Using GNU Fortran

For ccc version 4.7.2

(crosstool-NG linaro-1.13.1-2012.09-20120921 - Linaro GCC 2012.09)

The gfortran team

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright (©) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
2012 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

1 Introduction i 1
Part I: Invoking GNU Fortran.............................. 5
2 GNU Fortran Command Options 7
3 Runtime: Influencing runtime behavior with environment
variables 27
Part II: Language Reference 31
4 Fortran 2003 and 2008 Status, 33
5 Compiler Characteristics, 37
6 ExXtensions............iiii 41
7 Mixed-Language Programming 53
8 Intrinsic Procedures 63
9 Intrinsic Modules 213
Contributingo e 217
GNU General Public License........... 221
GNU Free Documentation License 233
Funding Free Software 241
Option Indexot e 243

Keyword Indexo i 245

Table of Contents

1 Introduction................ 1
1.1 About GNU Fortrano 1
1.2 GNU Fortran and GCC ... i 2
1.3 Preprocessing and conditional compilation...................... 2
1.4 GNU Fortran and G77 ... e 3
1.5 Project Status ... 3
1.6 Standards.oiiii 4

1.6.1 Varying Length Character Strings 4

Part I: Invoking GNU Fortran 5

2 GNU Fortran Command Options 7
2.1 Option SUMMATY . .ottt ettt e et et 7
2.2 Options controlling Fortran dialect 8
2.3 Enable and customize preprocessing...............c..oiiii.... 11
2.4 Options to request or suppress errors and warnings............ 14
2.5 Options for debugging your program or GNU Fortran.......... 17
2.6 Options for directory search.......... 18
2.7 Influencing the linking step........ ..o i 18
2.8 Influencing runtime behavior 19
2.9 Options for code generation conventions....................... 19
2.10 Environment variables affecting gfortran.................... 25

3 Runtime: Influencing runtime behavior with

environment variables.................. 27
3.1 GFORTRAN_STDIN_UNIT—Unit number for standard input 27
3.2 GFORTRAN_STDOUT_UNIT-—Unit number for standard output.... 27
3.3 GFORTRAN_STDERR_UNIT-—Unit number for standard error...... 27
3.4 GFORTRAN_TMPDIR—Directory for scratch files.................. 27

3.5 GFORTRAN_UNBUFFERED_ALL—Do not buffer I/O on all units.... 27
3.6 GFORTRAN_UNBUFFERED_PRECONNECTED—Do not buffer I/O on
preconnected UNItS.o 27
3.7 GFORTRAN_SHOW_LOCUS—Show location for runtime errors...... 27
3.8 GFORTRAN_OPTIONAL_PLUS—Print leading + where permitted .. 28
3.9 GFORTRAN_DEFAULT_RECL—Default record length for new files.. 28
3.10 GFORTRAN_LIST_SEPARATOR—Separator for list output........ 28
3.11 GFORTRAN_CONVERT_UNIT—Set endianness for unformatted I/0O
... 28
3.12 GFORTRAN_ERROR_BACKTRACE—Show backtrace on run-time errors
... 29

iii

iv The GNU Fortran Compiler

4 Fortran 2003 and 2008 Status................ 33
4.1 Fortran 2003 statuso 33
4.2 Fortran 2008 Status ...t e 34
4.3 Technical Specification 29113 Status........................... 36

5 Compiler Characteristics 37
5.1 KIND Type Parameters........... ..., 37
5.2 Internal representation of LOGICAL variables................. 37
5.3 Thread-safety of the runtime library.............. 38
5.4 Data consistency and durabilityl 38

6 Extensions.................... 41
6.1 Extensions implemented in GNU Fortran...................... 41

6.1.1 Old-style kind specifications 41
6.1.2 Old-style variable initialization 41
6.1.3 Extensions to namelistl 42
6.1.4 X format descriptor without count field 43
6.1.5 Commas in FORMAT specifications......................... 43
6.1.6 Missing period in FORMAT specifications................... 43
6.1.7 T/Oitem listsoooiiiii 43
6.1.8 Qexponent-letter........... ... i 43
6.1.9 BOZ literal constants., 43
6.1.10 Real array indices.........ccoiiiiiiiiiiiiiiiiiini... 44
6.1.11 Unary operatorscceuieeiiiiiiiiiiiiiieeaeenn.. 44
6.1.12 Implicitly convert LOGICAL and INTEGER values.......... 44
6.1.13 Hollerith constants support.............. ..., 44
6.1.14 Cray poIntersuu ettt 45
6.1.15 CONVERT specifier.ooouiiiii e 47
6.1.16 OpenMP 47
6.1.17 Argument list functions %VAL, %REF and %LOC............ 48
6.2 Extensions not implemented in GNU Fortran.................. 49
6.2.1 STRUCTURE and RECORDcovinieeeiitiiiiieaaaaenn. 49
6.2.2 ENCODE and DECODE statements........................... 50
6.2.3 Variable FORMAT eXPreSSionscooeeeeennnnnuinnnneeen.. 51
6.2.4 Alternate complex function syntax........................ 51

7 Mixed-Language Programming............... 53

7.1 Interoperability with C........ i, 53
7.1.1 Intrinsic Types. ..o 53
7.1.2 Derived Types and struct..............oiiiiiiiia.. 53
7.1.3 Interoperable Global Variables............................ 54
7.1.4 Interoperable Subroutines and Functions.................. 54
7.1.5 Working with Pointers L. 55
7.1.6 Further Interoperability of Fortran with C................ 57

7.2 GNU Fortran Compiler Directives................coooiiii.. 58

7.3 Non-Fortran Main Program 58

7.3.1 _gfortran_set_args — Save command-line arguments... 59

7.3.2 _gfortran_set_options — Set library option flags....... 59
7.3.3 _gfortran_set_convert — Set endian conversion........ 60
7.3.4 _gfortran_set_record_marker — Set length of record

MNATKETS . .ttt 61
7.3.5 _gfortran_set_fpe — Enable floating point exception traps
.. 61

7.3.6 _gfortran_set_max_subrecord_length — Set subrecord
length ... 61
8 Intrinsic Procedures........................... 63
8.1 Introduction to intrinsic procedures 63
8.2 ABORT — Abort the program i, 63
8.3 ABS — Absolute value.......... ... 64
8.4 ACCESS — Checks file access modes. 64
8.5 ACHAR — Character in ASCII collating sequence................ 65
8.6 ACOS — Arccosine function............. ..o 66
8.7 ACOSH — Inverse hyperbolic cosine function.................... 66
8.8 ADJUSTL — Left adjust a string ...t 67
8.9 ADJUSTR — Right adjust a string............, 67
8.10 AIMAG — Imaginary part of complex number 68
8.11 AINT — Truncate to a whole number......................... 69
8.12 ALARM — Execute a routine after a given delay 69
8.13 ALL — All values in MASK along DIM are true.............. 70
8.14 ALLOCATED — Status of an allocatable entity 71
8.15 AND — Bitwise logical AND 71
8.16 ANINT — Nearest whole number.............................. 72
8.17 ANY — Any value in MASK along DIM is true 73
8.18 ASIN — Arcsine function............ ..., 74
8.19 ASINH — Inverse hyperbolic sine function..................... 74
8.20 ASSOCIATED — Status of a pointer or pointer/target pair 75
8.21 ATAN — Arctangent function............ 76
8.22 ATAN2 — Arctangent function............... ... 7
8.23 ATANH — Inverse hyperbolic tangent function................. 77
8.24 ATOMIC_DEFINE — Setting a variable atomically 78
8.25 ATOMIC_REF — Obtaining the value of a variable atomically .. 78
8.26 BESSEL_JO — Bessel function of the first kind of order O...... 79
8.27 BESSEL_J1 — Bessel function of the first kind of order 1...... 80
8.28 BESSEL_JN — Bessel function of the first kind 80
8.29 BESSEL_YO — Bessel function of the second kind of order 0... 81
8.30 BESSEL_Y1 — Bessel function of the second kind of order 1... 81
8.31 BESSEL_YN — Bessel function of the second kind 82
8.32 BGE — Bitwise greater than or equal to....................... 83
8.33 BGT — Bitwise greater than............. 83
8.34 BIT_SIZE — Bit size inquiry function 83
8.35 BLE — Bitwise less than orequal to.......................... 84
8.36 BLT — Bitwise less than............ it 84
8.37 BTEST — Bit test function i, 85
8.38 C_ASSOCIATED — Status of a C pointer....................... 85

The GNU Fortran Compiler

8.39 C_FUNLOC — Obtain the C address of a procedure............ 86
8.40 C_F_PROCPOINTER — Convert C into Fortran procedure pointer
... 86
8.41 C_F_POINTER — Convert C into Fortran pointer.............. 87
8.42 C_LOC — Obtain the C address of an object 88
8.43 C_SIZEOF — Size in bytes of an expression 88
8.44 CEILING — Integer ceiling function........................... 89
8.45 CHAR — Character conversion function 90
8.46 CHDIR — Change working directory 90
8.47 CHMOD — Change access permissions of files................... 91
8.48 CMPLX — Complex conversion function 92
8.49 COMMAND_ARGUMENT_COUNT — Get number of command line
ATGUINENIES . o ot 92
8.50 COMPILER_OPTIONS — Options passed to the compiler........ 93
8.51 COMPILER_VERSION — Compiler version string................ 93
8.52 COMPLEX — Complex conversion function..................... 94
8.53 CONJG — Complex conjugate function........................ 95
8.54 COS — Cosine function.......... ..., 95
8.55 COSH — Hyperbolic cosine function........................... 96
8.56 COUNT — Count function.......... ..., 96
8.57 CPU_TIME — CPU elapsed time in seconds.................... 97
8.58 CSHIFT — Circular shift elements of an array................. 98
8.59 CTIME — Convert a time into a string 99
8.60 DATE_AND_TIME — Date and time subroutine................. 99
8.61 DBLE — Double conversion function......................... 100
8.62 DCMPLX — Double complex conversion function.............. 101
8.63 DIGITS — Significant binary digits function................. 101
8.64 DIM — Positive difference L. 102
8.65 DOT_PRODUCT — Dot product function....................... 103
8.66 DPROD — Double product function 103
8.67 DREAL — Double real part function.......................... 104
8.68 DSHIFTL — Combined left shift 104
8.69 DSHIFTR — Combined right shift............................ 105
8.70 DTIME — Execution time subroutine (or function)........... 105
8.71 EOSHIFT — End-off shift elements of an array 107
8.72 EPSILON — Epsilon function, 107
8.73 ERF — Error function............ ... i, 108
8.74 ERFC — Error function..................ooiiiiiiiiiiii, 108
8.75 ERFC_SCALED — Error function 109
8.76 ETIME — Execution time subroutine (or function)........... 109
8.77 EXECUTE_COMMAND_LINE — Execute a shell command........ 110
8.78 EXIT — Exit the program with status. 111
8.79 EXP — Exponential function 112
8.80 EXPONENT — Exponent function.................. ..., 112
8.81 EXTENDS_TYPE_OF — Query dynamic type for extension 113
8.82 FDATE — Get the current time as a string 113

8.83 FGET — Read a single character in stream mode from stdin.. 114
8.84 FGETC — Read a single character in stream mode............ 115

8.85 FLOOR — Integer floor function.............................. 116
8.86 FLUSH — Flush I/O unit(s)oooiii. 116
8.87 FNUM — File number function.................. 117
8.88 FPUT — Write a single character in stream mode to stdout... 118
8.89 FPUTC — Write a single character in stream mode........... 118
8.90 FRACTION — Fractional part of the model representation 119
8.91 FREE — Frees memoryc.ovviuiiiiiniiniinann... 120
8.92 FSEEK — Low level file positioning subroutine............... 120
8.93 FSTAT — Get filestatus. ..., 121
8.94 FTELL — Current stream position........................... 122
8.95 GAMMA — Gamma function..................c .., 122
8.96 GERROR — Get last system error message.................... 123
8.97 GETARG — Get command line arguments 123
8.98 GET_COMMAND — Get the entire command line............... 124
8.99 GET_COMMAND_ARGUMENT — Get command line arguments.... 125
8.100 GETCWD — Get current working directory................... 126
8.101 GETENV — Get an environmental variable 126
8.102 GET_ENVIRONMENT_VARIABLE — Get an environmental variable
.. 127
8.103 GETGID — Group ID function................... 128
8.104 GETLOG — Get loginname 128
8.105 GETPID — Process ID function............................. 129
8.106 GETUID — User ID function............. 129
8.107 GMTIME — Convert time to GMT info...................... 129
8.108 HOSTNM — Get system host name 130
8.109 HUGE — Largest number of a kind.......................... 130
8.110 HYPOT — Euclidean distance function 131
8.111 TIACHAR — Code in ASCII collating sequence................ 131
8.112 IALL — Bitwise AND of array elements.................... 132
8.113 TIAND — Bitwise logical andol 133
8.114 TIANY — Bitwise OR of array elements...................... 133
8.115 TIARGC — Get the number of command line arguments. 134
8.116 IBCLR — Clear bit...... ..o 135
8.117 IBITS — Bit extraction..............oooiiiiiiiiiiian. 135
8.118 IBSET — Set bit. ..o 135
8.119 ICHAR — Character-to-integer conversion function.......... 136
8.120 IDATE — Get current local time subroutine (day/month/year)
.. 137
8.121 TIEOR — Bitwise logical exclusiveor 137
8.122 IERRNO — Get the last system error number 138
8.123 IMAGE_INDEX — Function that converts a cosubscript to an
image INdeX oottt 138
8.124 INDEX — Position of a substring within a string............ 139
8.125 INT — Convert to integer type..........cooiiiiiiiiia . 139
8.126 INT2 — Convert to 16-bit integer type..................... 140
8.127 INT8 — Convert to 64-bit integer type..................... 140
8.128 IOR — Bitwise logical or......... i 141
8.129 TIPARITY — Bitwise XOR of array elements................. 141

vii

viii The GNU Fortran Compiler

8.130 IRAND — Integer pseudo-random number................... 142
8.131 IS_IOSTAT_END — Test for end-of-file value 143
8.132 IS_IOSTAT_EOR — Test for end-of-record value............. 143
8.133 ISATTY — Whether a unit is a terminal device.............. 144
8.134 ISHFT — Shift bits ... i 144
8.135 ISHFTC — Shift bits circularly 145
8.136 ISNAN — Test fora NaN...... 145
8.137 ITIME — Get current local time subroutine
(hour/minutes/seconds) i 146
8.138 KILL — Send a signal to a processc.coenn. 146
8.139 KIND — Kind of anentity........... ...t 147
8.140 LBOUND — Lower dimension bounds of an array 147
8.141 LCOBOUND — Lower codimension bounds of an array........ 148
8.142 LEADZ — Number of leading zero bits of an integer......... 148
8.143 LEN — Length of a character entity 149
8.144 LEN_TRIM — Length of a character entity without trailing blank
characters 149
8.145 LGE — Lexical greater than or equal 150
8.146 LGT — Lexical greater than 150
8.147 LINK — Create a hard link........... ... oo o, 151
8.148 LLE — Lexical less than orequal........................ ... 151
8.149 LLT — Lexical lessthan...............o, 152
8.150 LNBLNK — Index of the last non-blank character in a string.. 153
8.151 LOC — Returns the address of a variable 153
8.152 LOG — Natural logarithm function 154
8.1563 L0OG10 — Base 10 logarithm function....................... 154
8.154 LOG_GAMMA — Logarithm of the Gamma function........... 155
8.155 LOGICAL — Convert to logical type.............. 155
8.156 LONG — Convert to integer type...........cooviiiiiiii... 156
8.157 LSHIFT — Left shift bits.............. .. .ot 156
8.158 LSTAT — Get file status. ..., 157
8.159 LTIME — Convert time to local time info................... 157
8.160 MALLOC — Allocate dynamic memory 158
8.161 MASKL — Left justified mask 159
8.162 MASKR — Right justified mask.......... 159
8.163 MATMUL — matrix multiplication 159
8.164 MAX — Maximum value of an argument list................. 160
8.165 MAXEXPONENT — Maximum exponent of a real kind......... 160
8.166 MAXLOC — Location of the maximum value within an array.. 161
8.167 MAXVAL — Maximum value of an array 162
8.168 MCLOCK — Time functionciiiiiiiiin.. 162
8.169 MCLOCK8 — Time function (64-bit)............ ..., 163
8.170 MERGE — Merge variables, 163
8.171 MERGE_BITS — Merge of bits under mask 164
8.172 MIN — Minimum value of an argument list 164
8.173 MINEXPONENT — Minimum exponent of a real kind 165

8.174 MINLOC — Location of the minimum value within an array.. 165
8.175 MINVAL — Minimum value of an array 166

8.176 MOD — Remainder function, 166
8.177 MODULO — Modulo function.............. 167
8.178 MOVE_ALLOC — Move allocation from one object to another
.. 168
8.179 MVBITS — Move bits from one integer to another........... 168
8.180 NEAREST — Nearest representable number.................. 169
8.181 NEW_LINE — New line character............................ 169
8.182 NINT — Nearest whole number............................. 170
8.183 NORM2 — Euclidean vector normsooovun... 170
8.184 NOT — Logical negation............. ..., 171
8.185 NULL — Function that returns an disassociated pointer..... 171
8.186 NUM_IMAGES — Function that returns the number of images
.. 172
8.187 OR — Bitwise logical OR............ oot 172
8.188 PACK — Pack an array into an array of rank one............ 173
8.189 PARITY — Reduction with exclusive OR.................... 174
8.190 PERROR — Print system error message...................... 174
8.191 PRECISION — Decimal precision of a real kind.............. 175
8.192 POPCNT — Number of bits set............ ... oL, 175
8.193 POPPAR — Parity of the number of bits set 176
8.194 PRESENT — Determine whether an optional dummy argument is
specifiedo 176
8.195 PRODUCT — Product of array elements...................... 177
8.196 RADIX — Base of a model number.......................... 177
8.197 RAN — Real pseudo-random number........................ 178
8.198 RAND — Real pseudo-random number 178
8.199 RANDOM_NUMBER — Pseudo-random number................. 179
8.200 RANDOM_SEED — Initialize a pseudo-random number sequence
.. 180
8.201 RANGE — Decimal exponent range...............ccoooueo... 180
8.202 RANK — Rank of a data object oL, 181
8.203 REAL — Convert toreal type.... 181
8.204 RENAME — Rename afile.............. 182
8.205 REPEAT — Repeated string concatenation 183
8.206 RESHAPE — Function to reshape an array................... 183
8.207 RRSPACING — Reciprocal of the relative spacing............ 184
8.208 RSHIFT — Right shift bits 184
8.209 SAME_TYPE_AS — Query dynamic types for equality 184
8.210 SCALE — Scale areal value, 185
8.211 SCAN — Scan a string for the presence of a set of characters
.. 185
8.212 SECNDS — Time functioncooiiiiiiiiiiinan. 186
8.213 SECOND — CPU time function....................coovo.... 187
8.214 SELECTED_CHAR_KIND — Choose character kind 187
8.215 SELECTED_INT_KIND — Choose integer kind................ 188
8.216 SELECTED_REAL_KIND — Choose real kind.................. 188
8.217 SET_EXPONENT — Set the exponent of the model 189
8.218 SHAPE — Determine the shape of an array.................. 190

ix

The GNU Fortran Compiler

8.219 SHIFTA — Right shift with fill 190
8.220 SHIFTL — Left shift 191
8.221 SHIFTR — Right shift........., 191
8.222 SIGN — Sign copying function, 192
8.223 SIGNAL — Signal handling subroutine (or function)......... 192
8.224 SIN — Sine function...............oiiiiiiiiiiiiiineann.. 193
8.225 SINH — Hyperbolic sine function................. 194
8.226 SIZE — Determine the size of an array..................... 194
8.227 SIZEOF — Size in bytes of an expression 195
8.228 SLEEP — Sleep for the specified number of seconds......... 195
8.229 SPACING — Smallest distance between two numbers of a given
157 0T N 196
8.230 SPREAD — Add a dimension to an array.................... 196
8.231 SQRT — Square-root function 197
8.232 SRAND — Reinitialize the random number generator........ 197
8.233 STAT — Get file status........ooiiiii e 198
8.234 STORAGE_SIZE — Storage size in bits....................... 199
8.235 SUM — Sum of array elements............. 200
8.236 SYMLNK — Create a symbolic link 200
8.237 SYSTEM — Execute a shell command 201
8.238 SYSTEM_CLOCK — Time functiono.... 201
8.239 TAN — Tangent function......... ..., 202
8.240 TANH — Hyperbolic tangent function....................... 203
8.241 THIS_IMAGE — Function that returns the cosubscript index of
this Imageo 203
8.242 TIME — Time function............., 204
8.243 TIME8 — Time function (64-bit), 205
8.244 TINY — Smallest positive number of a real kind 205
8.245 TRAILZ — Number of trailing zero bits of an integer........ 205
8.246 TRANSFER — Transfer bit patterns 206
8.247 TRANSPOSE — Transpose an array of rank two.............. 207
8.248 TRIM — Remove trailing blank characters of a string 207
8.249 TTYNAM — Get the name of a terminal device............... 207
8.250 UBOUND — Upper dimension bounds of an array 208
8.251 UCOBOUND — Upper codimension bounds of an array........ 209
8.252 UMASK — Set the file creation mask 209
8.253 UNLINK — Remove a file from the file system............... 209
8.254 UNPACK — Unpack an array of rank one into an array 210
8.255 VERIFY — Scan a string for characters not a given set 210
8.256 XOR — Bitwise logical exclusive OR........................ 211
Intrinsic Modules 213
9.1 ISO_FORTRAN _ENVttt 213
9.2 TISO_C_BINDINGttt ettt et e e 214

9.3 OpenMP Modules OMP_LIB and OMP_LIB_KINDS.............. 216

Contributing L. 217
Contributors to GNU Fortran i, 217
Projects ... 218
Proposed EXtensionsouiieiiiiiiiiii i 218

Compiler extensions:ouutieii i 218
Environment Optionso 219

GNU General Public License 221

GNU Free Documentation License 233
ADDENDUM: How to use this License for your documents 240

Funding Free Software........................... 241

Option Index, 243

Keyword Index................................... 245

xi

Chapter 1: Introduction 1

1

Introduction

This manual documents the use of gfortran, the GNU Fortran compiler. You can find in
this manual how to invoke gfortran, as well as its features and incompatibilities.

