SELECTED_REAL_KIND], page 188

Example:

program test_radix
print *, "The radix for the default integer kind is", radix(0)
print *, "The radix for the default real kind is", radix(0.0)
end program test_radix

8.197 RAN — Real pseudo-random number

Description:
For compatibility with HP FORTRAN 77/iX, the RAN intrinsic is provided as an
alias for RAND. See Section 8.198 [RAND], page 178 for complete documentation.

Standard: GNU extension

Class: Function
See also: Section 8.198 [RAND], page 178, Section 8.199 [RANDOM_NUMBER],
page 179

8.198 RAND — Real pseudo-random number

Description:

RAND (FLAG) returns a pseudo-random number from a uniform distribution be-
tween 0 and 1. If FLAG is 0, the next number in the current sequence is
returned; if FLAG is 1, the generator is restarted by CALL SRAND(0); if FLAG
has any other value, it is used as a new seed with SRAND.

This intrinsic routine is provided for backwards compatibility with GNU Fortran
77. It implements a simple modulo generator as provided by g77. For new code,
one should consider the use of Section 8.199 [RANDOM_NUMBER], page 179
as it implements a superior algorithm.

Standard: GNU extension
Class: Function
Syntaz: RESULT = RAND(I)

Arguments:
1 Shall be a scalar INTEGER of kind 4.

Return value:
The return value is of REAL type and the default kind.

Chapter 8: Intrinsic Procedures 179

Example:

See also:

program test_rand
integer,parameter :: seed = 86456

call srand(seed)

print *, rand(), rand(), rand(), rand()

print *, rand(seed), rand(), rand(), rand()
end program test_rand

Section 8.232 [SRAND], page 197, Section 8.199 [RANDOM_NUMBER],
page 179

8.199 RANDOM_NUMBER — Pseudo-random number

Description:

Standard:
Class:
Syntaz:

Arguments:

Ezample:

See also:

Returns a single pseudorandom number or an array of pseudorandom numbers
from the uniform distribution over the range 0 < z < 1.

The runtime-library implements George Marsaglia’s KISS (Keep It Simple
Stupid) random number generator (RNG). This RNG combines:

1. The congruential generator z(n) = 69069 - z(n — 1) 4+ 1327217885 with a
period of 232,
2. A 3-shift shift-register generator with a period of 232 — 1,

3. Two 16-bit multiply-with-carry generators with a period of
597273182964842497 > 259,

The overall period exceeds 2123,

Please note, this RNG is thread safe if used within OpenMP directives, i.e., its
state will be consistent while called from multiple threads. However, the KISS
generator does not create random numbers in parallel from multiple sources,
but in sequence from a single source. If an OpenMP-enabled application heavily
relies on random numbers, one should consider employing a dedicated parallel
random number generator instead.

Fortran 95 and later
Subroutine

RANDOM_NUMBER (HARVEST)

HARVEST Shall be a scalar or an array of type REAL.

program test_random_number
REAL :: r(5,5)
CALL init_random_seed() ! see example of RANDOM_SEED
CALL RANDOM_NUMBER(r)

end program

Section 8.200 [RANDOM_SEED], page 180

180 The GNU Fortran Compiler

8.200 RANDOM_SEED — Initialize a pseudo-random number
sequence

Description:
Restarts or queries the state of the pseudorandom number generator used by
RANDOM_NUMBER.

If RANDOM_SEED is called without arguments, it is initialized to a default state.
The example below shows how to initialize the random seed based on the sys-
tem’s time.

Standard: Fortran 95 and later
Class: Subroutine
Syniaxz CALL RANDOM_SEED([SIZE, PUT, GET])

Arguments:

SIZE (Optional) Shall be a scalar and of type default INTEGER, with
INTENT (OUT). It specifies the minimum size of the arrays used
with the PUT and GET arguments.

PUT (Optional) Shall be an array of type default INTEGER and rank
one. It is INTENT (IN) and the size of the array must be larger
than or equal to the number returned by the SIZE argument.

GET (Optional) Shall be an array of type default INTEGER and
rank one. It is INTENT(OUT) and the size of the array must
be larger than or equal to the number returned by the SIZE
argument.

Example:

SUBROUTINE init_random_seed()
INTEGER :: i, n, clock
INTEGER, DIMENSIONC(:), ALLOCATABLE :: seed

CALL RANDOM_SEED(size = n)
ALLOCATE(seed(n))

CALL SYSTEM_CLOCK(COUNT=clock)

seed = clock + 37 * (/ (i -1, i =1, n) /)
CALL RANDOM_SEED(PUT = seed)

DEALLOCATE (seed)
END SUBROUTINE

See also: Section 8.199 [RANDOM_NUMBER], page 179

8.201 RANGE — Decimal exponent range

Description:
RANGE (X) returns the decimal exponent range in the model of the type of X.

Standard: Fortran 95 and later
Class: Inquiry function

Syntaz: RESULT = RANGE (X)

Chapter 8: Intrinsic Procedures 181

Arguments:
X Shall be of type INTEGER, REAL or COMPLEX.

Return value:
The return value is of type INTEGER and of the default integer kind.

See also: Section 8.216 [SELECTED_REAL_KIND], page 188, Section 8.191 [PRECI-
SION], page 175

Example: See PRECISION for an example.

8.202 RANK — Rank of a data object

Description:
RANK (A) returns the rank of a scalar or array data object.

Standard: Technical Specification (TS) 29113
Class: Inquiry function
Syntaz: RESULT = RANGE(A)

Arguments:
A can be of any type

Return value:
The return value is of type INTEGER and of the default integer kind. For arrays,
their rank is returned; for scalars zero is returned.

Ezample:

program test_rank
integer :: a
real, allocatable :: b(:,:)

print *, rank(a), rank(b) ! Prints: O 3
end program test_rank

8.203 REAL — Convert to real type

Description:
REAL(A [, KIND]) converts its argument A to a real type. The REALPART func-
tion is provided for compatibility with g77, and its use is strongly discouraged.

Standard: Fortran 77 and later
Class: Elemental function

Syntaz:

RESULT = REAL(A [, KIND])
RESULT = REALPART(Z)

Arguments:
A Shall be INTEGER, REAL, or COMPLEX.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

182 The GNU Fortran Compiler

Return value:
These functions return a REAL variable or array under the following rules:

(A) REAL (A) is converted to a default real type if A is an integer or real
variable.
(B) REAL (A) is converted to a real type with the kind type parameter

of A if A is a complex variable.

(C) REAL (A, KIND) is converted to a real type with kind type parameter
KIND if A is a complex, integer, or real variable.

Ezample:

program test_real

complex :: x = (1.0, 2.0)

print *, real(x), real(x,8), realpart(x)
end program test_real

Specific names:

Name Argument Return type Standard

FLOAT(A) INTEGER (4) REAL (4) Fortran 77 and later
DFLOAT (A) INTEGER (4) REAL(8) GNU extension
SNGL (A) INTEGER(8) REAL (4) Fortran 77 and later

See also: Section 8.61 [DBLE], page 100

8.204 RENAME — Rename a file

Description:
Renames a file from file PATHI to PATH2. A null character (CHAR(0)) can be
used to mark the end of the names in PATHI and PATH2; otherwise, trailing
blanks in the file names are ignored. If the STATUS argument is supplied, it
contains 0 on success or a nonzero error code upon return; see rename (2).

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Standard: GNU extension
Class: Subroutine, function

Syntaz:

CALL RENAME(PATH1, PATH2 [, STATUS])
STATUS = RENAME (PATH1, PATH2)

Arguments:
PATHI1 Shall be of default CHARACTER type.
PATH2 Shall be of default CHARACTER type.
STATUS (Optional) Shall be of default INTEGER type.

See also: Section 8.147 [LINK], page 151

Chapter 8: Intrinsic Procedures 183

8.205 REPEAT — Repeated string concatenation

Description:
Concatenates NCOPIES copies of a string.

Standard: Fortran 95 and later
Class: Transformational function
Syntaz: RESULT = REPEAT(STRING, NCOPIES)

Arguments:
STRING Shall be scalar and of type CHARACTER.
NCOPIES Shall be scalar and of type INTEGER.

Return value:
A new scalar of type CHARACTER built up from NCOPIES copies of STRING.

Ezample:

program test_repeat
write(*,*) repeat("x", 5) I o"xxxxx"
end program

8.206 RESHAPE — Function to reshape an array

Description:
Reshapes SOURCE to correspond to SHAPE. If necessary, the new array may
be padded with elements from PAD or permuted as defined by ORDER.

Standard: Fortran 95 and later
Class: Transformational function

Syntax: RESULT = RESHAPE (SOURCE, SHAPE[, PAD, ORDER])

Arguments:
SOURCE Shall be an array of any type.
SHAPE Shall be of type INTEGER and an array of rank one. Its values
must be positive or zero.
PAD (Optional) shall be an array of the same type as SOURCE.
ORDER (Optional) shall be of type INTEGER and an array of the same

shape as SHAPE. Its values shall be a permutation of the
numbers from 1 to n, where n is the size of SHAPE. If ORDER
is absent, the natural ordering shall be assumed.

Return value:
The result is an array of shape SHAPE with the same type as SOURCE.

Ezample:

PROGRAM test_reshape
INTEGER, DIMENSION(4) :: x
WRITE(*,%) SHAPE(x) | prints "4"
WRITE(*,*) SHAPE(RESHAPE(x, (/2, 2/))) | prints "2 2"
END PROGRAM

See also: Section 8.218 [SHAPE], page 190

184 The GNU Fortran Compiler

8.207 RRSPACING — Reciprocal of the relative spacing

Description:
RRSPACING (X) returns the reciprocal of the relative spacing of model numbers
near X.

Standard: Fortran 95 and later
Class: Elemental function
Syntaz: RESULT = RRSPACING (X)

Arguments:
X Shall be of type REAL.

Return value:
The return value is of the same type and kind as X. The value returned is equal
to ABS(FRACTION(X)) * FLOAT(RADIX(X))**DIGITS(X).

See also: Section 8.229 [SPACING], page 196

8.208 RSHIFT — Right shift bits

Description:

RSHIFT returns a value corresponding to I with all of the bits shifted right by
SHIFT places. If the absolute value of SHIFT is greater than BIT_SIZE(I),
the value is undefined. Bits shifted out from the right end are lost. The fill is
arithmetic: the bits shifted in from the left end are equal to the leftmost bit,
which in two’s complement representation is the sign bit.

This function has been superseded by the SHIFTA intrinsic, which is standard
in Fortran 2008 and later.

Standard: GNU extension
Class: Elemental function
Syntax: RESULT = RSHIFT(I, SHIFT)

Arguments:
I The type shall be INTEGER.
SHIFT The type shall be INTEGER.

Return value:
The return value is of type INTEGER and of the same kind as I.

See also: Section 8.134 [ISHFT]|, page 144, Section 8.135 [ISHFTC], page 145,
Section 8.157 [LSHIFT], page 156, Section 8.219 [SHIFTA], page 190,
Section 8.221 [SHIFTR], page 191, Section 8.220 [SHIFTL], page 191

8.209 SAME_TYPE_AS — Query dynamic types for equality

Description:
Query dynamic types for equality.

Standard: Fortran 2003 and later

Chapter 8: Intrinsic Procedures 185

Class: Inquiry function

Syntazx: RESULT = SAME_TYPE_AS(A, B)

Arguments:
A Shall be an object of extensible declared type or unlimited
polymorphic.
B Shall be an object of extensible declared type or unlimited
polymorphic.

Return value:
The return value is a scalar of type default logical. It is true if and only if the
dynamic type of A is the same as the dynamic type of B.

See also: Section 8.81 [EXTENDS_TYPE_OF], page 113

8.210 SCALE — Scale a real value

Description:
SCALE(X,I) returns X * RADIX(X) *x*I.

Standard: Fortran 95 and later
Class: Elemental function
Syntax: RESULT = SCALE(X, I)

Arguments:
X The type of the argument shall be a REAL.
1 The type of the argument shall be a INTEGER.

Return value:
The return value is of the same type and kind as X. Its value is X * RADIX (X)**1I.

Example:

program test_scale

real :: x = 178.1387e-4

integer :: i =5

print *, scale(x,i), x*radix(x)**i
end program test_scale

8.211 SCAN — Scan a string for the presence of a set of
characters

Description:
Scans a STRING for any of the characters in a SE'T of characters.

If BACK is either absent or equals FALSE, this function returns the position of
the leftmost character of STRING that is in SET. If BACK equals TRUE, the
rightmost position is returned. If no character of SET is found in STRING, the
result is zero.

Standard: Fortran 95 and later, with KIND argument Fortran 2003 and later

Class: Elemental function

186 The GNU Fortran Compiler

Syntax: RESULT = SCAN(STRING, SET[, BACK [, KIND]])

Arguments:
STRING Shall be of type CHARACTER.
SET Shall be of type CHARACTER.
BACK (Optional) shall be of type LOGICAL.
KIND (Optional) An INTEGER initialization expression indicating

the kind parameter of the result.

Return value:
The return value is of type INTEGER and of kind KIND. If KIND is absent, the
return value is of default integer kind.

Ezample:
PROGRAM test_scan
WRITE(*,*) SCAN("FORTRAN", "AQ") ' 2, found ’0’
WRITE(*,*) SCAN("FORTRAN", "AQ", .TRUE.) ! 6, found ’A’
WRITE(*,*) SCAN("FORTRAN", "C++") ! 0, found none

END PROGRAM

See also: Section 8.124 [INDEX intrinsic|, page 139, Section 8.255 [VERIFY], page 210

8.212 SECNDS — Time function

Description:
SECNDS (X) gets the time in seconds from the real-time system clock. X is a
reference time, also in seconds. If this is zero, the time in seconds from midnight
is returned. This function is non-standard and its use is discouraged.

Standard: GNU extension
Class: Function

Syntaz: RESULT = SECNDS (X)

Arguments:
T Shall be of type REAL(4).
X Shall be of type REAL(4).
Return value:
None
Ezample:
program test_secnds
integer :: i
real(4) :: t1, t2
print *, secnds (0.0) ! seconds since midnight
tl = secnds (0.0) ! reference time
do i = 1, 10000000 ! do something
end do
t2 = secnds (t1) ! elapsed time
print *, "Something took ", t2, " seconds."

end program test_secnds

Chapter 8: Intrinsic Procedures 187

8.213 SECOND — CPU time function

Description:
Returns a REAL(4) value representing the elapsed CPU time in seconds. This
provides the same functionality as the standard CPU_TIME intrinsic, and is only
included for backwards compatibility.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.
Standard: GNU extension

Class: Subroutine, function

Syntaz:

CALL SECOND(TIME)
TIME = SECOND()

Arguments:
TIME Shall be of type REAL(4).