The GNU Fortran compiler front end was designed initially as a free replacement for,

or alternative to, the unix £95 command; gfortran is the command you will use to invoke
the compiler.

1.1 About GNU Fortran

The GNU Fortran compiler supports the Fortran 77, 90 and 95 standards completely, parts
of the Fortran 2003 and Fortran 2008 standards, and several vendor extensions. The devel-
opment goal is to provide the following features:

Read a user’s program, stored in a file and containing instructions written in Fortran
77, Fortran 90, Fortran 95, Fortran 2003 or Fortran 2008. This file contains source
code.

Translate the user’s program into instructions a computer can carry out more quickly
than it takes to translate the instructions in the first place. The result after compilation
of a program is machine code, code designed to be efficiently translated and processed
by a machine such as your computer. Humans usually are not as good writing machine
code as they are at writing Fortran (or C++, Ada, or Java), because it is easy to make
tiny mistakes writing machine code.

Provide the user with information about the reasons why the compiler is unable to
create a binary from the source code. Usually this will be the case if the source code
is flawed. The Fortran 90 standard requires that the compiler can point out mistakes
to the user. An incorrect usage of the language causes an error message.

The compiler will also attempt to diagnose cases where the user’s program contains a
correct usage of the language, but instructs the computer to do something questionable.
This kind of diagnostics message is called a warning message.

Provide optional information about the translation passes from the source code to
machine code. This can help a user of the compiler to find the cause of certain bugs
which may not be obvious in the source code, but may be more easily found at a lower
level compiler output. It also helps developers to find bugs in the compiler itself.

Provide information in the generated machine code that can make it easier to find bugs
in the program (using a debugging tool, called a debugger, such as the GNU Debugger
gdb).

Locate and gather machine code already generated to perform actions requested by
statements in the user’s program. This machine code is organized into modules and is
located and linked to the user program.

The GNU Fortran compiler consists of several components:

A version of the gcc command (which also might be installed as the system’s cc com-
mand) that also understands and accepts Fortran source code. The gcc command is
the driver program for all the languages in the GNU Compiler Collection (GCC); With
gcc, you can compile the source code of any language for which a front end is available
in GCC.

2 The GNU Fortran Compiler

e The gfortran command itself, which also might be installed as the system’s £95 com-
mand. gfortran is just another driver program, but specifically for the Fortran com-
piler only. The difference with gcc is that gfortran will automatically link the correct
libraries to your program.

e A collection of run-time libraries. These libraries contain the machine code needed
to support capabilities of the Fortran language that are not directly provided by the
machine code generated by the gfortran compilation phase, such as intrinsic functions
and subroutines, and routines for interaction with files and the operating system.

e The Fortran compiler itself, (£951). This is the GNU Fortran parser and code generator,
linked to and interfaced with the GCC backend library. £951 “translates” the source
code to assembler code. You would typically not use this program directly; instead,
the gcc or gfortran driver programs will call it for you.

1.2 GNU Fortran and GCC

GNU Fortran is a part of GCC, the GNU Compiler Collection. GCC consists of a collec-
tion of front ends for various languages, which translate the source code into a language-
independent form called GENERIC. This is then processed by a common middle end which
provides optimization, and then passed to one of a collection of back ends which generate
code for different computer architectures and operating systems.

Functionally, this is implemented with a driver program (gcc) which provides the
command-line interface for the compiler. It calls the relevant compiler front-end program
(e.g., £951 for Fortran) for each file in the source code, and then calls the assembler and
linker as appropriate to produce the compiled output. In a copy of GCC which has been
compiled with Fortran language support enabled, gcc will recognize files with ‘.£’, ‘. for’,
“.ftn’, ©.£90°, .£f95’, ‘.03’ and ‘.f08’ extensions as Fortran source code, and compile it
accordingly. A gfortran driver program is also provided, which is identical to gcc except
that it automatically links the Fortran runtime libraries into the compiled program.

Source files with ‘.f’, ‘.for’, ‘.fpp’, ‘.ftn’, *.F’, *.FOR’, ‘*.FPP’, and ‘.FTN’ extensions
are treated as fixed form. Source files with *.£90°, ‘.£95’, *.£f03’, *.£08’, *.F90’, ‘.F95’,
‘.F03’ and ‘.F08’ extensions are treated as free form. The capitalized versions of either
form are run through preprocessing. Source files with the lower case ‘.fpp’ extension are
also run through preprocessing.

This manual specifically documents the Fortran front end, which handles the program-
ming language’s syntax and semantics. The aspects of GCC which relate to the optimization
passes and the back-end code generation are documented in the GCC manual; see Section
“Introduction” in Using the GNU Compiler Collection (GCC). The two manuals together
provide a complete reference for the GNU Fortran compiler.

1.3 Preprocessing and conditional compilation

Many Fortran compilers including GNU Fortran allow passing the source code through a
C preprocessor (CPP; sometimes also called the Fortran preprocessor, FPP) to allow for
conditional compilation. In the case of GNU Fortran, this is the GNU C Preprocessor
in the traditional mode. On systems with case-preserving file names, the preprocessor is
automatically invoked if the filename extension is ‘.F’, *.FOR’, ‘.FIN’, ‘. fpp’, ‘.FPP’, ‘.F90’,

Chapter 1: Introduction 3

‘.F95’, *.F03’ or ‘.F08’. To manually invoke the preprocessor on any file, use ‘-cpp’, to

disable preprocessing on files where the preprocessor is run automatically, use ‘-nocpp’.

If a preprocessed file includes another file with the Fortran INCLUDE statement, the in-
cluded file is not preprocessed. To preprocess included files, use the equivalent preprocessor
statement #include.

If GNU Fortran invokes the preprocessor, __GFORTRAN__ is defined and __GNUC
_GNUC_MINOR__ and __GNUC_PATCHLEVEL__ can be used to determine the version of the

compiler. See Section “Overview” in The C Preprocessor for details.

- -

While CPP is the de-facto standard for preprocessing Fortran code, Part 3 of the Fortran
95 standard (ISO/IEC 1539-3:1998) defines Conditional Compilation, which is not widely
used and not directly supported by the GNU Fortran compiler. You can use the program
coco to preprocess such files (http://www.daniellnagle.com/coco.html).

1.4 GNU Fortran and G77

The GNU Fortran compiler is the successor to g77, the Fortran 77 front end included in GCC
prior to version 4. It is an entirely new program that has been designed to provide Fortran
95 support and extensibility for future Fortran language standards, as well as providing
backwards compatibility for Fortran 77 and nearly all of the GNU language extensions
supported by g77.

1.5 Project Status

As soon as gfortran can parse all of the statements correctly, it will be in the
“larva” state. When we generate code, the “puppa” state. When gfortran is
done, we'll see if it will be a beautiful butterfly, or just a big bug....

—Andy Vaught, April 2000
The start of the GNU Fortran 95 project was announced on the GCC homepage in March
18, 2000 (even though Andy had already been working on it for a while, of course).

The GNU Fortran compiler is able to compile nearly all standard-compliant Fortran 95,
Fortran 90, and Fortran 77 programs, including a number of standard and non-standard
extensions, and can be used on real-world programs. In particular, the supported extensions
include OpenMP, Cray-style pointers, and several Fortran 2003 and Fortran 2008 features,
including TR 15581. However, it is still under development and has a few remaining rough
edges.

At present, the GNU Fortran compiler passes the NIST Fortran 77 Test Suite, and
produces acceptable results on the LAPACK Test Suite. It also provides respectable per-
formance on the Polyhedron Fortran compiler benchmarks and the Livermore Fortran Ker-
nels test. It has been used to compile a number of large real-world programs, including
the HIRLAM weather-forecasting code and the Tonto quantum chemistry package; see
http://gcc.gnu.org/wiki/GfortranApps for an extended list.

Among other things, the GNU Fortran compiler is intended as a replacement for G77.
At this point, nearly all programs that could be compiled with G77 can be compiled with
GNU Fortran, although there are a few minor known regressions.

The primary work remaining to be done on GNU Fortran falls into three categories:
bug fixing (primarily regarding the treatment of invalid code and providing useful error

http://www.daniellnagle.com/coco.html
http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html
http://www.netlib.org/lapack/faq.html#1.21
http://www.polyhedron.com/pb05.html
http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html
http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html
http://mysite.verizon.net/serveall/moene.pdf
http://www.theochem.uwa.edu.au/tonto/
http://gcc.gnu.org/wiki/GfortranApps

4 The GNU Fortran Compiler

messages), improving the compiler optimizations and the performance of compiled code,
and extending the compiler to support future standards—in particular, Fortran 2003 and
Fortran 2008.

1.6 Standards

The GNU Fortran compiler implements ISO/IEC 1539:1997 (Fortran 95). As such, it can
also compile essentially all standard-compliant Fortran 90 and Fortran 77 programs. It also
supports the ISO/IEC TR-15581 enhancements to allocatable arrays.

In the future, the GNU Fortran compiler will also support ISO/IEC 1539-1:2004 (Fortran
2003), ISO/IEC 1539-1:2010 (Fortran 2008) and future Fortran standards. Partial support
of the Fortran 2003 and Fortran 2008 standard is already provided; the current status of
the support is reported in the Section 4.1 [Fortran 2003 status], page 33 and Section 4.2
[Fortran 2008 status|, page 34 sections of the documentation.

Additionally, the GNU Fortran compilers supports the OpenMP specification (version
3.1, http://openmp.org/wp/openmp-specifications/).

1.6.1 Varying Length Character Strings

The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000) varying length character
strings. While GNU Fortran currently does not support such strings directly, there exist
two Fortran implementations for them, which work with GNU Fortran. They can be found
at http://wuw.fortran.com/iso_varying_string.f95 and at ftp://ftp.nag.co.uk/
sc22wgh/ISO_VARYING_STRING/.

http://openmp.org/wp/openmp-specifications/
http://www.fortran.com/iso_varying_string.f95
ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/
ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/

Chapter 1: Introduction

Part I: Invoking GNU Fortran

Chapter 2: GNU Fortran Command Options 7

2 GNU Fortran Command Options

The gfortran command supports all the options supported by the gcc command. Only
options specific to GNU Fortran are documented here.

See Section “GCC Command Options” in Using the GNU Compiler Collection (GCC),
for information on the non-Fortran-specific aspects of the gcc command (and, therefore,
the gfortran command).

All GCC and GNU Fortran options are accepted both by gfortran and by gcc (as well
as any other drivers built at the same time, such as g++), since adding GNU Fortran to the
GCC distribution enables acceptance of GNU Fortran options by all of the relevant drivers.

In some cases, options have positive and negative forms; the negative form of ‘-ffoo’
would be ‘~fno-foo’. This manual documents only one of these two forms, whichever one
is not the default.

2.1 Option summary

Here is a summary of all the options specific to GNU Fortran, grouped by type. Explanations
are in the following sections.

Fortran Language Options
See Section 2.2 [Options controlling Fortran dialect], page 8.

-fall-intrinsics -fbackslash -fcray-pointer -fd-lines-as-code
-fd-lines-as-comments -fdefault-double-8 -fdefault-integer-8
-fdefault-real-8 -fdollar-ok -ffixed-line-length-n
-ffixed-line-length-none -ffree-form -ffree-line-length-n
-ffree-line-length-none -fimplicit-none -finteger-4-integer-8
-fmax-identifier-length -fmodule-private -fno-fixed-form -fno-range-check
-fopenmp -freal-4-real-10 -freal-4-real-16 -freal-4-real-8
-freal-8-real-10 -freal-8-real-16 -freal-8-real-4 -std=std
Preprocessing Options
See Section 2.3 [Enable and customize preprocessing|, page 11.
-A-question|[=answer| -Aquestion=answer -C -CC -Dmacro[=defn]| -H -P
-Umacro -cpp -dD -dI -dM -dN -dU -fworking-directory -imultilib dir
-iprefix file -iquote -isysroot dir -isystem dir -nocpp -nostdinc
-undef
Error and Warning Options
See Section 2.4 [Options to request or suppress errors and warnings|, page 14.

-Waliasing -Wall -Wampersand -Warray-bounds -Wcharacter-truncation
-Wconversion -Wfunction-elimination -Wimplicit-interface
-Wimplicit-procedure -Wintrinsic-shadow -Wintrinsics-std
-Wline-truncation -Wno-align-commons -Wno-tabs -Wreal-g-constant
-Wsurprising -Wunderflow -Wunused-parameter -fmax-errors=n -fsyntax-only
-pedantic -pedantic-errors

Debugging Options
See Section 2.5 [Options for debugging your program or GNU Fortran|, page 17.
-fbacktrace -fdump-fortran-optimized -fdump-fortran-original
-fdump-parse-tree -ffpe-trap=Ilist
Directory Options
See Section 2.6 [Options for directory search], page 18.

8 The GNU Fortran Compiler

-Idir -Jdir -fintrinsic-modules-path dir

Link Options
See Section 2.7 [Options for influencing the linking step], page 18.

-static-libgfortran

Runtime Options
See Section 2.8 [Options for influencing runtime behavior], page 19.

-fconvert=conversion -fmax-subrecord-length=length -fno-range-check
-frecord-marker=length -fsign-zero

Code Generation Options
See Section 2.9 [Options for code generation conventions|, page 19.

-faggressive-function-elimination -fblas-matmul-limit=n
-fbounds-check -fcheck-array-temporaries
-fcheck=<alllarray-temps|bounds|do|mem|pointer|recursion>
-fcoarray=<none|single|1ib> -fexternal-blas -ff2c -ffrontend-optimize
-finit-character=n -finit-integer=n -finit-local-zero
-finit-logical=<true|false> -finit-real=<zero|inf|-inf|nan|snan>
-fmax-array-constructor=n -fmax-stack-var-size=n -fno-align-commons
-fno-automatic -fno-protect-parens -fno-underscoring -fno-whole-file
-fsecond-underscore -fpack-derived -frealloc-lhs -frecursive
-frepack-arrays -fshort-enums -fstack-arrays

2.2 Options controlling Fortran dialect
The following options control the details of the Fortran dialect accepted by the compiler:

—-ffree-form

-ffixed-form
Specify the layout used by the source file. The free form layout was introduced
in Fortran 90. Fixed form was traditionally used in older Fortran programs.
When neither option is specified, the source form is determined by the file
extension.

-fall-intrinsics
This option causes all intrinsic procedures (including the GNU-specific exten-
sions) to be accepted. This can be useful with ‘~std=£95’ to force standard-
compliance but get access to the full range of intrinsics available with gfortran.
As a consequence, ‘-Wintrinsics-std’ will be ignored and no user-defined pro-
cedure with the same name as any intrinsic will be called except when it is
explicitly declared EXTERNAL.

-fd-lines-as-code

-fd-lines-as-comments
Enable special treatment for lines beginning with d or D in fixed form sources. If
the ‘-fd-lines-as-code’ option is given they are treated as if the first column
contained a blank. If the ‘-fd-lines-as-comments’ option is given, they are
treated as comment lines.

-fdefault-double-8
Set the DOUBLE PRECISION type to an 8 byte wide type. If ‘-~-fdefault-real-8’
is given, DOUBLE PRECISION would instead be promoted to 16 bytes if possible,

Chapter 2: GNU Fortran Command Options 9

and ‘-fdefault-double-8’ can be used to prevent this. The kind of real con-
stants like 1.d0 will not be changed by ‘-fdefault-real-8’ though, so also
‘~fdefault-double-8’ does not affect it.

-fdefault-integer-8
Set the default integer and logical types to an 8 byte wide type. Do nothing if
this is already the default. This option also affects the kind of integer constants
like 42.

-fdefault-real-8
Set the default real type to an 8 byte wide type. Do nothing if this is already
the default. This option also affects the kind of non-double real constants like
1.0, and does promote the default width of DOUBLE PRECISION to 16 bytes if
possible, unless -fdefault-double-8 is given, too.

-fdollar-ok
Allow ‘$’ as a valid non-first character in a symbol name. Symbols that start
with ‘$” are rejected since it is unclear which rules to apply to implicit typing as
different vendors implement different rules. Using ‘¢’ in IMPLICIT statements
is also rejected.

—-fbackslash

Change the interpretation of backslashes in string literals from a single back-
slash character to “C-style” escape characters. The following combinations are
expanded \a, \b, \f, \n, \r, \t, \v, \\, and \0 to the ASCII characters alert,
backspace, form feed, newline, carriage return, horizontal tab, vertical tab,
backslash, and NUL, respectively. Additionally, \xnn, \unnnn and \Unnnnnnnn
(where each n is a hexadecimal digit) are translated into the Unicode charac-
ters corresponding to the specified code points. All other combinations of a
character preceded by \ are unexpanded.

-fmodule-private
Set the default accessibility of module entities to PRIVATE. Use-associated en-
tities will not be accessible unless they are explicitly declared as PUBLIC.

-ffixed-line-length-n
Set column after which characters are ignored in typical fixed-form lines in the
source file, and through which spaces are assumed (as if padded to that length)
after the ends of short fixed-form lines.

Popular values for n include 72 (the standard and the default), 80 (card im-
age), and 132 (corresponding to “extended-source” options in some popular
compilers). n may also be ‘none’, meaning that the entire line is meaningful
and that continued character constants never have implicit spaces appended to
them to fill out the line. ‘-ffixed-line-length-0’ means the same thing as
‘~ffixed-line-length-none’.

-ffree-line-length-n
Set column after which characters are ignored in typical free-form lines in the
source file. The default value is 132. n may be ‘none’, meaning that the
entire line is meaningful. ‘-ffree-line-length-0’ means the same thing as
‘~ffree-line-length-none’.

10 The GNU Fortran Compiler

-fmax-identifier-length=n
Specify the maximum allowed identifier length. Typical values are 31 (Fortran
95) and 63 (Fortran 2003 and Fortran 2008).

-fimplicit-none
Specify that no implicit typing is allowed, unless overridden by explicit
IMPLICIT statements. This is the equivalent of adding implicit none to the
start of every procedure.

-finteger-4-integer-8

Promote all INTEGER(KIND=4) entities to an INTEGER(KIND=8) entities. If
KIND=8 is unavailable, then an error will be issued. This option should be
used with care and may not be suitable for your codes. Areas of possible con-
cern include calls to external procedures, alignment in EQUIVALENCE and/or
COMMON, generic interfaces, BOZ literal constant conversion, and 1/0. Inspec-
tion of the intermediate representation of the translated Fortran code, produced
by ‘~fdump-tree-original’, is suggested.

-fcray-pointer
Enable the Cray pointer extension, which provides C-like pointer functionality.

-fopenmp Enable the OpenMP extensions. This includes OpenMP !$omp directives in
free form and c$omp, *$omp and !$omp directives in fixed form, !'$ conditional
compilation sentinels in free form and c$, *$ and !$ sentinels in fixed form, and
when linking arranges for the OpenMP runtime library to be linked in. The
option ‘~fopenmp’ implies ‘~frecursive’.

-fno-range-check

Disable range checking on results of simplification of constant expressions during
compilation. For example, GNU Fortran will give an error at compile time when
simplifying a = 1. / 0. With this option, no error will be given and a will be
assigned the value +Infinity. If an expression evaluates to a value outside of
the relevant range of [~HUGE () :HUGE ()|, then the expression will be replaced by
-Inf or +Inf as appropriate. Similarly, DATA i/Z’FFFFFFFF’/ will result in an
integer overflow on most systems, but with ‘~fno-range-check’ the value will
“wrap around” and i will be initialized to —1 instead.

-freal-4-real-8

-freal-4-real-10

-freal-8-real-4

-freal-8-real-10

-freal-8-real-16
Promote all REAL (KIND=M) entities to REAL(KIND=N) entities. If REAL (KIND=N)
is unavailable, then an error will be issued. All other real kind types are un-
affected by this option. These options should be used with care and may not
be suitable for your codes. Areas of possible concern include calls to external
procedures, alignment in EQUIVALENCE and/or COMMON, generic interfaces, BOZ
literal constant conversion, and I/O. Inspection of the intermediate representa-
tion of the translated Fortran code, produced by ‘-fdump-tree-original’, is
suggested.

Chapter 2: GNU Fortran Command Options 11

-std=std Specify the standard to which the program is expected to conform, which may
be one of ‘£95’, ‘£2003’, ‘£2008’, ‘gnu’, or ‘legacy’. The default value for std
is ‘gnu’, which specifies a superset of the Fortran 95 standard that includes all
of the extensions supported by GNU Fortran, although warnings will be given
for obsolete extensions not recommended for use in new code. The ‘legacy’
value is equivalent but without the warnings for obsolete extensions, and may
be useful for old non-standard programs. The ‘£95’, ‘£2003’ and ‘£2008’ values
specify strict conformance to the Fortran 95, Fortran 2003 and Fortran 2008
standards, respectively; errors are given for all extensions beyond the relevant
language standard, and warnings are given for the Fortran 77 features that
are permitted but obsolescent in later standards. ‘-std=£2008ts’ allows the
Fortran 2008 standard including the additions of the Technical Specification
(TS) 29113 on Further Interoperability of Fortran with C.

2.3 Enable and customize preprocessing

Preprocessor related options. See section Section 1.3 [Preprocessing and conditional com-
pilation], page 2 for more detailed information on preprocessing in gfortran.

—Cpp

-nocpp Enable preprocessing. The preprocessor is automatically invoked if the file
extension is ‘. fpp’, ‘.FPP’, ‘*.F’, *.FOR’, ‘".FTN’, *.F90’, *.F95’, *.F03’ or ‘.F08’.
Use this option to manually enable preprocessing of any kind of Fortran file.
To disable preprocessing of files with any of the above listed extensions, use the
negative form: ‘-nocpp’.

The preprocessor is run in traditional mode. Any restrictions of the file-
format, especially the limits on line length, apply for preprocessed output
as well, so it might be advisable to use the ‘-ffree-line-length-none’ or
‘-ffixed-line-length-none’ options.

-dM Instead of the normal output, generate a list of >#define’ directives for all the
macros defined during the execution of the preprocessor, including predefined
macros. This gives you a way of finding out what is predefined in your version
of the preprocessor. Assuming you have no file ‘foo.f90’, the command

touch fo00.£90; gfortran -cpp -E -dM foo0.£90

will show all the predefined macros.
-dD Like ‘=dM’ except in two respects: it does not include the predefined macros, and

it outputs both the #define directives and the result of preprocessing. Both
kinds of output go to the standard output file.

-dN Like ‘-dD’, but emit only the macro names, not their expansions.

-du Like ‘dD’ except that only macros that are expanded, or whose definedness is
tested in preprocessor directives, are output; the output is delayed until the use
or test of the macro; and ’#undef’ directives are also output for macros tested
but undefined at the time.

-dI Output *#include’ directives in addition to the result of preprocessing.

12

-fworking-

The GNU Fortran Compiler

directory

Enable generation of linemarkers in the preprocessor output that will let the
compiler know the current working directory at the time of preprocessing.
When this option is enabled, the preprocessor will emit, after the initial line-
marker, a second linemarker with the current working directory followed by
two slashes. GCC will use this directory, when it is present in the prepro-
cessed input, as the directory emitted as the current working directory in some
debugging information formats. This option is implicitly enabled if debug-
ging information is enabled, but this can be inhibited with the negated form
‘~fno-working-directory’. If the ‘-P’ flag is present in the command line,
this option has no effect, since no #line directives are emitted whatsoever.

—-idirafter dir

Search dir for include files, but do it after all directories specified with ‘-I’
and the standard system directories have been exhausted. dir is treated as a
system include directory. If dir begins with =, then the = will be replaced by
the sysroot prefix; see ‘-—sysroot’ and ‘~isysroot’.

—-imultilib dir

Use dir as a subdirectory of the directory containing target-specific C++ headers.

-iprefix prefix

Specify prefix as the prefix for subsequent ‘~iwithprefix’ options. If the prefix
represents a directory, you should include the final */”.

-isysroot dir

This option is like the ‘~-sysroot’ option, but applies only to header files. See
the ‘--sysroot’ option for more information.

-iquote dir

Search dir only for header files requested with #include "file"; they are not
searched for #include <file>, before all directories specified by ‘-1’ and before
the standard system directories. If dir begins with =, then the = will be replaced
by the sysroot prefix; see ‘--sysroot’ and ‘~isysroot’.

-isystem dir

-nostdinc

—-undef

Search dir for header files, after all directories specified by ‘-I’ but before the
standard system directories. Mark it as a system directory, so that it gets the
same special treatment as is applied to the standard system directories. If dir
begins with =, then the = will be replaced by the sysroot prefix; see ‘--sysroot’
and ‘-isysroot’.

Do not search the standard system directories for header files. Only the direc-
tories you have specified with ‘-I” options (and the directory of the current file,
if appropriate) are searched.

Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.

Chapter 2: GNU Fortran Command Options 13

-Apredicate=answer

Make an assertion with the predicate predicate and answer answer. This form
is preferred to the older form -A predicate(answer), which is still supported,
because it does not use shell special characters.

-A-predicate=answer

-C

-CC

—-Dname

Cancel an assertion with the predicate predicate and answer answer.

Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the
directive.

You should be prepared for side effects when using ‘-C’; it causes the prepro-
cessor to treat comments as tokens in their own right. For example, comments
appearing at the start of what would be a directive line have the effect of turn-
ing that line into an ordinary source line, since the first token on the line is no
longer a *#°.

Warning: this currently handles C-Style comments only. The preprocessor does
not yet recognize Fortran-style comments.

Do not discard comments, including during macro expansion. This is like ‘-C’,
except that comments contained within macros are also passed through to the
output file where the macro is expanded.

In addition to the side-effects of the ‘-C’ option, the ‘-CC’ option causes all
C++-style comments inside a macro to be converted to C-style comments. This
is to prevent later use of that macro from inadvertently commenting out the
remainder of the source line. The ‘~CC’ option is generally used to support lint
comiments.

Warning: this currently handles C- and C++-Style comments only. The prepro-
cessor does not yet recognize Fortran-style comments.

Predefine name as a macro, with definition 1.

-Dname=definition

The contents of definition are tokenized and processed as if they appeared
during translation phase three in a ’#define’ directive. In particular, the
definition will be truncated by embedded newline characters.

If you are invoking the preprocessor from a shell or shell-like program you may
need to use the shell’s quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you will need to quote the option.
With sh and csh, -D’name (args...)=definition’ works.

‘-D’ and ‘-U’ options are processed in the order they are given on the command
line. All -imacros file and -include file options are processed after all -D and -U
options.

Print the name of each header file used, in addition to other normal activities.
Each name is indented to show how deep in the ’#include’ stack it is.

14 The GNU Fortran Compiler

-P Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C code,
and will be sent to a program which might be confused by the linemarkers.

-Uname Cancel any previous definition of name, either built in or provided with a ‘-D’
option.

2.4 Options to request or suppress errors and warnings

Errors are diagnostic messages that report that the GNU Fortran compiler cannot compile
the relevant piece of source code. The compiler will continue to process the program in an
attempt to report further errors to aid in debugging, but will not produce any compiled
output.

Warnings are diagnostic messages that report constructions which are not inherently
erroneous but which are risky or suggest there is likely to be a bug in the program. Unless
‘~Werror’ is specified, they do not prevent compilation of the program.

You can request many specific warnings with options beginning ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘~Wno-implicit’. This manual lists only one of the two forms, whichever is not the
default.

These options control the amount and kinds of errors and warnings produced by GNU
Fortran:

-fmax-errors=n
Limits the maximum number of error messages to n, at which point GNU
Fortran bails out rather than attempting to continue processing the source
code. If n is 0, there is no limit on the number of error messages produced.

-fsyntax-only
Check the code for syntax errors, but do not actually compile it. This will

generate module files for each module present in the code, but no other output
file.

-pedantic
Issue warnings for uses of extensions to Fortran 95. ‘-pedantic’ also applies to
C-language constructs where they occur in GNU Fortran source files, such as
use of ‘\e’ in a character constant within a directive like #include.

Valid Fortran 95 programs should compile properly with or without this option.
However, without this option, certain GNU extensions and traditional Fortran
features are supported as well. With this option, many of them are rejected.

¢

Some users try to use ‘-pedantic’ to check programs for conformance. They
soon find that it does not do quite what they want—it finds some nonstandard
practices, but not all. However, improvements to GNU Fortran in this area are
welcome.

This should be wused in conjunction with ‘-std=f95’, ‘-std=£2003" or
‘-std=£2008".

Chapter 2: GNU Fortran Command Options 15

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

-Wall Enables commonly used warning options pertaining to usage that we
recommend avoiding and that we believe are easy to avoid. This
currently includes ‘-Waliasing’, ‘~Wampersand’, ‘~Wconversion’,
‘~Wsurprising’, ‘-Wintrinsics-std’, ‘-Wno-tabs’, ‘-Wintrinsic-shadow’,
‘-Wline-truncation’, ‘~-Wreal-q-constant’ and ‘~Wunused’.

-Waliasing
Warn about possible aliasing of dummy arguments. Specifically, it warns if the

same actual argument is associated with a dummy argument with INTENT (IN)
and a dummy argument with INTENT (OUT) in a call with an explicit interface.

The following example will trigger the warning.

interface
subroutine bar(a,b)
integer, intent(in) :: a
integer, intent(out) :: b

end subroutine
end interface
integer :: a

call bar(a,a)

-Wampersand
Warn about missing ampersand in continued character constants. The
warning is given with ‘~Wampersand’, ‘-pedantic’, ‘-std=£f95’, ‘-std=£2003’
and ‘-std=£2008’. Note: With no ampersand given in a continued character
constant, GNU Fortran assumes continuation at the first non-comment,
non-whitespace character after the ampersand that initiated the continuation.

-Warray-temporaries
Warn about array temporaries generated by the compiler. The information
generated by this warning is sometimes useful in optimization, in order to avoid
such temporaries.

-Wcharacter-truncation
Warn when a character assignment will truncate the assigned string.

-Wline-truncation
Warn when a source code line will be truncated.

-Wconversion
Warn about implicit conversions that are likely to change the value of the
expression after conversion. Implied by ‘-Wall’.

-Wconversion-extra
Warn about implicit conversions between different types and kinds.

-Wimplicit-interface
Warn if a procedure is called without an explicit interface. Note this only
checks that an explicit interface is present. It does not check that the declared
interfaces are consistent across program units.

16 The GNU Fortran Compiler

-Wimplicit-procedure
Warn if a procedure is called that has neither an explicit interface nor has been
declared as EXTERNAL.

-Wintrinsics-std
Warn if gfortran finds a procedure named like an intrinsic not available in the
currently selected standard (with ‘-std’) and treats it as EXTERNAL procedure
because of this. ‘~fall-intrinsics’ can be used to never trigger this behavior
and always link to the intrinsic regardless of the selected standard.

-Wreal-q-constant
Produce a warning if a real-literal-constant contains a q exponent-letter.

-Wsurprising
Produce a warning when “suspicious” code constructs are encountered. While
technically legal these usually indicate that an error has been made.

This currently produces a warning under the following circumstances:

e An INTEGER SELECT construct has a CASE that can never be matched
as its lower value is greater than its upper value.

e A LOGICAL SELECT construct has three CASE statements.
e A TRANSFER specifies a source that is shorter than the destination.

e The type of a function result is declared more than once with the same
type. If ‘-pedantic’ or standard-conforming mode is enabled, this is an
error.

A CHARACTER variable is declared with negative length.

-Wtabs By default, tabs are accepted as whitespace, but tabs are not members of the
Fortran Character Set. For continuation lines, a tab followed by a digit be-
tween 1 and 9 is supported. ‘-Wno-tabs’ will cause a warning to be issued if
a tab is encountered. Note, ‘~Wno-tabs’ is active for ‘-pedantic’, ‘-std=£95’,
‘-std=f2003’, ‘-std=f2008" and ‘-Wall’.

-Wunderflow
Produce a warning when numerical constant expressions are encountered, which
yield an UNDERFLOW during compilation.

-Wintrinsic-shadow
Warn if a user-defined procedure or module procedure has the same name
as an intrinsic; in this case, an explicit interface or EXTERNAL or INTRINSIC
declaration might be needed to get calls later resolved to the desired intrin-
sic/procedure.

-Wunused-dummy-argument
Warn about unused dummy arguments. This option is implied by ‘-Wall’.

-Wunused-parameter
Contrary to gcc’s meaning of ‘-Wunused-parameter’, gfortran’s imple-
mentation of this option does not warn about unused dummy arguments
(see ‘-Wunused-dummy-argument’), but about unused PARAMETER values.
‘~Wunused-parameter’ is not included in ‘-Wall’ but is implied by ‘-Wall
-Wextra’.

Chapter 2: GNU Fortran Command Options 17

-Walign-commons
By default, gfortran warns about any occasion of variables being padded for
proper alignment inside a COMMON block. This warning can be turned off via
‘-Wno-align-commons’. See also ‘~falign-commons’.

-Wfunction-elimination
Warn if any calls to functions are eliminated by the optimizations enabled by
the ‘~ffrontend-optimize’ option.

-Werror Turns all warnings into errors.

See Section “Options to Request or Suppress Errors and Warnings” in Using the GNU
Compiler Collection (GCC), for information on more options offered by the GBE shared by
gfortran, gcc and other GNU compilers.

Some of these have no effect when compiling programs written in Fortran.

2.5 Options for debugging your program or GNU Fortran

GNU Fortran has various special options that are used for debugging either your program
or the GNU Fortran compiler.

-fdump-fortran-original
Output the internal parse tree after translating the source program into internal
representation. Only really useful for debugging the GNU Fortran compiler
itself.

-fdump-optimized-tree
Output the parse tree after front-end optimization. Only really useful for de-
bugging the GNU Fortran compiler itself.

Output the internal parse tree after translating the source program into internal
representation. Only really useful for debugging the GNU Fortran compiler
itself. This option is deprecated; use ~fdump-fortran-original instead.

-ffpe-trap=1list

Specify a list of floating point exception traps to enable. On most systems, if
a floating point exception occurs and the trap for that exception is enabled, a
SIGFPE signal will be sent and the program being aborted, producing a core
file useful for debugging. list is a (possibly empty) comma-separated list of
the following exceptions: ‘invalid’ (invalid floating point operation, such as
SQRT(-1.0)), ‘zero’ (division by zero), ‘overflow’ (overflow in a floating point
operation), ‘underflow’ (underflow in a floating point operation), ‘inexact’
(loss of precision during operation), and ‘denormal’ (operation performed on
a denormal value). The first five exceptions correspond to the five IEEE 754
exceptions, whereas the last one (‘denormal’) is not part of the IEEE 754
standard but is available on some common architectures such as x86.

The first three exceptions (‘invalid’, ‘zero’, and ‘overflow’) often indicate
serious errors, and unless the program has provisions for dealing with these
exceptions, enabling traps for these three exceptions is probably a good idea.

Many, if not most, floating point operations incur loss of precision due to round-
ing, and hence the ffpe-trap=inexact is likely to be uninteresting in practice.

18 The GNU Fortran Compiler

By default no exception traps are enabled.

-fno-backtrace
When a serious runtime error is encountered or a deadly signal is emitted (seg-
mentation fault, illegal instruction, bus error, floating-point exception, and the
other POSIX signals that have the action ‘core’), the Fortran runtime library
tries to output a backtrace of the error. -fno-backtrace disables the backtrace
generation. This option only has influence for compilation of the Fortran main
program.

See Section “Options for Debugging Your Program or GCC” in Using the GNU Compiler
Collection (GCC), for more information on debugging options.

2.6 Options for directory search

These options affect how GNU Fortran searches for files specified by the INCLUDE directive
and where it searches for previously compiled modules.

It also affects the search paths used by cpp when used to preprocess Fortran source.

-Idir These affect interpretation of the INCLUDE directive (as well as of the #include
directive of the cpp preprocessor).

Also note that the general behavior of ‘-I’ and INCLUDE is pretty much the
same as of ‘~I’" with #include in the cpp preprocessor, with regard to looking
for ‘header.gcc’ files and other such things.

This path is also used to search for ‘.mod’ files when previously compiled mod-
ules are required by a USE statement.

See Section “Options for Directory Search” in Using the GNU Compiler Col-
lection (GCC), for information on the ‘~I’ option.

-Jdir This option specifies where to put ‘.mod’ files for compiled modules. It is also
added to the list of directories to searched by an USE statement.

The default is the current directory.

-fintrinsic-modules-path dir
This option specifies the location of pre-compiled intrinsic modules, if they are
not in the default location expected by the compiler.

2.7 Influencing the linking step

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

-static-libgfortran
On systems that provide ‘libgfortran’ as a shared and a static library, this
option forces the use of the static version. If no shared version of ‘libgfortran’
was built when the compiler was configured, this option has no effect.

Chapter 2: GNU Fortran Command Options 19

2.8 Influencing runtime behavior
These options affect the runtime behavior of programs compiled with GNU Fortran.

-fconvert=conversion
Specify the representation of data for unformatted files. Valid values
for conversion are: ‘native’, the default; ‘swap’, swap between big- and
little-endian; ‘big-endian’, use big-endian representation for unformatted
files; ‘little-endian’, use little-endian representation for unformatted files.

This option has an effect only when used in the main program. The CONVERT
specifier and the GFORTRAN_CONVERT_UNIT environment variable over-
ride the default specified by ‘~fconvert’

-fno-range-check
Disable range checking of input values during integer READ operations. For
example, GNU Fortran will give an error if an input value is outside of the rele-
vant range of [-HUGE ():HUGE()|. In other words, with INTEGER (kind=4) :: i,
attempting to read —2147483648 will give an error unless ‘-~fno-range-check’
is given.

-frecord-marker=length
Specify the length of record markers for unformatted files. Valid values for
length are 4 and 8. Default is 4. This s different from previous versions of
gfortran, which specified a default record marker length of 8 on most systems.
If you want to read or write files compatible with earlier versions of gfortran,
use ‘-frecord-marker=8’.

-fmax-subrecord-length=Iength
Specify the maximum length for a subrecord. The maximum permitted value
for length is 2147483639, which is also the default. Only really useful for use
by the gfortran testsuite.