Return value:
In either syntax, TIME is set to the process’s current runtime in seconds.

See also: Section 8.57 [CPU_TIME], page 97

8.214 SELECTED_CHAR_KIND — Choose character kind

Description:
SELECTED_CHAR_KIND(NAME) returns the kind value for the character set named
NAME, if a character set with such a name is supported, or —1 otherwise.
Currently, supported character sets include “ASCII” and “DEFAULT”, which
are equivalent, and “ISO_10646” (Universal Character Set, UCS-4) which is
commonly known as Unicode.

Standard: Fortran 2003 and later
Class: Transformational function
Syntax: RESULT = SELECTED_CHAR_KIND(NAME)

Arguments:
NAME Shall be a scalar and of the default character type.

Ezample:

program character_kind
use iso_fortran_env
implicit none

integer, parameter :: ascii = selected_char_kind ("ascii")
integer, parameter :: ucs4 = selected_char_kind (’IS0_10646’)
character(kind=ascii, len=26) :: alphabet

character(kind=ucs4, 1len=30) :: hello_world

alphabet = ascii_"abcdefghijklmnopqrstuvwxyz"
hello_world = ucs4_’Hello World and Ni Hao -- ’ &

188

The GNU Fortran Compiler

// char (int (z’4F60’), ucs4) &
// char (int (z’597D’), ucs4)

write (*,*) alphabet
open (output_unit, encoding=’UTF-8’)

write (*,*) trim (hello_world)
end program character_kind

8.215 SELECTED_INT_KIND — Choose integer kind

Description

Standard:
Class:
Syntaz:

Arguments:

Example:

SELECTED_INT_KIND(R) return the kind value of the smallest integer type that
can represent all values ranging from —10% (exclusive) to 107 (exclusive). If
there is no integer kind that accommodates this range, SELECTED_INT_KIND
returns —1.

Fortran 95 and later
Transformational function

RESULT = SELECTED_INT_KIND(R)

R Shall be a scalar and of type INTEGER.

program large_integers
integer,parameter :: k5 = selected_int_kind(5)
integer,parameter :: k15 = selected_int_kind(15)
integer(kind=k5) :: ib
integer (kind=k15) :: i1b

print *, huge(i5), huge(ilb)

! The following inequalities are always true
print *, huge(ib) >= 10_kb*x5-1
print *, huge(il5) >= 10_k15%*15-1

end program large_integers

8.216 SELECTED_REAL_KIND — Choose real kind

Description:

Standard:
Class:
Syntaz:

Arguments:

SELECTED_REAL_KIND(P,R) returns the kind value of a real data type with
decimal precision of at least P digits, exponent range of at least R, and with a
radix of RADIX.

Fortran 95 and later, with RADIX Fortran 2008 or later
Transformational function

RESULT = SELECTED_REAL_KIND([P, R, RADIX])

P (Optional) shall be a scalar and of type INTEGER.
R (Optional) shall be a scalar and of type INTEGER.

Chapter 8: Intrinsic Procedures 189

RADIX (Optional) shall be a scalar and of type INTEGER.

Before Fortran 2008, at least one of the arguments R or P shall be present;
since Fortran 2008, they are assumed to be zero if absent.

Return value:
SELECTED_REAL_KIND returns the value of the kind type parameter of a real
data type with decimal precision of at least P digits, a decimal exponent range
of at least R, and with the requested RADIX. If the RADIX parameter is absent,
real kinds with any radix can be returned. If more than one real data type
meet the criteria, the kind of the data type with the smallest decimal precision
is returned. If no real data type matches the criteria, the result is

-1 if the processor does not support a real data type with a
precision greater than or equal to P, but the R and RADIX require-
ments can be fulfilled

-2 if the processor does not support a real type with an exponent
range greater than or equal to R, but P and RADIX are fulfillable

-3 if RADIX but not P and R requirements
are fulfillable

-4 if RADIX and either P or R requirements
are fulfillable

-5 if there is no real type with the given RADIX

See also: Section 8.191 [PRECISION], page 175, Section 8.201 [RANGE], page 180,
Section 8.196 [RADIX], page 177

Ezample:
program real_kinds

integer,parameter :: p6 = selected_real_kind(6)
integer,parameter :: plOr100 = selected_real_kind(10,100)
integer,parameter :: r400 = selected_real_kind(r=400)
real(kind=p6) :: x
real (kind=p10r100) :: y
real (kind=r400) :: z

print *, precision(x), range(x)

print *, precision(y), range(y)

print *, precision(z), range(z)
end program real_kinds

8.217 SET_EXPONENT — Set the exponent of the model

Description:
SET_EXPONENT (X, I) returns the real number whose fractional part is that that
of X and whose exponent part is I.

Standard: Fortran 95 and later
Class: Elemental function

Syntax: RESULT = SET_EXPONENT (X, I)

190 The GNU Fortran Compiler

Arguments:
X Shall be of type REAL.
I Shall be of type INTEGER.

Return value:
The return value is of the same type and kind as X. The real number whose
fractional part is that that of X and whose exponent part if I is returned; it is
FRACTION(X) * RADIX(X)*x*I.

Example:

PROGRAM test_setexp

REAL :: x = 178.1387e-4

INTEGER :: i = 17

PRINT *, SET_EXPONENT(x, i), FRACTION(x) * RADIX(x)*xi
END PROGRAM

8.218 SHAPE — Determine the shape of an array

Description:
Determines the shape of an array.
Standard: Fortran 95 and later, with KIND argument Fortran 2003 and later

Class: Inquiry function

Syntaz: RESULT = SHAPE (SOURCE [, KIND])

Arguments:

SOURCE Shall be an array or scalar of any type. If SOURCE is a
pointer it must be associated and allocatable arrays must be
allocated.

KIND (Optional) An INTEGER initialization expression indicating

the kind parameter of the result.

Return value:
An INTEGER array of rank one with as many elements as SOURCE has dimen-
sions. The elements of the resulting array correspond to the extend of SOURCE
along the respective dimensions. If SOURCE is a scalar, the result is the rank
one array of size zero. If KIND is absent, the return value has the default
integer kind otherwise the specified kind.

Example:

PROGRAM test_shape
INTEGER, DIMENSION(-1:1, -1:2) :: A
WRITE(*,*) SHAPE(A) ' (/3,4 /)
WRITE(*,*) SIZE(SHAPE(42)) VD]

END PROGRAM

See also: Section 8.206 [RESHAPE], page 183, Section 8.226 [SIZE], page 194

8.219 SHIFTA — Right shift with fill

Description:
SHIFTA returns a value corresponding to I with all of the bits shifted right by
SHIFT places. If the absolute value of SHIFT is greater than BIT_SIZE(I),

Chapter 8: Intrinsic Procedures 191

the value is undefined. Bits shifted out from the right end are lost. The fill is
arithmetic: the bits shifted in from the left end are equal to the leftmost bit,
which in two’s complement representation is the sign bit.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = SHIFTA(I, SHIFT)

Arguments:
I The type shall be INTEGER.
SHIFT The type shall be INTEGER.

Return value:
The return value is of type INTEGER and of the same kind as L

See also: Section 8.220 [SHIFTL], page 191, Section 8.221 [SHIFTR], page 191

8.220 SHIFTL — Left shift

Description:
SHIFTL returns a value corresponding to I with all of the bits shifted left by
SHIF'T places. If the absolute value of SHIF'T is greater than BIT_SIZE(I), the
value is undefined. Bits shifted out from the left end are lost, and bits shifted
in from the right end are set to 0.

Standard: Fortran 2008 and later
Class: Elemental function
Syntax: RESULT = SHIFTL(I, SHIFT)

Arguments:
1 The type shall be INTEGER.
SHIFT The type shall be INTEGER.

Return value:
The return value is of type INTEGER and of the same kind as I.

See also: Section 8.219 [SHIFTA], page 190, Section 8.221 [SHIFTR], page 191

8.221 SHIFTR — Right shift

Description:
SHIFTR returns a value corresponding to I with all of the bits shifted right by
SHIFT places. If the absolute value of SHIFT is greater than BIT_SIZE(I),
the value is undefined. Bits shifted out from the right end are lost, and bits
shifted in from the left end are set to 0.

Standard: Fortran 2008 and later
Class: Elemental function

Syntaz: RESULT = SHIFTR(I, SHIFT)

192 The GNU Fortran Compiler

Arguments:
I The type shall be INTEGER.
SHIFT The type shall be INTEGER.

Return value:
The return value is of type INTEGER and of the same kind as I.

See also: Section 8.219 [SHIFTA], page 190, Section 8.220 [SHIFTL], page 191

8.222 SIGN — Sign copying function

Description:
SIGN(A,B) returns the value of A with the sign of B.

Standard: Fortran 77 and later
Class: Elemental function
Syntaz: RESULT = SIGN(A, B)

Arguments:
A Shall be of type INTEGER or REAL
B Shall be of the same type and kind as A

Return value:
The kind of the return value is that of A and B. If B > 0 then the result is
ABS(A), else it is —ABS(A).

Example:
program test_sign
print *, sign(-12,1)
print *, sign(-12,0)
print *, sign(-12,-1)

print *, sign(-12.,1.)

print *, sign(-12.,0.)

print *, sign(-12.,-1.)
end program test_sign

Specific names:

Name Arguments Return type Standard

SIGN(A,B) REAL(4) A, B REAL(4) f77, gnu

ISIGN(A,B) INTEGER(4) A, INTEGER(4) f77, gnu
B

DSIGN(A,B) REAL(8) A, B REAL(8) {77, gnu

8.223 SIGNAL — Signal handling subroutine (or function)

Description:
SIGNAL (NUMBER, HANDLER [, STATUS]) causes external subroutine HANDLER
to be executed with a single integer argument when signal NUMBER occurs. If
HANDLER is an integer, it can be used to turn off handling of signal NUMBER
or revert to its default action. See signal(2).
If SIGNAL is called as a subroutine and the STATUS argument is supplied, it is
set to the value returned by signal(2).

Chapter 8: Intrinsic Procedures 193

Standard: GNU extension
Class: Subroutine, function

Syntax:

CALL SIGNAL(NUMBER, HANDLER [, STATUS])
STATUS = SIGNAL (NUMBER, HANDLER)

Arguments:
NUMBER Shall be a scalar integer, with INTENT (IN)
HANDLER Signal handler (INTEGER,FUNCTIDN or SUBRDUTINE) or
dummy /global INTEGER scalar. INTEGER. It is INTENT (IN).
STATUS (Optional) STATUS shall be a scalar integer. It has
INTENT(QUT).

Return value:
The SIGNAL function returns the value returned by signal(2).

Example:

program test_signal
intrinsic signal
external handler_print

call signal (12, handler_print)
call signal (10, 1)

call sleep (30)
end program test_signal

8.224 SIN — Sine function

Description:
SIN(X) computes the sine of X.

Standard: Fortran 77 and later
Class: Elemental function
Syntax: RESULT = SIN(X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value has same type and kind as X.

Ezample:

program test_sin
real :: x = 0.0
x = sin(x)

end program test_sin

Specific names:
Name Argument Return type Standard
SIN(X) REAL(4) X REAL (4) {77, gnu
DSIN(X) REAL(8) X REAL(8) 95, gnu

194 The GNU Fortran Compiler

CSIN(X) COMPLEX(4) X COMPLEX(4) £95, gnu
ZSIN(X) COMPLEX(8) X COMPLEX(8) £95, gnu
CDSIN(X) COMPLEX(8) X COMPLEX(8) £95, gnu

See also: Section 8.18 [ASIN], page 74

8.225 SINH — Hyperbolic sine function
Description:
SINH(X) computes the hyperbolic sine of X.
Standard: Fortran 95 and later, for a complex argument Fortran 2008 or later
Class: FElemental function
Syntaz: RESULT = SINH(X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value has same type and kind as X.

Example:
program test_sinh
real(8) :: x = - 1.0_8
x = sinh(x)
end program test_sinh

Specific names:

Name Argument Return type Standard
SINH(X) REAL(4) X REAL(4) Fortran 95 and later
DSINH(X) REAL(8) X REAL(8) Fortran 95 and later

See also: Section 8.19 [ASINH], page 74

8.226 SIZE — Determine the size of an array

Description:
Determine the extent of ARRAY along a specified dimension DIM, or the total
number of elements in ARRAY if DIM is absent.

Standard: Fortran 95 and later, with KIND argument Fortran 2003 and later
Class: Inquiry function

Syntaz: RESULT = SIZE(ARRAY[, DIM [, KIND]])

Arguments:
ARRAY Shall be an array of any type. If ARRAY is a pointer it must
be associated and allocatable arrays must be allocated.
DIM (Optional) shall be a scalar of type INTEGER and its value
shall be in the range from 1 to n, where n equals the rank of
ARRAY.
KIND (Optional) An INTEGER initialization expression indicating

the kind parameter of the result.

Chapter 8: Intrinsic Procedures 195

Return value:

Ezample:

See also:

The return value is of type INTEGER and of kind KIND. If KIND is absent, the

return value is of default integer kind.

PROGRAM test_size
WRITE(*,*) SIZE((/ 1, 2 /)) 12
END PROGRAM

Section 8.218 [SHAPE], page 190, Section 8.206 [RESHAPE], page 183

8.227 SIZEOF — Size in bytes of an expression

Description:

Standard:
Class:
Syntaz:

Arguments:

SIZEQF (X) calculates the number of bytes of storage the expression X occupies.
GNU extension
Intrinsic function

N = SIZEQF (X)

X The argument shall be of any type, rank or shape.

Return value:

Ezample:

See also:

The return value is of type integer and of the system-dependent kind C_SIZE_T
(from the ISO_C_BINDING module). Its value is the number of bytes occupied
by the argument. If the argument has the POINTER attribute, the number
of bytes of the storage area pointed to is returned. If the argument is of a
derived type with POINTER or ALLOCATABLE components, the return value does
not account for the sizes of the data pointed to by these components. If the
argument is polymorphic, the size according to the declared type is returned.
The argument may not be a procedure or procedure pointer.

integer :: i

real :: r, s(5)

print *, (sizeof(s)/sizeof(r) == b)
end

The example will print .TRUE. unless you are using a platform where default
REAL variables are unusually padded.

Section 8.43 [C_SIZEOF], page 88, Section 8.234 [STORAGE_SIZE], page 199

8.228 SLEEP — Sleep for the specified number of seconds

Description:

Standard:
Class:
Syntaz:

Calling this subroutine causes the process to pause for SECONDS seconds.
GNU extension
Subroutine

CALL SLEEP (SECONDS)

196 The GNU Fortran Compiler

Arguments:
SECONDS The type shall be of default INTEGER.

Example:

program test_sleep
call sleep(5)
end

8.229 SPACING — Smallest distance between two numbers of
a given type

Description:
Determines the distance between the argument X and the nearest adjacent
number of the same type.