-fsign-zero
When enabled, floating point numbers of value zero with the sign bit set are
written as negative number in formatted output and treated as negative in the
SIGN intrinsic. ‘~fno-sign-zero’ does not print the negative sign of zero values
(or values rounded to zero for I/O) and regards zero as positive number in the
SIGN intrinsic for compatibility with Fortran 77. The default is ‘~-fsign-zero’.

2.9 Options for code generation conventions

These machine-independent options control the interface conventions used in code genera-
tion.

Most of them have both positive and negative forms; the negative form of ‘-ffoo’ would
be ‘-fno-foo’. In the table below, only one of the forms is listed—the one which is not the
default. You can figure out the other form by either removing ‘no-’ or adding it.

-fno-automatic
Treat each program unit (except those marked as RECURSIVE) as if the
SAVE statement were specified for every local variable and array referenced
in it. Does not affect common blocks. (Some Fortran compilers provide

20

-ff2c

The GNU Fortran Compiler

this option under the name ‘-static’ or ‘-save’.) The default, which is

‘~fautomatic’, uses the stack for local variables smaller than the value given
by ‘-fmax-stack-var-size’. Use the option ‘-frecursive’ to use no static
memory.

Generate code designed to be compatible with code generated by g77 and f2c.

The calling conventions used by g77 (originally implemented in f2¢) require
functions that return type default REAL to actually return the C type double,
and functions that return type COMPLEX to return the values via an extra
argument in the calling sequence that points to where to store the return
value. Under the default GNU calling conventions, such functions simply re-
turn their results as they would in GNU C—default REAL functions return
the C type float, and COMPLEX functions return the GNU C type complex.
Additionally, this option implies the ‘-~fsecond-underscore’ option, unless
‘~fno-second-underscore’ is explicitly requested.

This does not affect the generation of code that interfaces with the 1ibgfortran
library.

Caution: It is not a good idea to mix Fortran code compiled with ‘-ff2c’
with code compiled with the default ‘~fno-f2c¢’ calling conventions as, calling
COMPLEX or default REAL functions between program parts which were compiled
with different calling conventions will break at execution time.

Caution: This will break code which passes intrinsic functions of type default
REAL or COMPLEX as actual arguments, as the library implementations use the
‘~fno-f2c’ calling conventions.

-fno-underscoring

Do not transform names of entities specified in the Fortran source file by ap-
pending underscores to them.

With ‘-funderscoring’ in effect, GNU Fortran appends one underscore to
external names with no underscores. This is done to ensure compatibility with
code produced by many UNIX Fortran compilers.

Caution: The default behavior of GNU Fortran is incompatible with £2¢ and
g77, please use the ‘~ff2¢’ option if you want object files compiled with GNU
Fortran to be compatible with object code created with these tools.

Use of ‘~fno-underscoring’ is not recommended unless you are experimenting
with issues such as integration of GNU Fortran into existing system environ-
ments (vis-a-vis existing libraries, tools, and so on).

For example, with ‘-funderscoring’, and assuming other defaults like
‘~fcase-lower’ and that j() and max_count() are external functions while
my_var and lvar are local variables, a statement like

I =JO + MAX_COUNT (MY_VAR, LVAR)

is implemented as something akin to:

i = j_0O + max_count__(&my_var &lvar) ;

—1

With ‘~fno-underscoring’, the same statement is implemented as:

i = j() + max_count(&my_var, &lvar);

Chapter 2: GNU Fortran Command Options 21

Use of ‘~fno-underscoring’ allows direct specification of user-defined names
while debugging and when interfacing GNU Fortran code with other languages.

Note that just because the names match does not mean that the interface
implemented by GNU Fortran for an external name matches the interface im-
plemented by some other language for that same name. That is, getting code
produced by GNU Fortran to link to code produced by some other compiler
using this or any other method can be only a small part of the overall solution—
getting the code generated by both compilers to agree on issues other than
naming can require significant effort, and, unlike naming disagreements, linkers
normally cannot detect disagreements in these other areas.

Also, note that with ‘~fno-underscoring’, the lack of appended underscores in-
troduces the very real possibility that a user-defined external name will conflict
with a name in a system library, which could make finding unresolved-reference
bugs quite difficult in some cases—they might occur at program run time, and
show up only as buggy behavior at run time.

In future versions of GNU Fortran we hope to improve naming and linking
issues so that debugging always involves using the names as they appear in the
source, even if the names as seen by the linker are mangled to prevent accidental
linking between procedures with incompatible interfaces.

-fno-whole-file
This flag causes the compiler to resolve and translate each procedure in a file
separately.

By default, the whole file is parsed and placed in a single front-end tree. During
resolution, in addition to all the usual checks and fixups, references to external
procedures that are in the same file effect resolution of that procedure, if not
already done, and a check of the interfaces. The dependences are resolved
by changing the order in which the file is translated into the backend tree.
Thus, a procedure that is referenced is translated before the reference and the
duplication of backend tree declarations eliminated.

The ‘-fno-whole-file’ option is deprecated and may lead to wrong code.

-fsecond-underscore
By default, GNU Fortran appends an underscore to external names. If this
option is used GNU Fortran appends two underscores to names with underscores
and one underscore to external names with no underscores. GNU Fortran also
appends two underscores to internal names with underscores to avoid naming
collisions with external names.

This option has no effect if ‘~fno-underscoring’ is in effect. It is implied by
the ‘-ff2¢’ option.

Otherwise, with this option, an external name such as MAX_COUNT is imple-
mented as a reference to the link-time external symbol max_count__, instead
of max_count_. This is required for compatibility with g77 and f2c, and is
implied by use of the ‘~ff2c¢’ option.

22

-fcoarray=<keyword>

‘none’

‘single’

‘1ib’

—-fcheck=<keyword>

The GNU Fortran Compiler

Disable coarray support; using coarray declarations and image-
control statements will produce a compile-time error. (Default)

Single-image mode, i.e. num_images () is always one.

Library-based coarray parallelization; a suitable GNU Fortran coar-
ray library needs to be linked.

Enable the generation of run-time checks; the argument shall be a comma-
delimited list of the following keywords.

‘all’

Enable all run-time test of ‘~fcheck’.

‘array-temps’

‘bounds’

‘pointer’

‘recursion’

-fbounds-check

Warns at run time when for passing an actual argument a tempo-
rary array had to be generated. The information generated by this
warning is sometimes useful in optimization, in order to avoid such
temporaries.

Note: The warning is only printed once per location.

Enable generation of run-time checks for array subscripts and
against the declared minimum and maximum values. It also
checks array indices for assumed and deferred shape arrays against
the actual allocated bounds and ensures that all string lengths
are equal for character array constructors without an explicit
typespec.

Some checks require that ‘~fcheck=bounds’ is set for the compila-
tion of the main program.

Note: In the future this may also include other forms of checking,
e.g., checking substring references.

Enable generation of run-time checks for invalid modification of
loop iteration variables.

Enable generation of run-time checks for memory allocation. Note:
This option does not affect explicit allocations using the ALLOCATE
statement, which will be always checked.

Enable generation of run-time checks for pointers and allocatables.

Enable generation of run-time checks for recursively called sub-
routines and functions which are not marked as recursive. See
also ‘~frecursive’. Note: This check does not work for OpenMP
programs and is disabled if used together with ‘~frecursive’ and
‘~fopenmp’.

Deprecated alias for ‘~fcheck=bounds’.

Chapter 2: GNU Fortran Command Options 23

-fcheck-array-temporaries
Deprecated alias for ‘~fcheck=array-temps’.

-fmax-array-constructor=n
This option can be used to increase the upper limit permitted in array con-
structors. The code below requires this option to expand the array at compile
time.

program test

implicit none

integer j

integer, parameter :: n = 100000

integer, parameter :: i(n) = (/ (2*j, j =1, n) /)
print ’(10(I0,1X))’, i

end program test

Caution: This option can lead to long compile times and excessively large object

files.
The default value for n is 65535.

-fmax-stack-var-size=n
This option specifies the size in bytes of the largest array that will be put on
the stack; if the size is exceeded static memory is used (except in procedures
marked as RECURSIVE). Use the option ‘-frecursive’ to allow for recursive
procedures which do not have a RECURSIVE attribute or for parallel programs.
Use ‘-fno-automatic’ to never use the stack.

This option currently only affects local arrays declared with constant bounds,
and may not apply to all character variables. Future versions of GNU Fortran
may improve this behavior.

The default value for n is 32768.

-fstack-arrays
Adding this option will make the Fortran compiler put all local arrays, even
those of unknown size onto stack memory. If your program uses very large
local arrays it is possible that you will have to extend your runtime limits for
stack memory on some operating systems. This flag is enabled by default at
optimization level ‘-0Ofast’.

-fpack-derived
This option tells GNU Fortran to pack derived type members as closely as
possible. Code compiled with this option is likely to be incompatible with code
compiled without this option, and may execute slower.

-frepack-arrays
In some circumstances GNU Fortran may pass assumed shape array sections
via a descriptor describing a noncontiguous area of memory. This option adds
code to the function prologue to repack the data into a contiguous block at
runtime.

This should result in faster accesses to the array. However it can introduce
significant overhead to the function call, especially when the passed data is
noncontiguous.

24 The GNU Fortran Compiler

-fshort-enums
This option is provided for interoperability with C code that was compiled with
the ‘~fshort-enums’ option. It will make GNU Fortran choose the smallest
INTEGER kind a given enumerator set will fit in, and give all its enumerators
this kind.

-fexternal-blas
This option will make gfortran generate calls to BLAS functions for some
matrix operations like MATMUL, instead of using our own algorithms, if the size of
the matrices involved is larger than a given limit (see ‘-fblas-matmul-limit’).
This may be profitable if an optimized vendor BLAS library is available. The
BLAS library will have to be specified at link time.

-fblas-matmul-limit=n
Only significant when ‘~fexternal-blas’ is in effect. Matrix multiplication
of matrices with size larger than (or equal to) n will be performed by calls to
BLAS functions, while others will be handled by gfortran internal algorithms.
If the matrices involved are not square, the size comparison is performed using
the geometric mean of the dimensions of the argument and result matrices.

The default value for n is 30.

-frecursive
Allow indirect recursion by forcing all local arrays to be allocated on the

stack. This flag cannot be used together with ‘~-fmax-stack-var-size=’ or
‘~fno-automatic’.

-finit-local-zero

-finit-integer=n

-finit-real=<zerol|inf|-inf|nan|snan>

-finit-logical=<truel|false>

—-finit-character=n
The ‘-finit-local-zero’ option instructs the compiler to initialize local
INTEGER, REAL, and COMPLEX variables to zero, LOGICAL variables to false,
and CHARACTER variables to a string of null bytes. Finer-grained initialization
options are provided by the ‘~finit-integer=n’, ‘~-finit-real=<zero|inf|-
inf|nan|snan> (which also initializes the real and imaginary parts
of local COMPLEX variables), ‘-finit-logical=<true|false>’, and
‘~finit-character=n’ (where n is an ASCII character value) options. These
options do not initialize

e allocatable arrays
e components of derived type variables
e variables that appear in an EQUIVALENCE statement.

(These limitations may be removed in future releases).

Note that the ‘~-finit-real=nan’ option initializes REAL and COMPLEX variables
with a quiet NaN. For a signalling NaN use ‘~finit-real=snan’; note, however,
that compile-time optimizations may convert them into quiet NaN and that
trapping needs to be enabled (e.g. via ‘~ffpe-trap’).

Chapter 2: GNU Fortran Command Options 25

Finally, note that enabling any of the ‘-~finit-*" options will silence warn-
ings that would have been emitted by ‘~-Wuninitialized’ for the affected local
variables.

-falign-commons

By default, gfortran enforces proper alignment of all variables in a COMMON
block by padding them as needed. On certain platforms this is mandatory,
on others it increases performance. If a COMMON block is not declared with
consistent data types everywhere, this padding can cause trouble, and
‘~fno-align-commons’ can be used to disable automatic alignment. The same
form of this option should be used for all files that share a COMMON block. To
avoid potential alignment issues in COMMON blocks, it is recommended to order
objects from largest to smallest.

—-fno-protect-parens

By default the parentheses in expression are honored for all optimization
levels such that the compiler does not do any re-association. Using
‘~fno-protect-parens’ allows the compiler to reorder REAL and COMPLEX
expressions to produce faster code. Note that for the re-association
optimization ‘-~fno-signed-zeros’ and ‘-fno-trapping-math’ need to be in
effect. The parentheses protection is enabled by default, unless ‘-Ofast’ is
given.

-frealloc-1lhs
An allocatable left-hand side of an intrinsic assignment is automatically
(re)allocated if it is either unallocated or has a different shape. The option is
enabled by default except when ‘-std=£95’ is given.

-faggressive-function-elimination
Functions with identical argument lists are eliminated within statements, re-
gardless of whether these functions are marked PURE or not. For example, in
a = f(b,c) + f£(b,c)
there will only be a single call to f. This option only works if
‘~ffrontend-optimize’ is in effect.

-ffrontend-optimize
This option performs front-end optimization, based on manipulating parts the
Fortran parse tree. Enabled by default by any ‘-0’ option. Optimizations
enabled by this option include elimination of identical function calls within ex-
pressions, removing unnecessary calls to TRIM in comparisons and assignments
and replacing TRIM(a) with a(1:LEN_TRIM(a)). It can be deselected by spec-
ifying ‘~fno-frontend-optimize’.

See Section “Options for Code Generation Conventions” in Using the GNU Compiler
Collection (GCC), for information on more options offered by the GBE shared by gfortran,
gcc, and other GNU compilers.

2.10 Environment variables affecting gfortran

The gfortran compiler currently does not make use of any environment variables to control
its operation above and beyond those that affect the operation of gcc.

26 The GNU Fortran Compiler

See Section “Environment Variables Affecting GCC” in Using the GNU Compiler Col-
lection (GCC), for information on environment variables.

See Chapter 3 [Runtime], page 27, for environment variables that affect the run-time
behavior of programs compiled with GNU Fortran.

Chapter 3: Runtime: Influencing runtime behavior with environment variables 27

3 Runtime: Influencing runtime behavior with
environment variables

The behavior of the gfortran can be influenced by environment variables.

Malformed environment variables are silently ignored.

3.1 GFORTRAN_STDIN_UNIT—Unit number for standard input

This environment variable can be used to select the unit number preconnected to standard
input. This must be a positive integer. The default value is 5.

3.2 GFORTRAN_STDOUT_UNIT—Unit number for standard output

This environment variable can be used to select the unit number preconnected to standard
output. This must be a positive integer. The default value is 6.

3.3 GFORTRAN_STDERR_UNIT—Unit number for standard error

This environment variable can be used to select the unit number preconnected to standard
error. This must be a positive integer. The default value is 0.

3.4 GFORTRAN_TMPDIR—Directory for scratch files

This environment variable controls where scratch files are created. If this environment
variable is missing, GNU Fortran searches for the environment variable TMP, then TEMP. If
these are missing, the default is ‘/tmp’.

3.5 GFORTRAN_UNBUFFERED_ALL—Do not buffer I/O on all units

This environment variable controls whether all 1/O is unbuffered. If the first letter is ‘y’,
‘Y’ or ‘1’, all I/O is unbuffered. This will slow down small sequential reads and writes. If
the first letter is ‘n’, ‘N’ or ‘0’, I/O is buffered. This is the default.

3.6 GFORTRAN_UNBUFFERED_PRECONNECTED—Do not buffer I/O on
preconnected units

The environment variable named GFORTRAN_UNBUFFERED_PRECONNECTED controls whether

I/O on a preconnected unit (i.e. STDOUT or STDERR) is unbuffered. If the first letter is
‘v’, Y’ or ‘1°, /O is unbuffered. This will slow down small sequential reads and writes. If
the first letter is ‘n’, ‘N’ or ‘0’, I/O is buffered. This is the default.

3.7 GFORTRAN_SHQOW_LOCUS—Show location for runtime errors

If the first letter is ‘y’, ‘Y’ or ‘1’, filename and line numbers for runtime errors are printed.
If the first letter is ‘n’, ‘N’ or ‘0’, do not print filename and line numbers for runtime errors.
The default is to print the location.

28 The GNU Fortran Compiler

3.8 GFORTRAN_OPTIONAL_PLUS—Print leading + where
permitted
If the first letter is ‘y’, ‘Y’ or ‘1’, a plus sign is printed where permitted by the Fortran

standard. If the first letter is ‘n’, ‘N’ or ‘0’, a plus sign is not printed in most cases. Default
is not to print plus signs.

3.9 GFORTRAN_DEFAULT_RECL—Default record length for new
files

This environment variable specifies the default record length, in bytes, for files which are
opened without a RECL tag in the OPEN statement. This must be a positive integer. The
default value is 1073741824 bytes (1 GB).

3.10 GFORTRAN_LIST_SEPARATOR—Separator for list output

This environment variable specifies the separator when writing list-directed output. It may
contain any number of spaces and at most one comma. If you specify this on the command
line, be sure to quote spaces, as in
$ GFORTRAN_LIST_SEPARATOR=’ , ° ./a.out
when a.out is the compiled Fortran program that you want to run. Default is a single
space.

3.11 GFORTRAN_CONVERT_UNIT—Set endianness for unformatted
I/0

By setting the GFORTRAN_CONVERT_UNIT variable, it is possible to change the representation
of data for unformatted files. The syntax for the GFORTRAN_CONVERT_UNIT variable is:

GFORTRAN_CONVERT_UNIT: mode | mode ’;’ exception | exception ;
mode: ’native’ | ’swap’ | ’big_endian’ | ’little_endian’ ;
exception: mode ’:’ unit_list | unit_list ;

unit_list: unit_spec | unit_list unit_spec ;

unit_spec: INTEGER | INTEGER ’-’ INTEGER ;

The variable consists of an optional default mode, followed by a list of optional excep-
tions, which are separated by semicolons from the preceding default and each other. Each
exception consists of a format and a comma-separated list of units. Valid values for the
modes are the same as for the CONVERT specifier:

NATIVE Use the native format. This is the default.
SWAP Swap between little- and big-endian.
LITTLE_ENDIAN Use the little-endian format for unformatted files.
BIG_ENDIAN Use the big-endian format for unformatted files.
A missing mode for an exception is taken to mean BIG_ENDIAN. Examples of values for
GFORTRAN_CONVERT_UNIT are:
’big_endian’ Do all unformatted I/O in big_endian mode.

’little_endian;native:10-20,25’ Do all unformatted I/O in little_endian mode,
except for units 10 to 20 and 25, which are in native format.

?10-20’ Units 10 to 20 are big-endian, the rest is native.

Chapter 3: Runtime: Influencing runtime behavior with environment variables 29

Setting the environment variables should be done on the command line or via the export
command for sh-compatible shells and via setenv for csh-compatible shells.

Example for sh:
$ gfortran foo.f90
$ GFORTRAN_CONVERT_UNIT=’big_endian;native:10-20’ ./a.out
Example code for csh:
% gfortran foo.f90
% setenv GFORTRAN_CONVERT_UNIT ’big_endian;native:10-20’
% ./a.out
Using anything but the native representation for unformatted data carries a significant
speed overhead. If speed in this area matters to you, it is best if you use this only for data
that needs to be portable.

See Section 6.1.15 [CONVERT specifier], page 47, for an alternative way to specify the
data representation for unformatted files. See Section 2.8 [Runtime Options], page 19, for
setting a default data representation for the whole program. The CONVERT specifier overrides
the ‘~fconvert’ compile options.

Note that the values specified via the GFORTRAN_CONVERT_UNIT environment vari-
able will override the CONVERT specifier in the open statement. This is to give control
over data formats to users who do not have the source code of their program available.

3.12 GFORTRAN_ERROR_BACKTRACE—Show backtrace on run-time
errors

If the GFORTRAN_ERROR_BACKTRACE variable is set to ‘y’, ‘Y’ or ‘1’ (only the first letter
is relevant) then a backtrace is printed when a serious run-time error occurs. To disable
the backtracing, set the variable to ‘n’, ‘N’; ‘0’. Default is to print a backtrace unless the
‘~fno-backtrace’ compile option was used.

Chapter 3: Runtime: Influencing runtime behavior with environment variables

Part 1I: Language Reference

31

Chapter 4: Fortran 2003 and 2008 Status 33

4 Fortran 2003 and 2008 Status

4.1 Fortran 2003 status

GNU Fortran supports several Fortran 2003 features; an incomplete list can be found below.
See also the wiki page about Fortran 2003.

Procedure pointers including procedure-pointer components with PASS attribute.
Procedures which are bound to a derived type (type-bound procedures) including PASS,
PROCEDURE and GENERIC, and operators bound to a type.

Abstract interfaces and type extension with the possibility to override type-bound
procedures or to have deferred binding.

Polymorphic entities (“CLASS”) for derived types — including SAME_TYPE_AS, EXTENDS_
TYPE_OF and SELECT TYPE. Note that unlimited polymorphism is currently not sup-
ported.

Generic interface names, which have the same name as derived types, are now sup-
ported. This allows one to write constructor functions. Note that Fortran does not
support static constructor functions. For static variables, only default initialization or
structure-constructor initialization are available.

The ASSOCIATE construct.

Interoperability with C including enumerations,

In structure constructors the components with default values may be omitted.
Extensions to the ALLOCATE statement, allowing for a type-specification with type pa-
rameter and for allocation and initialization from a SOURCE= expression; ALLOCATE and
DEALLOCATE optionally return an error message string via ERRMSG=.

Reallocation on assignment: If an intrinsic assignment is used, an allocatable vari-
able on the left-hand side is automatically allocated (if unallocated) or reallocated (if
the shape is different). Currently, scalar deferred character length left-hand sides are
correctly handled but arrays are not yet fully implemented.

Transferring of allocations via MOVE_ALLOC.

The PRIVATE and PUBLIC attributes may be given individually to derived-type compo-
nents.

In pointer assignments, the lower bound may be specified and the remapping of elements
is supported.

For pointers an INTENT may be specified which affect the association status not the
value of the pointer target.

Intrinsics command_argument_count, get_command, get_command_argument, and get_
environment_variable.

Support for Unicode characters (ISO 10646) and UTF-8, including the SELECTED_CHAR _
KIND and NEW_LINE intrinsic functions.

Support for binary, octal and hexadecimal (BOZ) constants in the intrinsic functions
INT, REAL, CMPLX and DBLE.

Support for namelist variables with allocatable and pointer attribute and nonconstant
length type parameter.

http://gcc.gnu.org/wiki/Fortran2003

34

The GNU Fortran Compiler

Array constructors using square brackets. That is, [...] rather than (/.../). Type-
specification for array constructors like (/ some-type :: ... /).

Extensions to the specification and initialization expressions, including the support for
intrinsics with real and complex arguments.

Support for the asynchronous input/output syntax; however, the data transfer is cur-
rently always synchronously performed.

FLUSH statement.
I0MSG= specifier for I/O statements.

Support for the declaration of enumeration constants via the ENUM and ENUMERATOR
statements. Interoperability with gcc is guaranteed also for the case where the -
fshort-enums command line option is given.

TR 15581:
e ALLOCATABLE dummy arguments.
e ALLOCATABLE function results
e ALLOCATABLE components of derived types

The OPEN statement supports the ACCESS=’STREAM’ specifier, allowing I/O without
any record structure.

Namelist input/output for internal files.

Further I/0 extensions: Rounding during formatted output, using of a decimal comma
instead of a decimal point, setting whether a plus sign should appear for positive
numbers.

The PROTECTED statement and attribute.

The VALUE statement and attribute.

The VOLATILE statement and attribute.

The IMPORT statement, allowing to import host-associated derived types.

The intrinsic modules ISO_FORTRAN_ENVIRONMENT is supported, which contains param-
eters of the I/O units, storage sizes. Additionally, procedures for C interoperability are
available in the ISO_C_BINDING module.

USE statement with INTRINSIC and NON_INTRINSIC attribute; supported intrinsic mod-
ules: ISO_FORTRAN_ENV, ISO_C_BINDING, OMP_LIB and OMP_LIB_KINDS.

Renaming of operators in the USE statement.

4.2 Fortran 2008 status

The latest version of the Fortran standard is ISO/IEC 1539-1:2010, informally known as
Fortran 2008. The official version is available from International Organization for Stan-
dardization (ISO) or its national member organizations. The the final draft (FDIS) can be
downloaded free of charge from http://www.nag.co.uk/sc22wgh/links.html. Fortran is
developed by the Working Group 5 of Sub-Committee 22 of the Joint Technical Committee 1
of the International Organization for Standardization and the International Electrotechnical
Commission (IEC). This group is known as WGH.

The GNU Fortran compiler supports several of the new features of Fortran 2008; the wiki

has some information about the current Fortran 2008 implementation status. In particular,
the following is implemented.

http://www.nag.co.uk/sc22wg5/links.html
http://www.nag.co.uk/sc22wg5/
http://gcc.gnu.org/wiki/Fortran2008Status

Chapter 4: Fortran 2003 and 2008 Status 35

e The ‘-std=f2008’ option and support for the file extensions ‘.£08” and ‘.F08’.

e The OPEN statement now supports the NEWUNIT= option, which returns a unique file
unit, thus preventing inadvertent use of the same unit in different parts of the program.

e The g0 format descriptor and unlimited format items.

e The mathematical intrinsics ASINH, ACOSH, ATANH, ERF, ERFC, GAMMA, LOG_GAMMA,
BESSEL_JO, BESSEL_J1, BESSEL_JN, BESSEL_YO, BESSEL_Y1, BESSEL_YN, HYPOT, NORM2,
and ERFC_SCALED.

e Using complex arguments with TAN, SINH, COSH, TANH, ASIN, ACOS, and ATAN is now
possible; ATAN(Y,X) is now an alias for ATAN2(Y,X).

e Support of the PARITY intrinsic functions.

e The following bit intrinsics: LEADZ and TRAILZ for counting the number of leading and
trailing zero bits, POPCNT and POPPAR for counting the number of one bits and returning
the parity; BGE, BGT, BLE, and BLT for bitwise comparisons; DSHIFTL and DSHIFTR for
combined left and right shifts, MASKL and MASKR for simple left and right justified masks,
MERGE_BITS for a bitwise merge using a mask, SHIFTA, SHIFTL and SHIFTR for shift
operations, and the transformational bit intrinsics TALL, TANY and IPARITY.

e Support of the EXECUTE_COMMAND_LINE intrinsic subroutine.
e Support for the STORAGE_SIZE intrinsic inquiry function.

e The INT{8,16,32} and REAL{32,64,128} kind type parameters and the array-valued
named constants INTEGER_KINDS, LOGICAL_KINDS, REAL_KINDS and CHARACTER_KINDS
of the intrinsic module ISO_FORTRAN_ENV.

e The module procedures C_SIZEOF of the intrinsic module ISO_C_BINDINGS and
COMPILER_VERSION and COMPILER_OPTIONS of ISO_FORTRAN_ENV.

e Coarray support for serial programs with ‘~fcoarray=single’ flag and experimental
support for multiple images with the ‘~fcoarray=1ib’ flag.

e The DO CONCURRENT construct is supported.

e The BLOCK construct is supported.

e The STOP and the new ERROR STOP statements now support all constant expressions.
e Support for the CONTIGUOUS attribute.

e Support for ALLOCATE with MOLD.

e Support for the IMPURE attribute for procedures, which allows for ELEMENTAL procedures
without the restrictions of PURE.

e Null pointers (including NULL ()) and not-allocated variables can be used as actual ar-
gument to optional non-pointer, non-allocatable dummy arguments, denoting an absent
argument.

e Non-pointer variables with TARGET attribute can be used as actual argument to POINTER
dummies with INTENT(IN).

e Pointers including procedure pointers and those in a derived type (pointer components)
can now be initialized by a target instead of only by NULL.

e The EXIT statement (with construct-name) can be now be used to leave not only the
DO but also the ASSOCTIATE, BLOCK, IF, SELECT CASE and SELECT TYPE constructs.

e Internal procedures can now be used as actual argument.

36 The GNU Fortran Compiler

e Minor features: obsolesce diagnostics for ENTRY with ‘-std=f2008’; a line may start
with a semicolon; for internal and module procedures END can be used instead of END
SUBROUTINE and END FUNCTION; SELECTED_REAL_KIND now also takes a RADIX argu-
ment; intrinsic types are supported for TYPE(intrinsic-type-spec); multiple type-bound
procedures can be declared in a single PROCEDURE statement; implied-shape arrays are
supported for named constants (PARAMETER).

4.3 Technical Specification 29113 Status

GNU Fortran supports some of the new features of the Technical Specification (TS) 29113
on Further Interoperability of Fortran with C. The wiki has some information about the
current TS 29113 implementation status. In particular, the following is implemented.

e The ‘-std=£2008ts’ option.
e The OPTIONAL attribute is allowed for dummy arguments of BIND(C) procedures.
e The RANK intrinsic is supported.

e GNU Fortran’s implementation for variables with ASYNCHRONQUS attribute is compati-
ble with TS 29113.

http://gcc.gnu.org/wiki/TS29113Status

Chapter 5: Compiler Characteristics 37

5 Compiler Characteristics

This chapter describes certain characteristics of the GNU Fortran compiler, that are not
specified by the Fortran standard, but which might in some way or another become visible
to the programmer.

5.1 KIND Type Parameters
The KIND type parameters supported by GNU Fortran for the primitive data types are:

INTEGER 1, 2, 4, 8%, 16%, default: 4 (1)
LOGICAL 1,2, 4, 8%, 16, default: 4 (1)
REAL 4, 8, 10*, 16*, default: 4 (2

)
COMPLEX 4, 8, 10%, 16*, default: 4 (2)
CHARACTER

1, 4, default: 1

* = not available on all systems
(1) Unless -fdefault-integer-8 is used
(2) Unless -fdefault-real-8 is used

The KIND value matches the storage size in bytes, except for COMPLEX where the storage size
is twice as much (or both real and imaginary part are a real value of the given size). It is
recommended to use the SELECTED_CHAR_KIND, SELECTED_INT_KIND and SELECTED_REAL_
KIND intrinsics or the INT8, INT16, INT32, INT64, REAL32, REAL64, and REAL128 parameters
of the ISO_FORTRAN_ENV module instead of the concrete values. The available kind parame-
ters can be found in the constant arrays CHARACTER_KINDS, INTEGER_KINDS, LOGICAL_KINDS
and REAL_KINDS in the ISO_FORTRAN_ENV module (see Section 9.1 [[SO_FORTRAN_ENV],
page 213).

5.2 Internal representation of LOGICAL variables

The Fortran standard does not specify how variables of LOGICAL type are represented,
beyond requiring that LOGICAL variables of default kind have the same storage size as default
INTEGER and REAL variables. The GNU Fortran internal representation is as follows.

A LOGICAL(KIND=N) variable is represented as an INTEGER(KIND=N) variable, however,
with only two permissible values: 1 for .TRUE. and O for .FALSE.. Any other integer value
results in undefined behavior.

Note that for mixed-language programming using the ISO_C_BINDING feature, there
is a C_BOOL kind that can be used to create LOGICAL(KIND=C_BOOL) variables which are
interoperable with the C99 _Bool type. The C99 _Bool type has an internal representation
described in the C99 standard, which is identical to the above description, i.e. with 1 for
true and 0 for false being the only permissible values. Thus the internal representation of
LOGICAL variables in GNU Fortran is identical to C99 _Bool, except for a possible difference
in storage size depending on the kind.

38 The GNU Fortran Compiler

5.3 Thread-safety of the runtime library

GNU Fortran can be used in programs with multiple threads, e.g. by using OpenMP, by
calling OS thread handling functions via the ISO_C_BINDING facility, or by GNU Fortran
compiled library code being called from a multi-threaded program.

The GNU Fortran runtime library, (libgfortran), supports being called concurrently
from multiple threads with the following exceptions.

During library initialization, the C getenv function is used, which need not be thread-
safe. Similarly, the getenv function is used to implement the GET_ENVIRONMENT_VARIABLE
and GETENV intrinsics. It is the responsibility of the user to ensure that the environment is
not being updated concurrently when any of these actions are taking place.

The EXECUTE_COMMAND_LINE and SYSTEM intrinsics are implemented with the system
function, which need not be thread-safe. It is the responsibility of the user to ensure that
system is not called concurrently.

Finally, for platforms not supporting thread-safe POSIX functions, further functionality
might not be thread-safe. For details, please consult the documentation for your operating
system.

5.4 Data consistency and durability

This section contains a brief overview of data and metadata consistency and durability
issues when doing I/0.

With respect to durability, GNU Fortran makes no effort to ensure that data is commit-
ted to stable storage. If this is required, the GNU Fortran programmer can use the intrinsic
FNUM to retrieve the low level file descriptor corresponding to an open Fortran unit. Then,
using e.g. the ISO_C_BINDING feature, one can call the underlying system call to flush
dirty data to stable storage, such as fsync on POSIX, _commit on MingW, or fcntl(£fd,
F_FULLSYNC, 0) on Mac OS X. The following example shows how to call fsync:

! Declare the interface for POSIX fsync function
interface
function fsync (£fd) bind(c,name="fsync")
use iso_c_binding, only: c_int
integer(c_int), value :: fd
integer(c_int) :: fsync
end function fsync
end interface

! Variable declaration
integer :: ret

! Opening unit 10
open (10,file="foo")

! Perform I/0 on unit 10
oL

! Flush and sync
flush(10)
ret = fsync(fnum(10))

Chapter 5: Compiler Characteristics 39

! Handle possible error
if (ret /= 0) stop "Error calling FSYNC"

With respect to consistency, for regular files GNU Fortran uses buffered I/0O in order
to improve performance. This buffer is flushed automatically when full and in some other
situations, e.g. when closing a unit. It can also be explicitly flushed with the FLUSH
statement. Also, the buffering can be turned off with the GFORTRAN_UNBUFFERED_ALL and
GFORTRAN_UNBUFFERED_PRECONNECTED environment variables. Special files, such as termi-
nals and pipes, are always unbuffered. Sometimes, however, further things may need to be
done in order to allow other processes to see data that GNU Fortran has written, as follows.

The Windows platform supports a relaxed metadata consistency model, where file meta-
data is written to the directory lazily. This means that, for instance, the dir command can
show a stale size for a file. One can force a directory metadata update by closing the unit,
or by calling _commit on the file descriptor. Note, though, that _commit will force all dirty
data to stable storage, which is often a very slow operation.

The Network File System (NFS) implements a relaxed consistency model called open-to-
close consistency. Closing a file forces dirty data and metadata to be flushed to the server,
and opening a file forces the client to contact the server in order to revalidate cached data.
fsync will also force a flush of dirty data and metadata to the server. Similar to open and
close, acquiring and releasing fcntl file locks, if the server supports them, will also force
cache validation and flushing dirty data and metadata.

Chapter 6: Extensions 41

6 Extensions

The two sections below detail the extensions to standard Fortran that are implemented in
GNU Fortran, as well as some of the popular or historically important extensions that are
not (or not yet) implemented. For the latter case, we explain the alternatives available to
GNU Fortran users, including replacement by standard-conforming code or GNU extensions.

6.1 Extensions implemented in GNU Fortran

GNU Fortran implements a number of extensions over standard Fortran. This chapter con-
tains information on their syntax and meaning. There are currently two categories of GNU
Fortran extensions, those that provide functionality beyond that provided by any standard,
and those that are supported by GNU Fortran purely for backward compatibility with
legacy compilers. By default, ‘-std=gnu’ allows the compiler to accept both types of exten-
sions, but to warn about the use of the latter. Specifying either ‘-std=f95’, ‘~std=£2003’
or ‘-std=£2008’ disables both types of extensions, and ‘-std=legacy’ allows both without
warning.

6.1.1 Old-style kind specifications

GNU Fortran allows old-style kind specifications in declarations. These look like:
TYPESPEC*size x,y,z

where TYPESPEC is a basic type (INTEGER, REAL, etc.), and where size is a byte count
corresponding to the storage size of a valid kind for that type. (For COMPLEX variables,
size is the total size of the real and imaginary parts.) The statement then declares x, y
and z to be of type TYPESPEC with the appropriate kind. This is equivalent to the standard-
conforming declaration

TYPESPEC(k) x,y,z

where k is the kind parameter suitable for the intended precision. As kind parameters are
implementation-dependent, use the KIND, SELECTED_INT_KIND and SELECTED_REAL_KIND
intrinsics to retrieve the correct value, for instance REAL*8 x can be replaced by:

INTEGER, PARAMETER :: dbl = KIND(1.0dO)
REAL (KIND=dbl) :: x

6.1.2 Old-style variable initialization

GNU Fortran allows old-style initialization of variables of the form:
INTEGER i/1/,3/2/
REAL x(2,2) /3%0.,1./

The syntax for the initializers is as for the DATA statement, but unlike in a DATA state-
ment, an initializer only applies to the variable immediately preceding the initialization. In
other words, something like INTEGER I,J/2,3/ is not valid. This style of initialization is
only allowed in declarations without double colons (: :); the double colons were introduced
in Fortran 90, which also introduced a standard syntax for initializing variables in type
declarations.

Examples of standard-conforming code equivalent to the above example are:

! Fortran 90
INTEGER :: i

=1, j=2
REAL :: x(2,2) =

RESHAPE((/0.,0.,0.,1./),SHAPE(x))

42 The GNU Fortran Compiler

! Fortran 77
INTEGER i, j
REAL x(2,2)
DATA i/1/, j/2/, x/3%0.,1./
Note that variables which are explicitly initialized in declarations or in DATA statements
automatically acquire the SAVE attribute.

6.1.3 Extensions to namelist

GNU Fortran fully supports the Fortran 95 standard for namelist I/O including array
qualifiers, substrings and fully qualified derived types. The output from a namelist write is
compatible with namelist read. The output has all names in upper case and indentation to
column 1 after the namelist name. Two extensions are permitted:

Old-style use of ‘$’ instead of ‘&’

$MYNML

X(:)%Y(2) = 1.0 2.0 3.0
CH(1:4) = "abcd"

$END

It should be noted that the default terminator is ‘/’ rather than ‘&END’.

Querying of the namelist when inputting from stdin. After at least one space, entering

*?” sends to stdout the namelist name and the names of the variables in the namelist:
?

&mynml
X
xhy
ch

&end

Entering ‘=7’ outputs the namelist to stdout, as if WRITE(*,NML = mynml) had been
called:

=7

&MYNML

X(1)%Y=0.000000 , 1.000000 , 0.000000 s
X(2)%Y=0.000000 , 2.000000 , 0.000000 ,
X(3)%Y= 0.000000 , 3.000000 , 0.000000 s
CH=abcd, /

To aid this dialog, when input is from stdin, errors send their messages to stderr and
execution continues, even if IOSTAT is set.

PRINT namelist is permitted. This causes an error if ‘-std=£95’ is used.
PROGRAM test_print
REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/)
NAMELIST /mynml/ x
PRINT mynml
END PROGRAM test_print

Expanded namelist reads are permitted. This causes an error if ‘-std=£f95’ is used. In
the following example, the first element of the array will be given the value 0.00 and the
two succeeding elements will be given the values 1.00 and 2.00.

&MYNML
X(1,1) = 0.00 , 1.00 , 2.00
/

Chapter 6: Extensions 43

6.1.4 X format descriptor without count field

To support legacy codes, GNU Fortran permits the count field of the X edit descriptor in
FORMAT statements to be omitted. When omitted, the count is implicitly assumed to be
one.

PRINT 10, 2, 3
10 FORMAT (I1, X, I1)

6.1.5 Commas in FORMAT specifications

To support legacy codes, GNU Fortran allows the comma separator to be omitted immedi-
ately before and after character string edit descriptors in FORMAT statements.

PRINT 10, 2, 3
10 FORMAT (°F00="I1’ BAR=’I2)

6.1.6 Missing period in FORMAT specifications

To support legacy codes, GNU Fortran allows missing periods in format specifications if
and only if ‘-std=legacy’ is given on the command line. This is considered non-conforming
code and is discouraged.