Standard: Fortran 95 and later
Class: Elemental function
Syntax: RESULT = SPACING(X)

Arguments:
X Shall be of type REAL.

Return value:
The result is of the same type as the input argument X.

Example:

PROGRAM test_spacing
INTEGER, PARAMETER :: SGL
INTEGER, PARAMETER :: DBL

SELECTED_REAL_KIND(p=6, r=37)
SELECTED_REAL_KIND (p=13, r=200)

WRITE(*,*) spacing(1.0_SGL) ! "1.1920929E-07" on i686
WRITE(*,*) spacing(1.0_DBL) ! "2.220446049250313E-016" on 1686
END PROGRAM

See also: Section 8.207 [RRSPACING], page 184

8.230 SPREAD — Add a dimension to an array

Description:

Replicates a SOURCE array NCOPIES times along a specified dimension DIM.
Standard: Fortran 95 and later
Class: Transformational function

Syntax: RESULT = SPREAD (SOURCE, DIM, NCOPIES)

Arguments:
SOURCE Shall be a scalar or an array of any type and a rank less than
seven.
DIM Shall be a scalar of type INTEGER with a value in the range

from 1 to n+1, where n equals the rank of SOURCE.
NCOPIES Shall be a scalar of type INTEGER.

Chapter 8: Intrinsic Procedures 197

Return value:
The result is an array of the same type as SOURCE and has rank n+1 where n
equals the rank of SOURCE.

Example:

PROGRAM test_spread
INTEGER :: a =1, b(2) = (/ 1, 2 /)
WRITE(*,*) SPREAD(A, 1, 2) rrgoan
WRITE(*,*) SPREAD(B, 1, 2) P11 22"
END PROGRAM

See also: Section 8.254 [UNPACK], page 210

8.231 SQRT — Square-root function
Description:

SQRT (X) computes the square root of X.
Standard: Fortran 77 and later
Class: FElemental function
Syntaz: RESULT = SQRT (X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value is of type REAL or COMPLEX. The kind type parameter is the
same as X.

Ezample:

program test_sqrt
real(8) :: x = 2.0_8

complex :: z (1.0, 2.0)
x = sqrt(x)
z = sqrt(z)

end program test_sqrt

Specific names:

Name Argument Return type Standard

SQRT (X) REAL(4) X REAL(4) Fortran 95 and later

DSQRT (X) REAL(8) X REAL(8) Fortran 95 and later

CSQRT (X) COMPLEX (4) X COMPLEX (4) Fortran 95 and later

ZSQRT (X) COMPLEX (8) X COMPLEX (8) GNU extension

CDSQRT (X) COMPLEX(8) X COMPLEX (8) GNU extension
8.232 SRAND — Reinitialize the random number generator
Description:

SRAND reinitializes the pseudo-random number generator called by RAND and
IRAND. The new seed used by the generator is specified by the required argument
SEED.

Standard: GNU extension

198

Class:
Syntaz:

Arguments:

The GNU Fortran Compiler

Subroutine

CALL SRAND (SEED)

SEED Shall be a scalar INTEGER (kind=4).

Return value:

Example:

Notes:

See also:

Does not return anything.
See RAND and IRAND for examples.

The Fortran 2003 standard specifies the intrinsic RANDOM_SEED to initialize the
pseudo-random numbers generator and RANDOM_NUMBER to generate pseudo-
random numbers. Please note that in GNU Fortran, these two sets of intrinsics
(RAND, IRAND and SRAND on the one hand, RANDOM_NUMBER and RANDOM_SEED
on the other hand) access two independent pseudo-random number generators.

Section 8.198 [RAND], page 178, Section 8.200 [RANDOM_SEED], page 180,
Section 8.199 [RANDOM_NUMBER], page 179

8.233 STAT — Get file status

Description:

Standard:
Class:

This function returns information about a file. No permissions are required on
the file itself, but execute (search) permission is required on all of the directories
in path that lead to the file.

The elements that are obtained and stored in the array VALUES:

VALUES (1) Device ID

VALUES (2) Inode number

VALUES(3) File mode

VALUES (4) Number of links

VALUES(5) Owner’s uid

VALUES (6) Owner’s gid

VALUES (7) ID of device containing directory entry for file (0 if not

available)
VALUES (8) File size (bytes)
VALUES(9) Last access time

VALUES(10) Last modification time

VALUES(11) Last file status change time

VALUES(12) Preferred I/O block size (-1 if not available)
VALUES(13) Number of blocks allocated (-1 if not available)

Not all these elements are relevant on all systems. If an element is not relevant,
it is returned as 0.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

GNU extension

Subroutine, function

Chapter 8: Intrinsic Procedures 199

Syntaz:
CALL STAT(NAME, VALUES [, STATUS])
STATUS = STAT(NAME, VALUES)
Arguments:
NAME The type shall be CHARACTER, of the default kind and a valid
path within the file system.
VALUES The type shall be INTEGER(4) , DIMENSION(13).
STATUS (Optional) status flag of type INTEGER(4). Returns 0 on suc-
cess and a system specific error code otherwise.
Example:

PROGRAM test_stat
INTEGER, DIMENSION(13) :: buff
INTEGER :: status
CALL STAT("/etc/passwd", buff, status)

IF (status == 0) THEN

WRITE (%, FMT="(’Device ID:’, T30, I19)") buff (1)
WRITE (%, FMT="(’Inode number:’, T30, I19)") buff(2)
WRITE (%, FMT="(’File mode (octal):’, T30, 019)") buff(3)
WRITE (%, FMT="(’Number of links:’, T30, I19)") buff(4)
WRITE (%, FMT="(’Owner’’s uid:’, T30, I19)") buff(5)
WRITE (%, FMT="(’0Owner’’s gid:’, T30, I19)") buff(6)
WRITE (%, FMT="(’Device where located:’, T30, I19)") buff(7)
WRITE (%, FMT="(’File size:’, T30, I19)") buff(8)
WRITE (%, FMT="(’Last access time:’, T30, A19)") CTIME(buff(9))
WRITE (%, FMT="(’Last modification time’, T30, A19)") CTIME(buff(10))
WRITE (*, FMT="(’Last status change time:’, T30, A19)") CTIME(buff(11))
WRITE (%, FMT="(’Preferred block size:’, T30, I19)") buff(12)
WRITE (%, FMT="(’No. of blocks allocated:’, T30, I19)") buff(13)
END IF

END PROGRAM

See also: To stat an open file: Section 8.93 [FSTAT], page 121, to stat a link: Section 8.158
[LSTAT], page 157

8.234 STORAGE_SIZE — Storage size in bits
Description:

Returns the storage size of argument A in bits.
Standard: Fortran 2008 and later
Class: Inquiry function
Syntaz: ~ RESULT = STORAGE_SIZE(A [, KIND])

Arguments:
A Shall be a scalar or array of any type.
KIND (Optional) shall be a scalar integer constant expression.

Return Value:
The result is a scalar integer with the kind type parameter specified by KIND (or
default integer type if KIND is missing). The result value is the size expressed in

200 The GNU Fortran Compiler

bits for an element of an array that has the dynamic type and type parameters
of A.

See also: Section 8.43 [C_SIZEOF], page 88, Section 8.227 [SIZEOF], page 195

8.235 SUM — Sum of array elements

Description:
Adds the elements of ARRAY along dimension DIM if the corresponding ele-
ment in MASK is TRUE.

Standard: Fortran 95 and later
Class: Transformational function

Syntaz:

RESULT = SUM(ARRAY[, MASK])
RESULT = SUM(ARRAY, DIM[, MASK])

Arguments:
ARRAY Shall be an array of type INTEGER, REAL or COMPLEX.
DIM (Optional) shall be a scalar of type INTEGER with a value in
the range from 1 to n, where n equals the rank of ARRAY.
MASK (Optional) shall be of type LOGICAL and either be a scalar or

an array of the same shape as ARRAY.

Return value:
The result is of the same type as ARRAY.

If DIM is absent, a scalar with the sum of all elements in ARRAY is returned.
Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a
shape similar to that of ARRAY with dimension DIM dropped is returned.

Ezample:
PROGRAM test_sum
INTEGER :: x(6) = (/ 1, 2, 3, 4 ,56 /)
print *, SUM(x) ! all elements, sum
print *, SUM(x, MASK=MOD(x, 2)==1) ! odd elements, sum
END PROGRAM

See also: Section 8.195 [PRODUCT], page 177

non
-
a1

8.236 SYMLNK — Create a symbolic link

Description:
Makes a symbolic link from file PATHI to PATH2. A null character (CHAR(O))
can be used to mark the end of the names in PATHI and PATH2; other-
wise, trailing blanks in the file names are ignored. If the STATUS argument
is supplied, it contains 0 on success or a nonzero error code upon return; see
symlink(2). If the system does not supply symlink(2), ENOSYS is returned.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Standard: GNU extension

Chapter 8: Intrinsic Procedures 201

Class:
Syntaz:

Arguments:

See also:

Subroutine, function

CALL SYMLNK (PATH1, PATH2 [, STATUS])
STATUS = SYMLNK (PATH1, PATH2)

PATHI1 Shall be of default CHARACTER type.
PATH?2 Shall be of default CHARACTER type.
STATUS (Optional) Shall be of default INTEGER type.

Section 8.147 [LINK], page 151, Section 8.253 [UNLINK], page 209

8.237 SYSTEM — Execute a shell command

Description:

Standard:
Class:
Syntaz:

Arguments:

See also:

Passes the command COMMAND to a shell (see system(3)). If argument
STATUS is present, it contains the value returned by system(3), which is
presumably 0 if the shell command succeeded. Note that which shell is used to
invoke the command is system-dependent and environment-dependent.

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

Note that the system function need not be thread-safe. It is the responsibility
of the user to ensure that system is not called concurrently.

GNU extension

Subroutine, function

CALL SYSTEM(COMMAND [, STATUS])
STATUS = SYSTEM (COMMAND)

COMMAND Shall be of default CHARACTER type.
STATUS (Optional) Shall be of default INTEGER type.

Section 8.77 [EXECUTE_COMMAND_LINE], page 110, which is part of the
Fortran 2008 standard and should considered in new code for future portability.

8.238 SYSTEM_CLOCK — Time function

Description:

Determines the COUNT of a processor clock since an unspecified time in the
past modulo COUNT_MAX, COUNT_RATE determines the number of clock
ticks per second. If the platform supports a high resolution monotonic clock,
that clock is used and can provide up to nanosecond resolution. If a high
resolution monotonic clock is not available, the implementation falls back to a
potentially lower resolution realtime clock.

COUNT_RATE and COUNT_MAX vary depending on the kind of the ar-
guments. For kind=8 arguments, COUNT represents nanoseconds, and for

202 The GNU Fortran Compiler

kind=4 arguments, COUNT represents milliseconds. Other than the kind de-
pendency, COUNT_RATE and COUNT_MAX are constant, however the par-

ticular values are specific to gfortran.

If there is no clock, COUNT is set to ~HUGE (COUNT), and COUNT_RATE and
COUNT_MAX are set to zero.

When running on a platform using the GNU C library (glibc), or a derivative
thereof, the high resolution monotonic clock is available only when linking with
the rt library. This can be done explicitly by adding the -1rt flag when linking
the application, but is also done implicitly when using OpenMP.

Standard: Fortran 95 and later
Class: Subroutine

Syntax: CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])

Arguments:
COUNT (Optional) shall be a scalar of type INTEGER with
INTENT (QUT).
COUNT_RATE(Optional) shall be a scalar of type INTEGER with
INTENT (OUT).
COUNT-MAX (Optional) shall be a scalar of type INTEGER with
INTENT(OUT).
Ezample:

PROGRAM test_system_clock
INTEGER :: count, count_rate, count_max
CALL SYSTEM_CLOCK(count, count_rate, count_max)
WRITE(*,*) count, count_rate, count_max

END PROGRAM

See also: Section 8.60 [DATE_AND_TIME], page 99, Section 8.57 [CPU_TIME], page 97

8.239 TAN — Tangent function
Description:
TAN(X) computes the tangent of X.
Standard: Fortran 77 and later, for a complex argument Fortran 2008 or later
Class: Elemental function
Syntazx: RESULT = TAN(X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value has same type and kind as X.

Ezample:
program test_tan
real(8) :: x = 0.165_8
x = tan(x)
end program test_tan

Chapter 8: Intrinsic Procedures 203

Specific names:

Name Argument Return type Standard
TAN(X) REAL(4) X REAL (4) Fortran 95 and later
DTAN(X) REAL(8) X REAL(8) Fortran 95 and later

See also: Section 8.21 [ATAN], page 76

8.240 TANH — Hyperbolic tangent function

Description:
TANH(X) computes the hyperbolic tangent of X.

Standard: Fortran 77 and later, for a complex argument Fortran 2008 or later
Class: Elemental function
Syntaz: X = TANH(X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value has same type and kind as X. If X is complex, the imaginary
part of the result is in radians. If X is REAL, the return value lies in the range
—1 < tanh(z) < 1.

Example:

program test_tanh
real(8) :: x = 2.1.8
x = tanh(x)

end program test_tanh

Specific names:

Name Argument Return type Standard
TANH (X) REAL(4) X REAL(4) Fortran 95 and later
DTANH (X) REAL(8) X REAL(8) Fortran 95 and later

See also: Section 8.23 [ATANH], page 77

8.241 THIS_IMAGE — Function that returns the cosubscript
index of this image

Description:
Returns the cosubscript for this image.
Standard: Fortran 2008 and later

Class: Transformational function

Syntax:
RESULT = THIS_IMAGE()
RESULT = THIS_IMAGE(COARRAY [, DIM])

Arguments:
COARRAY Coarray of any type (optional; if DIM present, required).

204

The GNU Fortran Compiler

DIM default integer scalar (optional). If present, DIM shall be
between one and the corank of COARRAY.

Return value:

Example:

See also:

Default integer. If COARRAY is not present, it is scalar and its value is the
index of the invoking image. Otherwise, if DIM is not present, a rank-1 array
with corank elements is returned, containing the cosubscripts for COARRAY
specifying the invoking image. If DIM is present, a scalar is returned, with the
value of the DIM element of THIS_IMAGE (COARRAY).

INTEGER :: valuel[*]
INTEGER :: i
value = THIS_IMAGE()
SYNC ALL
IF (THIS_IMAGE() == 1) THEN
DO i = 1, NUM_IMAGES()
WRITE(*,’(2(a,i0))’) ’valuel’, i, ’] is ’, valuel[il
END DO
END IF

Section 8.186 [NUM_IMAGES], page 172, Section 8.123 [IMAGE_INDEX],
page 138

8.242 TIME — Time function

Description:

Standard:
Class:

Syntaz:

Returns the current time encoded as an integer (in the manner of the function
time(3) in the C standard library). This value is suitable for passing to CTIME,
GMTIME, and LTIME.