REAL :: value
READ(*,10) value
10 FORMAT (°F4’)

6.1.7 I/0 item lists

To support legacy codes, GNU Fortran allows the input item list of the READ statement,
and the output item lists of the WRITE and PRINT statements, to start with a comma.

6.1.8 Q exponent-letter

GNU Fortran accepts real literal constants with an exponent-letter of Q, for example,
1.23Q45. The constant is interpreted as a REAL(16) entity on targets that support this
type. If the target does not support REAL(16) but has a REAL(10) type, then the real-
literal-constant will be interpreted as a REAL(10) entity. In the absence of REAL(16) and
REAL(10), an error will occur.

6.1.9 BOZ literal constants

Besides decimal constants, Fortran also supports binary (b), octal (o) and hexadecimal (z)
integer constants. The syntax is: ‘prefix quote digits quote’, were the prefix is either b,
o or z, quote is either > or " and the digits are for binary 0 or 1, for octal between 0 and
7, and for hexadecimal between 0 and F. (Example: b’01011101°.)

Up to Fortran 95, BOZ literals were only allowed to initialize integer variables in DATA
statements. Since Fortran 2003 BOZ literals are also allowed as argument of REAL, DBLE,
INT and CMPLX; the result is the same as if the integer BOZ literal had been converted by
TRANSFER to, respectively, real, double precision, integer or complex. As GNU Fortran
extension the intrinsic procedures FLOAT, DFLOAT, COMPLEX and DCMPLX are treated alike.

As an extension, GNU Fortran allows hexadecimal BOZ literal constants to be specified
using the X prefix, in addition to the standard Z prefix. The BOZ literal can also be specified
by adding a suffix to the string, for example, Z>ABC’> and >ABC’Z are equivalent.

44 The GNU Fortran Compiler

Furthermore, GNU Fortran allows using BOZ literal constants outside DATA statements
and the four intrinsic functions allowed by Fortran 2003. In DATA statements, in direct
assignments, where the right-hand side only contains a BOZ literal constant, and for old-
style initializers of the form integer i /0’0173’ /, the constant is transferred as if TRANSFER
had been used; for COMPLEX numbers, only the real part is initialized unless CMPLX is used.
In all other cases, the BOZ literal constant is converted to an INTEGER value with the largest
decimal representation. This value is then converted numerically to the type and kind of the
variable in question. (For instance, real :: r = b’0000001° + 1 initializes r with 2.0.) As
different compilers implement the extension differently, one should be careful when doing
bitwise initialization of non-integer variables.

Note that initializing an INTEGER variable with a statement such as DATA
i/Z’FFFFFFFF’/ will give an integer overflow error rather than the desired result
of —1 when i is a 32-bit integer on a system that supports 64-bit integers. The
‘~fno-range-check’ option can be used as a workaround for legacy code that initializes
integers in this manner.

6.1.10 Real array indices

As an extension, GNU Fortran allows the use of REAL expressions or variables as array
indices.

6.1.11 Unary operators

As an extension, GNU Fortran allows unary plus and unary minus operators to appear as
the second operand of binary arithmetic operators without the need for parenthesis.
X =Y % -Z

6.1.12 Implicitly convert LOGICAL and INTEGER values

As an extension for backwards compatibility with other compilers, GNU Fortran allows the
implicit conversion of LOGICAL values to INTEGER values and vice versa. When converting
from a LOGICAL to an INTEGER, .FALSE. is interpreted as zero, and .TRUE. is interpreted as
one. When converting from INTEGER to LOGICAL, the value zero is interpreted as .FALSE.
and any nonzero value is interpreted as .TRUE..

LOGICAL :: 1
1=1
INTEGER :: i
i = .TRUE.

However, there is no implicit conversion of INTEGER values in if-statements, nor of
LOGICAL or INTEGER values in I/O operations.

6.1.13 Hollerith constants support

GNU Fortran supports Hollerith constants in assignments, function arguments, and DATA
and ASSIGN statements. A Hollerith constant is written as a string of characters preceded
by an integer constant indicating the character count, and the letter H or h, and stored
in bytewise fashion in a numeric (INTEGER, REAL, or complex) or LOGICAL variable. The
constant will be padded or truncated to fit the size of the variable in which it is stored.

Examples of valid uses of Hollerith constants:

Chapter 6: Extensions 45

complex*16 x(2)
data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
x(1) = 16HABCDEFGHIJKLVMNOP
call foo (4h abc)
Invalid Hollerith constants examples:

integer*4 a
a = 8H12345678 ! Valid, but the Hollerith constant will be truncated.
a = OH ! At least one character is needed.

In general, Hollerith constants were used to provide a rudimentary facility for handling
character strings in early Fortran compilers, prior to the introduction of CHARACTER variables
in Fortran 77; in those cases, the standard-compliant equivalent is to convert the program
to use proper character strings. On occasion, there may be a case where the intent is
specifically to initialize a numeric variable with a given byte sequence. In these cases, the
same result can be obtained by using the TRANSFER statement, as in this example.

INTEGER(KIND=4) :: a
a = TRANSFER ("abcd", a) ! equivalent to: a = 4Habcd

6.1.14 Cray pointers

Cray pointers are part of a non-standard extension that provides a C-like pointer in Fortran.
This is accomplished through a pair of variables: an integer "pointer" that holds a memory
address, and a "pointee" that is used to dereference the pointer.

Pointer /pointee pairs are declared in statements of the form:
pointer (<pointer> , <pointee>)
or,

pointer (<pointerl> , <pointeel>), (<pointer2> , <pointee2>), ...

The pointer is an integer that is intended to hold a memory address. The pointee may
be an array or scalar. A pointee can be an assumed size array—that is, the last dimension
may be left unspecified by using a * in place of a value—but a pointee cannot be an assumed
shape array. No space is allocated for the pointee.

The pointee may have its type declared before or after the pointer statement, and its
array specification (if any) may be declared before, during, or after the pointer statement.
The pointer may be declared as an integer prior to the pointer statement. However, some
machines have default integer sizes that are different than the size of a pointer, and so the
following code is not portable:

integer ipt
pointer (ipt, iarr)

If a pointer is declared with a kind that is too small, the compiler will issue a warning;
the resulting binary will probably not work correctly, because the memory addresses stored
in the pointers may be truncated. It is safer to omit the first line of the above example;
if explicit declaration of ipt’s type is omitted, then the compiler will ensure that ipt is an
integer variable large enough to hold a pointer.

Pointer arithmetic is valid with Cray pointers, but it is not the same as C pointer arith-
metic. Cray pointers are just ordinary integers, so the user is responsible for determining
how many bytes to add to a pointer in order to increment it. Consider the following example:

real target(10)
real pointee(10)
pointer (ipt, pointee)

46 The GNU Fortran Compiler

ipt
ipt

= loc (target)
= ipt + 1

The last statement does not set ipt to the address of target (1), as it would in C pointer
arithmetic. Adding 1 to ipt just adds one byte to the address stored in ipt.

Any expression involving the pointee will be translated to use the value stored in the
pointer as the base address.

To get the address of elements, this extension provides an intrinsic function LOC(). The
LOC() function is equivalent to the & operator in C, except the address is cast to an integer
type:

real ar(10)

pointer (ipt, arpte(10))

real arpte

ipt = loc(ar) ! Makes arpte is an alias for ar
arpte(1) = 1.0 ! Sets ar(1) to 1.0

The pointer can also be set by a call to the MALLOC intrinsic (see Section 8.160 [MALLOC],
page 158).

Cray pointees often are used to alias an existing variable. For example:

integer target(10)
integer iarr(10)
pointer (ipt, iarr)
ipt = loc(target)

As long as ipt remains unchanged, iarr is now an alias for target. The optimizer,
however, will not detect this aliasing, so it is unsafe to use iarr and target simultaneously.
Using a pointee in any way that violates the Fortran aliasing rules or assumptions is illegal.
It is the user’s responsibility to avoid doing this; the compiler works under the assumption
that no such aliasing occurs.

Cray pointers will work correctly when there is no aliasing (i.e., when they are used to
access a dynamically allocated block of memory), and also in any routine where a pointee
is used, but any variable with which it shares storage is not used. Code that violates these
rules may not run as the user intends. This is not a bug in the optimizer; any code that
violates the aliasing rules is illegal. (Note that this is not unique to GNU Fortran; any
Fortran compiler that supports Cray pointers will “incorrectly” optimize code with illegal
aliasing.)

There are a number of restrictions on the attributes that can be applied to Cray point-
ers and pointees. Pointees may not have the ALLOCATABLE, INTENT, OPTIONAL, DUMMY,
TARGET, INTRINSIC, or POINTER attributes. Pointers may not have the DIMENSION, POINTER,
TARGET, ALLOCATABLE, EXTERNAL, or INTRINSIC attributes, nor may they be function re-
sults. Pointees may not occur in more than one pointer statement. A pointee cannot be a
pointer. Pointees cannot occur in equivalence, common, or data statements.

A Cray pointer may also point to a function or a subroutine. For example, the following
excerpt is valid:
implicit none
external sub
pointer (subptr,subpte)
external subpte
subptr = loc(sub)
call subpte()
[...]

Chapter 6: Extensions 47

subroutine sub
[...]
end subroutine sub
A pointer may be modified during the course of a program, and this will change the
location to which the pointee refers. However, when pointees are passed as arguments, they
are treated as ordinary variables in the invoked function. Subsequent changes to the pointer
will not change the base address of the array that was passed.

6.1.15 CONVERT specifier

GNU Fortran allows the conversion of unformatted data between little- and big-endian
representation to facilitate moving of data between different systems. The conversion can
be indicated with the CONVERT specifier on the OPEN statement. See Section 3.11 [GFOR-
TRAN_CONVERT_UNIT], page 28, for an alternative way of specifying the data format
via an environment variable.

Valid values for CONVERT are:
CONVERT=’NATIVE’ Use the native format. This is the default.
CONVERT=’SWAP’ Swap between little- and big-endian.
CONVERT=’LITTLE_ENDIAN’ Use the little-endian representation for unformatted files.
CONVERT=’BIG_ENDIAN’ Use the big-endian representation for unformatted files.

Using the option could look like this:
open(file=’big.dat’,form="unformatted’,access=’sequential’, &
convert=’big_endian’)
The value of the conversion can be queried by using INQUIRE (CONVERT=ch). The values
returned are >BIG_ENDIAN’ and ’LITTLE_ENDIAN’.

CONVERT works between big- and little-endian for INTEGER values of all supported kinds
and for REAL on IEEE systems of kinds 4 and 8. Conversion between different “extended
double” types on different architectures such as m68k and x86_64, which GNU Fortran
supports as REAL(KIND=10) and REAL(KIND=16), will probably not work.

Note that the values specified via the GFORTRAN_CONVERT_UNIT environment vari-
able will override the CONVERT specifier in the open statement. This is to give control
over data formats to users who do not have the source code of their program available.

Using anything but the native representation for unformatted data carries a significant
speed overhead. If speed in this area matters to you, it is best if you use this only for data
that needs to be portable.

6.1.16 OpenMP

OpenMP (Open Multi-Processing) is an application programming interface (API) that sup-
ports multi-platform shared memory multiprocessing programming in C/C++ and Fortran
on many architectures, including Unix and Microsoft Windows platforms. It consists of a set
of compiler directives, library routines, and environment variables that influence run-time
behavior.

GNU Fortran strives to be compatible to the OpenMP Application Program Interface
v3.1.

http://www.openmp.org/mp-documents/spec31.pdf
http://www.openmp.org/mp-documents/spec31.pdf

48 The GNU Fortran Compiler

To enable the processing of the OpenMP directive !$omp in free-form source code; the
c$omp, *$omp and !$omp directives in fixed form; the !'$ conditional compilation sentinels in
free form; and the c$, *$ and !'$ sentinels in fixed form, gfortran needs to be invoked with
the ‘~fopenmp’. This also arranges for automatic linking of the GNU OpenMP runtime
library Section “libgomp” in GNU OpenMP runtime library.

The OpenMP Fortran runtime library routines are provided both in a form of a Fortran
90 module named omp_1ib and in a form of a Fortran include file named ‘omp_1ib.h’.

An example of a parallelized loop taken from Appendix A.1 of the OpenMP Application
Program Interface v2.5:

SUBROUTINE A1(N, A, B)
INTEGER I, N
REAL B(N), A(N)
'$OMP PARALLEL DO !I is private by default
DO I=2,N
B(I) = (A(I) + A(I-1)) / 2.0
ENDDO
'$0MP END PARALLEL DO
END SUBROUTINE A1l

Please note:

e ‘—fopenmp’ implies ‘-frecursive’, i.e., all local arrays will be allocated on the stack.
When porting existing code to OpenMP, this may lead to surprising results, especially
to segmentation faults if the stacksize is limited.

e On glibe-based systems, OpenMP enabled applications cannot be statically linked due
to limitations of the underlying pthreads-implementation. It might be possible to get
a working solution if -Wl,--whole-archive -lpthread -Wl,--no-whole-archive is
added to the command line. However, this is not supported by gcc and thus not
recommended.

6.1.17 Argument list functions VAL, %REF and %L0C

GNU Fortran supports argument list functions %VAL, %REF and %LOC statements, for back-
ward compatibility with g77. It is recommended that these should be used only for code
that is accessing facilities outside of GNU Fortran, such as operating system or windowing
facilities. It is best to constrain such uses to isolated portions of a program—portions that
deal specifically and exclusively with low-level, system-dependent facilities. Such portions
might well provide a portable interface for use by the program as a whole, but are them-
selves not portable, and should be thoroughly tested each time they are rebuilt using a new
compiler or version of a compiler.

%VAL passes a scalar argument by value, %REF passes it by reference and %LOC passes its
memory location. Since gfortran already passes scalar arguments by reference, %REF is in
effect a do-nothing. %L0OC has the same effect as a Fortran pointer.

An example of passing an argument by value to a C subroutine foo.:

¢
C prototype void foo_ (float x);
C

external foo

real*4 x

x = 3.14159

call foo (%AVAL (x))

Chapter 6: Extensions 49

end

For details refer to the g77 manual http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/
index.html#Top.

Also, c_by_val.f and its partner c_by_val.c of the GNU Fortran testsuite are worth
a look.

6.2 Extensions not implemented in GNU Fortran

The long history of the Fortran language, its wide use and broad userbase, the large num-
ber of different compiler vendors and the lack of some features crucial to users in the first
standards have lead to the existence of a number of important extensions to the language.
While some of the most useful or popular extensions are supported by the GNU Fortran
compiler, not all existing extensions are supported. This section aims at listing these ex-
tensions and offering advice on how best make code that uses them running with the GNU
Fortran compiler.

6.2.1 STRUCTURE and RECORD

Structures are user-defined aggregate data types; this functionality was standardized in
Fortran 90 with an different syntax, under the name of “derived types”. Here is an example
of code using the non portable structure syntax:

! Declaring a structure named ‘‘item’’ and containing three fields:
! an integer ID, an description string and a floating-point price.
STRUCTURE /item/

INTEGER id

CHARACTER (LEN=200) description

REAL price
END STRUCTURE

‘‘item’’

| Define two variables, an single record of type
| named ‘‘pear’’, and an array of items named °‘store_catalog’’

RECORD /item/ pear, store_catalog(100)

! We can directly access the fields of both variables
pear.id = 92316

pear.description = "juicy D’Anjou pear"

pear.price = 0.15

store_catalog(7).id = 7831

store_catalog(7) .description = "milk bottle"
store_catalog(7) .price = 1.2

I We can also manipulate the whole structure
store_catalog(12) = pear
print *, store_catalog(12)

This code can easily be rewritten in the Fortran 90 syntax as following:

I ““STRUCTURE /name/ ... END STRUCTURE’’ becomes
I ““TYPE name ... END TYPE’’

http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top
http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top

50 The GNU Fortran Compiler

TYPE item
INTEGER id
CHARACTER (LEN=200) description
REAL price

END TYPE

| “‘RECORD /name/ variable’’ becomes ‘‘TYPE(name) variable’’
TYPE(item) pear, store_catalog(100)

! Instead of using a dot (.) to access fields of a record, the
! standard syntax uses a percent sign (%)

pear’%id = 92316

pearfdescription = "juicy D’Anjou pear"

pearyprice = 0.15

store_catalog(7)%id = 7831

store_catalog(7)%description = "milk bottle"
store_catalog(7)%price = 1.2

| Assignments of a whole variable do not change
store_catalog(12) = pear
print *, store_catalog(12)

6.2.2 ENCODE and DECODE statements

GNU Fortran does not support the ENCODE and DECODE statements. These statements are
best replaced by READ and WRITE statements involving internal files (CHARACTER variables
and arrays), which have been part of the Fortran standard since Fortran 77. For example,
replace a code fragment like
INTEGER*1 LINE(80)
REAL A, B, C
c ... Code that sets LINE

DECODE (80, 9000, LINE) A, B, C
9000 FORMAT (1X, 3(F10.5))

with the following:
CHARACTER (LEN=80) LINE
REAL A, B, C
c ... Code that sets LINE
READ (UNIT=LINE, FMT=9000) A, B, C
9000 FORMAT (1X, 3(F10.5))

Similarly, replace a code fragment like
INTEGER*1 LINE(80)
REAL A, B, C
c ... Code that sets A, B and C
ENCODE (80, 9000, LINE) A, B, C
9000 FORMAT (1X, °’O0UTPUT IS ’, 3(F10.5))

with the following:
CHARACTER (LEN=80) LINE
REAL A, B, C
c ... Code that sets A, B and C
WRITE (UNIT=LINE, FMT=9000) A, B, C
9000 FORMAT (1X, °’O0UTPUT IS ’, 3(F10.5))

Chapter 6: Extensions 51

6.2.3 Variable FORMAT expressions

A variable FORMAT expression is format statement which includes angle brackets enclosing a
Fortran expression: FORMAT(I<N>). GNU Fortran does not support this legacy extension.
The effect of variable format expressions can be reproduced by using the more powerful
(and standard) combination of internal output and string formats. For example, replace a
code fragment like this:
WRITE(6,20) INT1
20 FORMAT (I<N+1>)
with the following:

c Variable declaration
CHARACTER (LEN=20) FMT

c

c Other code here...

c
WRITE(FMT,’> ("(I", I0, ")")’) N+1i
WRITE(6,FMT) INT1

or with:
c Variable declaration
CHARACTER (LEN=20) FMT
c
c Other code here...

WRITE(FMT,*) N+1
WRITE(6," (I" // ADJUSTL(FMT) // ")") INT1

6.2.4 Alternate complex function syntax

Some Fortran compilers, including g77, let the user declare complex functions with the
syntax COMPLEX FUNCTION namex16(), as well as COMPLEX*16 FUNCTION name (). Both are
non-standard, legacy extensions. gfortran accepts the latter form, which is more common,
but not the former.

Chapter 7: Mixed-Language Programming 53

7 Mixed-Language Programming

This chapter is about mixed-language interoperability, but also applies if one links Fortran
code compiled by different compilers. In most cases, use of the C Binding features of the
Fortran 2003 standard is sufficient, and their use is highly recommended.

7.1 Interoperability with C

Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a standardized way to generate
procedure and derived-type declarations and global variables which are interoperable with
C (ISO/IEC 9899:1999). The bind(C) attribute has been added to inform the compiler that
a symbol shall be interoperable with C; also, some constraints are added. Note, however,
that not all C features have a Fortran equivalent or vice versa. For instance, neither C’s
unsigned integers nor C’s functions with variable number of arguments have an equivalent
in Fortran.

Note that array dimensions are reversely ordered in C and that arrays in C always start
with index 0 while in Fortran they start by default with 1. Thus, an array declaration
A(n,m) in Fortran matches A[m] [n] in C and accessing the element A(i,j) matches A[j-
1] [i-1]. The element following A(i,j) (C: A[j-1] [i-1]; assuming ¢ < n) in memory is
A(i+1,j) (C: A[j-111[4i]).

7.1.1 Intrinsic Types

In order to ensure that exactly the same variable type and kind is used in C and Fortran, the
named constants shall be used which are defined in the ISO_C_BINDING intrinsic module.
That module contains named constants for kind parameters and character named constants
for the escape sequences in C. For a list of the constants, see Section 9.2 [[SO_C_BINDING],
page 214.

7.1.2 Derived Types and struct

For compatibility of derived types with struct, one needs to use the BIND(C) attribute in
the type declaration. For instance, the following type declaration

USE ISO_C_BINDING

TYPE, BIND(C) :: myType
INTEGER(C_INT) :: i1, i2
INTEGER (C_SIGNED_CHAR) :: i3
REAL(C_DOUBLE) :: di
COMPLEX (C_FLOAT_COMPLEX) :: ci
CHARACTER (KIND=C_CHAR) :: str(5)

END TYPE

matches the following struct declaration in C

struct {
int i1, i2;
/* Note: "char" might be signed or unsigned. */
signed char i3;
double di;
float _Complex cli;
char str[5];

} myType;

Derived types with the C binding attribute shall not have the sequence attribute, type
parameters, the extends attribute, nor type-bound procedures. Every component must be

54 The GNU Fortran Compiler

of interoperable type and kind and may not have the pointer or allocatable attribute.
The names of the variables are irrelevant for interoperability.

As there exist no direct Fortran equivalents, neither unions nor structs with bit field or
variable-length array members are interoperable.

7.1.3 Interoperable Global Variables

Variables can be made accessible from C using the C binding attribute, optionally together
with specifying a binding name. Those variables have to be declared in the declaration part
of a MODULE, be of interoperable type, and have neither the pointer nor the allocatable
attribute.
MODULE m
USE myType_module
USE ISO_C_BINDING
integer (C_INT), bind(C, name="_MyProject_flags") :: global_flag
type (myType), bind(C) :: tp
END MODULE
Here, _MyProject_flags is the case-sensitive name of the variable as seen from C pro-
grams while global_flag is the case-insensitive name as seen from Fortran. If no binding
name is specified, as for tp, the C binding name is the (lowercase) Fortran binding name.
If a binding name is specified, only a single variable may be after the double colon. Note of
warning: You cannot use a global variable to access errno of the C library as the C standard
allows it to be a macro. Use the IERRNO intrinsic (GNU extension) instead.

7.1.4 Interoperable Subroutines and Functions

Subroutines and functions have to have the BIND(C) attribute to be compatible with C.
The dummy argument declaration is relatively straightforward. However, one needs to be
careful because C uses call-by-value by default while Fortran behaves usually similar to
call-by-reference. Furthermore, strings and pointers are handled differently. Note that only
explicit size and assumed-size arrays are supported but not assumed-shape or allocatable
arrays.

To pass a variable by value, use the VALUE attribute. Thus the following C prototype
int func(int i, int *j)
matches the Fortran declaration
integer(c_int) function func(i,j)
use iso_c_binding, only: c_int
integer(c_int), VALUE :: i
integer(c_int) :: j
Note that pointer arguments also frequently need the VALUE attribute, see Section 7.1.5
[Working with Pointers], page 55.

Strings are handled quite differently in C and Fortran. In C a string is a NUL-terminated
array of characters while in Fortran each string has a length associated with it and is thus
not terminated (by e.g. NUL). For example, if one wants to use the following C function,

#include <stdio.h>
void print_C(char *string) /* equivalent: char string[] */
{
printf("%s\n", string);
}

to print “Hello World” from Fortran, one can call it using

Chapter 7: Mixed-Language Programming 55

use iso_c_binding, only: C_CHAR, C_NULL_CHAR
interface
subroutine print_c(string) bind(C, name="print_C")
use iso_c_binding, only: c_char
character(kind=c_char) :: string(x)
end subroutine print_c
end interface
call print_c(C_CHAR_"Hello World"//C_NULL_CHAR)

As the example shows, one needs to ensure that the string is NUL terminated. Addi-
tionally, the dummy argument string of print_C is a length-one assumed-size array; using
character(len=x) is not allowed. The example above uses c_char_"Hello World" to en-
sure the string literal has the right type; typically the default character kind and c_char are

the same and thus "Hello World" is equivalent. However, the standard does not guarantee
this.

The use of strings is now further illustrated using the C library function strncpy, whose
prototype is

char *strncpy(char *restrict sl1, const char *restrict s2, size_t n);

The function strncpy copies at most n characters from string s2 to sl and returns sl.
In the following example, we ignore the return value:

use iso_c_binding

implicit none

character(len=30) :: str,str2

interface
! Ignore the return value of strncpy -> subroutine
! "restrict" is always assumed if we do not pass a pointer
subroutine strncpy(dest, src, n) bind(C)

import

character(kind=c_char), intent(out) :: dest(x)
character(kind=c_char), intent(in) :: src(*)
integer(c_size_t), value, intent(in) :: n

end subroutine strncpy
end interface
str = repeat(’X’,30) ! Initialize whole string with ’X’
call strncpy(str, c_char_"Hello World"//C_NULL_CHAR, &
len(c_char_"Hello World",kind=c_size_t))
print ’(a)’, str ! prints: "Hello WorldXXXXXXXXXXXXXXXXXXX"
end

The intrinsic procedures are described in Chapter 8 [Intrinsic Procedures|, page 63.

7.1.5 Working with Pointers

C pointers are represented in Fortran via the special opaque derived type type (c_ptr) (with
private components). Thus one needs to use intrinsic conversion procedures to convert from
or to C pointers. For example,

use iso_c_binding

type(c_ptr) :: cptrl, cptr2

integer, target :: array(7), scalar

integer, pointer :: pa(:), ps

cptrl = c_loc(array(l)) ! The programmer needs to ensure that the
! array is contiguous if required by the C
! procedure

cptr2 = c_loc(scalar)

call c_f_pointer(cptr2, ps)

56 The GNU Fortran Compiler

call c_f_pointer(cptr2, pa, shape=[7])

When converting C to Fortran arrays, the one-dimensional SHAPE argument has to be
passed.

If a pointer is a dummy-argument of an interoperable procedure, it usually has to be
declared using the VALUE attribute. void* matches TYPE(C_PTR), VALUE, while TYPE(C_
PTR) alone matches void*x*.

Procedure pointers are handled analogously to pointers; the C type is TYPE(C_FUNPTR)
and the intrinsic conversion procedures are C_F_PROCPOINTER and C_FUNLOC.

Let us consider two examples of actually passing a procedure pointer from C to Fortran
and vice versa. Note that these examples are also very similar to passing ordinary pointers
between both languages. First, consider this code in C:

/* Procedure implemented in Fortran. */
void get_values (void (*)(double));

/* Call-back routine we want called from Fortran. */
void
print_it (double x)
{
printf ("Number is %f.\n", x);
}

/* Call Fortran routine and pass call-back to it. */
void
foobar ()
{
get_values (&print_it);
}

A matching implementation for get_values in Fortran, that correctly receives the pro-
cedure pointer from C and is able to call it, is given in the following MODULE:

MODULE m
IMPLICIT NONE

! Define interface of call-back routine.
ABSTRACT INTERFACE
SUBROUTINE callback (x)
USE, INTRINSIC :: ISO_C_BINDING
REAL (KIND=C_DOUBLE), INTENT(IN), VALUE :: x
END SUBROUTINE callback
END INTERFACE

CONTAINS
! Define C-bound procedure.
SUBROUTINE get_values (cproc) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_FUNPTR), INTENT(IN), VALUE :: cproc
PROCEDURE (callback), POINTER :: proc

! Convert C to Fortran procedure pointer.
CALL C_F_PROCPOINTER (cproc, proc)

! Call it.
CALL proc (1.0_C_DOUBLE)

Chapter 7: Mixed-Language Programming 57

CALL proc (-42.0_C_DOUBLE)
CALL proc (18.12_C_DOUBLE)
END SUBROUTINE get_values

END MODULE m

Next, we want to call a C routine that expects a procedure pointer argument and pass
it a Fortran procedure (which clearly must be interoperable!). Again, the C function may
be:

int
call_it (int (*func) (int), int arg)
{

return func (arg);

}
It can be used as in the following Fortran code:

MODULE m
USE, INTRINSIC :: ISO_C_BINDING
IMPLICIT NONE

! Define interface of C function.
INTERFACE
INTEGER(KIND=C_INT) FUNCTION call_it (func, arg) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_FUNPTR), INTENT(IN), VALUE :: func
INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
END FUNCTION call_it
END INTERFACE

CONTAINS

! Define procedure passed to C function.

! It must be interoperable!

INTEGER (KIND=C_INT) FUNCTION double_it (arg) BIND(C)
INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
double_it = arg + arg

END FUNCTION double_it

! Call C function.

SUBROUTINE foobar ()
TYPE(C_FUNPTR) :: cproc
INTEGER (KIND=C_INT) :: i

! Get C procedure pointer.
cproc = C_FUNLOC (double_it)

! Use it.
DO i = 1_C_INT, 10_C_INT
PRINT *, call_it (cproc, i)
END DO
END SUBROUTINE foobar

END MODULE m

7.1.6 Further Interoperability of Fortran with C

Assumed-shape and allocatable arrays are passed using an array descriptor (dope vector).
The internal structure of the array descriptor used by GNU Fortran is not yet documented

58 The GNU Fortran Compiler

and will change. There will also be a Technical Specification (TS 29113) which standardizes
an interoperable array descriptor. Until then, you can use the Chasm Language Interop-
erability Tools, http://chasm-interop.sourceforge.net/, which provide an interface to
GNU Fortran’s array descriptor.

GNU Fortran already supports the C-interoperable OPTIONAL attribute; for absent ar-
guments, a NULL pointer is passed.

7.2 GNU Fortran Compiler Directives

The Fortran standard describes how a conforming program shall behave; however, the
exact implementation is not standardized. In order to allow the user to choose specific
implementation details, compiler directives can be used to set attributes of variables and
procedures which are not part of the standard. Whether a given attribute is supported and
its exact effects depend on both the operating system and on the processor; see Section “C
Extensions” in Using the GNU Compiler Collection (GCC) for details.

For procedures and procedure pointers, the following attributes can be used to change
the calling convention:

e CDECL — standard C calling convention
e STDCALL — convention where the called procedure pops the stack
e FASTCALL — part of the arguments are passed via registers instead using the stack
Besides changing the calling convention, the attributes also influence the decoration of
the symbol name, e.g., by a leading underscore or by a trailing at-sign followed by the

number of bytes on the stack. When assigning a procedure to a procedure pointer, both
should use the same calling convention.

On some systems, procedures and global variables (module variables and COMMON blocks)
need special handling to be accessible when they are in a shared library. The following
attributes are available:

e DLLEXPORT — provide a global pointer to a pointer in the DLL

e DLLIMPORT — reference the function or variable using a global pointer

The attributes are specified using the syntax
IGCC$ ATTRIBUTES attribute-list :: variable-list

where in free-form source code only whitespace is allowed before !'GCC$ and in fixed-form
source code !GCC$, cGCC$ or *GCC$ shall start in the first column.

For procedures, the compiler directives shall be placed into the body of the procedure; for
variables and procedure pointers, they shall be in the same declaration part as the variable
or procedure pointer.

7.3 Non-Fortran Main Program

Even if you are doing mixed-language programming, it is very likely that you do not need
to know or use the information in this section. Since it is about the internal structure of
GNU Fortran, it may also change in GCC minor releases.

When you compile a PROGRAM with GNU Fortran, a function with the name main (in
the symbol table of the object file) is generated, which initializes the libgfortran library

http://chasm-interop.sourceforge.net/

Chapter 7: Mixed-Language Programming 59

and then calls the actual program which uses the name MAIN__, for historic reasons. If
you link GNU Fortran compiled procedures to, e.g., a C or C++ program or to a Fortran
program compiled by a different compiler, the libgfortran library is not initialized and thus
a few intrinsic procedures do not work properly, e.g. those for obtaining the command-line
arguments.

Therefore, if your PROGRAM is not compiled with GNU Fortran and the GNU Fortran
compiled procedures require intrinsics relying on the library initialization, you need to
initialize the library yourself. Using the default options, gfortran calls _gfortran_set_
args and _gfortran_set_options. The initialization of the former is needed if the called
procedures access the command line (and for backtracing); the latter sets some flags based
on the standard chosen or to enable backtracing. In typical programs, it is not necessary
to call any initialization function.

If your PROGRAM is compiled with GNU Fortran, you shall not call any of the follow-
ing functions. The libgfortran initialization functions are shown in C syntax but using C
bindings they are also accessible from Fortran.

7.3.1 _gfortran_set_args — Save command-line arguments

Description:
_gfortran_set_args saves the command-line arguments; this initialization is
required if any of the command-line intrinsics is called. Additionally, it shall
be called if backtracing is enabled (see _gfortran_set_options).

Syntax: void _gfortran_set_args (int argc, char *argv[])
Arguments:
argc number of command line argument strings
argv the command-line argument strings; argv[0] is the pathname

of the executable itself.

Ezample:

int main (int argc, char *argv[])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
return O;

}

7.3.2 _gfortran_set_options — Set library option flags

Description:
_gfortran_set_options sets several flags related to the Fortran standard to be
used, whether backtracing should be enabled and whether range checks should
be performed. The syntax allows for upward compatibility since the number of
passed flags is specified; for non-passed flags, the default value is used. See also
see Section 2.9 [Code Gen Options|, page 19. Please note that not all flags are
actually used.

Syntax: void _gfortran_set_options (int num, int options[])

Arguments:
num number of options passed

60 The GNU Fortran Compiler

argv The list of flag values

option flag list:

option|0] Allowed standard; can give run-time errors if e.g. an
input-output edit descriptor is invalid in a given standard.
Possible values are (bitwise or-ed) GFC_STD_F77 (1), GFC_
STD_F95_0BS (2), GFC_STD_F95_DEL (4), GFC_STD_F95 (8),
GFC_STD_F2003 (16), GFC_STD_GNU (32), GFC_STD_LEGACY
(64), GFC_STD_F2008 (128), GFC_STD_F2008_0BS (256) and
GFC_STD_F2008_.TS (512). Default: GFC_STD_F95_0BS
| GFC_STD_F95_DEL | GFC_STD_F95 | GFC_STD_F2003 |
GFC_STD_F2008 | GFC_STD_F2008_TS | GFC_STD_F2008_0BS
| GFC_STD_F77 | GFC_STD_GNU | GFC_STD_LEGACY.

option|[1] Standard-warning flag; prints a warning to standard error.
Default: GFC_STD_F95_DEL | GFC_STD_LEGACY.

option|2] If non zero, enable pedantic checking. Default: off.

option[3] Unused.

option[4] If non zero, enable backtracing on run-time errors. Default:

off. Note: Installs a signal handler and requires command-line
initialization using _gfortran_set_args.

option[5] If non zero, supports signed zeros. Default: enabled.

option|6] Enables run-time checking. Possible values are
(bitwise or-ed): GFC_RTCHECK_BOUNDS
(1), GFC_RTCHECK_ARRAY_TEMPS (2),

GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO

(16), GFC_RTCHECK_POINTER (32). Default: disabled.
option[7] If non zero, range checking is enabled. Default: enabled. See

-frange-check (see Section 2.9 [Code Gen Options|, page 19).

Example:
/* Use gfortran 4.7 default options. */
static int options[] = {68, 511, 0, 0, 1, 1, 0, 1};
_gfortran_set_options (8, &optioms);
7.3.3 _gfortran_set_convert — Set endian conversion
Description:
_gfortran_set_convert set the representation of data for unformatted files.
Syntaz: void _gfortran_set_convert (int conv)
Arguments:
conv Endian conversion, possible values:
GFC_CONVERT_NATIVE (0, default),
GFC_CONVERT_SWAP (1), GFC_CONVERT_BIG
(2), GFC_CONVERT_LITTLE (3).
Example:

int main (int argc, char *argv[])
{

/* Initialize libgfortran. */

Chapter 7: Mixed-Language Programming 61

_gfortran_set_args (argc, argv);
_gfortran_set_convert (1);
return O;

}

7.3.4 _gfortran_set_record_marker — Set length of record markers

Description:
_gfortran_set_record_marker sets the length of record markers for unfor-
matted files.

Syntax: void _gfortran_set_record_marker (int val)
Arguments:
val Length of the record marker; valid values are 4 and 8. Default
is 4.
Ezample:

int main (int argc, char *argv[])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
_gfortran_set_record_marker (8);
return O;

}

7.3.5 _gfortran_set_fpe — Enable floating point exception traps

Description:
_gfortran_set_fpe enables floating point exception traps for the specified ex-
ceptions. On most systems, this will result in a SIGFPE signal being sent and
the program being aborted.

Syntax: void _gfortran_set_fpe (int val)

Arguments:
option|0] IEEE exceptions. Possible values are (bitwise or-ed) zero
(0, default) no trapping, GFC_FPE_INVALID (1), GFC_FPE_
DENORMAL (2), GFC_FPE_ZERO (4), GFC_FPE_OVERFLOW (8),
GFC_FPE_UNDERFLOW (16), and GFC_FPE_INEXACT (32).

Ezample:

int main (int argc, char *argv[])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
/* FPE for invalid operations such as SQRT(-1.0). */
_gfortran_set_fpe (1);
return O;

}

7.3.6 _gfortran_set_max_subrecord_length — Set subrecord length

Description:
_gfortran_set_max_subrecord_length set the maximum length for a sub-
record. This option only makes sense for testing and debugging of unformatted

1/0.

62 The GNU Fortran Compiler

Syntax: void _gfortran_set_max_subrecord_length (int val)

Arguments:
val the maximum length for a subrecord; the maximum permitted

value is 2147483639, which is also the default.
Ezample:

int main (int argc, char *argv[])

{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
_gfortran_set_max_subrecord_length (8);
return O;

Chapter 8: Intrinsic Procedures 63

8 Intrinsic Procedures

8.1 Introduction to intrinsic procedures

The intrinsic procedures provided by GNU Fortran include all of the intrinsic procedures re-
quired by the Fortran 95 standard, a set of intrinsic procedures for backwards compatibility
with G77, and a selection of intrinsic procedures from the Fortran 2003 and Fortran 2008
standards. Any conflict between a description here and a description in either the Fortran
95 standard, the Fortran 2003 standard or the Fortran 2008 standard is unintentional, and
the standard(s) should be considered authoritative.

The enumeration of the KIND type parameter is processor defined in the Fortran
95 standard. GNU Fortran defines the default integer type and default real type by
INTEGER (KIND=4) and REAL (KIND=4), respectively. The standard mandates that both data
types shall have another kind, which have more precision. On typical target architectures
supported by gfortran, this kind type parameter is KIND=8. Hence, REAL(KIND=8) and
DOUBLE PRECISION are equivalent. In the description of generic intrinsic procedures,
the kind type parameter will be specified by KIND=*, and in the description of specific
names for an intrinsic procedure the kind type parameter will be explicitly given (e.g.,
REAL (KIND=4) or REAL(KIND=8)). Finally, for brevity the optional KIND= syntax will be
omitted.

Many of the intrinsic procedures take one or more optional arguments. This document
follows the convention used in the Fortran 95 standard, and denotes such arguments by
square brackets.

GNU Fortran offers the ‘~std=£f95’ and ‘~std=gnu’ options, which can be used to restrict
the set of intrinsic procedures to a given standard. By default, gfortran sets the ‘-std=gnu’
option, and so all intrinsic procedures described here are accepted. There is one caveat. For
a select group of intrinsic procedures, g77 implemented both a function and a subroutine.
Both classes have been implemented in gfortran for backwards compatibility with g77. It is
noted here that these functions and subroutines cannot be intermixed in a given subprogram.
In the descriptions that follow, the applicable standard for each intrinsic procedure is noted.

8.2 ABORT — Abort the program

Description:
ABORT causes immediate termination of the program. On operating systems
that support a core dump, ABORT will produce a core dump.

Standard: GNU extension
Class: Subroutine
Syntaz: CALL ABORT

Return value:
Does not return.

Example:

program test_abort
integer :: i =1, j =2

64 The GNU Fortran Compiler

if (1 /= j) call abort
end program test_abort

See also: Section 8.78 [EXIT], page 111, Section 8.138 [KILL], page 146

8.3 ABS — Absolute value

Description:
ABS(A) computes the absolute value of A.

Standard: Fortran 77 and later, has overloads that are GNU extensions
Class: Elemental function
Syntaz: RESULT = ABS(A)

Arguments:
A The type of the argument shall be an INTEGER, REAL, or
COMPLEX.