This intrinsic is not fully portable, such as to systems with 32-bit INTEGER
types but supporting times wider than 32 bits. Therefore, the values returned
by this intrinsic might be, or become, negative, or numerically less than previous
values, during a single run of the compiled program.

See Section 8.243 [TIMES|, page 205, for information on a similar intrinsic that
might be portable to more GNU Fortran implementations, though to fewer
Fortran compilers.

GNU extension
Function

RESULT = TIME(Q)

Return value:

See also:

The return value is a scalar of type INTEGER (4).

Section 8.59 [CTIME], page 99, Section 8.107 [GMTIME], page 129,
Section 8.159 [LTIME], page 157, Section 8.168 [MCLOCK], page 162,
Section 8.243 [TIMES]|, page 205

Chapter 8: Intrinsic Procedures 205

8.243 TIME8 — Time function (64-bit)

Description:
Returns the current time encoded as an integer (in the manner of the function
time (3) in the C standard library). This value is suitable for passing to CTIME,
GMTIME, and LTIME.

Warning: this intrinsic does not increase the range of the timing values over
that returned by time(3). On a system with a 32-bit time(3), TIME8 will
return a 32-bit value, even though it is converted to a 64-bit INTEGER(8) value.
That means overflows of the 32-bit value can still occur. Therefore, the values
returned by this intrinsic might be or become negative or numerically less than
previous values during a single run of the compiled program.

Standard: GNU extension
Class: Function
Syntax: RESULT = TIME8()

Return value:
The return value is a scalar of type INTEGER(8).

See also: Section 8.59 [CTIME], page 99, Section 8.107 [GMTIME], page 129,
Section 8.159 [LTIME], page 157, Section 8.169 [MCLOCKS|, page 163,
Section 8.242 [TIME], page 204

8.244 TINY — Smallest positive number of a real kind

Description:
TINY(X) returns the smallest positive (non zero) number in the model of the
type of X.

Standard: Fortran 95 and later
Class: Inquiry function
Syntaz: RESULT = TINY(X)

Arguments:
X Shall be of type REAL.

Return value:
The return value is of the same type and kind as X

Example: See HUGE for an example.

8.245 TRAILZ — Number of trailing zero bits of an integer

Description:
TRAILZ returns the number of trailing zero bits of an integer.

Standard: Fortran 2008 and later

Class: Elemental function

206 The GNU Fortran Compiler

Syntaz: RESULT = TRAILZ(I)

Arguments:
I Shall be of type INTEGER.

Return value:
The type of the return value is the default INTEGER. If all the bits of I are zero,
the result value is BIT_SIZE(I).

Example:

PROGRAM test_trailz
WRITE (*,*) TRAILZ(8) ! prints 3
END PROGRAM

See also: Section 8.34 [BIT_SIZE], page 83, Section 8.142 [LEADZ]|, page 148,
Section 8.193 [POPPAR], page 176, Section 8.192 [POPCNT], page 175

8.246 TRANSFER — Transfer bit patterns

Description:
Interprets the bitwise representation of SOURCE in memory as if it is the
representation of a variable or array of the same type and type parameters as

MOLD.
This is approximately equivalent to the C concept of casting one type to another.

Standard: Fortran 95 and later
Class: Transformational function

Syntaz: RESULT = TRANSFER (SOURCE, MOLD[, SIZE])

Arguments:
SOURCE Shall be a scalar or an array of any type.
MOLD Shall be a scalar or an array of any type.
SIZE (Optional) shall be a scalar of type INTEGER.

Return value:
The result has the same type as MOLD, with the bit level representation of
SOURCE. If SIZE is present, the result is a one-dimensional array of length
SIZE. If SIZE is absent but MOLD is an array (of any size or shape), the
result is a one- dimensional array of the minimum length needed to contain
the entirety of the bitwise representation of SOURCE. If SIZE is absent and
MOLD is a scalar, the result is a scalar.

If the bitwise representation of the result is longer than that of SOURCE, then
the leading bits of the result correspond to those of SOURCE and any trailing
bits are filled arbitrarily.

When the resulting bit representation does not correspond to a valid represen-
tation of a variable of the same type as MOLD, the results are undefined, and
subsequent operations on the result cannot be guaranteed to produce sensible
behavior. For example, it is possible to create LOGICAL variables for which VAR
and .NOT. VAR both appear to be true.

Ezample:

Chapter 8: Intrinsic Procedures 207

PROGRAM test_transfer

integer :: x = 2143289344

print *, transfer(x, 1.0) ! prints "NaN" on i686
END PROGRAM

8.247 TRANSPOSE — Transpose an array of rank two

Description:
Transpose an array of rank two. Element (i, j) of the result has the value
MATRIX(j, i), for all i, j.

Standard: Fortran 95 and later
Class: Transformational function
Syntaz: RESULT = TRANSPOSE (MATRIX)

Arguments:
MATRIX Shall be an array of any type and have a rank of two.

Return value:
The result has the same type as MATRIX, and has shape (/ m, n /) if MATRIX
has shape (/ n, m /).

8.248 TRIM — Remove trailing blank characters of a string

Description:
Removes trailing blank characters of a string.

Standard: Fortran 95 and later
Class: Transformational function
Syntaz: RESULT = TRIM(STRING)

Arguments:
STRING Shall be a scalar of type CHARACTER.

Return value:
A scalar of type CHARACTER which length is that of STRING less the number
of trailing blanks.

Ezxample:

PROGRAM test_trim

CHARACTER(len=10), PARAMETER :: s = "GFORTRAN "

WRITE(*,*) LEN(s), LEN(TRIM(s)) ! "10 8", with/without trailing blanks
END PROGRAM

See also: Section 8.8 [ADJUSTL], page 67, Section 8.9 [ADJUSTR], page 67

8.249 TTYNAM — Get the name of a terminal device.

Description:
Get the name of a terminal device. For more information, see ttyname (3).
This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

208 The GNU Fortran Compiler

Standard: GNU extension
Class: Subroutine, function

Syntaz:

CALL TTYNAM(UNIT, NAME)
NAME = TTYNAM(UNIT)

Arguments:
UNIT Shall be a scalar INTEGER.
NAME Shall be of type CHARACTER.

Ezample:

PROGRAM test_ttynam
INTEGER :: unit
DO unit =1, 10
IF (isatty(unit=unit)) write(*,*) ttynam(unit)
END DO
END PROGRAM

See also: Section 8.133 [ISATTY], page 144

8.250 UBOUND — Upper dimension bounds of an array

Description:
Returns the upper bounds of an array, or a single upper bound along the DIM
dimension.

Standard: Fortran 95 and later, with KIND argument Fortran 2003 and later
Class: Inquiry function

Syntaz: RESULT = UBOUND (ARRAY [, DIM [, KIND]])

Arguments:
ARRAY Shall be an array, of any type.
DIM (Optional) Shall be a scalar INTEGER.
KIND (Optional) An INTEGER initialization expression indicating

the kind parameter of the result.

Return value:

The return value is of type INTEGER and of kind KIND. If KIND is absent,
the return value is of default integer kind. If DIM is absent, the result is an
array of the upper bounds of ARRAY. If DIM is present, the result is a scalar
corresponding to the upper bound of the array along that dimension. If ARRAY
is an expression rather than a whole array or array structure component, or if
it has a zero extent along the relevant dimension, the upper bound is taken to
be the number of elements along the relevant dimension.

See also: Section 8.140 [LBOUND], page 147, Section 8.141 [LCOBOUND], page 148

Chapter 8: Intrinsic Procedures 209

8.251 UCOBOUND — Upper codimension bounds of an array

Description:

Standard:
Class:
Syntaz:

Arguments:

Returns the upper cobounds of a coarray, or a single upper cobound along the
DIM codimension.

Fortran 2008 and later
Inquiry function

RESULT = UCOBOUND (COARRAY [, DIM [, KIND]])

ARRAY Shall be an coarray, of any type.
DIM (Optional) Shall be a scalar INTEGER.
KIND (Optional) An INTEGER initialization expression indicating

the kind parameter of the result.

Return value:

See also:

The return value is of type INTEGER and of kind KIND. If KIND is absent, the
return value is of default integer kind. If DIM is absent, the result is an array
of the lower cobounds of COARRAY. If DIM is present, the result is a scalar
corresponding to the lower cobound of the array along that codimension.

Section 8.141 [LCOBOUND], page 148, Section 8.140 [LBOUND], page 147

8.252 UMASK — Set the file creation mask

Description:

Standard:
Class:
Syntaz:

Arguments:

Sets the file creation mask to MASK. If called as a function, it returns the old
value. If called as a subroutine and argument OLD if it is supplied, it is set to
the old value. See umask(2).

GNU extension

Subroutine, function

CALL UMASK(MASK [, OLD])
OLD = UMASK (MASK)

MASK Shall be a scalar of type INTEGER.
OLD (Optional) Shall be a scalar of type INTEGER.

8.253 UNLINK — Remove a file from the file system

Description:

Unlinks the file PATH. A null character (CHAR(0)) can be used to mark the end
of the name in PATH; otherwise, trailing blanks in the file name are ignored. If
the STATUS argument is supplied, it contains 0 on success or a nonzero error
code upon return; see unlink(2).

This intrinsic is provided in both subroutine and function forms; however, only
one form can be used in any given program unit.

210 The GNU Fortran Compiler

Standard: GNU extension
Class: Subroutine, function

Syntaz:

CALL UNLINK(PATH [, STATUS])
STATUS = UNLINK(PATH)

Arguments:
PATH Shall be of default CHARACTER type.
STATUS (Optional) Shall be of default INTEGER type.

See also: Section 8.147 [LINK], page 151, Section 8.236 [SYMLNK], page 200

8.254 UNPACK — Unpack an array of rank one into an array

Description:
Store the elements of VECTOR in an array of higher rank.

Standard: Fortran 95 and later
Class: Transformational function

Syntax: RESULT = UNPACK(VECTOR, MASK, FIELD)

Arguments:
VECTOR Shall be an array of any type and rank one. It shall have at
least as many elements as MASK has TRUE values.
MASK Shall be an array of type LOGICAL.
FIELD Shall be of the same type as VECTOR and have the same

shape as MASK.

Return value:
The resulting array corresponds to FIELD with TRUE elements of MASK re-
placed by values from VECTOR in array element order.

Example:

PROGRAM test_unpack
integer :: vector(2)
logical :: mask(4) =
integer :: field(2,2)

= (/1,1/)
(/ .TRUE., .FALSE., .FALSE., .TRUE. /)
= 0, unity(2,2)

! result: unity matrix
unity = unpack(vector, reshape(mask, (/2,2/)), field)
END PROGRAM

See also: Section 8.188 [PACK], page 173, Section 8.230 [SPREAD], page 196

8.255 VERIFY — Scan a string for characters not a given set
Description:
Verifies that all the characters in STRING belong to the set of characters in
SET.

If BACK is either absent or equals FALSE, this function returns the position of
the leftmost character of STRING that is not in SET. If BACK equals TRUE,

Chapter 8: Intrinsic Procedures 211

the rightmost position is returned. If all characters of STRING are found in
SET, the result is zero.

Standard: Fortran 95 and later, with KIND argument Fortran 2003 and later
Class: Elemental function

Syntaz: RESULT = VERIFY(STRING, SET[, BACK [, KIND]])

Arguments:
STRING Shall be of type CHARACTER.
SET Shall be of type CHARACTER.
BACK (Optional) shall be of type LOGICAL.
KIND (Optional) An INTEGER initialization expression indicating

the kind parameter of the result.

Return value:
The return value is of type INTEGER and of kind KIND. If KIND is absent, the
return value is of default integer kind.

Example:
PROGRAM test_verify

WRITE(*,*) VERIFY("FORTRAN", "AQ") 1, found ’F’
WRITE(*,*) VERIFY("FORTRAN", "F0O0") ! 3, found ’R’
WRITE(*,*) VERIFY("FORTRAN", "C++") ' 1, found ’F’
WRITE(*,*) VERIFY("FORTRAN", "C++", .TRUE.) ! 7, found ’N’
WRITE(*,*) VERIFY("FORTRAN", "FORTRAN") ! 0’ found none

END PROGRAM

See also: Section 8.211 [SCAN], page 185, Section 8.124 [INDEX intrinsic|, page 139

8.256 XOR — Bitwise logical exclusive OR

Description:
Bitwise logical exclusive or.

This intrinsic routine is provided for backwards compatibility with GNU For-
tran 77. For integer arguments, programmers should consider the use of the
Section 8.121 [IEOR], page 137 intrinsic and for logical arguments the .NEQV.
operator, which are both defined by the Fortran standard.

Standard: GNU extension
Class: Function

Syntazx: RESULT = XOR(I, J)

Arguments:
1 The type shall be either a scalar INTEGER type or a scalar
LOGICAL type.
J The type shall be the same as the type of L.

Return value:
The return type is either a scalar INTEGER or a scalar LOGICAL. If the kind type
parameters differ, then the smaller kind type is implicitly converted to larger
kind, and the return has the larger kind.

212 The GNU Fortran Compiler

Example:
PROGRAM test_xor
LOGICAL :: T = .TRUE., F = .FALSE.
INTEGER :: a, b
DATA a / Z°F’ /, b / 2’3’ /

WRITE (*,*) XOR(T, T), XOR(T, F), XOR(F, T), XOR(F, F)
WRITE (*,*) XOR(a, b)
END PROGRAM

See also: Fortran 95 elemental function: Section 8.121 [IEOR], page 137

Chapter 9: Intrinsic Modules 213

9 Intrinsic Modules

9.1 ISO_FORTRAN_ENV

Standard: Fortran 2003 and later, except when otherwise noted

The ISO_FORTRAN_ENV module provides the following scalar default-integer named con-
stants:

ATOMIC_INT_KIND:
Default-kind integer constant to be used as kind parameter when defining inte-
ger variables used in atomic operations. (Fortran 2008 or later.)

ATOMIC_LOGICAL_KIND:
Default-kind integer constant to be used as kind parameter when defining logical
variables used in atomic operations. (Fortran 2008 or later.)

CHARACTER_KINDS:
Default-kind integer constant array of rank one containing the supported kind
parameters of the CHARACTER type. (Fortran 2008 or later.)

CHARACTER_STORAGE_SIZE:
Size in bits of the character storage unit.

ERROR_UNIT:
Identifies the preconnected unit used for error reporting.

FILE_STORAGE_SIZE:
Size in bits of the file-storage unit.

INPUT_UNIT:
Identifies the preconnected unit identified by the asterisk (*) in READ statement.