Return value:
The return value is of the same type and kind as the argument except the return
value is REAL for a COMPLEX argument.

Example:

program test_abs
integer :: i
real :: x = -
complex :: z
i = abs(i)
x = abs(x)
x = abs(z)
end program test_abs

-1
.e0
(-1.e0,0.e0)

o=

Specific names:

Name Argument Return type Standard

ABS(A) REAL(4) A REAL(4) Fortran 77 and later
CABS(A) COMPLEX (4) A REAL (4) Fortran 77 and later
DABS (A) REAL(8) A REAL(8) Fortran 77 and later
IABS(A) INTEGER(4) A INTEGER(4) Fortran 77 and later
ZABS(A) COMPLEX(8) A COMPLEX (8) GNU extension
CDABS(A) COMPLEX(8) A COMPLEX (8) GNU extension

8.4 ACCESS — Checks file access modes

Description:
ACCESS(NAME, MODE) checks whether the file NAME exists, is readable, writable
or executable. Except for the executable check, ACCESS can be replaced by
Fortran 95’s INQUIRE.

Standard: GNU extension
Class: Inquiry function

Syntax: RESULT = ACCESS(NAME, MODE)

Chapter 8: Intrinsic Procedures 65

Arguments:

NAME Scalar CHARACTER of default kind with the file name. Tailing
blank are ignored unless the character achar(0) is present,
then all characters up to and excluding achar (0) are used as
file name.

MODE Scalar CHARACTER of default kind with the file access mode,
may be any concatenation of "r" (readable), "w" (writable)
and "x" (executable), or " " to check for existence.

Return value:
Returns a scalar INTEGER, which is 0 if the file is accessible in the given mode;
otherwise or if an invalid argument has been given for MODE the value 1 is
returned.

Example:

program access_test
implicit none

character(len=+*), parameter :: file = ’test.dat’
character(len=%), parameter :: file2 = ’test.dat ’//achar(0)
if (access(file,’ ’) == 0) print *, trim(file),’ is exists’

if (access(file,’r’) == 0) print *, trim(file),’ is readable’
if (access(file,’w’) == 0) print *, trim(file),’ is writable’
if (access(file,’x’) == 0) print *, trim(file),’ is executable’

if (access(file2,’rwx’) == 0) &
print *, trim(file2),’ is readable, writable and executable’
end program access_test

Specific names:
See also:

8.5 ACHAR — Character in ASCII collating sequence

Description:
ACHAR(I) returns the character located at position I in the ASCII collating
sequence.

Standard: Fortran 77 and later, with KIND argument Fortran 2003 and later
Class: Elemental function
Syntaz: RESULT = ACHAR(I [, KIND])

Arguments:
I The type shall be INTEGER.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type CHARACTER with a length of one. If the KIND
argument is present, the return value is of the specified kind and of the default
kind otherwise.

Ezxample:

66 The GNU Fortran Compiler

program test_achar
character c
¢ = achar(32)

end program test_achar

Note: See Section 8.119 [ICHAR], page 136 for a discussion of converting between
numerical values and formatted string representations.

See also: Section 8.45 [CHAR], page 90, Section 8.111 [TACHAR], page 131, Section 8.119
[ICHAR], page 136

8.6 ACOS — Arccosine function

Description:
ACOS(X) computes the arccosine of X (inverse of COS(X)).

Standard: Fortran 77 and later, for a complex argument Fortran 2008 or later
Class: Elemental function
Syntaz: RESULT = ACOS (X)

Arguments:
X The type shall either be REAL with a magnitude that is less
than or equal to one - or the type shall be COMPLEX.

Return value:
The return value is of the same type and kind as X. The real part of the result
is in radians and lies in the range 0 < Racos(z) < 7.

Example:

program test_acos
real(8) :: x = 0.866_8
x = acos(x)

end program test_acos

Specific names:

Name Argument Return type Standard
ACOS (X) REAL(4) X REAL (4) Fortran 77 and later
DACOS (X) REAL(8) X REAL(8) Fortran 77 and later

See also: Inverse function: Section 8.54 [COS], page 95

8.7 ACOSH — Inverse hyperbolic cosine function

Description:
ACOSH(X) computes the inverse hyperbolic cosine of X.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = ACOSH(X)

Arguments:
X The type shall be REAL or COMPLEX.

Chapter 8: Intrinsic Procedures 67

Return value:
The return value has the same type and kind as X. If X is complex, the imagi-
nary part of the result is in radians and lies between 0 < S acosh(x) < .

Example:
PROGRAM test_acosh
REAL(8), DIMENSION(3) :: x = (/ 1.0, 2.0, 3.0 /)
WRITE (*,*) ACOSH(x)
END PROGRAM
Specific names:
Name Argument Return type Standard
DACOSH (X) REAL(8) X REAL(8) GNU extension

See also: Inverse function: Section 8.55 [COSH], page 96

8.8 ADJUSTL — Left adjust a string

Description:
ADJUSTL (STRING) will left adjust a string by removing leading spaces. Spaces
are inserted at the end of the string as needed.

Standard: Fortran 90 and later
Class: Elemental function
Syntaz: RESULT = ADJUSTL (STRING)

Arguments:
STRING The type shall be CHARACTER.

Return value:
The return value is of type CHARACTER and of the same kind as STRING where
leading spaces are removed and the same number of spaces are inserted on the
end of STRING.

Example:

program test_adjustl
character(len=20) :: str = > gfortran’
str = adjustl(str)
print *, str

end program test_adjustl

See also: Section 8.9 [ADJUSTR], page 67, Section 8.248 [TRIM], page 207

8.9 ADJUSTR — Right adjust a string

Description:
ADJUSTR (STRING) will right adjust a string by removing trailing spaces. Spaces
are inserted at the start of the string as needed.

Standard: Fortran 95 and later
Class: Elemental function

Syntaz: RESULT = ADJUSTR (STRING)

68 The GNU Fortran Compiler

Arguments:
STR The type shall be CHARACTER.

Return value:
The return value is of type CHARACTER and of the same kind as STRING where
trailing spaces are removed and the same number of spaces are inserted at the
start of STRING.

Example:

program test_adjustr
character(len=20) :: str = ’gfortran’
str = adjustr(str)
print *, str

end program test_adjustr

See also: Section 8.8 [ADJUSTL], page 67, Section 8.248 [TRIM], page 207

8.10 AIMAG — Imaginary part of complex number

Description:
ATIMAG(Z) yields the imaginary part of complex argument Z. The IMAG(Z) and
IMAGPART(Z) intrinsic functions are provided for compatibility with g77, and
their use in new code is strongly discouraged.

Standard: Fortran 77 and later, has overloads that are GNU extensions
Class: Elemental function
Syntaz: RESULT = AIMAG(Z)

Arguments:
Z The type of the argument shall be COMPLEX.

Return value:
The return value is of type REAL with the kind type parameter of the argument.

Example:

program test_aimag
complex(4) z4
complex(8) z8
z4 = cmplx(1.e0_4, 0.e0_4)
z8 = cmplx(0.e0_8, 1.e0_8)
print *, aimag(z4), dimag(z8)
end program test_aimag

Specific names:

Name Argument Return type Standard

AIMAG(Z) COMPLEX Z REAL GNU extension
DIMAG(Z) COMPLEX(8) Z REAL(8) GNU extension
IMAG(Z) COMPLEX Z REAL GNU extension

IMAGPART(Z) COMPLEX Z REAL GNU extension

Chapter 8: Intrinsic Procedures 69

8.11 AINT — Truncate to a whole number

Description:
AINT(A [, KIND]) truncates its argument to a whole number.

Standard: Fortran 77 and later
Class: Elemental function
Syntaz: RESULT = AINT(A [, KIND])

Arguments:
A The type of the argument shall be REAL.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type REAL with the kind type parameter of the argument
if the optional KIND is absent; otherwise, the kind type parameter will be given
by KIND. If the magnitude of X is less than one, AINT (X) returns zero. If the
magnitude is equal to or greater than one then it returns the largest whole

number that does not exceed its magnitude. The sign is the same as the sign
of X.

Example:

program test_aint
real(4) x4
real(8) x8
x4 = 1.234E0_4
x8 = 4.321_8
print *, aint(x4), dint(x8)
x8 = aint(x4,8)
end program test_aint

Specific names:

Name Argument Return type Standard
AINT(A) REAL(4) A REAL(4) Fortran 77 and later
DINT(A) REAL(8) A REAL(8) Fortran 77 and later

8.12 ALARM — Execute a routine after a given delay

Description:
ALARM(SECONDS, HANDLER [, STATUS]) causes external subroutine HANDLER
to be executed after a delay of SECONDS by using alarm(2) to set up a signal
and signal(2) to catch it. If STATUS is supplied, it will be returned with the
number of seconds remaining until any previously scheduled alarm was due to
be delivered, or zero if there was no previously scheduled alarm.

Standard: GNU extension
Class: Subroutine

Syntax: CALL ALARM(SECONDS, HANDLER [, STATUS])

70 The GNU Fortran Compiler

Arguments:

SECONDS The type of the argument shall be a scalar INTEGER. It is
INTENT(IN).

HANDLER Signal handler (INTEGER FUNCTION or SUBROUTINE) or
dummy /global INTEGER scalar. The scalar values may be ei-
ther SIG_IGN=1 to ignore the alarm generated or SIG_DFL=0
to set the default action. It is INTENT (IN).

STATUS (Optional) STATUS shall be a scalar variable of the default
INTEGER kind. It is INTENT (OUT).

Example:

program test_alarm
external handler_print
integer i
call alarm (3, handler_print, i)
print *, i
call sleep(10)
end program test_alarm

This will cause the external routine handler_print to be called after 3 seconds.

8.13 ALL — All values in MASK along DIM are true

Description:
ALL(MASK [, DIM]) determines if all the values are true in MASK in the array
along dimension DIM.

Standard: Fortran 95 and later
Class: Transformational function

Syntaz: RESULT = ALL(MASK [, DIM])

Arguments:
MASK The type of the argument shall be LOGICAL and it shall not
be scalar.
DIM (Optional) DIM shall be a scalar integer with a value that

lies between one and the rank of MASK.

Return value:
ALL (MASK) returns a scalar value of type LOGICAL where the kind type param-
eter is the same as the kind type parameter of MASK. If DIM is present, then
ALL(MASK, DIM) returns an array with the rank of MASK minus 1. The shape
is determined from the shape of MASK where the DIM dimension is elided.

(A) ALL(MASK) is true if all elements of MASK are true. It also is true
if MASK has zero size; otherwise, it is false.

(B) If the rank of MASK is one, then ALL(MASK,DIM) is equivalent to
ALL(MASK). If the rank is greater than one, then ALL(MASK,DIM)
is determined by applying ALL to the array sections.

Ezxample:

Chapter 8: Intrinsic Procedures 71

program test_all
logical 1
1 = all((/.true., .true., .true./))
print *, 1
call section
contains
subroutine section
integer a(2,3), b(2,3)

a=1
b=1
b(2,2) =2

print *, all(a .eq. b, 1)
print *, all(a .eq. b, 2)
end subroutine section
end program test_all

8.14 ALLOCATED — Status of an allocatable entity

Description:
ALLOCATED (ARRAY) and ALLOCATED (SCALAR) check the allocation status of AR-
RAY and SCALAR, respectively.

Standard: Fortran 95 and later. Note, the SCALAR= keyword and allocatable scalar entities
are available in Fortran 2003 and later.

Class: Inquiry function

Syntax:

RESULT = ALLOCATED (ARRAY)
RESULT = ALLOCATED (SCALAR)

Arguments:
ARRAY The argument shall be an ALLOCATABLE array.
SCALAR The argument shall be an ALLOCATABLE scalar.

Return value:
The return value is a scalar LOGICAL with the default logical kind type parame-
ter. If the argument is allocated, then the result is . TRUE.; otherwise, it returns
.FALSE.

Example:

program test_allocated

integer :: i = 4

real(4), allocatable :: x(:)

if (.not. allocated(x)) allocate(x(i))
end program test_allocated

8.15 AND — Bitwise logical AND

Description:
Bitwise logical AND.

This intrinsic routine is provided for backwards compatibility with GNU For-

tran 77. For integer arguments, programmers should consider the use of the
Section 8.113 [TAND], page 133 intrinsic defined by the Fortran standard.

72 The GNU Fortran Compiler

Standard: GNU extension
Class: Function

Syntaz: RESULT = AND(I, J)

Arguments:
1 The type shall be either a scalar INTEGER type or a scalar
LOGICAL type.
J The type shall be the same as the type of I.

Return value:
The return type is either a scalar INTEGER or a scalar LOGICAL. If the kind type
parameters differ, then the smaller kind type is implicitly converted to larger
kind, and the return has the larger kind.

Example:

PROGRAM test_and
LOGICAL :: T = .TRUE., F = .FALSE.
INTEGER :: a, b
DATA a / Z°F’ /, b / 2°3* /

WRITE (*,%) AND(T, T), AND(T, F), AND(F, T), AND(F, F)
WRITE (*,%) AND(a, b)
END PROGRAM

See also: Fortran 95 elemental function: Section 8.113 [IAND], page 133

8.16 ANINT — Nearest whole number

Description:
ANINT(A [, XKIND]) rounds its argument to the nearest whole number.

Standard: Fortran 77 and later
Class: Elemental function
Syntax: RESULT = ANINT(A [, KIND])

Arguments:
A The type of the argument shall be REAL.
KIND (Optional) An INTEGER initialization expression indicating
the kind parameter of the result.

Return value:
The return value is of type real with the kind type parameter of the argument if
the optional KIND is absent; otherwise, the kind type parameter will be given
by KIND. If A is greater than zero, ANINT (A) returns AINT (X+0.5). If A is less
than or equal to zero then it returns AINT(X-0.5).

Ezample:

program test_anint
real(4) x4
real(8) x8
x4 = 1.234E0_4
x8 = 4.321_8

Chapter 8: Intrinsic Procedures 73

print *, anint(x4), dnint(x8)
x8 = anint(x4,8)
end program test_anint

Specific names:

Name Argument Return type Standard
AINT(A) REAL(4) A REAL(4) Fortran 77 and later
DNINT(A) REAL(8) A REAL(8) Fortran 77 and later

8.17 ANY — Any value in MASK along DIM is true

Description:

Standard:
Class:
Syntaz:

Arguments:

ANY(MASK [, DIM]) determines if any of the values in the logical array MASK
along dimension DIM are .TRUE..

Fortran 95 and later
Transformational function

RESULT = ANY (MASK [, DIM])

MASK The type of the argument shall be LOGICAL and it shall not
be scalar.
DIM (Optional) DIM shall be a scalar integer with a value that

lies between one and the rank of MASK.

Return value:

Ezample:

ANY (MASK) returns a scalar value of type LOGICAL where the kind type param-
eter is the same as the kind type parameter of MASK. If DIM is present, then
ANY (MASK, DIM) returns an array with the rank of MASK minus 1. The shape
is determined from the shape of MASK where the DIM dimension is elided.

(A) ANY (MASK) is true if any element of MASK is true; otherwise, it is
false. It also is false if MASK has zero size.
(B) If the rank of MASK is one, then ANY(MASK,DIM) is equivalent to

ANY (MASK). If the rank is greater than one, then ANY(MASK,DIM)
is determined by applying ANY to the array sections.

program test_any
logical 1
1 = any((/.true., .true., .true./))
print *, 1
call section
contains
subroutine section
integer a(2,3), b(2,3)

a=1
b=1
b(2,2) =2

print *, any(a .eq. b, 1)
print *, any(a .eq. b, 2)
end subroutine section
end program test_any

74 The GNU Fortran Compiler

8.18 ASIN — Arcsine function

Description:
ASIN(X) computes the arcsine of its X (inverse of SIN(X)).

Standard: Fortran 77 and later, for a complex argument Fortran 2008 or later
Class: FElemental function
Syntaz: RESULT = ASIN(X)

Arguments:
X The type shall be either REAL and a magnitude that is less
than or equal to one - or be COMPLEX.

Return value:
The return value is of the same type and kind as X. The real part of the result
is in radians and lies in the range —7/2 < Rasin(z) < 7/2.

Ezample:

program test_asin
real(8) :: x = 0.866_8
x = asin(x)

end program test_asin

Specific names:

Name Argument Return type Standard
ASIN(X) REAL(4) X REAL (4) Fortran 77 and later
DASIN(X) REAL(8) X REAL(8) Fortran 77 and later

See also: Inverse function: Section 8.224 [SIN], page 193

8.19 ASINH — Inverse hyperbolic sine function

Description:
ASINH(X) computes the inverse hyperbolic sine of X.

Standard: Fortran 2008 and later
Class: Elemental function
Syntaz: RESULT = ASINH(X)

Arguments:
X The type shall be REAL or COMPLEX.

Return value:
The return value is of the same type and kind as X. If X is complex, the
imaginary part of the result is in radians and lies between —7 /2 < Sasinh(z) <

/2.

Example:

PROGRAM test_asinh
REAL(8), DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
WRITE (*,*) ASINH(x)

END PROGRAM

Chapter 8: Intrinsic Procedures 75

Specific names:
Name Argument Return type Standard
DASINH(X) REAL(8) X REAL(8) GNU extension.

See also: Inverse function: Section 8.225 [SINH], page 194

8.20 ASSOCIATED — Status of a pointer or pointer/target pair

Description:
ASSOCIATED (POINTER [, TARGET]) determines the status of the pointer
POINTER or if POINTER is associated with the target TARGET.

Standard: Fortran 95 and later
Class: Inquiry function

Syntax: RESULT = ASSOCIATED (POINTER [, TARGET])

Arguments:
POINTER POINTER shall have the POINTER attribute and it can be of
any type.
TARGET (Optional) TARGET shall be a pointer or a target. It must
have the same type, kind type parameter, and array rank as
POINTER.

The association status of neither POINTER nor TARGET shall be undefined.

Return value:
ASSOCIATED (POINTER) returns a scalar value of type LOGICAL(4). There are
several cases:

(A) When the optional TARGET is not present then
ASSOCIATED(POINTER) is true if POINTER is associated with a
target; otherwise, it returns false.

(B) If TARGET is present and a scalar target, the result is true if
TARGET is not a zero-sized storage sequence and the target associ-
ated with POINTER occupies the same storage units. If POINTER
is disassociated, the result is false.

(C) If TARGET is present and an array target, the result is true if
TARGET and POINTER have the same shape, are not zero-sized
arrays, are arrays whose elements are not zero-sized storage se-
quences, and TARGET and POINTER occupy the same storage
units in array element order. As in case(B), the result is false, if
POINTER is disassociated.

(D) If TARGET is present and an scalar pointer, the result is true
if TARGET is associated with POINTER, the target associated
with TARGET are not zero-sized storage sequences and occupy
the same storage units. The result is false, if either TARGET or
POINTER is disassociated.

76 The GNU Fortran Compiler

(E) If TARGET is present and an array pointer, the result is true if
target associated with POINTER and the target associated with
TARGET have the same shape, are not zero-sized arrays, are ar-
rays whose elements are not zero-sized storage sequences, and TAR-
GET and POINTER occupy the same storage units in array ele-
ment order. The result is false, if either TARGET or POINTER is
disassociated.

Example:

program test_associated
implicit none

real, target :: tgt(2) = (/1., 2./)

real, pointer :: ptr(:)

ptr => tgt

if (associated(ptr) .eqv. .false.) call abort

if (associated(ptr,tgt) .eqv. .false.) call abort
end program test_associated

See also: Section 8.185 [NULLJ, page 171

8.21 ATAN — Arctangent function

Description:
ATAN (X) computes the arctangent of X.

Standard: Fortran 77 and later, for a complex argument and for two arguments Fortran
2008 or later

Class: Elemental function

Syntaz:

RESULT = ATAN (X)
RESULT = ATAN(Y, X)

Arguments:
X The type shall be REAL or COMPLEX; if Y is present, X shall
be REAL.
Y shall be of
the same type
and kind as
X.

Return value:
The return value is of the same type and kind as X. If Y is present, the result
is identical to ATAN2(Y,X). Otherwise, it the arcus tangent of X, where the real
part of the result is in radians and lies in the range —