INTS, INT16, INT32, INT64:
Kind type parameters to specify an INTEGER type with a storage size of 16, 32,
and 64 bits. It is negative if a target platform does not support the particular
kind. (Fortran 2008 or later.)

INTEGER_KINDS:
Default-kind integer constant array of rank one containing the supported kind
parameters of the INTEGER type. (Fortran 2008 or later.)

IOSTAT_END:
The value assigned to the variable passed to the IOSTAT= specifier of an in-
put/output statement if an end-of-file condition occurred.

IOSTAT_EOR:
The value assigned to the variable passed to the IOSTAT= specifier of an in-
put/output statement if an end-of-record condition occurred.

IOSTAT_INQUIRE_INTERNAL_UNIT:
Scalar default-integer constant, used by INQUIRE for the IOSTAT= specifier to
denote an that a unit number identifies an internal unit. (Fortran 2008 or later.)

214 The GNU Fortran Compiler

NUMERIC_STORAGE_SIZE:
The size in bits of the numeric storage unit.

LOGICAL_KINDS:
Default-kind integer constant array of rank one containing the supported kind
parameters of the LOGICAL type. (Fortran 2008 or later.)

OUTPUT_UNIT:
Identifies the preconnected unit identified by the asterisk (*) in WRITE state-
ment.

REAL32, REAL64, REAL128:
Kind type parameters to specify a REAL type with a storage size of 32, 64,
and 128 bits. It is negative if a target platform does not support the particular
kind. (Fortran 2008 or later.)

REAL_KINDS:
Default-kind integer constant array of rank one containing the supported kind
parameters of the REAL type. (Fortran 2008 or later.)

STAT_LOCKED:
Scalar default-integer constant used as STAT= return value by LOCK to denote
that the lock variable is locked by the executing image. (Fortran 2008 or later.)

STAT_LOCKED_OTHER_IMAGE:
Scalar default-integer constant used as STAT= return value by UNLOCK to denote
that the lock variable is locked by another image. (Fortran 2008 or later.)

STAT_STOPPED_IMAGE:
Positive, scalar default-integer constant used as STAT= return value if the
argument in the statement requires synchronisation with an image, which has
initiated the termination of the execution. (Fortran 2008 or later.)

STAT_UNLOCKED:
Scalar default-integer constant used as STAT= return value by UNLOCK to denote
that the lock variable is unlocked. (Fortran 2008 or later.)

The module provides the following derived type:

LOCK_TYPE:
Derived type with private components to be use with the LOCK and UNLOCK
statement. A variable of its type has to be always declared as coarray and may
not appear in a variable-definition context. (Fortran 2008 or later.)

The module also provides the following intrinsic procedures: Section 8.50
[COMPILER_OPTIONS], page 93 and Section 8.51 [COMPILER_VERSION], page 93.

9.2 ISO_C_BINDING

Standard: Fortran 2003 and later, GNU extensions

The following intrinsic procedures are provided by the module; their definition can be
found in the section Intrinsic Procedures of this manual.

Chapter 9: Intrinsic Modules

C_ASSOCIATED

C_F_POINTER

C_F_PROCPOINTER

C_FUNLOC
C_LOC
C_SIZEQOF

215

The ISO_C_BINDING module provides the following named constants of type default
integer, which can be used as KIND type parameters.

In addition to the integer named constants required by the Fortran 2003 standard, GNU
Fortran provides as an extension named constants for the 128-bit integer types supported
by the C compiler: C_INT128_T, C_INT_LEAST128_T, C_INT_FAST128_T. Furthermore, if
__float is supported in C, the named constants C_FLOAT128, C_FLOAT128_COMPLEX are

defined.

Fortran Type
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL
REAL
REAL
REAL
COMPLEX
COMPLEX
COMPLEX
REAL

Named constant
C_INT

C_SHORT

C_LONG
C_LONG_LONG
C_SIGNED_CHAR
C_SIZE_T
C_INT8_T
C_INT16_T
C_INT32_T
C_INT64_T
C_INT128_T
C_INT_LEAST8_T
C_INT_LEAST16_T
C_INT_LEAST32_T
C_INT_LEAST64_T
C_INT_LEAST128_T
C_INT_FAST8_T
C_INT_FAST16_T
C_INT_FAST32_T
C_INT_FAST64_T
C_INT_FAST128_T
C_INTMAX_T
C_INTPTR_T
C_FLOAT

C_DOUBLE
C_LONG_DOUBLE
C_FLOAT128
C_FLOAT_COMPLEX
C_DOUBLE_COMPLEX
C_LONG_DOUBLE_COMPLEX
C_FLOAT128_COMPLEX

C type

int

short int

long int

long long int
signed char/unsigned char
size_t

int8_t

intl16_t

int32_t

int64_t
int128_t
int_least8_t
int_leastl16_t
int_least32_t
int_least64_t
int_least128_t
int_fast8_t
int_fastl6_t
int_fast32_t
int_fast64_t
int_fast128_t
intmax_t
intptr_t

float

double

long double
__float128
float _Complex
double _Complex
long double _Complex
__float128 _Complex

Extension

Ext.

Ext.

Ext.

Ext.

Ext.

216 The GNU Fortran Compiler

LOGICAL C_BOOL _Bool
CHARACTER C_CHAR char
Additionally, the following parameters of type CHARACTER (KIND=C_CHAR) are defined.
Name C definition Value
C_NULL_CHAR null character ’\0’
C_ALERT alert ’\a’
C_BACKSPACE backspace ’\b”’
C_FORM_FEED form feed \f?
C_NEW_LINE new line ’\n’
C_CARRIAGE_ carriage return ’\r’
RETURN
C_HORIZONTAL_ horizontal tab "\t
TAB
C_VERTICAL_TAB vertical tab \v?
Moreover, the following two named constants are defined:
Name Type
C_NULL_PTR C_PTR

C_NULL_FUNPTR C_FUNPTR
Both are equivalent to the value NULL in C.

9.3 OpenMP Modules OMP_LIB and OMP_LIB_KINDS

Standard: OpenMP Application Program Interface v3.1

The OpenMP Fortran runtime library routines are provided both in a form of two Fortran
90 modules, named OMP_LIB and OMP_LIB_KINDS, and in a form of a Fortran include file
named ‘omp_1ib.h’. The procedures provided by OMP_LIB can be found in the Section
“Introduction” in GNU OpenMP runtime library manual, the named constants defined in
the modules are listed below.

For details refer to the actual OpenMP Application Program Interface v3.1.
OMP_LIB_KINDS provides the following scalar default-integer named constants:

omp_lock_kind
omp_nest_lock_kind
omp_sched_kind

OMP_LIB provides the scalar default-integer named constant openmp_version with a
value of the form yyyymm, where yyyy is the year and mm the month of the OpenMP
version; for OpenMP v3.1 the value is 201107.

And the following scalar integer named constants of the kind omp_sched_kind:

omp_sched_static
omp_sched_dynamic
omp_sched_guided
omp_sched_auto

http://www.openmp.org/mp-documents/spec31.pdf

Contributing 217

Contributing

Free software is only possible if people contribute to efforts to create it. We're always in
need of more people helping out with ideas and comments, writing documentation and
contributing code.

If you want to contribute to GNU Fortran, have a look at the long lists of projects you
can take on. Some of these projects are small, some of them are large; some are completely
orthogonal to the rest of what is happening on GNU Fortran, but others are “mainstream”
projects in need of enthusiastic hackers. All of these projects are important! We will
eventually get around to the things here, but they are also things doable by someone who
is willing and able.

Contributors to GNU Fortran
Most of the parser was hand-crafted by Andy Vaught, who is also the initiator of the whole
project. Thanks Andy! Most of the interface with GCC was written by Paul Brook.

The following individuals have contributed code and/or ideas and significant help to the
GNU Fortran project (in alphabetical order):

— Janne Blomqvist
— Steven Bosscher

— Paul Brook

— Tobias Burnus

— Francois-Xavier Coudert
— Bud Davis

— Jerry Delisle

— Erik Edelmann

— Bernhard Fischer
— Daniel Franke

— Richard Guenther
— Richard Henderson
— Katherine Holcomb
— Jakub Jelinek

— Niels Kristian Bech Jensen
— Steven Johnson

— Steven G. Kargl

— Thomas Koenig

— Asher Langton

— H.J. Lu

— Toon Moene

— Brooks Moses

— Andrew Pinski

— Tim Prince

218 The GNU Fortran Compiler

— Christopher D. Rickett
— Richard Sandiford
— Tobias Schliiter
— Roger Sayle
— Paul Thomas
— Andy Vaught
— Feng Wang
— Janus Weil
— Daniel Kraft
The following people have contributed bug reports, smaller or larger patches, and much
needed feedback and encouragement for the GNU Fortran project:
— Bill Clodius
— Dominique d’Humieres
— Kate Hedstrom
— Erik Schnetter
— Joost VandeVondele
Many other individuals have helped debug, test and improve the GNU Fortran compiler

over the past few years, and we welcome you to do the same! If you already have done so,
and you would like to see your name listed in the list above, please contact us.

Projects

Help build the test suite
Solicit more code for donation to the test suite: the more extensive the testsuite,
the smaller the risk of breaking things in the future! We can keep code private
on request.

Bug hunting/squishing
Find bugs and write more test cases! Test cases are especially very welcome,
because it allows us to concentrate on fixing bugs instead of isolating them.
Going through the bugzilla database at http://gcc.gnu.org/bugzilla/ to
reduce testcases posted there and add more information (for example, for which

version does the testcase work, for which versions does it fail?) is also very
helpful.

Proposed Extensions

Here’s a list of proposed extensions for the GNU Fortran compiler, in no particular order.
Most of these are necessary to be fully compatible with existing Fortran compilers, but they
are not part of the official J3 Fortran 95 standard.

Compiler extensions:

e User-specified alignment rules for structures.

e Automatically extend single precision constants to double.

http://gcc.gnu.org/bugzilla/

Contributing 219

Compile code that conserves memory by dynamically allocating common and module
storage either on stack or heap.

Compile flag to generate code for array conformance checking (suggest -CC).
User control of symbol names (underscores, etc).

Compile setting for maximum size of stack frame size before spilling parts to static or
heap.

Flag to force local variables into static space.

Flag to force local variables onto stack.

Environment Options

Pluggable library modules for random numbers, linear algebra. LA should use BLAS
calling conventions.

Environment variables controlling actions on arithmetic exceptions like overflow, un-
derflow, precision loss—Generate NaN, abort, default. action.

Set precision for fp units that support it (i387).

Variable for setting fp rounding mode.

Variable to fill uninitialized variables with a user-defined bit pattern.
Environment variable controlling filename that is opened for that unit number.
Environment variable to clear/trash memory being freed.

Environment variable to control tracing of allocations and frees.

Environment variable to display allocated memory at normal program end.
Environment variable for filename for * IO-unit.

Environment variable for temporary file directory.

Environment variable forcing standard output to be line buffered (unix).

GNU General Public License 221

GNU General Public License

Version 3, 29 June 2007
Copyright (©) 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

http://fsf.org/

222 The GNU Fortran Compiler

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

GNU General Public License 223

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

224

The GNU Fortran Compiler

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c¢. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

GNU General Public License 225

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

¢. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

226

The GNU Fortran Compiler

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

GNU General Public License 227

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

228

10.

11.

The GNU Fortran Compiler

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

GNU General Public License 229

12.

13.

14.

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

Revised Versions of this License.

230

15.

16.

17.

The GNU Fortran Compiler

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

GNU General Public License 231

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.
The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a

GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read http://www.gnu.org/philosophy/why-not-1gpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

GNU Free Documentation License 233

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

234

2.

The GNU Fortran Compiler

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain AScil without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

VERBATIM COPYING

GNU Free Documentation License 235

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

236

O

N.

0.

The GNU Fortran Compiler

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

GNU Free Documentation License 237

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

238

7.

The GNU Fortran Compiler

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

GNU Free Documentation License 239

10.

11.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

240 The GNU Fortran Compiler

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with... Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Funding Free Software 241

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to
help encourage people to contribute funds for its development. The most effective approach
known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-
fee distributors to donate part of their selling price to free software developers—the Free
Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied
with a vague promise, such as “A portion of the profits are donated,” since it doesn’t give
a basis for comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since
creative accounting and unrelated business decisions can greatly alter what fraction of the
sales price counts as profit. If the price you pay is $50, ten percent of the profit is probably
less than a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep
everyone honest, you need to inquire how much they do, and what kind. Some kinds of
development make much more long-term difference than others. For example, maintaining
a separate version of a program contributes very little; maintaining the standard version
of a program for the whole community contributes much. Easy new ports contribute little,
since someone else would surely do them; difficult ports such as adding a new CPU to the
GNU Compiler Collection contribute more; major new features or packages contribute the
most.

By establishing the idea that supporting further development is “the proper thing to
do” when distributing free software for a fee, we can assure a steady flow of resources into
making more free software.

Copyright (©) 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

Option Index

Option Index

243

gfortran’s command line options are indexed here without any initial ‘=’ or ‘-==". Where
an option has both positive and negative forms (such as -foption and -fno-option), relevant
entries in the manual are indexed under the most appropriate form; it may sometimes be

useful to look up both forms.

A

A-predicate=answer 13
Apredicate=answer 13

B

backslash........ ..ot 9

C o 13
CC . 13
<] o) « S P 11

AD . 11
Al 11
AM . 11
AN . o 11
DRamecouuinii e 13
Dname=definitionc.couuuuneun... 13
AU . o 11

faggressive-function-elimination.......... 25
falign-commons................ 25
fall-intrinsics.................. 8
fblas-matmul-limit 24
fbounds-checko, 22
fcheck 22
fcheck-array-temporaries 23
fcoarray...... ...l 22
fconvert=conversion......................... 19
fcray-pointer........ i 10
fd-lines-as-code............................L 8
fd-lines-as-comments 8
fdefault-double-8............................. 8
fdefault-integer-8 9
fdefault-real-8..........l 9
fdollar—oK.ttt 9
fdump-fortran-optimized..................... 17
fdump-fortran-original...................... 17
fdump-parse-tree........... ...l 17
fexternal-blas.............ooiiiiiiiiiin. 24
ff2c 20

ffpe-trap=list..........ccouiiiiiiiiiiiiiann. 17
ffree-form......l 8
ffree-line-length-n.......................... 9
fimplicit-none..............l 10
finit-character..............., 24
finit-integer........ ... 24
finit-local-zero............... ... 24
finit-logicalooviiiiiiiiiiiii 24
finit-real....... 24
finteger-4-integer-8........................ 10
fintrinsic-modules-path dir 18
fmax-array-constructor...................... 23
fmax-errors=n...............ooiiiiiiiiinnn.. 14
fmax-identifier-length=n................... 10
fmax-stack-var-size................... 23
fmax-subrecord-length=Ilength............... 19
fmodule-private................. ...l 9
fno-automatic.......... ... i 19
fno-backtrace........... il 18
fno-fixed-form............ oLl 8
fno-protect-parensooiaa 25
fno-range-check................... ... 19
fno-underscoring............ ... il 20
fno-whole-file......... 21
fopenmp............ 10
fpack-derived............l 23
D 11
frange-checkl 10
freal-4-real-10.............................. 10
freal-4-real-16.............. il 10
freal-4-real-8...........l 10
freal-8-real-10.................l 10
freal-8-real-16........t 10
freal-8-real-4...... i 10
frealloc-lhs 25
frecord-marker=length....................... 19
frecursive.........ol 24
frepack-arrays................iiiiiiiia 23
frontend-optimize...........l 25
fsecond-underscoreiiiiiiina.. 21
fshort-enums................ 24, 34
fsign-zero.......... ...l 19
fstack-arrays..........ccoiiiiiiiiiiiii 23
fsyntax-only ...t 14
fworking-directory 12

244

Idir ..o 18
idirafter dir.............. oot 12
imultilib dir.............. ...l 12
iprefix prefix.............. ... i 12
iquote dir ... 12
isysroot dir ...l 12
isystem diroiiiiiii 12

P 14
pedantic. ... 14
pedantic—errors..........c.oiiiiiiiiii 15

The GNU Fortran Compiler

WaliaSing......oououunnnniiiiiiiiiiiiiinnns 15
Walign-commonscoiuiiinnn. 17
Wall ..o 15
Wampersand................... ..o 15
Warray-temporaries 15
Wcharacter-truncation....................... 15
WConversionc.ooviiiiiiiiiiiiiin... 15
Weconversion-extra...................oiial. 15
WerTor ..\ 17
Wfunction-elimination....................... 17
Wimplicit-interface......................... 15
Wimplicit-procedure......................... 16
Wintrinsic-shadow................... 16
Wintrinsics-std............ il 16
Wline-truncation............................. 15
Wreal-g-constant.......................oaa 16
Wsurprisingl 16
Wtabs ..o 16
Wunderflow...........o 16
Wunused-dummy-argument...................... 16
Wunused-parameter............................ 16

Keyword Index

Keyword Index

B 9
%

LOC o 48
IREF 48
VAL L 48

& 15
P 34
_gfortran_set_argsiiia 59
_gfortran_set_convert....................... 60
_gfortran_set_fpe....................l 61
_gfortran_set_max_subrecord_length........ 61
_gfortran_set_options....................... 59
_gfortran_set_record_marker................ 61

ABORT ..o 63
AB S . 64
absolute value.......... il 64
ACCESS ..o 64
ACCESS=’STREAM’ I/O 34
ACHAR . .o 65
ACDS o 66
ACOSH .ot 66
adjust String....... ... 67
ADJUSTL . .ttt e e e 67
ADJUSTR . .ttt e 67
ATMAG .o 68
AINT o 69
ALARM ... 69
ALGAMA . o 155
aliasing. ... i 15
alignment of COMMON blocks................. 17, 25
ALL . o 70
all warningso i 15
ALLOCATABLE components of derived types...... 34
ALLOCATABLE dummy arguments 34
ALLOCATABLE function results 34
ALLOCATED . ..ottt 71
allocation, moving............. 168
allocation, status i 71

245
ALOG .o 154
ALOGIO . ot 154
AMAXO oo 160
AMAXL 160
AMINO ..ot 164
AMINT . 164
AMOD . .o 166
AND. . 71
ANINT .o 72
ANY . 73
area hyperbolic cosine 66
area hyperbolic sine 74
area hyperbolic tangent........................ 7
argument list functions 48
arguments, to program 92, 123, 124, 125, 134
array, add elements........................... 200
array, AND. ... 132
array, apply condition...................... 70, 73
array, bounds checking......................... 22
array, change dimensions 183
array, combine arrays..................o....... 163
array, condition testing..................... 70, 73
array, conditionally add elements 200
array, conditionally count elements............. 96
array, conditionally multiply elements......... 177
array, constructors...............o oL 34
array, count elements................... 194
array, duplicate dimensions................... 196
array, duplicate elements 196
array, element counting.............. 96
array, gather elements................ 173
array, increase dimension 196, 210
array, indices of typereal 44
array, location of maximum element 161
array, location of minimum element........... 165
array, lower bound............ 147
array, maximum value................ 162
array, Merge aIrayS.........ooeeeeeeeeaa. ... 163
array, minimum value 166
array, multiply elements 177
array, number of elements................. 96, 194
array, OR 133
array, packingo oL 173
array, parity. ... 141
array, permutation. 98
array, product ... 177
array, reduce dimension....................... 173
array, rotate...........o ool 98
array, scatter elements........................ 210
array, shape.......... 190
array, shift o 107
array, shift circularly oL 98
ATTAY, SIZ€ « o v e ettt et e e et e e e e 194
AITAY, SUIL. . oottt ettt ettt 200

246

array, transmogrify oo 183
array, transposet 207
array, unpacking............. ..o oo 210
array, upper bound o 208
array, XOR. o 141
ASCII collating sequence 65, 131
ASIN .o 74
ASTINH . oo 74
ASSOCTIATED. . ..ot e e 75
association status............. .. o oo 75
association status, C pointer................... 85
AT AN 76
ATAN2 .o s
ATANH . o 7
Atomic subroutine, define...................... 78
Atomic subroutine, reference................... 78
ATOMIC_DEFINEt 78
ATOMIC_REF. i 78
Authors. ... 217
B

backslash........ ..o o i 9
backtrace.......... .o i 18
base 10 logarithm function.................... 154
BESJO ot 79
BESTL oo 80
BESIN .o 80
Bessel function, first kind 79, 80
Bessel function, second kind................ 81, 82
BESSEL _JO ...ttt 79
BESSEL _Jl .. 80
BESSEL _JIN. . 80
BESSEL_YO. ...ttt 81
BESSEL _Y1. .. @i 81
BESSEL _YN. ... 82
BESYO .ot 81
BESY L oo 81
BESYN .o e 82
BGE . .ttt 83
BGT . e 83
binary representation 175, 176
BIT_SIZE. @i 83
bits Set . 175
bits, AND of array elements.................. 132
bits, clearo 135
bits, extract ... 135
bits, get 135
bits, mergel 164
bits, move i 168, 206
bits, negate........ i 171
bits, number of 83
bits, OR of array elements.................... 133
bits, SEt . 135
bits, shift....... ... 144
bits, shift circular 145
bits, shift left.......... 156, 191

bits, shift right 184, 190, 191

The GNU Fortran Compiler

bits, testing 85
bits, unset......... 135
bits, XOR of array elements 141
bitwise comparison..............., 83, 84
bitwise logical and 71, 133
bitwise logical exclusive or............... 137, 211
bitwise logical not 171
bitwise logical or......................... 141, 172
BLE . o 84
BT . et 84
bounds checking.......... oL 22
BOZ literal constants.......................... 43
BTEST .ot 85
C

C_ASSOCTIATED ...ttt e e 85
C_F_POINTER0ioiiiiiiiiii 87
C_F_PROCPOINTER......coiiiiiiiiiiininennnn 86
C_FUNLOCo e 86
C_LOC .t 88
C_SIZEQF .. . e e 88
CABS 64
calling convention L 20
CCOS .o 95
CDABS .ot 64
CDCOS .ot eee 95
CDEXP . .t 112
CDLOG . .o ettt e e 154
CDSIN .t 193
CDSQRT . .ottt 197
celling ... 72, 89
CEILING . ..ottt e e e e e 89
CEXP it 112
CHAR ..ottt e 90
character kind.............. 187
character set........ ... oo i i 9
CHDIR ..ottt e e e 90
checking array temporaries..................... 22
checking subscripts L 22
CHMOD ...t e 91
clock tickso oo 162, 163, 201
CLOG .« ot et e 154
CMP L .ttt 92
coarray, IMAGE_INDEXccouunn.. 138
coarray, lower bound 148
coarray, NUM_IMAGES 172
coarray, THIS_IMAGE 203
coarray, upper bound............. 209
COATTAYS « ¢ v vve et ettt e e e ettt e 22
code generation, conventions................... 19
collating sequence, ASCIT 65, 131
command line.............. .. oL 110
command Options....... ...t 7
command-line arguments ... 92, 123, 124, 125, 134
command-line arguments, number of 92, 134
COMMAND_ARGUMENT _COUNTc.cvvunvinn.. 92
compiler flags inquiry function................. 93

Keyword Index

compiler, name and version.................... 93
COMPILER_OPTIONS........coiiiiiiiii.n. 93
COMPILER_VERSION..........cooiiiniiiiinnn... 93
COMPLEX . .ottt 94
complex conjugate........... 95
Complex function........... 51
complex numbers, conversion to....... 92, 94, 101
complex numbers, imaginary part.............. 68
complex numbers, real part 104, 181
Conditional compilation 2
CONJG .ot 95
consistency, durabilityo L 38
Contributing oL 217
Contributorso 217
CONVETSION « ¢t vttt vttt ettt 15
conversion, to character........................ 90
conversion, to complex 92, 94, 101
conversion, to integer .. 44, 131, 136, 139, 140, 156
conversion, to logical............... 44, 155
conversion, toreal 100, 181
conversion, to stringo oL 99
CONVERT specifier ..., 47
core, dUMP .o 63
COS . 95
COSH ..ot 96
COSIIIE .« o vttt 95
cosine, hyperbolic............. oo 96
cosine, hyperbolic, inverse 66
COSINE, INVETSE . ..t 66
COUNT .. e 96
CPP . 2,11
CPU_TIME. e 97
CreditS. .o 217
CSHIFET .t e 98
OO IN . 193
CSOQRT . et 197
CTIME . e e e e e 99
current datel 99, 113, 137
current time................ 99, 113, 146, 204, 205
D

DABS . 64
DACDS . e 66
DACOSH . . oot 66
DASTIN .ot 74
DASINH ..ot 74
DATAN .« 76
DATANZ ..o it
DATANH ... s
date, current........... ... ool 99, 113, 137
DATE_AND_TIMEttt 99
DBESJO ..ttt 79
DBESJTL .o 80
DBESIN .ot 80
DBESYO ..ot 81
DBESY L . 81

DBESYN ..o 82

247
DBLE . i 100
DOMPLYX . .ttt 101
DCONJG . ettt e 95
DCOS ..t 95
DCOSH . .\ttt 96
DDIM .t 102
debugging information options................. 17
debugging, preprocessorc..ooueeo... 11
DECODE .. .ottt e 50
delayed execution................ 69, 195
DEXP .o 112
DELOAT . et e 181
DGAMMA . . 122
dialect options........ o i 8
DIGITS ..t e e e 101
DIM et 102
DIMAG .ottt e 68
DINT &ttt e 69
directive, INCLUDEouiiiiiininnnnn... 18
directory, options. ... 18
directory, search paths for inclusion............ 18
division, modulo................. 167
division, remainder............ ol 166
DLGAMA . .o 155
DLOG .o oottt e e 154
DLOGIO ..ot 154
DMAXL .« 160
DMINT .o 164
DMOD ..ottt e e 166
DNINT .ot e e e 72
dot product 103
DOT_PRODUCTttt e 103
DPROD . .ottt e e e e e 103
DREAL ..o 104
DSHIFTL ..ottt e e e e 104
DSHIFTR ..ottt e e e 105
DSIGN .« ottt 192
DSIN ot 193
DSINH ..ot 194
DSQRT . it 197
DTAN . ettt e 202
DTANH ..o 203
DTIME ... i 105
dummy argument, unused 16
E
elapsed time 105, 186, 187
Elimination of functions with identical argument
BiStS. o 25
ENCODEttt 50
ENUM statement, 34
ENUMERATOR statement 34
environment variable 25, 27, 126, 127
EOSHIFT e 107
EPSILON . ..ot e 107
ERF .t 108
ERFC .o 108

248
ERFC_SCALED . ..ottt 109
error function oo 108
error function, complementary................ 108
error function, complementary,
exponentially-scaled........... 109
errors, limiting oL 14
escape characters.............. .. .o 9
ETIME .o e 109
Euclidean distance............................ 131
Euclidean vector norm........................ 170
EXECUTE_COMMAND_LINE............ 110
EXIT oo 111
B 112
EXPONENT . ..o e 112
exponential function.......................... 112
exponential function, inverse.................. 154
eXpression Size.......... ... o i i 88, 195
EXTENDS_TYPE_OF....... ... i, 113
EXEENSIONS . o v vt ettt 41
extensions, implemented 41
extensions, not implemented 49

F

f2c calling convention...................... 20, 21
Factorial function oo 122
FDATE . o 113
FDL, GNU Free Documentation License...... 233
FGET .o 114
FGETC . oot e e 115
file format, fixed 8,9
file format, free......... il 8,9
file operation, file number..................... 117
file operation, flush........................... 116
file operation, position................... 120, 122
file operation, read character............. 114, 115
file operation, seek............. i 120
file operation, write character................. 118
file system, access mode 64
file system, change access mode................ 91
file system, create link................... 151, 200
file system, file creation mask................. 209
file system, file status............... 121, 157, 198
file system, hard link 151
file system, remove file........................ 209
file system, rename file 182
file system, soft link 200
flags inquiry function............ 93
FLOAT .ottt 181
floating point, exponent 112
floating point, fraction........................ 119
floating point, nearest different 169
floating point, relative spacing 184, 196
floating point, scale............... 185
floating point, set exponent................... 189
floor. ..o 69, 116
FLOOR . .ot e e 116

The GNU Fortran Compiler

FLUSH statement 34
FNUM .. e 117
FORMAT . . e 51
Fortran 77. 3
FPP ... 2
FPUT .. e 118
FPUTC .. o e 118
FRACTIONot 119
FREE ... e 120
Front-end optimization 25
FSEEK .. o 120
FSTAT . o 121
FTELL .. e 122
function elimination 17

BT e 3
g77 calling convention...................... 20, 21
GAMMA . ..o 122
Gamma function 122
Gamma function, logarithm of 155
GO 2
GERROR 123
GET_COMMANDottt e e 124
GET_COMMAND_ARGUMENTcoviunn... 125
GET_ENVIRONMENT _VARIABLE 127
GETARG . ..ot 123
GETCWD . .ot e e 126
GETENV 126
GETGIDttt e e 128
GETLOG . . .o e 128
GETPIDt e 129
GETUIDt et 129
GMTIME . ..ot e 129
GNU Compiler Collection....................... 2
GNU Fortran command options................. 7

H

Hollerith constants 44
HOSTNM . .ot e 130
HUGE ..ttt 130
hyperbolic cosinet 96
hyperbolic function, cosine..................... 96
hyperbolic function, cosine, inverse............. 66
hyperbolic function, sine...................... 194
hyperbolic function, sine, inverse............... 74
hyperbolic function, tangent 203
hyperbolic function, tangent, inverse........... 77
hyperbolic sine ..., 194
hyperbolic tangent 203
HYPOT ..o 131

I

I/O item lists...........cooiiiiiiia... 43
IABS 64

Keyword Index

TACHAR . .. 131
) 132
TAND oottt et 133
TANY . 133
TARGC . oo 134
IBCLR ottt e 135
IBIT S ottt e e 135
IBSET .ot 135
ICHAR . oo 136
IDATE . oo 137
IDIM .t 102
IDINT .o e 139
IDNINT ... e 170
IEEE, ISNANo 145
TEOR . oot 137
TERRNO . ..ot 138
T 139
IMAG .« o oet e 68
IMAGE_INDEXot 138
images, cosubscript to image index conversion
... 138
images, index of this image 203
images, number of ool 172
IMAGPART ... e 68
IMPORT statement...............oooiiuin. 34
INCLUDE directive...........cooviiiiiiiinno... 18
inclusion, directory search paths for............ 18
INDEX .ottt 139
INT et e 139
INT2 o 140
INT ot e 140
integer kind oL 188
Interoperability........ L 53
INETINSIC . v 16
intrinsic Modules............... ... oL 213
intrinsic procedures............. o 63
inverse hyperbolic cosine................ 66
inverse hyperbolic sine............. 74
inverse hyperbolic tangent 77
IOMSG= specifier ..., 34
0] P 141
I0STAT,end of file........... ... iit. 143
TI0STAT, end of record............cooviuuee.... 143
IPARTITY ot e 141
TRAND .ottt e 142
IS_IOSTAT_END......couiiiiiiiiiiiinnn 143
IS_IOSTAT_EORottt 143
IS ATTY o e 144
ISHET .o 144
ISHETC .ot eeeeeeeee 145
ISIGN .ottt ettt e e e e 192
ISNAN .o 145
ISO_FORTRAN_ENV statement 34
ITIME .. .ot e e e e e 146

249
kind ..o 37, 147
KIND .o e 147
kind, charactero il 187
kind, integer........ ... i 188
kind, old-style o i 41
kind, real. 188
L
L2 vector norm......... ... i 170
language, dialect options........................ 8
LBOUND . .ottt e e e e e e 147
LCOBOUND . . ettt et e e e e i 148
LEADZ . . oot 148
left shift, combined 104
LEN (o 149
LEN_TRIM.ot e 149
lexical comparison of strings 150, 151, 152
LGAMMA . .o 155
LGE ottt 150
LG ottt e 150
libf2c¢ calling convention.................... 20, 21
libgfortran initialization, set_args 59
libgfortran initialization, set_convert 60
libgfortran initialization, set_fpe 61
libgfortran initialization, set_max_subrecord_length
... 61
libgfortran initialization, set_options........... 59
libgfortran initialization, set_record_marker 61
limits, largest number 130
limits, smallest number....................... 205
LINK ot e 151
linking, static............. . ..ol 18
L ottt e e 151
LT e 152
LNBLNK . .o 153
LOC ottt e 153
location of a variable in memory.............. 153
LOG « ettt e e 154
LOG_GAMMA . . . 155
LOGLO .ottt 154
logarithm function.............. 154
logarithm function with base 10 154
logarithm function, inverse.................... 112
LOGICAL . ..o e e 155
logical and, bitwise 71, 133
logical exclusive or, bitwise............... 137, 211
logical not, bitwise 171
logical or, bitwise........................ 141, 172
logical, variable representation................. 37
login nameuui 128
LONG . oo 156
LOHIFET .« ottt e 156
S 1 157
LTIME .. e 157

250

M

MALLOC . .ot e e 158
mask, left justified...........o 159
mask, right justifiedo 159
MASKL . o 159
MASKR . .ot t 159
MATMUL . ..o e 159
matrix multiplication.................... 159
matrix, transpose.......... ... oo oL 207
MAX 160
MAXO ottt 160
MAXL o 160
MAXEXPONENT 160
maximum value.................. ... 160, 162
MAXLOC . .ot e 161
MAXVAL . .o 162
MCLOCK . .ottt e e e 162
MCLOCKS . .ottt 163
memory checking............ oL 22
MERGEo 163
MERGE_BITS it et 164
INESSAZES, EITOT . .ttt 14
MESSAZES, WATTHIE . . oo e e 14
MIN 164
MINO .ot e 164
MINT o 164
MINEXPONENTt 165
minimum value 164, 166
MINLOC . ..o 165
MINVAL . e e 166
Mixed-language programming.................. 53
MOD .t 166
model representation, base.................... 177
model representation, epsilon................. 107
model representation, largest number 130
model representation, maximum exponent 160
model representation, minimum exponent. 165
model representation, precision 175
model representation, radix................... 177
model representation, range................... 180
model representation, significant digits........ 101
model representation, smallest number........ 205
module entities......... ... oL 9
module search path.................... 18
modulo..... ... o 167
MODULOD . ..ottt e e 167
MOVE_ALLOC ..ottt 168
moving allocation 168
multiply array elements....................... 177
MVBITS . .t 168

N

Namelist 42
natural logarithm function.................... 154
NEAREST . . o e 169
NEW_LINE. 169
newline................. i 169

The GNU Fortran Compiler

NINT .o 170
norm, Euclidean.............................. 170
NORM2 . oot e e 170
NOT .ot 171
NULL .ot e e e e e 171
NUM_IMAGES it 172

OpenMP. 10, 47
Operators, UNAryoouiiiiinneeennnnn..n 44
options inquiry function 93
options, code generation....................... 19
options, debugging.............. 17
options, dialect L 8
options, directory search....................... 18
Options, errors. ... 14
options, Fortran dialect 8
options, gfortran command 7
options, linking....... oo 18
options, negative forms, 7
Options, Preprocessorvvvviiiiiii ... 11
options, real kind type promotion.............. 10
options, run-time 19
options, runtime.......... o ool 19
options, Warnings.............cooeiiiiii... 14
0] P 172
output, newline............ L. 169

PACK .o 173
PALILY ..o 176
Parity ... 174
PARITY .o 174
paths, searcho il 18
PERROR . ..o 174
pointer checking........... 22
pointer, C address of pointers.................. 86
pointer, C address of procedures............... 86
pointer, C association status................... 85
pointer, convert C to Fortran.................. 87
pointer, cray..........oooiiiiiiiiiiii 120, 158
pointer, Craycoouuiiiiiiiiiiiieann.. 45
pointer, disassociated 171
pointer, status........... L 75, 171
POPCNT . .ttt 175
POPPAR . ..o 176
positive differenceol 102
PRECISION. ...ttt e e 175
Preprocessing........... ..o il 2
preprocessing, assertion............. 13
preprocessing, define macros................... 13
preprocessing, include path 12
preprocessing, keep comments 13
preprocessing, no linemarkers.................. 14
preprocessing, undefine macros................. 14

PIEPTOCESSOT -+« vttt ettt e e e et e e e 11

Keyword Index

preprocessor, debugging 11
preprocessor, disable.......... ... 11
preprocessor, enable i 11
preprocessor, include file handling............... 2
preprocessor, working directory 12
PRESENTo e 176
Privateo 9
procedure pointer, convert C to Fortran........ 88
process ID.o i 129
PRODUCT ..ottt e e e 177
product, double-precision..................... 103
product, matrix oo oo 159
product, vector........... .. il 103
program termination 111
program termination, with core dump.......... 63
PROTECTED statement 34
Q

Q exponent-letter oL 43
R

RADIX . 177
radix, real o 188
RAN L 178
RAND .. 178
random number generation.......... 142, 178, 179
random number generation, seeding...... 180, 197
RANDOM_NUMBERot 179
RANDOM_SEEDttt 180
RANGE . .. o 180
range checking.......... ool 22
rank ... 181
RANK .o 181
re-association of parenthesized expressions 25
read character, stream mode............. 114, 115
REAL ..o 181
real kind ... o o 188
real number, exponent........................ 112
real number, fraction......................... 119
real number, nearest different................. 169
real number, relative spacing............. 184, 196
real number, scale............ ... oo 185
real number, set exponent 189
Reallocate the LHS in assignments............. 25
REALPART . ..ot e 181
RECORD . ..ttt e e e 49
Reduction, XOR, 174
remainder i 166
RENAMEo 182
repacking arrays......... 23
REPEAT . ..o 183
RESHAPE e 183
right shift, combined 105
TOOb . o 197
rounding, ceiling............ oL 72, 89

rounding, floor............. . oo 69, 116

251
rounding, nearest whole number 170
RRSPACING.ot 184
RSHIFT ..o e e 184
run-time checking 22
S
SAME_TYPE_AS 184
SAVE statementl 19
SCALE . .ttt 185
SCAN ottt 185
search path...... o . 18
search paths, for included files 18
SECNDS . .o 186
SECOND . .ot 187
seeding a random number generator. 180, 197
SELECTED_CHAR_KINDc.coiiiiininnen.. 187
SELECTED_INT_KINDcoiuiininnenenn... 188
SELECTED_REAL_KINDc.ociiuiininnen.. 188
SET_EXPONENT 189
SHAPE . .. 190
shift, left ... o 104, 191
shift, right............ ... o L. 105, 191
shift, right with fill 190
SHIFTA e e 190
SHIFTL ..ot e e 191
SHIFTR . ..o 191
SHORT . . oo 140
SIGN .« ottt 192
SIN COPYING . . i 192
SIGNAL . ettt 192
SIN Lttt 193
SINE ... 193
sine, hyperbolic............. oL 194
sine, hyperbolic, inverse........................ 74
sine, inverseo o i i il 74
SINH .o 194
SIZE .. o 194
size of a variable, in bits................ 83
size of an expression 88, 195
SIZEQF . . 195
SLEEP . .o 195
SNGL . et 181
SPACING . ..ottt e e 196
SPREAD . .o 196
18] 197
SQUATE-TOOb . . . 197
SRAND . .o 197
Standards 4
STAT ettt 198
statement, ENUM, 34
statement, ENUMERATORcovvvunnn. 34
statement, FLUSH............. 34
statement, IMPORT 34
statement, ISO_FORTRAN_ENV................... 34
statement, PROTECTED.......................... 34
statement, SAVE 19
statement, USE, INTRINSIC.................... 34

252

statement, VALUE 34
statement, VOLATILE.................couunnn.. 34
StOrage SizZe€.t 199
STORAGE_SIZEottt 199
STREAM I/O ..o 34
stream mode, read character............. 114, 115
stream mode, write character................. 118
string, adjust lefto oL 67
string, adjust right....... L. 67
string, comparison 150, 151, 152
string, concatenate o .l 183
string, find missing set........................ 210
string, find non-blank character............... 153
string, find subset oL 185
string, find substring o oL 139
string, length....... oL 149
string, length, without trailing whitespace. 149
string, remove trailing whitespace............. 207
string, repeat.......... ... oo 183
strings, varying length 4
STRUCTURE. 49
structure packing......... ... i 23
subscript checking ool 22
substring position oL 139
SUM et 200
sum array elements............. 200
SUPPressing warningsoooo.u.. 14
symbol names i 9
symbol names, transforming................ 20, 21
symbol names, underscores................. 20, 21
SYMLNK . oo 200
syntax checking.......... o ol 14
SYSTEM . ..ot 201
system, error handling 123, 138, 174
system, group ID o ool 128
system, host name............ 130
system, login name........... 128
system, process IDo 129
system, signal handling....................... 192
system, system call 110, 201
system, terminal 144, 207
system, user ID...... o oL 129
system, working directory................. 90, 126
SYSTEM_CLOCK . .« i it 201

T

tabulators.......... ... i 16
TAN 202
tangent ... 202
tangent, hyperbolic........... 203
tangent, hyperbolic, inverse.................... 77
tangent, inverse............. 76, 77
TANH ..o 203
terminate program 111
terminate program, with core dump............ 63
THIS_IMAGE 203

thread-safety, threads............. 38

The GNU Fortran Compiler

TIME .. e 204
time, clock ticks L 162, 163, 201
time, conversion to GMT info................. 129
time, conversion to local time info 157
time, conversion to string...................... 99
time, current 99, 113, 146, 204, 205
time, elapsed 97, 105, 109, 186, 187
TIMES .t 205
TINY Lo 205
TR 15581 oo 34
traceo 18
TRAILZ . oot e e 205
TRANSFER . . .ot e 206
transforming symbol names 20, 21
transpose. ... 207
TRANSPOSE. . .ot 207
trigonometric function, cosine.................. 95
trigonometric function, cosine, inverse.......... 66
trigonometric function, sine................... 193
trigonometric function, sine, inverse............ 74
trigonometric function, tangent 202
trigonometric function, tangent, inverse 76, 77
TRIM .. 207
TTYNAM . .o 207
typecast.... .o 206

U

UBOUND . ..t teeeeeeeeeees 208
UCOBOUND . .« ettt e e e e 209
UMASK .o 209
underflow o 16
UNAETSCOTE .« v vttt e et 20, 21
UNLINK ..o e e 209
UNPACK . oot 210
unused dummy argument 16
unused parameter 16
USE, INTRINSIC statement 34
USEr id .o v vt 129

Vv

VALUE statement........... ..., 34
Varying length character strings................. 4
Varying length strings 4
vector product 103
VERIFY ... 210
version of the compiler......................... 93
VOLATILE statementoooui.. 34

W

warnings, aliasing........... o oL 15
warnings, alignment of COMMON blocks 17
warnings, all........... o o 15
warnings, ampersand ... 15
warnings, array temporaries 15
warnings, character truncation................. 15

Keyword Index

warnings, Conversion........................... 15
warnings, function elimination................. 17
warnings, implicit interface 15
warnings, implicit procedure................... 16
warnings, intrinsic............ o oL 16
warnings, intrinsics of other standards 16
warnings, line truncation 15
warnings, non-standard intrinsics 16
warnings, q exponent-letter................. ... 16
Warnings, SUPPreSsing.eeeeeeeeeeen.. 14
warnings, suspicious code................o... 16
warnings, tabs........o oL 16
warnings, to errors. oo 17
warnings, underflowl 16
warnings, unused dummy argument............ 16

warnings, unused parameter 16

253

ZABS .o 64
ZCOS .o 95
zero bits........ . 148, 205
ZEXP 112
ZLOG .« et 154
ZSIN et 193
ZSQRT ..ttt 197

	Introduction
	About GNU Fortran
	GNU Fortran and GCC
	Preprocessing and conditional compilation
	GNU Fortran and G77
	Project Status
	Standards
	Varying Length Character Strings

	Part I: Invoking GNU Fortran
	GNU Fortran Command Options
	Option summary
	Options controlling Fortran dialect
	Enable and customize preprocessing
	Options to request or suppress errors and warnings
	Options for debugging your program or GNU Fortran
	Options for directory search
	Influencing the linking step
	Influencing runtime behavior
	Options for code generation conventions
	Environment variables affecting gfortran

	Runtime: Influencing runtime behavior with environment variables
	GFORTRAN_STDIN_UNIT---Unit number for standard input
	GFORTRAN_STDOUT_UNIT---Unit number for standard output
	GFORTRAN_STDERR_UNIT---Unit number for standard error
	GFORTRAN_TMPDIR---Directory for scratch files
	GFORTRAN_UNBUFFERED_ALL---Do not buffer I/O on all units
	GFORTRAN_UNBUFFERED_PRECONNECTED---Do not buffer I/O on preconnected units
	GFORTRAN_SHOW_LOCUS---Show location for runtime errors
	GFORTRAN_OPTIONAL_PLUS---Print leading + where permitted
	GFORTRAN_DEFAULT_RECL---Default record length for new files
	GFORTRAN_LIST_SEPARATOR---Separator for list output
	GFORTRAN_CONVERT_UNIT---Set endianness for unformatted I/O
	GFORTRAN_ERROR_BACKTRACE---Show backtrace on run-time errors

	Part II: Language Reference
	Fortran 2003 and 2008 Status
	Fortran 2003 status
	Fortran 2008 status
	Technical Specification 29113 Status

	Compiler Characteristics
	KIND Type Parameters
	Internal representation of LOGICAL variables
	Thread-safety of the runtime library
	Data consistency and durability

	Extensions
	Extensions implemented in GNU Fortran
	Old-style kind specifications
	Old-style variable initialization
	Extensions to namelist
	X format descriptor without count field
	Commas in FORMAT specifications
	Missing period in FORMAT specifications
	I/O item lists
	Q exponent-letter
	BOZ literal constants
	Real array indices
	Unary operators
	Implicitly convert LOGICAL and INTEGER values
	Hollerith constants support
	Cray pointers
	CONVERT specifier
	OpenMP
	Argument list functions %VAL, %REF and %LOC

	Extensions not implemented in GNU Fortran
	STRUCTURE and RECORD
	ENCODE and DECODE statements
	Variable FORMAT expressions
	Alternate complex function syntax

	Mixed-Language Programming
	Interoperability with C
	Intrinsic Types
	Derived Types and struct
	Interoperable Global Variables
	Interoperable Subroutines and Functions
	Working with Pointers
	Further Interoperability of Fortran with C

	GNU Fortran Compiler Directives
	Non-Fortran Main Program
	_gfortran_set_args --- Save command-line arguments
	_gfortran_set_options --- Set library option flags
	_gfortran_set_convert --- Set endian conversion
	_gfortran_set_record_marker --- Set length of record markers
	_gfortran_set_fpe --- Enable floating point exception traps
	_gfortran_set_max_subrecord_length --- Set subrecord length

	Intrinsic Procedures
	Introduction to intrinsic procedures
	ABORT --- Abort the program
	ABS --- Absolute value
	ACCESS --- Checks file access modes
	ACHAR --- Character in ASCII collating sequence
	ACOS --- Arccosine function
	ACOSH --- Inverse hyperbolic cosine function
	ADJUSTL --- Left adjust a string
	ADJUSTR --- Right adjust a string
	AIMAG --- Imaginary part of complex number
	AINT --- Truncate to a whole number
	ALARM --- Execute a routine after a given delay
	ALL --- All values in MASK along DIM are true
	ALLOCATED --- Status of an allocatable entity
	AND --- Bitwise logical AND
	ANINT --- Nearest whole number
	ANY --- Any value in MASK along DIM is true
	ASIN --- Arcsine function
	ASINH --- Inverse hyperbolic sine function
	ASSOCIATED --- Status of a pointer or pointer/target pair
	ATAN --- Arctangent function
	ATAN2 --- Arctangent function
	ATANH --- Inverse hyperbolic tangent function
	ATOMIC_DEFINE --- Setting a variable atomically
	ATOMIC_REF --- Obtaining the value of a variable atomically
	BESSEL_J0 --- Bessel function of the first kind of order 0
	BESSEL_J1 --- Bessel function of the first kind of order 1
	BESSEL_JN --- Bessel function of the first kind
	BESSEL_Y0 --- Bessel function of the second kind of order 0
	BESSEL_Y1 --- Bessel function of the second kind of order 1
	BESSEL_YN --- Bessel function of the second kind
	BGE --- Bitwise greater than or equal to
	BGT --- Bitwise greater than
	BIT_SIZE --- Bit size inquiry function
	BLE --- Bitwise less than or equal to
	BLT --- Bitwise less than
	BTEST --- Bit test function
	C_ASSOCIATED --- Status of a C pointer
	C_FUNLOC --- Obtain the C address of a procedure
	C_F_PROCPOINTER --- Convert C into Fortran procedure pointer
	C_F_POINTER --- Convert C into Fortran pointer
	C_LOC --- Obtain the C address of an object
	C_SIZEOF --- Size in bytes of an expression
	CEILING --- Integer ceiling function
	CHAR --- Character conversion function
	CHDIR --- Change working directory
	CHMOD --- Change access permissions of files
	CMPLX --- Complex conversion function
	COMMAND_ARGUMENT_COUNT --- Get number of command line arguments
	COMPILER_OPTIONS --- Options passed to the compiler
	COMPILER_VERSION --- Compiler version string
	COMPLEX --- Complex conversion function
	CONJG --- Complex conjugate function
	COS --- Cosine function
	COSH --- Hyperbolic cosine function
	COUNT --- Count function
	CPU_TIME --- CPU elapsed time in seconds
	CSHIFT --- Circular shift elements of an array
	CTIME --- Convert a time into a string
	DATE_AND_TIME --- Date and time subroutine
	DBLE --- Double conversion function
	DCMPLX --- Double complex conversion function
	DIGITS --- Significant binary digits function
	DIM --- Positive difference
	DOT_PRODUCT --- Dot product function
	DPROD --- Double product function
	DREAL --- Double real part function
	DSHIFTL --- Combined left shift
	DSHIFTR --- Combined right shift
	DTIME --- Execution time subroutine (or function)
	EOSHIFT --- End-off shift elements of an array
	EPSILON --- Epsilon function
	ERF --- Error function
	ERFC --- Error function
	ERFC_SCALED --- Error function
	ETIME --- Execution time subroutine (or function)
	EXECUTE_COMMAND_LINE --- Execute a shell command
	EXIT --- Exit the program with status.
	EXP --- Exponential function
	EXPONENT --- Exponent function
	EXTENDS_TYPE_OF --- Query dynamic type for extension
	FDATE --- Get the current time as a string
	FGET --- Read a single character in stream mode from stdin
	FGETC --- Read a single character in stream mode
	FLOOR --- Integer floor function
	FLUSH --- Flush I/O unit(s)
	FNUM --- File number function
	FPUT --- Write a single character in stream mode to stdout
	FPUTC --- Write a single character in stream mode
	FRACTION --- Fractional part of the model representation
	FREE --- Frees memory
	FSEEK --- Low level file positioning subroutine
	FSTAT --- Get file status
	FTELL --- Current stream position
	GAMMA --- Gamma function
	GERROR --- Get last system error message
	GETARG --- Get command line arguments
	GET_COMMAND --- Get the entire command line
	GET_COMMAND_ARGUMENT --- Get command line arguments
	GETCWD --- Get current working directory
	GETENV --- Get an environmental variable
	GET_ENVIRONMENT_VARIABLE --- Get an environmental variable
	GETGID --- Group ID function
	GETLOG --- Get login name
	GETPID --- Process ID function
	GETUID --- User ID function
	GMTIME --- Convert time to GMT info
	HOSTNM --- Get system host name
	HUGE --- Largest number of a kind
	HYPOT --- Euclidean distance function
	IACHAR --- Code in ASCII collating sequence
	IALL --- Bitwise AND of array elements
	IAND --- Bitwise logical and
	IANY --- Bitwise OR of array elements
	IARGC --- Get the number of command line arguments
	IBCLR --- Clear bit
	IBITS --- Bit extraction
	IBSET --- Set bit
	ICHAR --- Character-to-integer conversion function
	IDATE --- Get current local time subroutine (day/month/year)
	IEOR --- Bitwise logical exclusive or
	IERRNO --- Get the last system error number
	IMAGE_INDEX --- Function that converts a cosubscript to an image index
	INDEX --- Position of a substring within a string
	INT --- Convert to integer type
	INT2 --- Convert to 16-bit integer type
	INT8 --- Convert to 64-bit integer type
	IOR --- Bitwise logical or
	IPARITY --- Bitwise XOR of array elements
	IRAND --- Integer pseudo-random number
	IS_IOSTAT_END --- Test for end-of-file value
	IS_IOSTAT_EOR --- Test for end-of-record value
	ISATTY --- Whether a unit is a terminal device.
	ISHFT --- Shift bits
	ISHFTC --- Shift bits circularly
	ISNAN --- Test for a NaN
	ITIME --- Get current local time subroutine (hour/minutes/seconds)
	KILL --- Send a signal to a process
	KIND --- Kind of an entity
	LBOUND --- Lower dimension bounds of an array
	LCOBOUND --- Lower codimension bounds of an array
	LEADZ --- Number of leading zero bits of an integer
	LEN --- Length of a character entity
	LEN_TRIM --- Length of a character entity without trailing blank characters
	LGE --- Lexical greater than or equal
	LGT --- Lexical greater than
	LINK --- Create a hard link
	LLE --- Lexical less than or equal
	LLT --- Lexical less than
	LNBLNK --- Index of the last non-blank character in a string
	LOC --- Returns the address of a variable
	LOG --- Natural logarithm function
	LOG10 --- Base 10 logarithm function
	LOG_GAMMA --- Logarithm of the Gamma function
	LOGICAL --- Convert to logical type
	LONG --- Convert to integer type
	LSHIFT --- Left shift bits
	LSTAT --- Get file status
	LTIME --- Convert time to local time info
	MALLOC --- Allocate dynamic memory
	MASKL --- Left justified mask
	MASKR --- Right justified mask
	MATMUL --- matrix multiplication
	MAX --- Maximum value of an argument list
	MAXEXPONENT --- Maximum exponent of a real kind
	MAXLOC --- Location of the maximum value within an array
	MAXVAL --- Maximum value of an array
	MCLOCK --- Time function
	MCLOCK8 --- Time function (64-bit)
	MERGE --- Merge variables
	MERGE_BITS --- Merge of bits under mask
	MIN --- Minimum value of an argument list
	MINEXPONENT --- Minimum exponent of a real kind
	MINLOC --- Location of the minimum value within an array
	MINVAL --- Minimum value of an array
	MOD --- Remainder function
	MODULO --- Modulo function
	MOVE_ALLOC --- Move allocation from one object to another
	MVBITS --- Move bits from one integer to another
	NEAREST --- Nearest representable number
	NEW_LINE --- New line character
	NINT --- Nearest whole number
	NORM2 --- Euclidean vector norms
	NOT --- Logical negation
	NULL --- Function that returns an disassociated pointer
	NUM_IMAGES --- Function that returns the number of images
	OR --- Bitwise logical OR
	PACK --- Pack an array into an array of rank one
	PARITY --- Reduction with exclusive OR
	PERROR --- Print system error message
	PRECISION --- Decimal precision of a real kind
	POPCNT --- Number of bits set
	POPPAR --- Parity of the number of bits set
	PRESENT --- Determine whether an optional dummy argument is specified
	PRODUCT --- Product of array elements
	RADIX --- Base of a model number
	RAN --- Real pseudo-random number
	RAND --- Real pseudo-random number
	RANDOM_NUMBER --- Pseudo-random number
	RANDOM_SEED --- Initialize a pseudo-random number sequence
	RANGE --- Decimal exponent range
	RANK --- Rank of a data object
	REAL --- Convert to real type
	RENAME --- Rename a file
	REPEAT --- Repeated string concatenation
	RESHAPE --- Function to reshape an array
	RRSPACING --- Reciprocal of the relative spacing
	RSHIFT --- Right shift bits
	SAME_TYPE_AS --- Query dynamic types for equality
	SCALE --- Scale a real value
	SCAN --- Scan a string for the presence of a set of characters
	SECNDS --- Time function
	SECOND --- CPU time function
	SELECTED_CHAR_KIND --- Choose character kind
	SELECTED_INT_KIND --- Choose integer kind
	SELECTED_REAL_KIND --- Choose real kind
	SET_EXPONENT --- Set the exponent of the model
	SHAPE --- Determine the shape of an array
	SHIFTA --- Right shift with fill
	SHIFTL --- Left shift
	SHIFTR --- Right shift
	SIGN --- Sign copying function
	SIGNAL --- Signal handling subroutine (or function)
	SIN --- Sine function
	SINH --- Hyperbolic sine function
	SIZE --- Determine the size of an array
	SIZEOF --- Size in bytes of an expression
	SLEEP --- Sleep for the specified number of seconds
	SPACING --- Smallest distance between two numbers of a given type
	SPREAD --- Add a dimension to an array
	SQRT --- Square-root function
	SRAND --- Reinitialize the random number generator
	STAT --- Get file status
	STORAGE_SIZE --- Storage size in bits
	SUM --- Sum of array elements
	SYMLNK --- Create a symbolic link
	SYSTEM --- Execute a shell command
	SYSTEM_CLOCK --- Time function
	TAN --- Tangent function
	TANH --- Hyperbolic tangent function
	THIS_IMAGE --- Function that returns the cosubscript index of this image
	TIME --- Time function
	TIME8 --- Time function (64-bit)
	TINY --- Smallest positive number of a real kind
	TRAILZ --- Number of trailing zero bits of an integer
	TRANSFER --- Transfer bit patterns
	TRANSPOSE --- Transpose an array of rank two
	TRIM --- Remove trailing blank characters of a string
	TTYNAM --- Get the name of a terminal device.
	UBOUND --- Upper dimension bounds of an array
	UCOBOUND --- Upper codimension bounds of an array
	UMASK --- Set the file creation mask
	UNLINK --- Remove a file from the file system
	UNPACK --- Unpack an array of rank one into an array
	VERIFY --- Scan a string for characters not a given set
	XOR --- Bitwise logical exclusive OR

	Intrinsic Modules
	ISO_FORTRAN_ENV
	ISO_C_BINDING
	OpenMP Modules OMP_LIB and OMP_LIB_KINDS

	Contributing
	Contributors to GNU Fortran
	Projects
	Proposed Extensions
	Compiler extensions:
	Environment Options

	GNU General Public License
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Funding Free Software
	Option Index
	Keyword Index

